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Abstract— Laplacian low-rank approximations are much ap-
preciated in the context of graph spectral methods and Corre-
spondence Analysis. We address here the problem of determin-
ing the dimensionality K* of the relevant eigenspace of a gen-
eral binary datatable by a statistically well-founded method. 
We propose 1) a general framework for graph adjacency ma-
trices and any rectangular binary matrix, 2) a randomization 
test for fixing K*. We illustrate with both artificial and real 
data.  
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I.  INTRODUCTION AND STATE-OF-THE-ART  
Spectral methods are used for optimally condensing 

and representing a set of objects in a space of lower di-
mensionality than the number of their descriptors. In this 
way, new relevant, informative and composite features 
are set apart from noisy, non-informative ones. This is 
especially useful when the descriptor space is sparse, 
which is typically the case for data of “pick-any” type, 
such as words in text segments, or links between Web 
pages, or social networks. An ever-growing number of 
applications rely on this type of condensed representa-
tion: Latent Semantic Analysis (LSA), supervised or 
semi-supervised learning, manifold learning, linear or 
non-linear PCA, vector symbolic architectures, spectral 
graph clustering and many others. A recurrent problem 
in any low-rank approximation process consists of de-
termining the “right” rank of this approximation. Meth-
ods have been proposed to deal with this problem in the 
case of pre-defined data distributions, such as in [1]. But 
in the general case, nothing but empirical rules have 
been proposed, to the best of our knowledge: relying on 
the empirical evidence of a “gap” in the scree-plot of the 
eigenvalue sequence, whether visual or based on nu-
merical indices such as first or second differences [2], or 
more basically on the value sqrt(N), etc. In LSA, empiri-
cal recommendations are provided [3], such as keeping 
the 200 to 400 first components. We address here the 
problem of determining the relevant dimensionality of 
the simplest, very common type of tabular data, i.e. the 
sparse binary tables. As such tables include adjacency 

matrices of unweighted graphs, and as graphs are known 
to be a powerful and extensively studied representation 
of many classes of data, we aim at incorporating in our 
framework a state-of-the-art representation space of 
graphs, i.e. one in the Laplacian family of eigenspaces. 
In the prospect of a maximum generality, a pleasant ob-
servation is that any binary datatable may be considered 
as a part of the adjacency matrix of a bipartite graph: we 
will focus, without lack of generality, on determining the 
best representation space, and its optimal number of di-
mensions, for unweighted and unoriented graphs, and 
thus for any binary matrix. 

In Section II we will recall basic results about eigen-
analysis of graphs and Correspondence Analysis. Section 
III will bridge the gap between graphs and general bi-
nary tables, and Section IV will present a randomization 
test for fixing the dimensionality of the relevant eigen-
space. Applications to graph and data matrices are the 
topic of Section V, while we will close by presenting 
some related approaches, conclusions and future work. 

II. EIGEN-SPACES FOR GRAPH MINING 
To the best of our knowledge, the first application of 

eigen-analysis to graphs dates back to Benzécri [4], 
when Correspondence Analysis (C.A.) was applied to 
adjacency matrices. Let us recall that C.A. [5][6] relies 
on the eigen-analysis of a matrix Q issued from any two-
way correspondence matrix X (in the case of an undi-
rected and unweighted graph, X is binary and symmet-
ric; Q is symmetric, too) with  

Q = Dr-1/2 X Dc-1/2,  
where Dr and Dc are the diagonal matrices of the 

row and column totals. The eigen-decomposition of Q 
writes Q  = U Λ V’ where Λ is the diagonal matrix of the 
eigenvalues (λ1,..., λL = 1, L being the number of con-
nected components; 1 > λL+1 >... > λR > 0, R being the 
rank of X). U and V are the eigenvector matrices for the 
rows and columns respectively, giving rise to several 
possible variants of C.A. factors, depending on the au-
thors. Benzécri [4] has shown analytical solutions for 
simple graphs such as rings or meshes. Lebart [7] has 
generalized to contiguity analysis, and illustrated by 
showing that the (F2, F3) factor plane representation of 
the contiguity graph between French counties reconsti-
tutes the allure of the France map.  
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An independent research track starting with [8] has 
defined two “normalized graph Laplacians”, namely the 
symmetric Laplacian (I – Q), where I is the identity ma-
trix, and λ1,..., λL = 0, L being the number of connected 
components;    0< λL+1<...< λR, R being the rank of X. 
The “random walk” variant is I - Dr

-1
 X. 

Spectral graph clustering consists of grouping the 
similar nodes in a K-dimensional major eigen-subspace 
– for a review see [9] – and is an increasingly active re-
search line. To our knowledge and up to now, the prob-
lem of determining the number K, when the distribution 
of degrees is non-standard, has not received more satis-
factory answers than the scree-plot visual or second-
difference heuristics [2], visually prominent in the case 
of small graphs, but difficult to put into practice in the 
case of large ones.  

