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Abstract—When Atanssov created Intuitionistic Fuzzy Sets, he
imposed the condition that the sum of membership and non-
membership values for each point in the universe of discourse
should be less than or equal to one. We challenge this constraint
and define some new types of Intuitionistic Fuzzy Sets such that,
for any point in the universe of discourse, the sum of membership
and non-membership values can be greater than one, or their
difference can be negative or positive, while one value is greater
than the other, or the sum of their squares is less than or equal
to one.

Keywords-Intuitionistic fuzzy set, Interval-valued fuzzy sets.

I. I NTRODUCTION

Fuzzy Sets concept was introduced by Zadeh [1] in
1965. Given an non-empty universe of discourseX , one
can define a fuzzy set A based on its membership function
µA : X → [0, 1], that is A is a set with ‘vague boundary’
when compared with crisp sets, whereµA : X → {0, 1}. Of
course, the bigger the value ofµA(x) is, the greater the degree
of membership ofx to A is, soµA(x) = 1 represents the full
membership ofx to A.

In 1983, Atanassov generalized the concept of fuzzy set
by using two membership functions for the elements of the
universe of discourse. The English version appeared in 1986
[2].

Definition 1. Let X be an non-empty universe of dis-
course. An(Atanassov’s) Initutionistic Fuzzy
Set (AIFS or IFS) is described by:

A = {(x, µA(x), νA(x)) |x ∈ X} (1)

whereµA is used to define the degree of membership (mem-
bership function) andνA is used to define the degree of non-
membership (non-membership function) ofx to A

µA : X → [0, 1] νA : X → [0, 1] (2)

satisfying the condition

0 ≤ µA(x) + νA(x) ≤ 1, ∀x ∈ X (3)

The wordintuitionistic was added to suggest that
the principle of excluded middle does not hold, so to say
µA(x) + νA(x) = 1 is not true for allx ∈ X if one interprets
ν as a sort of negation ofµ. Some operations on IFSs have
been also introduced in [2]:
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Fig. 1. Atanassov Intuitionistic Fuzzy Set,µA(x) + νA(x) ≤ 1, ∀x ∈ X

Definition 2. Given two IFSs A and B over an universe of
discourse X, one can define the following relations:
A ⊂ B iff ∀x ∈ X µA(x) ≤ µB(x) and νA(x) ≥ νB(x)
A = B iff A ⊂ B and B ⊂ A

as well as the following operations [2]:
Ā = {(x, νA(x), µA(x) |x ∈ X}
A ∩ B = {(x, µA∩B(x), νA∩B(x)) |x ∈ X}, where

µA∩B(x) = min{µA(x), µB(x)} and
νA∩B(x) = max{νA(x), νB(x)}

A ∪ B = {(x, µA∪B(x), νA∪B(x)) |x ∈ X}, where
µA∪B(x) = max{µA(x), µB(x)}, and
νA∪B(x) = min{νA(x), νB(x)}

A + B = {(x, µA+B(x), νA+B(x)) |x ∈ X}, where
µA+B(x) = µA(x) + µB(x) − µA(x) · µB(x), and
νA+B(x) = νA(x) · νB(x)

A · B = {(x, µA·B(x), νA·B(x)) |x ∈ X}, where
µA·B(x) = µA(x) · µB(x), and
νA·B(x) = νA(x) + νB(x) − νA(x) · νB(x)

In [2] it is proved that the operations∩ and∪ are commu-
tative, associative, distributive among themselves, idempotent
and satisfy De Morgan’s law; the operations+ and · are
commutative, associative, satisfy De Morgan’s law, and are
distributive with respect to∩ and∪.

To measure hesitancy of membership of an element to a
intuitionistic fuzzy set, Atanassov [2] used a third function.
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Definition 3. Given an IFSA = {(x, µA(x), νA(x)) |x ∈ X}
over an non-empty universe of discourseX , the degree of
indeterminacy ofx to A is given by

πA(x) = 1 − µA(x) − νA(x) (4)

The functionπ(x) is also called theintuitionistic
fuzzy index, the hesitancy, or the ignorance
degree of x to A. Clearly, 0 ≤ πA(x) ≤ 1, ∀x ∈ X .
If πA(x) = 0, ∀x ∈ X , then ν(x) = 1 − µ(x) and the
intuitionistic fuzzy set A is reduced to an ordinary fuzzy set
A:

A = {(x, µA(x), 1 − µA(x)) |x ∈ X} (5)

