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Abstract—In this paper, we study ultrafast stock time series of
the newly developed arrowhead trading system in Tokyo
Market, in order to investigate the statistical nature of the
stock time series under sub-second time scales. We also
compare the current result to the past study on longer time
scale up to a few minutes. It is shown that the empirical
distributions obtained in this study follow the scaling law of the
Lévy stable distribution of index α ranging from 1.4 to 2.0.
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I. INTRODUCTION

The science of price fluctuation was initiated by a French
Mathematician Luis Bachelier, who recognized the nature of
price fluctuation as the random walk (Brownian motion) in
1900 [1], which was five years earlier than Albert Einstein’s
formulation of random walk in physics. This tradition is still
carried over in the basic theory of financial technology to
evaluate the derivative prices, such as Black-Sholes-Merton
(BSM) formula [2]-[5].

However, it is well-known that the BSM formula often
fails to describe the real world. While the important
parameter σ (volatility) is assumed to be a certain constant in
the above formula, there is no reliable way to compute its
value theoretically.

Two empirical ways are often used to obtain the value of
σ: One is the ‘historical volatility’, or the realized volatility’,
to compute the average values of the standard deviation over
the historical price data over a fixed length, such as 2 weeks.
Another is the ‘implied volatility’ to obtain σ by inversely
solving the BSM formula from for the actual price time
series of the option prices. However, the obtained values σ
are not a constant but varies as a function of K (the target
price of each option) of the same option for different terms T.
This is known as the ‘smile curve’ because the σ-K plot
shapes concave and resembles the ‘smile’ mark. Considering
the importance of the derivation of the BSM formula in
financial engineering, it is essential to solve the problem of σ.

Another problem of the BSM formula is the basic
assumption of Gaussian nature of price fluctuation, which is
incompatible with the observed ‘fat-tail’, or ‘narrow-neck’
nature of the actual statistics of the price fluctuation.
Moreover, it is widely accepted that the price fluctuation has
the scale invariant property, which is incompatible with the
Gaussian distribution, since Gaussian distribution is bounded
by the scale of variance, or standard deviation, σ. In order to
remedy this situation, a scale-invariant distribution called

Lévy stable distribution is proposed and the index α=1.4 was
discussed widely [6][7]. Although the infinite variance in
Lévy stable distribution is not mathematically compatible to
framework of option pricing theory, actual price fluctuations
behave more like Lévy stable distribution than Gaussian.
Thus, it is a highly challenging problem to clarify the
statistical nature of price fluctuation in various range of time
resolutions.

In this work, we investigate the new world of arrowhead
stock market [8], not only to determine the shape of the
statistical distribution, but also to examine various results
obtained so far, such as cross correlation between different
stocks using random matrix theory-oriented principal
component analyses and related techniques [9]-[11], for the
stock market of normal speed to the results on this newly
developed arrowhead market.

In this paper, we report the statistical distributions of
price fluctuation obtained from the sub-second range to a
few minutes, in order to show their scale invariant property.

The rest of the paper is structured as flows. In Section II,
we summarize the formulation of price dynamics. In Section
III, we show the result of our former analysis [12] using five-
second sampled prices of 100 companies of Tokyo market in
2013, in which the average stock prices per 5 second are well
described by Lévy stable distribution of index α=1.4, based
on the fact that the distribution follows the scale invariance
for a wide range of time scale =1 to 12. In Section IV, we
analyze newly obtained full arrowhead stock price data of
the years 2015-2016 [12] to show that the scale invariance
seems to hold in the range of 0.8 second to one hour,
although the estimated range of index α is rather broad
(1.4<α<2.1). Finally, Section V is devoted to the conclusion.

II. FORMULATION OF PRICE DYNAMICS

We are interested in the statistical distribution of the
price increment, which is often called log-return

(1)

of the asset price X(t) at time t and the same price X(t+∆t) at
t+∆t, to clarify whether the statistical distribution of the
price returns is not purely Gaussian but has fat-tails and
narrow necks. Several decades ago, it was pointed out by
Mandelbrot [6] then followed by Mantegna and Stanley [7]
that the probability distribution of asset returns follow Lévy
stable distribution, defined as
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(2)

which is the Fourier transform of the kernel F(k) given by

(3)

The first parameter characterizes the distribution and

is called Lévy index, taking the range of , and the

second parameter is proportional to the time interval Δt, as
follows.

(4)

Equation (4) can be understood as follows. The stable
distribution holds the same index α under convolution of
two stochastic variables following the same stable
distributions: i.e., z=x+y follows Lévy stable distribution of
index α if both x and y follow Lévy stable distribution of the
same index α. This means that the distribution of asset
returns at 5 seconds (Δt=1) follows the same distribution as
the same asset returns at 10 seconds (Δt=2).

