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Abstract—Concealing sensitive relationships before sharing a 
database is of utmost importance in many circumstances. This 
implies to hide the frequent itemsets corresponding to sensitive 
association rules by removing some items of the database. 
Research efforts generally aim at finding out more effective 
methods in terms of convenience, execution time and side-effect. 
This paper presents a practical approach for hiding sensitive 
patterns while allowing as much nonsensitive patterns as possible 
in the sanitized database. We model the itemset hiding problem 
as integer programming whereas the objective coefficients allow 
finding out a solution with minimum loss of nonsensitive itemsets. 
We evaluate our method using three real datasets and compared 
the results with a previous work. The results show that 
information loss is dramatically minimized without sacrificing 
the accuracy. 

Keywords—frequent itemset hiding; exact approach; 
information loss 

I. INTRODUCTION 

Progresses in the technology give an opportunity to 
establish transactional databases that can reserve large volumes 
of data. Analyzing data and extracting meaningful information 
from these huge piles of data come up as a result of these 
advances. Data mining field has efficient techniques for this 
knowledge discovery process. However, improper use of these 
techniques caused a rise of privacy concerns. Unauthorized 
access to not only sensitive personal information that is stored 
or inferred from the data, but also commercial information that 
provides remarkable benefit over rivals induces privacy issues. 
That is why comprehensive sanitization on databases is 
required when the information or data from these databases is 
shared or published.  

Sharing databases allows researchers and policy-makers to 
examine the data and gain significant information benefiting 
the society as a whole, such as the strength of a medicine or 
treatment, social-economic inferences that can be the guide on 
the road to efficient public policies, and the factors that cause 
vital diseases. In other words, publishing databases eventuates 
in utility gain for the society as a whole [13]. However, due to 
privacy concerns, a privacy preserving method is needed to be 
applied on the databases. These methods make data imprecise 
and/or distorted so that no sensitive knowledge is disclosed. 
But, this distortion causes unwanted information loss and 
losses in potential utility gain. 

Frequent itemset hiding is one of the important and widely 
used methods of privacy preserving data mining field. There 
are several frequent itemset hiding algorithms of which 
methodology can be classified, such as heuristic [6], border-
based [16, 17] and exact [8, 10, 11, 14]. They aim to impose 
small deviation in the original database to expose no sensitive 
itemsets. This deviation is tried to be minimized by various 
techniques with different quality metrics as a common feature 
of these algorithms. One determines the relative frequency of 
remaining itemsets [16] as a quality parameter while another 
approach uses the term of accuracy [14] that shows the impact 
of sanitization on transactions of the database. In addition to 
this, the information loss which is to conceal nonsensitive 
itemsets on the original database while hiding sensitive 
knowledge is another critical point of the hiding process [16]. 
Studies generally concentrate on achieving the result database 
which has no sensitive knowledge with small deviation and 
minimum information loss. 

Exact approaches produce more accurate solution than 
other types of approaches in frequent itemset hiding. However, 
they are impractical when the number of itemsets and length of 
itemsets increase. In addition to this, they mostly focus on 
minimizing deviation in terms of accuracy or distance. To our 
knowledge there is no practical solution providing frequent 
itemset hiding with the objective of minimum information loss 
and accuracy. In this paper, we propose an exact approach for 
frequent itemset hiding where all sensitive patterns are 
concealed. Our approach is based on the combination of integer 
programming and heuristic sanitization. While it prevents 
revealing sensitive information on published database, 
minimum information loss and maximum accuracy are also 
provided.  

Our approach proposes the use of coefficients in the 
objective function of integer programming to minimize 
information loss. These coefficients reminding the approaches 
used by utility-based mining algorithms [19] are pre-computed 
such that they give a measure of information loss. Integer 
programming allows finding the optimum solution deciding 
about the transactions to be sanitized. Then, heuristic 
sanitization algorithm is executed to remove the sensitive 
itemsets. The experiments with real datasets demonstrate the 
efficacy of our approach and give useful insight into the efforts 
of minimizing nonsensitive information loss. 
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The following sections are organized as follows: Section 2 
gives the background of the problem with terms, concepts and 
considerations. Section 3 presents our approach in detail. 
Section 4 is an overview of the leading studies about privacy 
preserving data mining. Section 5 shows the results and 
evaluations of the experiments to prove the effectiveness of the 
technique we propose. Finally, we conclude in Section 6. 