III. FROM GRAPHS TO BINARY MATRICES THROUGH 
BIPARTITE GRAPHS  

A well-established result in data analysis states that 
the relevant, noise-filtered information lies in the domi-
nant eigen-elements of a data matrix [8]. In the case of 
the Q matrix, Benzécri [4], Chung [8] and many others 
have shown that the value of its first eigenvalue, of mul-
tiplicity L (L being the number of connected compo-
nents), is one (the same is true of the Dr

-1
 X matrix). 

In the case of a bipartite graph, whose adjacency ma-
trix and symmetric Laplacian write  respectively 

| 0   M| and   | 0  Q| , a simplification follows  
| M’  0|            |Q’   0| 

from the property of this type of matrices to have their 
eigenvalue set composed of the singular values of their 
rectangular non-empty submatrix, stacked with their op-
posites – in our Q case, in the range [-1; 1]. It follows 
that the basic correspondence analysis of any binary ma-
trix, i.e. the SVD of its “symmetric” Laplacian matrix Q, 
giving rise to the signed contributions of its rows and 
columns to the inertia accounted by each factor, consti-
tutes a basic reference for comparing this matrix to ran-
dom counterparts. 

IV. A RANDOMIZATION TEST FOR FIXING THE 
DIMENSIONALITY OF THE RELEVANT EIGENSPACE  

We have set up a randomization method [10] for gen-
erating random versions of a binary datatable with the 
same margins as those of this table, and set up the ensu-
ing test for validating any statistics conducted on it. It is 
to be noted that the principles of generation of random 
matrices with same margins as a reference matrix seem 
to have been discovered independently several times, in 
various application domains: ecology, psychometrics, 
combinatorics, sociology. Cadot [11] legitimates a rigor-
ous permutation algorithm based on rectangular “flip-
flops”, and shows that any Boolean matrix can be con-
verted into any other one with the same margins in a 
finite number of cascading flip-flops, i.e. compositions 
of elementary rectangular flip-flops: at the crossings of 
rows i1 and i2, and columns j1 and j2, a rectangular flip-

flop keeping the margins unchanged is possible if the (i1, 
j1) and (i2, j2) values are 1 whereas the (i1, j2) et (i2, j1) 
values are 0. To our knowledge it was the first time this 
principle was introduced in data mining. 

As is the case for all other randomization tests [12], 
the general idea comes from the exact Fisher test [13], 
but it applies to the variables taken as a whole, and not 
pairwise. The flip-flops preserve the irreducible back-
ground structure of the datatable, but break up the mean-
ingful links specific to a real-life data table. For exam-
ple, most of texts×words datatables have a power-law 
distribution of the words, and a binomial-like one for the 
number of unique words in the texts. This background 
structure induces our “statistical expectation” of no links 
conditionally to the type of corpus. Getting rid of the 
background structure enables this method to process any 
type of binary data, both (1) taking into account the 
marginal distributions, (2) doing this without any need to 
specify any statistical model for these distributions. 

When using this algorithm, one must fix the values of 
three parameters: the number of rectangular flip-flops 
for generating non-biased random matrices, the number 
of randomized matrices, the alpha risk. This test is akin 
to be applied to adjacency matrices of bipartite, unori-
ented, unweighted graphs, as the non-empty parts of 
such matrices are made up of two symmetric rectangular 
binary matrices, and this structure is akin to be repro-
duced when generating random versions as described 
above. For generating randomized versions of the adja-
cency matrix of an unoriented, unweighted graph, fur-
ther constraints have to be imposed at the step of ena-
bling or not a rectangular flip-flop: the square matrix 
must be kept symmetric and its diagonal empty. Note 
that the problem at stake is different from the one ad-
dressed by [19], i.e. generating a random matrix with 
prescribed margins, which does not necessarily supports 
an exact solution. 

V. APPLICATIONS  
We have detected the relevant dimension K* and 

used the corresponding reduced dataspace in the context 
of both graph and non-graph problems. In a proof-of-
concept perspective, we will present here one artificial 
and one real dataset for each category – for a more de-
tailed but less general presentation, see [14]. Throughout 
these examples, we will put forward successive visual 
representations we found useful. 

A. Graphs 
First, we have built the adjacency matrix of an unori-

ented and unweighted graph of 66 vertices, with four 
noisy cliques (missing intra-clique links: 17%; inter-
clique links: 12%). Figure1 shows that the computed 
sequence of the 66 eigenvalues of its Laplacian, whether 
positive or negative, ranked by decreasing value of their 
module, fits into the “confidence funnel” of its 200 ran-
domized counterparts, except the first one (value: one, 
by construction) and the next three, which clearly de-
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lineate the relevant support space for representing the 
four clusters as vertices of a tetrahedron (Figure2). 
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Figure 1.  Graph with four noisy clusters: confidence funnel (red) of the 
eigenvalues (blue). 

We have also processed the “Football league” data 
[15] which embed the “theoretical” social structure made 
of 12 regional “conferences”, as well as the unsuper-
vised structure emanating from the 115-node graph. 

 

Figure 2.  Graph with four noisy clusters: the 3-eigenvector relevant 
representation space of the 4 clusters. 