Some authors (Yusoff et al. [3], Zeng and Li [4]) consider
that the third parameterπ(x) cannot be omitted from the
definition of an AIFS:

A = {(x, µA(x), νA(x), πA(x)) |x ∈ X} (6)

and so an AIFS can be depicted as in Figure 2. A line parallel
to the µA(x) + νA(x) = 1 diagonal describes a crisp set of
elementsx with the same level of hesitancy toA.
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Fig. 2. AIFS with explicit fuzzy index:πA(x) = 1 − µA(x) − νA(x)

IFSs are not a trivial generalization of ordinary Fuzzy Sets
(FS) because they can be represented in the form[A, B],
whereA and B are ordinary fuzzy sets or, even more, one
can define modal operatorsnecessityandpossibilityover IFS
(see Atanassov [5]):

�A = {(x, µA(x), 1 − µA(x)) |x ∈ X} (7)

♦A = {(x, 1 − νA(x), νA(x)) |x ∈ X} (8)

such that

�A ⊂ A ⊂ ♦A (9)

�A = ♦A (10)

♦A = �A (11)

(12)

while in ordinary fuzzy sets we have

�A = A = ♦A (13)

Of course, all FS results can be easily generalized for IFS.
Deschrijver and Kerre ( [6], [7]) proved that AIFSs can also

be seen as L-fuzzy sets in the sense of Goguen [8] by taking
the lattice⋆L = {(x1, x2) ∈ [0, 1]2 |x1 + x2 ≤ 1} with the
partial order≤

⋆L defined as

(x1, x2) ≤⋆L (y1, y2) ⇐⇒ x1 ≤ y1 ∧ x2 ≥ y2

In [6] it is proved that(⋆L,≤
⋆L) is a complete and bounded

lattice with the smallest element0
⋆L = (0, 1) and the greatest

element1
⋆L = (1, 0). This lattice (and the similar ones we’ll

introduce later in this section) can then be used to define
intuitionistic fuzzy negation [9]:

Definition 4. A functionN : L → L, whereN is strictly
decreasing, continuous, andN (0L) = 1L, N (1L) = 0L is
called an intuitionistic fuzzy negation.
N is a strong fuzzy negation if it is involutive, that is
N (N (x)) = x holds for all x ∈ L.

Recall that a functionϕ : [0, 1] → [0, 1] that is continuous
and strictly increasing, such thatϕ(0) = 0 and ϕ(1) = 1, is
called automorphism.

Deschrijver and Kerre [6] also proved that any strong
intuitionistic fuzzy negationN is characterised by a strong
negationN : [0, 1] → [0, 1] such that, for all(x1, x2) ∈ L,
N (x1, x2) = (N(1−x2), 1−N(x1)). Trillas et al. [10] proved
that N : [0, 1] → [0, 1] is a strong negation if and only if
there exists an automorphismϕ of the unit interval such that
N(x) = ϕ−1(1 − ϕ(x)).

II. GENERALISED INTUITIONISTIC FUZZY SETS

In the sequel, letX be a non-empty set and let us consider
A = {(x, µA(x), νA(x)) |x ∈ X}, whereµA : X → [0, 1] and
νA : X → [0, 1], are used to define the degree of membership
and the degree of non-membership, respectively, ofx to A.
Given an elementx ∈ X , the conditionµ(x) + ν(x) ≤ 1
included in the definition of AIFSs suggests that if one of the
two membership/non-membership functions has a big value
(close to 1), the other function should have a very small
value (close to 0) such that their sum is less than one. But
it is possible that both functions have small values, that is
membership degree and non-membership degree are quite
insignificant. As one can see on Figure 1, bothµ(x) andν(x)
have small values (less than0.5) in the square with opposite
corners(0; 0) and (0.5; 0.5) and only one of them has a big
value (bigger than0.5) in the two remaining triangles. The two
cases are equal possible, in the sense that they cover surfaces
of same size. The definition of an AIFS shows proneness to
many generalisations. Atanassov’s definition assumes thatthe
membership and non-membership functions must have their
sum smaller than or equal to one for every element of the
universe of discourse. While it is a good hypothesis in many
practical situations, there are cases when this constraintdoes
not work and it must be replaced by other relations.