(5)

In the Fourier space, a convolution is reduced to a product
of the Fourier kernels.

(6)

which can be generated to the case of n steps to have

(7)

A series of n steps yields to be multiplied by n, without
changing the Lévy index α. However, this model of price
movements naturally assumes a limitation on the maximum
number of steps, n.

Note that (2) can be integrated for two special cases, α=1
and α=2, first of which is the Lorentz distribution,

(8)

and the second is the normal (Gaussian) distribution.

(9)

For general values of α, the distribution is computed by
numerically integrating Eq. (2).

The scale invariant property of Lévy stable distribution is
derived from Eq. (2),

(10)

Setting Z=0 in Eq. (10), Lévy index α is estimated by
comparing the height of the distribution (0) for various
values of .

(11)

The above scenario was applied on American stock index
S&P500, per 1 minute for 1984-1985, and per 15 seconds
for 1986-1989, which was well-fitted to Lévy stable
distribution around the center of the distribution, and the
scale invariant property was proved in the range of =1-
100 min [7].

The scale invariant property of Lévy stable distribution is
derived from Eq. (2),

(12)

(13)

III. PRELIMINARY RESULT BY 5 SECOND SAMPLED DATA

Although the arrowhead trading system was introduced
in Tokyo Security Exchange (TSE) on January 4, 2010, it
was hard for us to access to the full numerical data due to its
huge size. Tokyo Market Impact View (TMIV) [13] offered
us an opportunity to download sampled prices of 100
selected stocks per 5 seconds for a limited time from April
to December, 2013 (Data-A).

We investigated the statistical property of the price
increment of TMIV, and obtained the empirical probability
distribution of the average of the 100 stock prices for
various time intervals Δt=1, corresponding to the interval of
5 seconds, 3, 6, 12, 24, corresponding to the interval of 2
minutes, as shown in Fig.1 [8]. If the statistical distribution
if the price increments Z(t) is indeed the scale-invariant
distribution, those histograms of five different values of Δt 
should overlap each other after the scaling transformations
of Eq. (12) and Eq. (13).

As shown in Fig.2, histograms of various values of the
scale parameter Δt in Fig. 1 overlap on a single distribution
by rescaling acording to Eq.(12) if the paraneter α is chosen
to the value α=1.4.

The scale invariance of the statistical distribution of
price increments can be checked using two other methods.
One way is to use Eq. (11) for checking the straightness of
the log-log plot of P(0) vs. Δt and also to obtain the Lévy
index α from the slope (-1/α) of the plot. By means of the
least square fit, the best fit line turns out

By using this data set, we investigated the statistical
distribution of the price increment

P(0) = - 0.709 +2.56 (14)

as shown in Fig.3. The Lévy index α obtained in this result
is α=1/0.709=1.41, which is consistent to in Fig. 2. [7]

So far, we have seen that our analyses on Data-A (5
seconds resolution of TSE arrowhead market) gave us a
consistent result. However, a question remains. The price
increments looked like purely random in early 20th century.
However, it was shown that the price changes are governed
by the scale invariance under high resolution analyses. Also,
it became clear that the probability distribution of the price
changes is featured by the fat-tails and a narrow neck. We
have to clarify to what level of resolution this phenomenon
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goes on. We need to determine whether or not the scale
invariant property is valid under the arrowhead market in
which the assets are traded under ultra-high resolution
shorter than a millisecond.

Before getting into the arrowhead market, we attempted
to check our results to another independent data of 1 minute
resolution, downloaded from Google Finance site [14] for
the duration of June 16, 2015 to November 4, 2015. We call
this data Data-B. However, the time resolution (frequency)
of this Data set is not as small as the previous Data-A and
the scaling method is not suitable to analyze this data. We
need a different method for Data-B. Since we cannot
compare the distributions of different time resolutions, we
adopt another method to search for the best value of to
minimize Kulbuck-Leibler divergence (K-L divergence)
between two probability distributions p(x) and q(x) defined
by

(15)

We compute D(p||q) in Eq. (15) by setting p(x) and q(x), as
the probability distribution of the 1- minute price increments
(return) and the corresponding Lévy stable distribution for
various values of and β. The best fitted result for those
parameters is consistent with the case of Data-A, as shown
in Table 1 [12].

IV. FULL ARROWHEAD PRICE DATA

Recently, full arrowhead price data became available via
the web page of JPX [8]. Compared to the Data-A, the data
sizes are incredibly large. They are compared in Table 2. The
most active stock in Nov. 2016 has over 36 million data
points in one month, and the sum of Nov. and Dec. 2016 has
comparable size to that of total 100 companies in Data-A.
Moreover, the times of trades are utterly irregular in the case
of arrowhead data, while Data-A has exactly 3600 points
each day.