II. BACKGROUND 

Let F   be a set of items. An itemset is a subset of F  and 
any transaction defined over F   is tuple < 푘,F >, where 푘 is 
the transaction id and F  is the itemset. A transaction <
푘,F > is said to contain an itemset 푋 iff F ⊇ 푋. A database 
D  is a set of transactions. Given a database D, the support of 
an itemset F  in the database D is denoted as the 
support	휎(F ,	D). 휎(F ,	D) can be represented simply as 휎  
for notational convenience. For a given threshold 휎 , F   is 
said to be frequent if 휎(F ,	D) ≥ 휎 . The set of frequent 
itemsets F		(휎 ) at minimum support level 휎  is the set of 
all itemsets with a minimum support of 휎 . 

F			 (휎 ) ⊆ F		(휎 ) is a group of restrictive patterns 
that the owner of the data would like to conceal while 
publishing. A transaction that supports any of these patterns is 
said to be sanitized if any alteration is made on it in such a way 
that it no longer supports any itemset in F			 (휎 ). This 
sanitization implies reducing the support for every 푗 ∈
F			 (휎 )  below 휎  and concealing itemset 푗. 

In the process of transforming a database D  to a sanitized 
D		 , we have the following considerations: 

1) Suppose that F			 (휎 ) be the set of frequent itemsets 
in the sanitized D		 . Any j ∈ F			 (휎 ) in D  should not be in 
F			 (휎 ). In other words, it is aimed that no sensitive 
knowledge is involved in the sanitized database. 

2) The accuracy, which is the ratio of the number of 
transactions that are not sanitized and the total number of 

transactions in the database D, should be maximized by 
keeping the number of sanitized transactions at minimum. 

3) Suppose that F				 (휎 ) be the set of non-sensitive 
frequent itemsets determined by F		(휎 )/F			 (휎 ) in 
database D. |F				 (휎 )−F			 (휎 )| should be minimized to 
avoid overconcealing nonsensitive frequent itemsets and 
keeping the information loss at minimum. 

Table 1 represents a database D which includes 10 
transactions and 10 items. Nonsingleton frequent itemsets with 
the support values bigger than or equal to 2 are listed in Table 
2. For example, we assume that the sensitive patterns are {8, 
9}, {8, 3}, {6, 7}, {1, 2, 3} that are bold and represented with 
푟 , 푟 , 푟  and 푟 . Although, it is possible to define different 
support thresholds for each sensitive pattern, we assume that 
the support threshold 휎 = 2 for all patterns, which is 
practical and common in many circumstances. At the end of the 
process, we expect that 28 nonsensitive frequent itemsets that 
are supersets of the sensitive ones would also get concealed as 
the process of hiding the sensitive itemsets. The question is 
how to transform D into the sanitized database D		  in an 
effective way such that aforementioned considerations 1, 2 and 
3 are maintained. 

Depending on the consideration 1, support values of our 
sensitive patterns in the database D  should be dropped below 
2, that is minimum support value. For example, the support 
value of 푟  is 4 and to satisfy the consideration 1, transactions 
that include 푟  should be found and at least one of two items in 
푟  should be deleted from as many transactions as needed. The 
proper selection of transactions to be sanitized and the items to 
be removed is of paramount importance, since the number of 
sanitized transactions and/or the number of items to be 
removed should be kept at minimum. Moreover, nonsensitive 
itemsets that contain one of items, 8 or 3, are in danger of being 
concealed while the support value of 푟  is decreased. 