The definition of an AIFS shows proneness to many gen-
eralisations. A first extension was proposed by T. K. Mondal
and S. K. Samanta [11], where the functionsµ andν satisfy
the conditionµ(x)∧ν(x) ≤ 0.5, ∀x ∈ X . A second extension
to both Atanassov and Mondal-Samanta models was proposed
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by H.C. Liu [12], by using a constantL ∈ [0, 1] such that
the functionsµ and ν satisfy the conditionµ(x) + ν(x) ≤
1 + L, ∀x ∈ X andL ∈ [0, 1].

The main contribution of this paper is the replacement of
the original Atanassov relation by some other conditions. We
think that both functions can take any values in[0, 1] as long
as the ignorance degree ofx to A is non-negative and less than
or equal to one (after we reshape it in an appropriate way).
The condition0 ≤ µA(x) + νA(x) ≤ 1, ∀x ∈ X is just a
choice and it can be replaced by others. If Atanassov’s original
definition dealt with the left bottom triangle of the unit square,
we will consider all four right angle triangles in the unit
square (with the right angle a corner of the square), plus some
other combinations of them, obtained by combining triangles
between the square’s diagonals, as well as the inscribed circle
in the square. Therefore, our first generalisation (GAIFS1)is
given by:

Definition 5. Let X be a non-empty universe of discourse.
Then a generalised Atanassov intuitionistic fuzzy set (GAIFS1)
is described byA = {(x, µA(x), νA(x)) |x ∈ X}, where the
membership/non-membership functionsµA : X → [0, 1] and
νA : X → [0, 1] satisfy the condition

µ(x) + ν(x) ≥ 1, ∀x ∈ X (14)

The degree of indeterminacy ofx to A is defined as

πA(x) = µA(x) + νA(x) − 1 (15)

and, once again, clearly0 ≤ πA(x) ≤ 1, ∀x ∈ X .
If πA(x) = 0, ∀x ∈ X then ν(x) = 1 − µ(x) and the
intuitionistic fuzzy set A is reduced to an ordinary fuzzy set
A = {(x, µA(x), 1 − µA(x)) |x ∈ X}.

ν(
x)

µ(x)
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Fig. 3. First (GAIFS1) new definition of an AIFS

If we take the set

L⋆ = {(x1, x2) ∈ [0, 1]2 |x1 + x2 ≥ 1}

with the partial order≤L⋆ defined as

(x1, x2) ≤L⋆ (y1, y2) ⇐⇒ x1 ≥ y1 ∧ x2 ≤ y2

and , for eachA ⊂ L⋆, we define:

sup A = (inf{x1 ∈ [0, 1] | ∃x2 ∈ [0, 1], (x1, x2) ∈ A},

sup{x2 ∈ [0, 1] | ∃x1 ∈ [0, 1], (x1, x2) ∈ A})

inf A = (sup{x1 ∈ [0, 1] | ∃x2 ∈ [0, 1], (x1, x2) ∈ A},

inf{x2 ∈ [0, 1] | ∃x1 ∈ [0, 1], (x1, x2) ∈ A})

then(L,≤L⋆) is a complete lattice. The lattice can be defined
as an algebraic structure(L⋆, ∧, ∨) where the meet and join
operators are defined respectively

(x1, x2) ∧ (y1, y2) = (max(x1, y1), min(x2, y2))

(x1, x2) ∨ (y1, y2) = (min(x1, y1), max(x2, y2))

The smallest element is0L⋆ = (1, 0) and the greatest element
is 1L⋆ = (0, 1). Therefore, an GAIFS1 A is a L-fuzzy set
whose L-membership functionχA ∈ (L⋆)X = {χ : X → L⋆}
is defined such that for eachx ∈ X, χA(x) = (µA(x), νA(x)).
The shaded area in Figure 4 is the set of elementsx = (x1, x2)
belonging toL⋆.

ν(
x)

µ(x)

0

x2=0.7

1

x1=0.8 1

x(x1, x2)

Fig. 4. New Intuitionistic Fuzzy Set as a L-fuzzy Set

The order≤L⋆ of L⋆ induces a natural partial order on
(L⋆)X : given χA, χB ∈ (L⋆)X , we say thatχA ≤L⋆ χB if
and only if χA(x) ≤L⋆ χB(x) for all x ∈ X .
Thus, ((L⋆)X , ≤L⋆) is a bounded and complete lattice in
which the least and greatest elements areχ0L⋆ and χ1L⋆ ,
respectively. Of course,χ0L⋆ (x) = 0L⋆ andχ1L⋆ (x) = 1L⋆ ,
for all x ∈ X . The same considerations apply to all otherL

lattices we will define in the sequel. By using

A ⊂ B iff ∀x ∈ X µA(x) ≥ µB(x) andνA(x) ≤ νB(x)

all AIFS original operations can be re-written for GAIFS1.
The second generalisation (GAIFS2) is given by:

Definition 6. Let X be a non-empty universe of discourse.
Then a generalised Atanassov intuitionistic fuzzy set (GAIFS2)
is described byA = {(x, µA(x), νA(x)) |x ∈ X}, where the
membership/non-membership functionsµA : X → [0, 1] and
νA : X → [0, 1] satisfy the condition

µ(x) ≤ ν(x), ∀x ∈ X (16)
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The degree of indeterminacy ofx to A is defined as

πA(x) = νA(x) − µA(x) (17)
ν(

x)

µ(x)
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Fig. 5. Second (GAIFS2) new definition of an AIFS

The corresponding complete lattice in this case is

⋆L = {(x1, x2) ∈ [0, 1]2 |x1 ≤ x2}

with the partial order≤⋆L defined as

(x1, x2) ≤⋆L (y1, y2) ⇐⇒ x1 ≤ y1 ∧ x2 ≤ y2

As described by Deschrijver in [13], ifx = (x1, x2) ∈ ⋆L,
then the lengthx2 − x1 is called the uncertainty and is
denoted byxπ. The interval[x1, x2] gives the “range between
a pessimistic and an optimistic truth evaluation of a propo-
sition” [13]. The smallest and the largest elements in⋆L are
0⋆L = (0, 0) and1⋆L = (1, 1), respectively. By using

A ⊂ B iff ∀x ∈ X µA(x) ≤ µB(x) andνA(x) ≤ νB(x)

all AIFS original operations can be re-written for GAIFS2.
The third generalisation (GAIFS3) is given by:

Definition 7. Let X be a non-empty universe of discourse.
Then a generalised Atanassov intuitionistic fuzzy set (GAIFS3)
is described byA = {(x, µA(x), νA(x)) |x ∈ X}, where the
membership/non-membership functionsµA : X → [0, 1] and
νA : X → [0, 1] satisfy the condition

µ(x) ≥ ν(x), ∀x ∈ X (18)

The degree of indeterminacy ofx to A is defined as

πA(x) = µA(x) − νA(x) (19)

The corresponding complete lattice in this case is

L⋆ = {(x1, x2) ∈ [0, 1]2 |x1 ≥ x2}

with the partial order≤L⋆
defined as

(x1, x2) ≤L⋆
(y1, y2) ⇐⇒ x1 ≥ y1 ∧ x2 ≥ y2

The interval[x2, x1] gives, once again, the “range between
a pessimistic and an optimistic truth evaluation of a proposi-
tion”, as stated in [13]. The smallest and the largest elements
in L⋆ are0L⋆

= (1, 1) and1L⋆
= (0, 0), respectively.

ν(
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Fig. 6. Third (GAIFS3) new definition of an AIFS

By using

A ⊂ B iff ∀x ∈ X µA(x) ≥ µB(x) andνA(x) ≥ νB(x)

all AIFS original operations can be re-written for GAIFS3.
The fourth generalisation (GAIFS4) is given by:

ν(
x)

µ(x)
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 1

 0  0.5  1

Fig. 7. Fourth (GAIFS4) new definition of an AIFS

Definition 8. Let X be a non-empty universe of discourse.
Then a generalised Atanassov intuitionistic fuzzy set (GAIFS4)
is described byA = {(x, µA(x), νA(x)) |x ∈ X}, where the
membership/non-membership functionsµA : X → [0, 1] and
νA : X → [0, 1] satisfy the condition

µ(x) ≥ ν(x), and µ(x) + ν(x) ≥ 1, or

µ(x) ≤ ν(x), and µ(x) + ν(x) ≤ 1, ∀x ∈ X (20)
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The fifth generalisation (GAIFS5) is given by:

Definition 9. Let X be a non-empty universe of discourse.
Then a generalised Atanassov intuitionistic fuzzy set (GAIFS5)
is described byA = {(x, µA(x), νA(x)) |x ∈ X}, where the
membership/non-membership functionsµA : X → [0, 1] and
νA : X → [0, 1] satisfy the condition

µ(x) ≤ ν(x), and µ(x) + ν(x) ≥ 1, or

µ(x) ≥ ν(x), and µ(x) + ν(x) ≤ 1, ∀x ∈ X (21)