We began our analysis from the most active stock, code
number 8306. We first pick up the stock prices every 100
millisecond interval to make a time series of the stock prices
from October, 2015 to December 2016. Based on this data
file, we draw the empirical probability distributions for
various values of Δt. For the sake of simplicity, we focus on
the graphs for Δt= 8, 16, 32, 64, 128, 256, 512,1024, 2048,
4096, and 8192 (×100ms). Those eleven histograms are
simultaneously shown in Fig.4. The graph for Δt= 8 has the
smallest width on the horizontal axis Z and the tallest height
on the vertical axis log2P(Z), and the graph for Δt= 16 is
slightly smaller width in Z and shorter height in the vertical
axis. Those histograms of regularly increasing time scales
seem to obey some regularity. If they obey a scale-invariant
distribution such as Lévy stable distribution, we should be
able to identify the scaling factor c = . For example,
the graphs for Δt= 8 should overlap the graph for Δt= 16 by
multiply Z by the factor c= and divide the vertical axis
by the same factor c. Applying the same rule on all the
eleven histograms, they should be able to overlap on a single

distribution if the factor c is properly chosen. This is done by
choosing c=1.5 as shown in Fig.5. All the eleven histograms
corresponding to Δt= 8, 16, 32, 64, 128, 256, 512,1024, 2048,
4096, and 8192 (×100ms) can be scaled to a single curve by
choosing c=1.5 and the corresponding index is around α=1.7.
Unfortunately, the resolution of this estimate is not high and
the accuracy of the factor c varies in the range of 1.4 < c <
1.6 according to the estimation of P(0). This uncertainty of c
implies the uncertainty of the index α, in the range of 1.4 <
α< 2, as shown in Table III. The uncertainty of P(0) comes
from the nature of the price data, since the observed number
of unchanged price contains numerous counts of the
‘absence of trade’ on top of the ‘trade with the same price’. It
is hard to distinguish those two by the data. However, it is
possible to estimate the true value of P(0) in such a way for
the probability P(Z) to satisfy a smoothness by removing
excess P(0) from the data.

V. CONCLUSION

We focused in this work to discover possible new
elements to characterize the price changes under ultrafast
market transactions of sub-millisecond intervals in the
arrowhead market, operated in Tokyo market from 2010. In
particular, we investigated the shape of the statistical
distribution of the price increments. Especially, we obtained
the probability distribution of the asset returns and examined
the central part of the distribution utilizing its scale-invariant
property.

In our previous work using 5 second resolution data [12],
however, the distribution turned out to be the same as the
result of one-minute resolution data in [7]. In this paper we
show, using the new data of 100ms resolution, that the same
kind of scale-invariant statistical distribution holds for the
sub-second motion of price changes, although the index to
characterize the scale invariance comes out to be α=1.7.
Considering various uncertainties, this value is roughly
consistent to our previous result in [12].
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TABLE I. THE K-L DIVERGENCE OF THE BEST FIT INDICES OF

LÉVY STABLE DISTRIBUTION AND DATA-B

TABLE II. THE DATA SIZES OF ACTIVE COMPANIES ARE
COMPARED TO DATA-A

Stock code Data-A Nov. 2016 Dec. 2016
# of companies 100 3806 3820

8306 0 36,330,455 31,418,450
7203 640,800 13,430,448 10,297,008
9984 0 9,984,780 14,009,724

TABLE III. THE SCALE FACTOR AND THE VALUES OF LÉVY
INDEX

c = 1.4 1.5 1.6

2.06 1.71 1.47

Fig.1 The histograms of statsitical distribution of Z for Δt=1 (5 sec), 3 (15
sec), 6 (30 sec), 12 (1 min), and 24 (2 min).

Fig.2 The histograms in Fig.1 are well scaled by Zs vs. log10P(Zs) for
Δt=1(equivalent to 5s), 3(15s), 6(30s), 12(1 min), and 24(2 min) for the
case of .

Fig. 3 The least square fit derives =1.41, consistent to the result from Fig.
2.

Fig. 4 The histograms of 100ms returns of stock code 8306 are compared for
various levels of coarse graining, 8.txt, 32.txt,.., 8192.txt, corresponding to
the time scales, Δt =8-8192 (unit 100ms).

Fig. 5 The six histograms in Fig. 2 of different time resolutions, Δt =8, 32,
128, 512, 2048, 8192 (unit 100ms) can be rescaled to overlap on a single
curve by properly choosing the scaling factor c = . This figure shows
the case of c=1.5 which derives the index 1.7.

data (1 min return) K-L DIV.
Ave. of 440 returns 1.40 5.4×10-6 0.039

9503 1.55 10.0×10-6 0.286
7201 1.65 3.9×10-6 0.423
6502 1.55 8.8×10-6 0.156
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