
Run-time Adaptable Business Process Decentralization

Faramarz Safi Esfahani

Department of Software Engineering,
Islamic Azad University, Najaf Abad Branch,

Esfahan, Iran.
fsafi@iaun.ac.ir

Masrah Azrifah Azmi Murad,

Md. Nasir Sulaiman, Nur Izura Udzir
Faculty of Computer Science and Information Technology

University of Putra Malaysia, 43400, Serdang,
 Selangor, Malaysia.

{masrah, nasir, izura}@fsktm.upm.edu.my

Abstract - BPEL specified business processes in the Service
Oriented Architecture (SOA) are executed by non-scalable
centralized orchestration engines. In order to resolve
scalability issues, the centralized engines are clustered, which is
not a final solution either. Alternatively, several decentralized
orchestration engines are being emerged with the purpose of
decentralizing a BPEL process into fragments, statically. Fully
decentralization of a process into its building activities is an
example of static fragmentation methods. The fragments are
then encapsulated into run-time components such as agents.
There are a number of attitudes towards workflow
decentralization; however, only a few of them consider the
adaptability of produced fragments with a run-time
environment. The run-time adaptability can be studied from
different aspects such as the proportionality of workflow
fragments with number of machines dedicated to a workflow
engine or runtime circumstances such as available bandwidth.
In our opinion, the SOA suffers from the lack of
decentralization adaptability with run-time environments in
the orchestration layer. It demands the mapping of run-time
circumstances to a suitable fragmentation model. In this paper,
a mapping algorithm is presented, which is based on the
number of machines and available bandwidth. Evaluation of
the presented algorithm for adaptable decentralization
demonstrates an improvement of the bandwidth usage
compared to a fully decentralized process.

Keywords-Adaptive Systems; Service Oriented Architecture;

Distributed Orchestrate Engine; Self-* Systems; BPEL; Mobile
Agents;

I. Introduction

Business processes might be very large, geographic
location dependent, long running, carrying a vast number of
calculations, manipulating a huge amount of data and will
eventually be realized as thousands of concurrent process
instances. Such workflows might be found in different areas
of industry and even technology. Authors in [1], refer to the
applications of business processes in industries such as
chain management, online retail, or health care to consist of
complex interactions among a large set of geographically
distributed services deployed and maintained by various
organizations. In addition, an electronic manufacturer is also
reported that employs business processes to conduct its
operations including component stocking, manufacturing,
warehouse, order management and sales forecasting. There
exist geographically distributed parties such as a number of
suppliers, several organizational departments, a dozen of
sales centers, and many retailers. Requests for such

processes from different parties all together naturally result
in creating thousands of concurrent executing instances.
Such number of concurrent requests is a natural fit to this
paper. In addition, new software paradigms introduced in
the Cloud computing such as software as a service (SaaS),
platform as a service (PaaS) and infrastructure as a service
(IaaS) are targeted to receive a huge number of requests.
Particularly, in the case of orchestrate engine as a service, a
huge number of workflow instances might be deployed and
requested from various clients all around the world. In order
to handle the requests, different number of machines and
also resources must be employed. This paper proposes an
adaptable and distributed workflow engine, which tackles
such an ever-changing environment.

According to the SOA stack [2], business logic layer
consists of orchestration and choreography layers. The
choreography layer is intrinsically distributed to several
distinct workflows communicating with each other and
normally run on different workflow engines, whereas the
orchestration layer is workflow engine centric. Indeed, a
single engine [3] is usually applied to execute a business
process and scalability is naturally addressed by replicating
orchestration engines, which is not a final solution for
scalability problems of centralized engines, entirely [1, 4,
5]. The decentralization of business processes has been
introduced as an alternative solution, which is currently
based on system analyst and designers’ opinion and is
carried on at design time, without paying attention to the
fact that ever-changing run-time environment raises special
requirements on which there is no information at design
time.