According to our test with 200 randomized adjacency 
matrices, at the 99% confidence threshold, the ten “first” 
eigenvalues (N°2 to N°11, as there is a single connected 
component in the graph) of the original Laplacian matrix 
clearly dominate the confidence “funnel” of its 200 ran-
domized counterparts.  

 
Figure 3.  Football league: the U2 × U3 plane 

An extra cluster analysis in this reduced space re-
sulted in a quasi-perfect F-score measure for nine con-
ferences, and a good or meager one for three of them, 
less geographically interrelated, summing up in a .956 
global F-score. The U2 × U3 plane provides an overview 
of the structure (Figure 3), whereas the U4 to U11 di-

mensions offer more local points of view, and the subse-
quent ones show no recognizable structure. 

B. Binary Rectangular Tables 
We have designed a (1500; 836) binary matrix with a 

power-law distribution of the row sums and two fuzzy 
and overlapping column clusters, built by pasting twice 
the same (750; 836) Zipfian-distributed datatable, the 
second time with a random reordering of the columns. 
Our test results in two relevant eigenvalues, giving rise 
to a planar representation of the rows (Figure 4) showing 
off the orthogonality of two “logics”, or “scales”, and 
not a crisp opposition between two clusters.  

 
Figure 4.  Data cloud with two overlapping “logics” projected onto the 
representation space of the two non-trivial and relevant eigenvectors U2 

(vertical) and U1 (horizontal). In blue, the first 750 rows, in red the others. 

Our experience is that this specific and rarely identi-
fied data structure is frequent in textual data; it takes 
here a concrete form when sorting the rows and columns 
of the datatable according to the dominant non-trivial 
eigenvector U2 (Figure 5).  

 
Figure 5.  A binary datatable with two overlapping “logics” reordered by 

sorting the 1500 rows according to U2 and the 836 columns  to V2. 

We also processed a 753 per 11,567 Texts × Words 
matrix issued from a query to the Lexis-Nexis press da-
tabase concerning three months of environmental con-
troversies in the French press: it ensued that the relevant 
eigenspace was a 195-dimensional one, in which a clus-
ter analysis of the words had put to the fore one clearly 
syntactical cluster from a hundred or so other ones de-
voted each to a particular press “story” noticeable in this 
period. In this case, the assessment criterion could be 
nothing but qualitative. Table 1 displays an example of 
such a news story. 
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TABLE I.  EXAMPLE OF A CLUSTER IN THE PRESS DATABASE: THE 
NEWS STORY “THE EUROPEAN COMMISSIONER DACIAN CIOLOS 

NEGOTIATES AGRICULTURAL ISSUES IN WASHINGTON”. 

Rank Word POS-tag 
1 antimicrobiens U    
2 spongiforme U    
3 Peterson U    
4 Ron U    
5 Mike U    
6 Dacian U    
7 CIOLOS U    
8 impression SBC    
9 09-févr SBC    
10 Lucas U    
11 US SBC    
12 durant PREP    
13 494 CAR    
14 rappeler PAR    
15 préparation SBC    
16 répondre PAR    
17 conserver VNCFF    
18 subvention SBC  

VI. RELATED APPROACHES 
While we have listed in Section I heuristic ap-

proaches for determining the relevant dimensionality of 
a data matrix, in [16] we presented a test in the same line 
as the one we develop here: we compared the singular 
values of a raw binary matrix to their counterparts in a 
set of randomized versions of this matrix. However this 
approach is subject to a major statistical concern: the 
singular-value scree does cross the upper bound of the 
singular-values of the randomized matrices, defining the 
desired relevant eigen-subspace, but it also crosses the 
lower bound, thus resulting in a difficult interpretation 
problem for the “significantly small” singular values. 
Moreover this approach offers no connection to Lapla-
cian eigenspaces, nor Correspondence Analysis, as does 
the present one. Gionis et al. [17] deals, as we do, with 
the problem of finding out the number of relevant eigen-
dimensions in a rectangular binary matrix, but presents a 
heuristic approach based on a unique randomized matrix, 
and no connection either to Laplacian eigenmaps nor 
Correspondence Analysis.  

VII. CONCLUSION AND FUTURE WORK 
We have presented a general framework for the di-

mensionality reduction of undirected and unweighted 
graphs, as well as of any rectangular binary table, a per-
spective covering both Laplacian eigenmaps and Corre-
spondence Analysis of the said matrices. We have then 
shown that the number of dimensions of such an embed-
ding space could be determined by a rigorous randomi-
zation test, contrasting with preceding heuristic ap-
proaches.  

A major extension relates to scaling the procedure: 
whereas no efficiency issues arise for the data-class 
“n*1000 to m*10,000 vectors of n*1000 to m*10,000 
dimensions”, parallelization has to be set up beyond, 
both at the randomization level and the linear algebra 

computation one, which is well within the scope of the 
state-of-the-art. Another major extension, addressing 
both theoretical and practical difficult issues, is to gen-
eralize to any signed or unsigned integer matrix, if not 
any real-valued one. 
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