TABLE I. EXAMPLE DATABASE D 

Id Items 

푇  1 2 3 7 8 10 

푇  3 9 10 

푇  4 5 6 

푇  1 2 3 6 7 8 9 

푇  1 2 3 6 7 

푇  10 

푇  4 

푇  3 6 7 8 9 

푇  3 8 9 

푇  5 6 7 
 

TABLE II. FREQUENT (NONSINGLETON) ITEMSETS FOR D  AT 휎 = 2 

Itemsets 휎  Itemsets 휎  Itemsets 휎  Itemsets 휎  

5, 6 
1, 2 
1, 8 
1, 6 
1, 7 
1, 3 
2, 8 
2, 6 
2, 7 
2, 3 
10, 3 

푟 →8, 9 
8, 6 
8, 7 

푟 →8, 3 

2 
3 
2 
2 
3 
3 
2 
2 
3 
3 
2 
3 
2 
3 
4 

9, 6 
9, 7 
9, 3 

푟 →6, 7 
6, 3 
7, 3 

1, 2, 8 
1, 2, 6 
1, 2, 7 

푟 →1, 2, 3 
1, 8, 7 
1, 8, 3 
1, 6, 7 
1, 6, 3 
1, 7, 3 

2 
2 
4 
4 
3 
4 
2 
2 
3 
3 
2 
2 
2 
2 
3 

2, 8, 7 
2, 8, 3 
2, 6, 7 
2, 6, 3 
2, 7, 3 
8, 9, 6 
8, 9, 7 
8, 9, 3 
8, 6, 7 
8, 6, 3 
8, 7, 3 
9, 6, 7 
9, 6, 3 
9, 7, 3 
6, 7, 3 

2 
2 
2 
2 
3 
2 
2 
3 
2 
2 
3 
2 
2 
2 
3 

1, 2, 8, 7 
1, 2, 8, 3 
1, 2, 6, 7 
1, 2, 6, 3 
1, 2, 7, 3 
1, 8, 7, 3 
1, 6, 7, 3 
2, 8, 7, 3 
2, 6, 7, 3 
8, 9, 6, 7 
8, 9, 6, 3 
8, 9, 7, 3 
8, 6, 7, 3 
9, 6, 7, 3 

1, 2, 8, 7, 3 
1, 2, 6, 7, 3 
8, 9, 6, 7, 3 

2 
2 
2 
2 
3 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
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According to consideration 3, the number of nonsensitive 
itemsets that are concealed should be at minimum. 

III. COEFFICIENT-BASED ITEMSET HIDING 

In this section, we introduce a novel method for the itemset 
hiding problem. We first define the problem using integer 
programming and then simply augment the objective function 
with coefficients in order to reduce the information loss. Thus, 
the method consists of three essential parts: Coefficient 
Computation, Integer Programming Solution and Heuristic 
Sanitization. 

Modeling the itemset hiding problem with integer 
programming can be done in several ways. We follow the way 
of Menon et al. [14] such that the objective achieves the 
maximum accuracy. Our method alters the objective function 
such that the binary variables indicating whether a transaction 
is chosen or not are multiplied by some pre-computed 
coefficients that reflect the amount of information loss. We 
compute the coefficients of transactions that support sensitive 
patterns only. 

We first start with creating the constraint matrix by 
eliminating transactions, which do not support sensitive 
itemsets from consideration, as shown below: 

 

⎝

⎜
⎛

푡 푡 푡 푡 푡 푡
푟 0 1 0 1 1 0
푟 1 1 0 1 1 0
푟 0 1 1 1 0 1
푟 1 1 1 0 0 0⎠

⎟
⎞

  (1) 

 

6 columns represents respectively: 푡 → 푇 , 푡 → 푇 , 푡 →
푇 , 푡 → 푇 , 푡 → 푇 , 푡 → 푇 . While 푡  supports sensitive 
itemsets 푟 and 푟 , 푡  contains only one sensitive itemset that is 
푟 . 

A. Coefficient Computation 

To minimize the impact on nonsensitive frequent itemsets, 
coefficient computation is made for each transaction which 
supports sensitive patterns as the first step. A coefficient of the 
transaction gives the information about a risk of 
overconcealing nonsensitive frequent itemsets on this 
transaction. If the value of coefficient is high, it means that the 
number of concealed nonsensitive itemsets included in the 
transaction would be high after the sanitization. 

This coefficient computation is typically organized by 
taking into account that initial utility worth of each 
nonsensitive itemsets on studied database is the same. 
Calculating a risk of overconcealing nonsensitive frequent 
itemsets is made based on this assumption. If some 
information on the database has different worth of utility 
based on the area where the shared database is utilized, 
relevant coefficients can be computed independently of 
Coefficient Computation Algorithm thereby paying regard to 
requirements of the area. 