From this paper point of view and according to [2],
business process decentralization methods can be studied
from three aspects including fragmentation, enactment and
adaptability. A number of decentralized workflow engines
have emerged to support these aspects of decentralization.
The most challenging area is adaptability, which means the
ability of system to reconfigure its component to refrain
from or lessen system bottlenecks such as throughput,
response time and bandwidth usage. In order to achieve
adaptability, the system must be able to react to run-time
circumstances and reconfigure itself. A fully process
decentralization (FPD) method is applied by [1, 4, 6-10],
which decentralizes a business process to activity level
fragments. The fragments are encapsulated in run-time
components and a third-party middleware is applied to

76

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

support the communication among fragments. Adaptability
also comes about by locating/relocating the run-time
components based on system conditions. The FPD
negatively produces a number of fragments, which their
message passing and resource usage will eventually result in
swamping the run-time environment. The main reason is
that the fragments are statically produced without
considering run-time circumstances. In contrast, there are
several dynamic fragmentation methods [11-13], which
produce fragments at run-time without considering the run-
time circumstances. Thus, the produced fragments may
cause violating system thresholds.

In our opinion, the mentioned methods suffer from the
following problems. 1) Lack of dynamic criteria to
workflow decentralization. 2) Improper selection of
activities in decentralized process fragments. On one hand,
encapsulating each activity in one run-time component
provides a high number of components, along with a plenty
of message passing and will eventually increase bandwidth
usage. It also results in high response time due to a huge
amount of message passing and most importantly low
system throughput due to high resource consumption. On
the other hand, encapsulating coarser fragments based on
static criteria will result in less system flexibility as well as
adaptability with run-time environment.

Having an abstract layer in the SOA architecture to
realize the adaptability of decentralization with run-time
environment can be a solution for the mentioned problems.
This layer may seem to be an overhead for executing
processes; however, it is a tradeoff among different aspects
of system. The negative effects of this layer can also be
mitigated by creating the fragments in advance, managing
workflow states and etc. There have been experiments [14]
that show the gained advantages is eye-catching enough
which is a good motivation for presenting this abstract layer.
Indeed, the main objective of this work is presenting and
implementing the idea of adaptable business process
decentralization based on current run-time circumstances. In
fact, the current system condition is mapped to a suitable
decentralization method. In addition, the contributions of
this work are: 1) introducing the idea of run-time adaptable
business process decentralization. 2) Presenting a bandwidth
adaptable workflow decentralization method.

It is also worth mentioning that this paper focuses on
block-structured business processes. In addition, several
aspects of workflow management systems are not included
in this work such as governance of workflow fragments,
managing run-time state of workflow fragments, run-time
workflow reconfiguration, transaction, exception handling
and sharing workflow fragments interior variables. These
are normally implemented by a distributed middleware [11-
13] or from dynamic process decentralization view; they
demand more attention in future work as well.

II. Background and Related Work

Open World Software Paradigm: Baresi et al., in [15],
open a new view towards software development by

introducing the idea of open-world software paradigm,
which has attracted much attention nowadays. According to
this idea, in the open-world paradigm, software is executed
in an ever-changing environment; therefore, static design
time metrics will not be responsive at run-time. Although
the run-time environment changes continuously, it is the
software itself, which has to be self-healed and self-adapted
to keep the whole system in a safe side. Generally, changes
in run-time environment are not predictable at design time;
therefore, evolving software at run-time is necessary.
Software thus needs to continuously and automatically adapt
itself and react to the changes. Systems will need to operate
correctly despite of unexpected changes in factors such as
environmental conditions, user requirements, technology,
legal regulations, and market opportunities. This work
brings an example of applying open-world idea to service
oriented applications.

A few research works has been performed on self-
adapting and self-healing of the service-oriented
applications, especially from service composition point of
view. However, none of them considers self-adapting of
business process decentralization with run-time
environment. This paper draws the idea of open-world
paradigm into business process composition from
decentralization point of view. A decentralized workflow
engine is required to be adequately flexible, dynamic and
adaptive to handle the changes by providing adaptable
fragments. The focus of this work is on implementing a
decentralized workflow engine, which creates adaptable
fragments from a business process based on run-time
environment feedbacks. Adaptability comes about in terms
of first) number of dedicated machines to a workflow
engine; second) the available bandwidth of media, which
connect the workflow engine machines. Based on these
adaptability aspects, a bandwidth adaptable algorithm is also
presented to choose a suitable decentralization method as
well.

