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Abstract— On-line safety monitoring, i.e. the tasks of fault 

detection and diagnosis, alarm annunciation, and fault 

controlling, is an essential task in the operational phase of 

critical systems. Although current safety monitors deliver this 

task to some extent, the problem of effective and timely safety 

monitoring is still largely unresolved. In this paper, we propose 

a Distributed On-line Safety Monitor (DOSM) that can achieve 

a range of real-time safety monitoring tasks: fault detection 

and diagnosis, alarm annunciation and control of hazardous 

failures. The monitor consists of  a Multi-agent Monitoring 

System (MaMS) operating on a Distributed Monitoring Model 

(DMM) that contains reference knowledge derived from off-

line safety assessments, and a number of Distributed Data 

Structures (DDSs) that provide up-to-date sensory 

measurements. Guided by the knowledge contained in the 

DMM and real-time observations of the system provided by 

the DSSs, agents are hierarchically deployed and work 

collaboratively to integrate and deliver safety monitoring tasks, 

both locally at the sub-system levels and globally overseeing 

the overall behaviour of the system.  

Keywords-Fault Detection and Diagnosis; Optimal Alarm 

Annunciation; Fault Controlling; Multi-agent Monitoring System;   

I. INTRODUCTION 

Over the last 30 years, considerable work on model-
based safety monitoring, has resulted in approaches that 
exploit knowledge about the normal operational behaviour 
and failure of a system. In the context of this work, models 
such as state-machines, goal trees, goal hierarchies and fault 
trees have been exploited and demonstrated their benefits as 
reference knowledge for system monitoring (for a 
comprehensive see [1]). Typically, these models incorporate 
deep knowledge of the target system and enable qualitative 
and quantitative (often probabilistic) reasoning about 
behavioural transitions, symptoms, causes and possible 
effects of faults [2, 3].  

Recently, a centralised safety monitor [4] that exploits 
knowledge derived from the application of a semi-automated 
off-line safety assessment method and tool called 
Hierarchically Performed Hazard Origin and Propagation 
Studies (HiP-HOPS) [5] has been proposed. That knowledge 
is composed of two elements: (a) a hierarchy of state-
machines describing the behaviour of the system, effectively 
capturing the normal and abnormal mode and state 
transitions of the system and its sub-systems; (b) a set of 
fault trees, which effectively represent diagnostic models that 
relate the symptoms of failure to ultimate root causes.  

The motivation for that work has been the observation 
that, in the current industrial practice, vast amounts of 
knowledge derived in off-line safety assessments cease to be 
useful following the certification and deployment of a 
system. A key contribution of this work is that it brings this 
knowledge forward to the operational phase of a system and 
usefully exploits it for the purposes of on-line safety 
monitoring. The concept is potentially very useful. However, 
the monitor described in [4] is limited in its potential because 
it is monolithic and centralised, and therefore, has limited 
applicability in systems that have a distributed nature and 
incorporate large numbers of components that interact 
collaboratively in dynamic cooperative structures.  

Recent work on Multi-agent Systems (MaS) shows that 
the distributed reasoning paradigm could cope with the 
nature of such systems. In [6], for example, a MaS has been 
exploited to increase the capacity of a diagnostic scheme of a 
large-scale system. MaS have also demonstrated prompt 
responses in detecting faults and diagnosing the underlying 
causes of failures in complex distributed chemical processes 
[7]. Despite these encouraging developments, serious 
operational hazards are still recorded in safety critical 
systems and disastrous failures do not seem out of the 
question. Accordingly, the problem of developing a robust 
on-line monitor is still debated mainly in terms of two 
aspects. One aspect concerns the type of knowledge that is 
required to inform the on-line reasoning of the monitor: 
should it be, for example, a set of rules defined by experts or 
should it be knowledge based on engineering models, and in 
the latter case, what kind of knowledge should such models 
contain [1, 8]? The second aspect of the problem arises from 
the increasingly distributed nature of modern systems and the 
inevitably complicated collaboration among their 
components. This aspect is concerned with overcoming the 
limitations of centralised and rigidly distributed monitors, 
and is, looking into employing intelligent monitoring agents 
as means for delivering flexible, timely, consistent and 
effective monitoring [1, 9]. 

In order to address the issues discussed above, this paper 
proposes a DOSM which combines the benefits of using 
knowledge derived in off-line safety assessments with the 
benefits of a collaborative distribution of MaS. The DOSM 
consists of a DDM derived from the HiP-HOPS safety 
assessment model, a MaMS incorporating a number of 
Belief-Desire-Intention (BDI) agents, and a set of DDSs. 
According to the architectural model of the target system, 
agents are hierarchically deployed as monitoring agents 
(MAGs) and each is provided with its portion of the DMM 

1Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

mailto:A.A.Aloqaili@2007.%20,%20Y.I.Papadopoulos@%7dhull.ac.uk


and appropriate DSSs. By exploiting their portions of the 
DMM, MAGs reason on the operational parameters held by 
DDSs, to detect and assess the effects of deviations, diagnose 
the underlying causes of the detected deviations and 
automatically apply corresponding fault controlling 
measures.  Moreover, in order to avoid alarm avalanches and 
latent alarms that may mislead the system operators [10, 11], 
MAGs are also able to optimise alarm annunciation by (a) 
suppressing unimportant and false alarms; (b) filtering 
spurious sensory measurements; (c) incorporating helpful 
alarm information, such as assessment of the operational 
conditions after the occurrence of the fault, guidance on 
controlling the occurred fault, and diagnostics of the 
underlying causes of failures. 