A coefficient, which is represented by the Coefficient 
Computation Algorithm in Figure 1 as “푐 ”, is calculated for 
each transaction that is included in the constraint matrix. For 
example, we may choose transaction 푇  to explain this 
calculation (on line 1). First, sensitive frequent itemsets and 
nonsensitive frequent itemsets are identified for transaction 푇  
(on line 2 and 3). The item appearing in the most number of 
sensitive patterns supported by that transaction is selected from 
all items in 푟 ∪ 푟  (Items 1, 2, 3, 8) (on line 5 and 6). The item 
“3” is selected. Record the number of appearances of the item 
“3” in the non-sensitive frequent itemsets supported by the 
transaction (on line 7). For our example, there are 6 
appearances of item “3” in the nonsensitive frequent itemsets 
such as {1, 3}, {2, 3}, {10, 3}, {7, 3}, {1, 7, 3}, {2, 7, 3}. 
Remove all sensitive itemsets supported by the transaction 
contain the selected item “3” (on line 9). If sensitive itemsets 
remain supported by 푇 , repeat the procedure (on line 4) and 
sum the appearances of new selected item in the nonsensitive 
frequent itemsets supported by the transaction with recorded 
value (on line 8). There is no sensitive itemset left in our 
example. Hence, the total summation for transaction 푇  is 6. 
After, all transactions which are included in the constraint 
matrix are taken in consideration based on this procedure, a 
coefficient for each transaction is found such as 푇 → 6, 
푇 →29, 푇 →14, 푇 →6, 푇 →0, 푇 →1. 

B. Integer Programming Solution 

In this section, we describe the integer programming 
formulation to solve Coefficient-Based Itemset Hiding 
problem. Initally, give 푎  a binary value. Be 1 if transaction 
푖 ∈ D supports itemset j ∈ F			 (휎 ). Otherwise, the value of 
푎  is 0. For the variable 푥 , it will be set to 1 if transaction 
푖 ∈ D  is sanitized. Otherwise, the value of 푥  is 0. 휎  
represents the current support for itemset j ∈ F(휎 ). Recall 
that 푐  is the coefficient that is calculated in Coefficient 
Computation for transaction 푖 ∈ D, which contains at least one 
sensitive itemset. 

In the light of this information, the formulation is generated 
as below: 

1:    for transactions 푖 ∈ D  such that 푖 is to be sanitized 

2:          identify all sensitive frequent item sets F	
				 ∈ F				 (휎 ) supported 

by 푖 
3:          identify all nonsensitive frequent item sets F	

				 ∈ F				 (휎 ) 
supported by 푖 
4:         while F	

				 ≠ ∅ 

5:               calculate 푓 = 푘 ∈ F	
				 	|	푗 ∈ 푘 ,																					∀ items 푗 in 푖 

6:               calculate 푗∗ = 푎푟푔푚푎푥 {푓 } 

7:               calculate 푔 = |{푘 ∈ F	
				 	|	푗∗ ∈ 푘}|,																		∀ items 푗 in 푖 

8:               update coefficient 푐 = 푐 + 푔  

9:               update F	
				 = F	

				 \{푘 ∈ F	
				 |푗∗ ∈ 푘} 

10:        end while 
11:   end for 

Fig. 1. Coefficient Computation Algorithm. 
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푚푖푛 푐 푥
∈D

, 																																																																																		 (2) 

푠. 푡.		 푎
∈D

푥 ≥ 휎 −	휎 + 	1									∀푗	 ∈ F			 (휎 ),						(3) 

										푥 	∈ {0, 1}			∀푖	 ∈ D.																																																										(4) 

Equation (2) represents the objective function that 
minimizes the number of transactions sanitized. Equation (3) 
includes the constraint that more than (휎 −	휎 ) transactions 
supporting each sensitive itemset have to be sanitized, that’s 
why this line is generated for each sensitive itemset. Equation 
(4) imposes that 푥  has only binary value. The integer 
programming formulation is reorganized based on the 
constraint matrix (1) and coefficients that are gained by 
Coefficient Computation in the previous section as: 

푚푖푛 6푥 + 29푥 + 14푥 + 6푥 + 0푥 + 1푥 ,																							(5)		 

	푠. 푡.				푥 + 푥 + 푥 	≥ 	2,																																																											(6) 

푥 + 푥 + 푥 + 푥 	≥ 	3,																																																													(7) 

푥 + 푥 + 푥 + 푥 	≥ 	3,																																																													(8) 

푥 + 푥 + 푥 	≥ 	2,																																																																							(9) 

푥 , 푥 , 푥 , 푥 , 푥 , 푥 	 ∈ {0, 1}.																																																				(10) 

Solving this integer program results in optimal solution 
푥 = 푥 = 푥 = 푥 = 푥 = 1 with the other variables being 0. 
The accuracy of the resulting sanitized database is 0.50. 
 