Adaptability of Decentralization Based on Workflow
Circumstances: Dartflow project [11] has shown an usage
of mobile agents in distributed workflow execution. In
Dartflow, the workflow model is fragmented dynamically,
and the partitions are carried by mobile agents and sent to
different sites, which are responsible for them. This work
establishes good points for dynamicity of error handling and
data sharing among agents in a dynamic workflow system;
however, it focuses on the system architecture and does not
detail the fragmentation model, adequately.

An abstract and conceptual dynamic workflow
fragmentation method is shown by [12], which applies the
Petri net formalism. The presented method partitions the
centralized process into several fragments step by step,
while the process is executed. The created fragments are
able to migrate to proper servers, where tasks are performed
and new fragments are created and forwarded to other
servers (i.e., using mobile agents) to be executed.
Dynamism in decentralization is a prominent aspect of this
work. The fragmentation method of this work is different
from our work in that it considers workflow run-time
condition to decentralize a business process, while run-time

77

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

environment circumstances are applied for the same purpose
in this paper. Nonetheless, this method is similar to our
work in that the fragments must be prepared beforehand in a
fragment pool or must be built on the fly at runtime.

Figure 1: BPEL View of Loan Application Process

In [13], a decentralized workflow model is presented for

inter-organizational workflow decentralization, where inter-
task dependencies are enforced without requiring to have a
centralized WFMS. This work is different from our work in
that it considers a criterion to decentralize a business
process from inter-organizational point of view which is
fitted to choreography layer of service oriented architecture.
The produced fragments can be considered as inputs of our
work for dynamic decentralization. This work is also an
inter-organizational version of the research paper [12],
which partitions the workflows on the fly. It is also different
from our work in that a workflow is partitioned based on
workflow run-time conditions, while this paper is targeted to
use run-time environment circumstances for decentralization
purposes.

In [16], the ever-changing legislation of governments,
customers’ needs and other changes in environment of
business processes are introduced as the main reasons of

implementing various forms of business process
applications in different organizations. This research work
looks for a way of providing highest level of flexibility as
well as adaptability to the changes in run-time environment.
The decentralization methods introduced in this current
paper require flexible architectures to support dynamic
fragmentation, which execute different execution forms of a
business process at runtime.

Adaptability of Decentralization Based on Run-time
Circumstances: This study is also an extension of our
previously published papers, which were totally on
introducing dynamic criteria for business process
decentralization. In [17, 18], mere idea and motivations of
using a mining method for intelligent process
decentralization (IPD) were introduced and the
improvement of only response time was mathematically
shown for several sample BPEL processes. Moreover, [19]
showed an SLA driven aspect of the IPD as well.
Furthermore, hierarchical process decentralization criterion
(HPD) and its composition with the IPD for two different
case studies were shown in [14, 20]. In this current research
study, the HPD method is considered as a decentralization
method, which decentralizes a business process based on the
hierarchy of activities. For instance in level0 of the process
tree, the whole process is considered as a fragment that is
equal to a Centralized process. In the leveln-1, which is the
last level of the process tree, each process activity is
considered as an individual fragment and it is analogous to
the FPD method. The middle layers of the process tree
provide coarser fragments. Based on the level of
decentralization, different numbers of fragments are
produced. This paper presents a method for process
decentralization, which applies the number of workflow
engine machines and available bandwidth to choose a
suitable level of decentralization in the process tree.