ν(
x)

µ(x)

 0.5

 1

 0  0.5  1

Fig. 8. Fifth (GAIFS5) new definition of an AIFS

It is also possible to consider the case when functionsµ and
ν cannot take values in the neighbourhoods of the four corners
of the square[0, 1]2, that is giving our sixth generalization
(GAIFS6):

ν(
x)

µ(x)

 0.5

 1

 0  0.5  1

Fig. 9. Sixth (GAIFS6) new definition of an AIFS

Definition 10. Let X be a non-empty universe of discourse.
Then a generalised Atanassov intuitionistic fuzzy set (GAIFS6)
is described byA = {(x, µA(x), νA(x)) |x ∈ X}, where the
membership/non-membership functionsµA : X → [0, 1] and

νA : X → [0, 1] satisfy the condition

µ2(x) + ν2(x) ≤ 1, ∀x ∈ X (22)

III. G ENERALISED INTERVAL-VALUED FUZZY SETS

Interval-valued fuzzy sets were introduced by Zadeh [14],
Grattan-Guiness [15], Jahn [16], and Sambuc [17]. Because it
is hard in real life problems to assign a precise membership
degree to elements in fuzzy sets, this was replaced by an
interval [µ1, µ2], with 0 ≤ µ1 ≤ µ2 ≤ 1 to which the
membership degree belongs. The length of the interval is
a measure of uncertainty of the membership of an element
x ∈ X to an interval-valued fuzzy set (IVFS) A. It is similar to
the degree of indeterminacy ofx to A in AIFS. The FS (AIFS)
standard operations (union, intersection, complementation) can
be extended to IVFS in the canonical way. IfM = [µ1, µ2]
andN = [ν1, ν2] are two IVFS, then for allx ∈ X

(M ∩ N)(x) = [min(µ1(x), ν1(x)), min(µ2(x), ν2(x))] (23)

(M ∪ N)(x) = [max(µ1(x), ν1(x)), max(µ2(x), ν2(x))] (24)

M̄(x) = [1 − µ2(x), 1 − µ1(x)] (25)

The equivalence between AIFS and IVFS has been studied
in [18] and [6]. If A = [µ1, µ2], 0 ≤ µ1 ≤ µ2 ≤ 1 then
µ1 − µ2 ≤ 0 so µ1 + 1 − µ2 ≤ 1. By definingµ1 = µ and
ν = 1 − µ2, we obtain an AIFS. Conversely, starting with
an AIFS A = (µ, ν), µ + ν ≤ 1 , we can create the interval
[µ, 1 − ν] to correspond to an IVFS.

In the case of our first generalisation (GAIFS1), where
µ(x) + ν(x) ≥ 1 for all x ∈ X , the above equivalence still
holds. If A = [µ1, µ2], 0 ≤ µ1 ≤ µ2 ≤ 1 then 0 ≤ µ2 − µ1

so 1 ≤ µ2 + 1− µ1 and, by definingµ = 1− µ1 andν = µ2,
we obtain an AIFS.

The above equivalence also holds trivially for GAIFS2,
GAIFS3, GAIFS4, and GAIFS5 generalizations. For instance,
in the case of GAIFS2,µ(x) ≤ ν(x), so the corresponding
IVFS should be characterised by[µ, ν]. In the case of GAIFS3,
ν(x) ≤ µ(x) holds, so the corresponding IVFS should be
characterised by[ν, µ], etc. For GAIFS6 case, we take the
IVFS to be given by the interval[µ, 1−ν]. Thenµ2 ≤ (1−ν)2

andµ2+ν2 ≤ (1−ν)2+ν2 ≤ 1−2ν+2ν2 ≤ 1+2ν(ν−1) ≤ 1.

IV. A UTOMORPHISMS

We deal with our first generalization GAIFS1 only, the other
cases are treated in a similar way. GAIFS1 is equivalent to the
lattice (L⋆,∧,∨, 0L⋆ , 1L⋆), where

L⋆ = {(x1, x2) ∈ [0, 1]2 |x1 + x2 ≥ 1}

with the partial order≤L⋆ defined as

(x1, x2) ≤L⋆ (y1, y2) ⇐⇒ x1 ≥ y1 ∧ x2 ≤ y2

and0L⋆ = (1, 0) and1L⋆ = (0, 1). The operations are defined
as

(x1, x2) ∧ (y1, y2) = (x1 ∨ y1, x2 ∧ y2) (26)