C. Heuristic Sanitization 

Sanitization is a kind of process that includes removing 
items from a transaction; thereby the sanitized version of the 
transaction supports no itemset in F			 (휎 ). There are 
various sanitization approaches in the privacy preserving data 
mining literature. For instance, Verykios et al. offered two 
sanitization techniques in their study [18]. These are generally 
based on hiding itemsets that are already sorted with respect to 
their size and support, in a different fashion such as one-by-
one and round-robin. Amiri [1] presented the Aggregate 
Algorithm based on removing the most sensitive and the least 
nonsensitive itemsets in selected transaction. The process is 
repeated until all the sensitive itemsets are hidden. 
Furthermore, three item restriction-based algorithms [15] that 
are known as Minimum Frequency Item Algorithm (MinFIA), 
Maximum Frequency Item Algorithm (MaxFIA) and Item 
Grouping Algorithm (IGA) selectively remove items from 
transactions that support the sensitive itemsets. Intelligent 
sanitization in the paper [14] is the variant of their IGA. 

We do not focus on the development of the sanitization 
techniques. Since we compare our new method with the study 
of Menon et al. [14], we prefer to use one of heuristics in their 
study. One is blanket sanitization where only one item is 
retained from the original transaction. The sanitization occurs 
by eliminating support for every nonsingleton itemset 
supported by the transaction. The other is intelligent 

sanitization, where an attempt is made to remove the fewest 
number of items from the transaction that would result in 
eliminating the support for every itemset inF			 (휎 ).  

It is shown that the intelligent sanitization produces less 
distortion on nonsensitive itemsets thereby removing less 
number of items when this is compared with the blanket 
sanitization. So, we prefer to use the intelligent sanitization to 
hide itemsets of transactions that are identified by the method 
described in the previous section. In order to be self-contained, 
we give intelligent sanitization algorithm in Figure 2.  

Let us explain this with an example; we choose transaction 
푇  that is represented in the constraint matrix by 푡 	(on line 1). 
푇  supports two sensitive itemsets - 푟  and 푟  (on line 2). First, 
the item appearing in the most number of sensitive patterns 
supported by that transaction is selected from all items in 
푟 ∪ 푟  (Items 1, 2, 3, 8). For the example, “3” is selected, 
because it appears twice while each one of the others appears 
once. Delete “3” (on line 4 and 5) and remove all sensitive 
itemsets that contain selected item (on line 6). This action 
eliminates 푟  and 푟  at the same time. If sensitive itemsets 
remain supported by 푇 , repeat the procedure (on line 3). For 
our example, there is no sensitive itemset left. The sanitized 
transaction is {1, 2, 7, 8, 10}. When all transaction are put in 
process, the sanitized database is generated with the number of 
modifications on the database D is 7. After the entire process, 
17 itemsets that were previously frequent are still frequent 
whereas 13 itemsets that were frequent before the sanitization 
are no longer frequent. 

IV. PERFORMANCE EVALUATION 

We performed Coefficient-Based Itemset Hiding and the 
study of Menon et al. [14] on real datasets using different 
parameters such as number of sensitive itemsets and minimum 
support value. Our code was implemented in Java on a 
Windows 7 - PC with Intel Core i5, 2.67 GHz processor. We 
performed exact parts of the experiments by using GNU 
GLPK [12]. In this section, features of datasets, selected 
parameters and results are explained in detail.  

A. The Datasets 

All datasets we use in our experiments are available 
through Frequent Itemset Mining Implementations Repository 
- FIMI.  