III. HPD Decentralization of Loan Process

Unfortunately, there is no standard business process for
benchmarking BPEL processes. Nonetheless, a loan
application business process has been applied in [1, 10, 21,
22] that also fits our research. The loan process illustrated in
Figure 1 is decentralized based on the HPD decentralization
approach as shown in Figure 2. It makes us able to study
several simple and structured BPEL activities together. The
loan process consults with two external web services, which
send a credit report for the loan applicant. In order to refrain
from approbating risky loans, the loan request is accepted,
when both web services confirm the applicant’s credit.
According to the HPD decentralization method, the loan
process can be decentralized based on the levels of the
process tree. The level0 or HPD0 contains only one
fragment, which is equal to the Centralized model. The
level1 which is analogous to HPD1 provides six fragments,
HPD2 in the level3 decentralizes the process to ten
fragments and finally HPD3, which is the finest
fragmentation model and is also called the FPD, fully
decentralizes the loan process into sixteen fragments each of
which contains only one activity.

78

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

Figure 2: HPD Decentralization of Loan Application Business Process

IV. Adaptable Process Decentralization Framework

A run-time environment is the subject of many changes
during the execution of software applications, which may
result in violating system thresholds. The adaptability of
software with requirements of its execution environment is
important in that it helps the run-time environment to refrain
from catastrophic events.

Distributed systems are used to resolve the scalability
issues of centralized models. However, distribution may
result in performance bottleneck due to the communication
among system components and continuous changes in a
distributed environment. Adaptability of a distributed
system, i.e. a decentralized orchestrate engine, with its
environment is of high importance to avoid approaching
system thresholds and bypassing bottlenecks.

Figure 3 shows the main phases of an Adaptable and
Decentralized Workflow Execution Framework (ADWEF)
to support the adaptable decentralization of business
processes. The central part of the framework is a feedback
data repository, which can be initialized by different parties
such as a system administrator, a distributed workflow
engine, configuration files, monitoring devices and
software, etc. Based on the data provided in the feedback
repository, a decentralization decision maker may be able to
decentralize/re-decentralize a new/running business process.
Re-decentralization may occur due to violating system
thresholds. Making decision on how to decentralize a
business process, the decision maker submits required
information to the workflow decomposer which is able to
fragment a business process to workflow fragments.
Through a process of deployment, the produced fragments
are encapsulated into runtime components (i.e., agents) and
they will be deployed into the machines dedicated to a
distributed workflow engine. Dynamic architectures, which
support the execution of dynamic fragments, have to
implement collaborative components to reinforce each of
the phases specified in the framework.

V. Adaptable Decentralization Decision Maker Unit

This section elaborates an adaptable decentralization
decision maker unit. Adaptability may come along with
different criteria such as memory usage, bandwidth usage,
throughput, etc. Nevertheless, having all of them together is
impossible due to confliction of goals. This section also
opens discussions on considering run-time circumstances in
business process decentralization. Figure 4 also presents a
decentralization decision maker unit, which offers a suitable
level of decentralization based on receiving two parameters
from run-time environment including the number of
available machines and available bandwidth. The decision
maker unit is implemented using a Fuzzy approach in this
paper.

Figure 3: Adaptable and Decentralized Workflow

Execution Framework (ADWEF)

79

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

Figure 4: Decentralization Decision Maker

1. name: fuzzyGranularity;

2. input:

3. ps (Process Specification),

4. bw (Bandwidth),

5. nom (Number of Machines);

6. output:

7. granularityLevel;

8. begin

9. │ fsa = fragmentSetArray (ps, “HPD”);

10. │ fp = findFragmentProportionality (fsa, nom);

11. │ fpl = findFragmentProportionalityLevel (fp)

12. │ granularityLevel = findFuzzyGranularity (fsa, fpl, bw);

13. │return granularityLevel;

14. end;

Figure 5: Adaptable Fuzzy Decentralization Algorithm

VI. Bandwidth Adaptable Decentralization

Bandwidth is important in that it is independent from
other parameters such as response time and throughput;
however, response time and throughput are highly affected
by the available bandwidth. A busy communication media
may increase the latency of communication among
components, which results in increasing response time and
decreasing throughput, consequently.