(x1, x2) ∨ (y1, y2) = (x1 ∧ y1, x2 ∨ y2) (27)
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and one can easily verify that

(x1, x2) ∧ (1, 0) = (x1 ∨ 1, x2 ∧ 0) = (1, 0) = 0L⋆

(x1, x2) ∨ (1, 0) = (x1 ∧ 1, x2 ∨ 0) = (x1, x2)

(x1, x2) ∧ (0, 1) = (x1 ∨ 0, x2 ∧ 1) = (x1, x2)

(x1, x2) ∨ (0, 1) = (x1 ∧ 0, x2 ∨ 1) = (0, 1) = 1L⋆

As in any lattice, the meet operator∧ and the join operator∨
are related to the ordering≤L⋆ by the following equivalences:
for everyx = (x1, x2), y = (y1, y2) ∈ L⋆

x ≤L⋆ y ⇐⇒ x ∨ y = y ⇐⇒ x ∧ y = x

Indeed, if(x1, x2) ≤L⋆ (y1, y2), then

(x1, x2) ∨ (y1, y2) = (x1 ∧ y1, x2 ∨ y2) = (y1, y2)

(x1, x2) ∧ (y1, y2) = (x1 ∨ y1, x2 ∧ y2) = (x1, x2)

Definition 11. An automorphism of L⋆ is a bijection
f : L⋆ → L⋆ such thatf(x) ≤L⋆ f(y) if and only ifx ≤L⋆ y,
for all x, y ∈ L⋆.
Ananti-automorphism of L⋆ is a bijectionf : L⋆ → L⋆

such thatf(x) ≤L⋆ f(y) if and only if y ≤L⋆ x, for all
x, y ∈ L⋆.

It is obvious that an automorphism takes0L⋆ and 1L⋆ to
themselves, while an anti-automorphism interchanges these
elements.

We denote byAut(L⋆) the set of all automorphisms of
L⋆ and byMap(L⋆) the set of all automorphisms and anti-
automorphisms ofL⋆. They are groups under the composition
of morphisms andAut(L⋆) is a normal subgroup of order 2
of Map(L⋆). [19]

Let f ∈ Aut(L⋆). Since f(x) ≤L⋆ f(y) if and only if
x ≤L⋆ y, for all x, y ∈ L⋆, then

f(x ∨ y) = f(x) ∨ f(y)

f(x ∧ y) = f(x) ∧ f(y)

f((1, 0)) = (1, 0)

f((0, 1)) = (0, 1)

If f is an automorphism of[0, 1], then, for (x1, x2) ∈ L⋆,
(x1, x2) 7→ (f(x1), f(x2)) is an automorphism ofL⋆.

An anti-automorphismN such thatN (N (x)) = x, for
all x ∈ L⋆ is an involution or negation. Obviously,
N (0L⋆) = 1L⋆ andN (1L⋆) = 0L⋆ .

All elements but identity ofAut(L⋆) are of infinite order;
all anti-automorphisms are of infinite order or of order two.
The order two anti-automorphisms areinvolutions and
their set is denoted byInv(L⋆). One (classical) involution is
α : L⋆ → L⋆ given byα(x1, x2) = (1− x2, 1− x1), all other
involutions are of the formf−1αf , for anyf ∈ Map(L⋆).

In [20] it is proved that ifN is an involutive negator onL⋆

(negation) andN : [0, 1] → [0, 1], N(a) = pr1N (a, 1 − a),
for all a ∈ [0, 1], thenN (x1, x2) = (N(1 − x2), 1 − N(x1)),
for all (x1, x2) ∈ L⋆.

A triangular norm onL⋆ (t-norm) is any increasing, com-
mutative, associative mappingT : L⋆ × L⋆ → L⋆ satisfying

T (1L⋆, x) = x for all x ∈ L⋆. A triangular co-norm on
L⋆ (t-conorm) is any increasing, commutative, associative
mappingS : L⋆ × L⋆ → L⋆ satisfyingS(0L⋆ , x) = x for all
x ∈ L⋆.

V. CONCLUSION

We introduced six possible new definitions for intuitionistic
fuzzy sets by challenging the base condition in Atanassov’s
definition. While keeping the two membership functions, we
extended the range of possible combinations between them and
showed some interesting properties. We intend to further de-
velop the approach for measuring similarity and compatibility
between different sorts of intuitionistic fuzzy sets.
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