1:     for transactions 푖 ∈ D  such that 푖 is to be sanitized 

2:          identify all sensitive frequent item sets F	
				 ∈ F				 (휎 ) supported 

by 푖 
3:          while F	

				 ≠ ∅ 

4:               calculate 푓 = 푘 ∈ F	
				 	|	푗 ∈ 푘 ,																					∀ items 푗 in 푖 

5:               remove item푗∗ = 푎푟푔푚푎푥 푓 ∈ 푚	 

6:               update F	
				 = F	

				 \{푘 ∈ F	
				 |푗∗ ∈ 푘} 

7:          end while 
8:     end for 

Fig. 2. Intelligent Sanitization Algorithm [14]. 
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The kosarak dataset, which is provided by Ferenc Bodon 
[4], is a very large dataset containing 990,002 sequences of 
click-stream data from a Hungarian on-line news portal. It has 
medium-level of sparsity and medium-level of density. The 
retail is a sparse dataset and was reported in Brijs et al. 1999 
[5]. It includes the retail market basket data from an 
anonymous Belgian retail store. The mushroom, which was 
generated by Roberto Bayardo from the UCI datasets and 
PUMSB [3], has high-level of density. These datasets have 
different characteristics such as the number of transactions, 
varieties of items and level of sparsity - density. These 
variations contribute to our experiment and give a chance to 
measure the efficacy of our study. Table 3 includes summary 
information about these datasets. 

B. Evaluation Methodology 

We compare our approach with the approach of Menon et 
al. [14] in terms of the number of nonsensitive itemsets that 
are lost (information loss) and the ratio of the number of 
transactions that are not sanitized and the total number of 

transactions in the database (accuracy).  

Execution times for coefficient computation (C), integer 
programming (IP) and heuristic sanitization (H) are separately 
recorded to maintain the total time for Coefficient-Based 
Itemset Hiding. Because the complexity is one of main 
problems for the privacy preserving data mining, the time is 
illustrated in detail in our experiments. 

With our original sensitive itemsets, supersets of them are 
become hidden in the databases, since any itemsets that 
contains sensitive itemsets should also be hidden. Original 
sensitive itemsets are specified with various lengths, such as 
10, 20 and 50. In addition, we use two different minimum 
support thresholds for the retail dataset to evaluate the impact 
of threshold. 

C. Experimental Results 

In Table 4, accuracy, time and information loss 
performances of Menon et al. [14] and Coefficient-Based 
Itemset Hiding are given. Table 5 summarizes the differences 
between two approaches. Negative values represent the 
sacrifices of our approach while positive values show outclass 
performance of our new method over the approach of Menon 
et al. 

When the tables are carefully examined, it is deduced that 
our new method makes progress with different fluctuations 
based on the characteristics of databases used in experiments. 
Firstly, it can be noticed that the proposed method decreased 
the number of lost nonsensitive itemsets successfully for all 
kinds of databases in the experiments. However, it is 
obviously seen that our approach works more powerfully for 
sparse databases such as Retail when we compare it with the 
other databases in Table 4 and 5. Support level used in 

TABLE III. CHARACTERISTICS OF THE REAL DATASETS 

Database 
name 

Number of 
transactions 

Number 
of items 

Avg. 
trans. 
length 

Number of 
nonsingleton 
frequent itemsets 
(support level used in 
the experiments) 

kosarak 990,002 41,270 8.10 1,462 (0.5%) 

retail 88,162 16,470 10.30 
5,472 (0.1%) 

15,316 (0.05%) 

mushroom 8,124 119 23.00 53,540 (20%) 

     

TABLE IV. RESULTS FROM THE REAL DATA  

DB name 
(Ϭmin) 

Sensitive 
itemsets 

(with 
supersets) 

Approach of Menon et al.   Coefficient-Based Approach 

(%) Time (sec) Itemsets(#) (%) Time (sec) Itemsets(#) 

Accuracy  IP H Total Info. Loss Accuracy  C IP H Total Info. Loss 

kosarak 
(4,950) 

10 (18) 99.59 11.5 129 140.5 98 99.27 71 11.3 124 206.3 19 
20 (31) 99.23 27.7 126 153.7 182 98.5 141 67.7 116 324.7 57 
50 (65) 98.95 35,976.1 115 36,091 310 97 360 6,543 120 7,023 58 