A sample implementation of decision making unit is
shown in Figure 5. It shows the fuzzyGranularity algorithm
as well as its input parameters including process
specification, current bandwidth and number of machines.
The level of decentralization will be the output parameter.
At first, the business process specification is sent to
fragmentSetArray by identifying the method of
fragmentation i.e. HPD; second, fragment proportionality is
determined by findFragmentProportionality. It determines
that the number of produced fragments in which
decentralization level is closer to the number of machines.
The closer number is called fragment proportionality. Then,
the level of a business process tree, which satisfies the

fragment proportionality, is returned by the next method
findFragmentProportionalityLevel.

Finally, by having all the fragments, available bandwidth

and fragment proportionality level, granularity level is
calculated by the findFuzzyGranularity method. This
method receives fragment set array (fsa), fragment
proportionality level (fpl) and available bandwidth (bw) as
input and returns the level of decentralization in process tree
as output. At first, bandwidth is segmented dynamically to a
set of Segments (Si) and then; bw is fuzzified using a
singleton function. For each segmented bandwidth Si a new
rule is created using a singleton function such that Si →
Singleton (fsa[i].fragmentNo()). The created rules are
executed using a rule engine. Output is defuzzified later and
finally a crisp value is calculated. The crisp value
determines a suitable level of process tree, which is the final
result of findFuzzyGranularity method.

VII. Experimental Setup and Evaluation

The focus of this section is evaluating the behavior of
the bandwidth-adaptable fuzzy decentralization decision
making unit. The algorithm is expected to adapt
decentralization of processes with current available
bandwidth. It considers the fragment proportionality of
decentralization with number of machines as well.

Figure 6: Comparing exchanged messages by fragments of FPD

and the presented algorithm using two machines.

Figure 7: Comparing exchanged messages by fragments of FPD

and presented algorithm using sixteen machines.

80

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

In order to implement the experiments, WADE/JADE
[23-26] platform was selected and installed on a network
with sixteen machines. The created fragments using the
HPD method were encapsulated in WADE/JADE agents
and deployed to network machines. Accordingly, the
experiment was repeated for two and sixteen machines. A
client sent requests with specific rates of 1000, 2000, 3000
and 4000 per minute. During the experiments, sniffer
software monitored the number of messages exchanged
among the fragments. Receiving a request from a client, a
number (between 0-100) was generated with exponential
distribution, which was the simulation of available
bandwidth. The available bandwidth along with the
fragment proportionality parameter was sent to a fuzzy
algorithm to recommend a suitable level of decentralization.
The same experiments were repeated without the presence
of bandwidth adaptable algorithm, which was analogous to
applying the FPD method.

Both Figure 6 and Figure 7 show the results of the
experiments. The fully process decentralization method
(FPD) was neutral to the number of machines and
bandwidth fluctuations; thus, a constant number of
messages were passed among the agents. In contrast with
the FPD, the bandwidth adaptable algorithm, decentralized
the loan process based on the generated bandwidth and
number of machines. As shown in Figure 2, different
versions of the loan process were created at run-time. The
adaptable algorithm reduced the number of exchanged
messages in both cases due to considering the adaptability
of fragments with number of machines and available
bandwidth. In the case that enough bandwidth was
available, the algorithm considered only the adaptability
with number of machines. When the bandwidth was not
wide enough, the algorithm shrunk the fragments and
created more centralized fragments.

VIII. CONCLUSION

An adaptable business process decentralization
framework was introduced as a solution for decentralizing
large scale business processes. The main problem was that
current decentralization methods did not consider the
adaptability of business process decentralization with run-
time environment circumstances such as available
bandwidth in this paper.

By decentralizing a business process based on the
number of machines, the extra communication cost of inter-
fragment communication is omitted. If there is only one
machine to execute processes, there is no need to create
several fragments running on one machine. In other words, a
multi-thread process would be more effective. In the case of
several machines, the proportionality of produced fragments
with number of machines dedicated to a distributed engine
reduces the number of fragments and consequently
communication among them. On the other hand, the
available bandwidth of a network may directly affect the
response time and throughput of workflows. Imagine a busy
communication media in a distributed workflow engine.
Under such circumstances, creating a fully fragmented

process may result in a huge amount of exchanging
messages among the fragments and then system
approaches/violates its thresholds, consequently. Obviously,
the less number of fragments provides better outcomes in
this case. As a matter of fact, the process is shrunk to refrain
from violating the thresholds. After ameliorating the run-
time conditions, current processes and/or new processes,
may be expanded/re-expanded by creating more fragments.

Indeed, in this paper, an adaptable process
decentralization framework was introduced to create
fragments proportional to both the number of machines and
current available bandwidth. The evaluation of bandwidth
adaptable algorithm showed that this algorithm was able to
execute a process with considerably less number of
exchanged messages compared to the FPD method. The
fragments of the FPD exchanged ten to twenty times more
messages compared to the bandwidth adaptable algorithm.

It is worth mentioning that the adaptable decentralization
decision making unit opens more discussions on finding
more adaptability metrics and more intelligent algorithms to
achieve better decentralization outcomes. Considering the
network capacity, accumulative bandwidth, the relation of
workflow activities, etc can be instances of such adaptability
metrics. Furthermore, algorithms are required to
decentralize graph-structured business processes and
mapping them to run-time circumstances. Currently, our
main focus is on developing a Fuzzy algorithm to integrate
the HPD and HIPD methods to provide a more adaptable
decentralization approach.

ACKNOWLEDGMENT

Faramarz Safi Esfahani is also a PhD candidate in
University of Putra Malaysia, 43400, Serdang, Selangor,
Malaysia.

REFERENCES

[1] Guoli Li, Vinod Muthusamy, and Hans-Arno Jacobsen, “A Distributed

Service Oriented Architecture for Business Process Execution,” ACM

Transactions on the Web (TWEB), vol. 4, no. 1, article 2, 2010.
[2] Paolo Bruni, Marcos Henrique Simoes Caurim, Alexander Koerner,

Christine Law, et al., Powering SOA with IBM Data Servers, ISBN.

738494542, IBM, 2006, p. 754.
[3] “Workflow management coalition: process definition interchange,”,

http://www.wfmc.org, 2011.

[4] Mirkov Viroli, Enrico Denti and Alessandron Ricci, “Engineering a

BPEL orchestration engine as a multi-agent system,” Journal of Science of

Computer Programming, vol 66, issue 3, 2007, pp. 226-245 2007.
[5] Roberto Silveira Silva Filho, Jacques Wainer and Edmundo Roberto

Mauro Madeira “A fully distributed architecture for large scale workflow

enactment,” International Journal of Cooperative Information Systems, vol.
12, no. 4, 2003, pp. 411-440.

[6] Giancarlo Fortino, Alfredo Garro, Wilma Russo, “Distributed

Workflow Enactment: an Agent-based Framework,” Proc. WOA2006,
2006, pp. 110-117.

[7] Li Guo, Dave Robertson, Yun-Heh Chen-Burger, “A Novel Approach

for Enacting the Distributed Business Workflows Using BPEL4WS on the
Multi-Agent Platform,” Web Intelligence and Agent Systems, 2005, pp.

657-664.

[8] Daniel Wutke, Daniel Martin and Frank Leymann, “Model and
Infrastructure for Decentralized Workflow,” Proc. ACM/SAC 2009, ACM,

2008, pp. 90-94.

[9] Gustavo Alonso, Fabio Casati, kuno Harumi and Machiraju Vijay,
“Exotica/FMQM: A Persistent Message-Based Architecture for Distributed

81

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

Workflow Management,” Proc. IFIP WG 8.1 Workgroup Conference on

Information Systems Development for Decentralized Organizations
(ISD095), 1995, pp. 1-18.

[10] Vinod Muthusamy, Hans-Arno Jacobsen, Tony Chau and Allen Chan,

“SLA-driven business process management in SOA,” Proc. CASCON,
Toronto, Canada, 2009, pp. 86-100.