                          

retail (88) 
10 (10) 99.83 0 7 7 10 99.8 1 0.1 8 9.1 2 
20 (20) 99.6 0.1 8 8.1 61 99.42 1 0.1 8 9.1 10 
50 (65) 99.05 0.1 8 8.1 98 98.43 3 0.3 8 11.3 26 

                          

retail (44) 
10 (15) 99.37 0.1 7 7.1 85 99.34 2 0.1 7 9.1 43 
20 (32) 98.77 0.1 8 8.1 335 98.54 4 0.1 8 12.1 196 
50 (97) 97.46 0.2 8 8.2 664 96.62 8 0.3 8 16.3 364 

                          

mushroom 
(1,625) 

10 (2336) 93.4 0.1 1 1.1 19,984 93.4 89 0.1 1 90.1 19,584 
20 (2395) 93.16 0.2 1 1.2 33,049 84.94 114 0.5 1 115.5 26,791 
50 (5341) 92.32 0.3 1 1.3 35,831 79.47 141 0.8 1 142.8 31,149 
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experiments may be another critical point. Because decreasing 
the support value of itemsets below low support level needs 
sacrificing utility gain, low support level reduces the 
coefficient benefit for information loss, as Retail performance 
result at the support level – 44 (0.05%). However, the best 
performance in all experiments is attained for Retail database 
at the level of support - 88 (0.10%). 

The performance result of Kosarak database shows that 
new approach works well with databases which have medium 
sparsity and density. It has up to 80% gain on information loss 
while there is not above 2% accuracy loss. On other hand, 
since Kosarak is a very large database, total time cost is a 
general problem for integer programming solutions. Despite 
this, it is also remarkable that in case of 50 sensitive itemsets 
in Kosarak, our method is approximately six times better in 
execution time. This is quite reasonable since coefficients help 
branch and cut algorithms of integer programming [7] by 
allowing more cuts. 

When the result of Mushroom database in Table 5 is 
examined, it is deduced that although better performance than 
the approach of Menon et al. [14] has is gained for the 
information loss, we meet undesirable accuracy loss and time 
cost. This result shows that in some situation such having a 
need of use very dense database like Mushroom, using the 
methods of Menon et al. [14] or different exact methods is 
more useful and produces better solutions. 

 

V. RELATED WORK 

One of the earlier studies, which presented the principles 
of privacy preserving data mining, belongs to Atallah et al. 
[2]. Their study proves that “association rule hiding” is NP-
hard problem, due to the existence of large databases. After 
this research, there has been remarkable growth on the number 

of research on this issue recently. They are generally classified 
based on their proposed approach as heuristic, border-based 
and exact. In addition to these, as another branch of privacy 
preservation, the utility that involves the term of information 
loss has examined in detail in utility-based privacy preserving 
data mining. 

Dasseni et al. [6] generalize the hiding problem in the 
sense that they consider the hiding of both sensitive frequent 
itemsets and sensitive association rules. The authors propose 
three single rule heuristic hiding algorithms that are based on 
the reduction of either the support or the confidence of the 
sensitive rules, but not both. In all three approaches, the goal is 
to hide the sensitive rules while minimally affecting the 
support of the nonsensitive itemsets. In order to achieve this, 
transactions are modified by removing some items, or 
inserting new items depending on the hiding strategy. 
Verykios et al. [18] extend the previous work of Dasseni et al. 
[6] by improving and evaluating the association rule hiding 
algorithms of [6] for their performance under different sizes of 
input datasets and different sets of sensitive rules. Oliveira and 
Zaïane [15] contribute to this area with a variety of heuristics. 
Particularly, The Item Grouping Algorithm is based on 
grouping sensitive association rules sharing the same itemsets. 
The minimum impact on the disclosed database is provided by 
deleting the shared items. The intelligent sanitization we use 
as the sanitization technique in our study is the variant of this 
algorithm. Amiri [1] presented three effective, multiple 
association rule hiding heuristics that outperform the previous 
heuristics studies by offering higher data utility and lower 
distortion, at the expense of increased computational speed. 
Although the algorithms by Amiri are similar in philosophy to 
the previous approaches, the three proposed methodologies do 
a better job in modeling the overall objective of a rule hiding 
algorithm. 