[11] Ting Cai, Peter A Gloorand and Saurab Nog, “DartFlow: A workflow

management system on the web using transportable agents,” Technical
Report PCS-TR96-283, Dartmouth College, Hanover, NH, 1996,

http://www.cs.dartmouth.edu/~jcrespo/cms_file/SYS_techReport/156/TR9

6-283.pdf.
[12] Wei Tan and Yushun Fan, “Dynamic workflow model fragmentation

for distributed execution,” Comput. Ind., vol. 58, no. 5, 2007, pp. 381-391;

DOI http://dx.doi.org/10.1016/j.compind.2006.07.004.
[13] Vijayalakshmi Atluri, Soon Ae Chun, Ravi Mukkamala and Pietro

Mazzolen, “A decentralized execution model for inter-organizational

workflows,” Distrib. Parallel Databases, vol. 22, no. 1, 2007, pp. 55-83;
DOI http://dx.doi.org/10.1007/s10619-007-7012-1.

[14] Faramarz Safi Esfahani, Masrah Azrifah Azmi Murad, Md. Nasir

Sulaiman and Nur Izura Udzir,“ Adaptable Distributed Service Oriented
Architecture,” Elsevier Journal of Systems and Software (JSS), in press.

[15] Luciano Baresi, Elisabetta Di Nitto and Carlo Ghezzi, “Toward open-

world software: Issue and challenges,” Computer, vol. 39, no. 10, 2006, pp.
36-43.

[16] Yiwei Gong, Marijn Janssen, Sietse Overbeek and Arre Zuurmond,

“Enabling flexible processes by ECA orchestration architecture,” Proc.
ICEGOV, 2009, pp. 19-26.

[17] Faramarz Safi Esfahani, Masrah Azrifah Azmi Murad, Md. Nasir
Sulaiman and Nur Izura Udzir, “Using Process Mining To Business

Process Distribution,” Proc. SAC2009, ACM, 2009, pp. 1876-1881.

[18] Faramarz Safi Esfahani, Masrah Azrifah Azmi Murad, Md. Nasir
Sulaiman and Nur Izura Udzir, “An Intelligent Business Process

Distribution Approach,” Journal of Theoretical and Applied Information

Technology, vol. 4, 2008, pp. 1236-1245.
[19] Faramarz Safi Esfahani, Masrah Azrifah Azmi Murad, Md. Nasir

Sulaiman and Nur Izura Udzir, “SLA-Driven Business Process

Distribution,” Proc. IARIA/eKnow2009, IEEE, 2009, pp.14-21.
[20] Faramarz Safi Esfahani, Masrah Azrifah Azmi Murad, Md. Nasir

Sulaiman and Nur Izura Udzir, “A Case Study of the Intelligent Process

Decentralization Method,” Proc. WCECS, IAENG, 2009, pp 269-274.
[21] Rania Khalaf and Frank Leymann, “E Role-based Decomposition of

Businesses using BPEL,” Proc. IEEE International Conference on Web

Services (ICWS'06), 2006, pp. 770-780.
[22] Mangala Gowri Nanda, Satish Chandra and Vivek Sarkar,

“Decentralizing execution of composite web services,” ACM SIGPLAN

Notices, vol. 39, no. 10, 2004, pp. 170-187.
[23] Fabio Bellifemine, Agostino Poggi and Giovanni Rimassa, “JADE–A

FIPA-compliant agent framework,” Proc. PAAM99, 1999, pp. 97-108.

[24] Giovanni Caire, Danilo Gotta and Massimo Banzi, “WADE: a
software platform to develop mission critical applications exploiting agents

and workflows,” Proc. 7th international joint conference on Autonomous

agents and multiagent systems: industrial track, Richland, SC, 2008, pp.

29-36.

[25] Krzysztof Chmiel, Maciej Gawinecki, Pawel Kaczmarek, Michal

Szymczak, et al., “Efficiency of JADE agent platform,” Journal of
Scientific Programming, vol. 13, no. Number 2/2005, 2005, pp. 159-172.

[26] Bellifemine Fabio, Caire Giovanni and Greenwood Dominic,

Developing Multi-Agent Systems with JADE, WILEY, 2007.

82

eKNOW 2011 : The Third International Conference on Information, Process, and Knowledge Management

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-121-2