The paper by Sun and Yu [16, 17] is a pioneer of border-
based researches which use the border theory to hide frequent 
itemsets. It aims at maintaining the frequency of nonsensitive 
itemsets to minimize the side-effects and evaluate the impact 
on the result database. Gkoulalas-Divanis and Verykios used 
this border concept in their works [8, 10, 11] to minimize 
overconcealing nonsensitive itemsets. They capture the 
itemsets hiding process as a border revision operation and they 
presented a set of algorithms which enable the computation of 
the revised borders that pertain to an exact hiding solution. 

The paper written by Menon et al. [14] includes an 
interesting approach to the problem of privacy preserving data 
mining. They were the first to present an integer programming 
optimization method that consisted of an exact and a heuristic 
part to hide frequent itemsets. The exact part of the method 
uses the database to formulate an integer program trying to 
obtain the minimum number of transactions that have to be 
sanitized. The researches of Gkoulalas-Divanis and Verykios 
[8, 9, 10, 11] are based on this exact methodology. However, 
they organize the integer program formulation in a way of 
identifying itemsets to hide, instead of transactions.  

TABLE V. DIFFERENCE OF TWO APPROACHES 

DB name 
(Ϭmin) 

Sensitive 
itemsets 

(with 
supersets) 

Perc. (%) 

Accuracy  Total Time Info. Loss 

kosarak 
(4,950) 

10 (18) -0,32% -46,83% 80,61% 
20 (31) -0,74% -111,26% 68,68% 
50 (65) -1,97% 80,54% 81,29% 

        

 retail (88) 
10 (10) -0,03% -30,00% 80,00% 
20 (20) -0,18% -12,35% 83,61% 
50 (65) -0,63% -39,51% 73,47% 

        

 retail (44) 
10 (15) -0,03% -28,17% 49,41% 
20 (32) -0,23% -49,38% 41,49% 
50 (97) -0,86% -98,78% 45,18% 

        

mushroom 
(1,625) 

10 (2336) 0,00% -8090,91% 2,00% 
20 (2395) -8,82% -9525,00% 18,94% 
50 (5341) -13,92% -10884,62% 13,07% 
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The information loss, which is considered a loss of utility 
for data mining purposes, has been examined in detail in 
another research area, utility-based privacy preservation. This 
broad approach can preserve considerable utility of the data 
set without violating privacy. Li and Li [13] mention the 
importance of utility gained by publishing database for the 
society as a whole and claim that it is inappropriate to directly 
compare privacy with utility, because of several reasons, 
including both technical and philosophical ones. Furthermore, 
they propose an integrated framework for considering privacy-
utility tradeoff, borrowing concepts from the Modern Portfolio 
Theory for financial investment. 

Although, heuristic approaches seem scalable and 
practical, their results are less reliable about being exact 
solution and providing minimum side-effect. This is not 
acceptable in many situations. Border-based methods give 
better solution on the sensitive itemset hiding and side-effect 
problems. However, the evaluation brings high complexity. 
The research of Menon et al. [14] makes progress in a way of 
getting exact solution. Using integer programming and 
heuristic together gives evaluated impact on the result data 
than border-based approaches give. However, it causes failing 
to notice side-effect of information loss. Verykios et al. 
present exact approaches which find a way to decrease loss of 
nonsensitive itemsets. But, the complexity of these approaches 
and not being scalable are the reasons of researching for better 
solution. Furthermore, Li and Li [13] and Yeh and Hsu [19] 
inspired us that the utility that is directly about information 
loss is essential for frequent itemset hiding. We realized that 
solutions in the literature to the utility loss problem cannot 
always satisfy the need of databases at different level of 
utility. Approaches should be flexible to be specialized in 
terms of utility where necessary.  

 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we presented an efficient approach to 
minimize side-effects of accuracy and information loss in 
itemset hiding problem. The degree of side-effect is 
represented with coefficients that are placed into the objective 
function of integer programming. Experiments with real 
datasets show that our approach minimizes the number of 
concealed nonsensitive association rules efficiently. 

Coefficient Computation Algorithm can be specialized 
based on the area where the published database is utilized. In 
this sense, coefficients in the objective function of the integer 
programming may be used in a more efficient way. Moreover, 
different optimization techniques can be achieved by exploiting 
the inherent characteristics of the constraints and objective 
function that are involved in the CSP, in a more advanced way. 
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