Benefit of the proposed DOSM ranges from increasing 
the flexibility, composability and extensibility of on-line 
safety monitoring to ultimately developing an effective and 
cost-effective monitor for safety critical systems.  

The rest of this paper is organised in the following 
sections: section two briefly describes the nature of modern 
critical systems and the requirements for representation of 
such systems for the purpose of safety monitoring. Section 
three presents the approach, and the role and architecture of 
the DOSM. To demonstrate the effectiveness of the delivered 
monitoring tasks, in section four, the DOSM is applied to an 
aircraft fuel system and some failure scenarios are discussed. 
Finally, section five draws a conclusion and proposes further 
work. 

II. MODELLING SYSTEMS FOR MONITORING 

Large scale and dynamic behaviour are two common 
aspects of modern critical systems, for example, modern 
transportation systems, manufacturing systems, chemical and 
power plants. While the large scale of these systems calls 
into question the ability of a monitor to deliver consistent 
monitoring over an architecture that may integrate thousands 
of components, dynamic behaviour mainly calls into 
question the ability of a monitor to distinguish between 
normal and abnormal operational conditions. More 
specifically, what is considered as normal in one mode or 

phase of operation of the system may simply be abnormal in 
another mode. A typical example of a “phased mission” 
system is an aircraft system which delivers a trip mission 
through a number of phases, which include pre-flight, 
taxiing, take-off, climbing, cruising, approaching, and 
landing. Thorough knowledge about the architectural 
components and the dynamic behaviour in each phase is 
essential to achieve effective safety monitoring. 

In order to model the mutual relations among sub-
systems and components in a system model, a hierarchical 
organisation is commonly used to arrange them in a number 
of hierarchical levels. Across those levels components appear 
as parents, children and siblings. As shown in Fig. 1, we 
classify those levels into three different types as follows: the 
lowest level (level0) is classified as the basic components 
(BC) level. The upper levels, which extend from level1 to 
leveln-1, are classified as sub-system (Ss) levels. Finally, the 
top level (leveln) is classified as the system (S) level. 

In order to model dynamic behaviour, one needs to 
understand the behaviour itself and how it is initiated. 
Typically, dynamic behaviour is an outcome of, normal 
operational conditions in which the system engages its 
components in different operational functions and structures, 
so that it can deliver different functionalities in different 
phases of operation. Given that sub-systems are abstractions 
that represent aggregations of BCs, signals upon which that 
structure of the system is altered are always initiated by BCs 
(even operators will initiate changes through components in 
a graphical user interface or hardware panel). Typically, 
upon a signal from a BC, a system controller may instruct 
other BCs to be engaged in a certain structure and deliver 
certain functions in collaboration. For example, during the 
cruising of an aircraft, the navigation sensors may convey 
signals to the navigator sub-system (NS) which in turn 
calculates and passes those signals to the flight control 
computer sub-system (FCCS). Assuming that it is time for 
launching the approach, the FCCS accordingly instructs the 
powerplant sub-systems to achieve the required thrust and 
the surface hydraulic controller sub-system to achieve the 
required body motions. Accordingly, we define the case in 

 

Figure 1.  Target System and DOSM Position and Basic Constituents. 
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which the system uses a certain operational structure to 
deliver certain functionality as a mode. 

Beyond being the result of normal changes in function 
and structure, dynamic behaviour also arises from the need to 
respond to and tolerate the faults of basic components. Fault 
tolerance is typically achieved using the following strategies: 
(a) recovery from a permanent fault usually achieved with 
functional or hardware redundancy, e.g. the fault of one 
engine of a two-engine aircraft can be compensated by the 
other engine; (b) the ability of tolerating the fault for a while 
until recovery of a healthy state can be achieved, e.g. 
temporary faults that are caused by ionisation, radiation, 
electromagnetic interference, or transient hardware failures, 
are often self-correcting, while certain types of tolerable 
software faults may be corrected with a controller restart.  

It could, therefore, be said that during a mode, a system 
may appear in different health states which can be classified 
into two types. The first type is the Error-Free State (EFS) in 
which the system or a sub-system functions healthily. The 
second type is the Error State (ES), which in turn is 
classified into three different states: (a) Temporary Degraded 
or Failure State (TDFS) in which there is one or more 
functional failure, but corrective measures can be taken to 
resume a healthy state; (b) Degraded State (DS) in which a 
permanent fault has occurred, but part of the intended 
functionality is still delivered; (c) Failed State (FS) in which 
the component or system has lost its entire functionality. 

In order to track dynamic behaviour, events that result in 
the normal and abnormal behavioural changes should be 
continuously monitored. The hierarchical level at which such 
events could be monitored most effectively is level1, i.e. one 
level above the level of BCs. This can easily be justified, 
because at that level low level events can be contextualised 
and could be identified as either normal or abnormal. For 
instance, the decreasing of velocity and altitude seem normal 
during the approaching mode of an aircraft, since the FCCS 
has already launched that mode. Excluding knowledge about 
the mode and focusing only on the measurements provided 
by the relevant sensors would certainly result in 
misinterpreting system behaviour. Specifically, decreasing 
velocity and altitude would appear as a malfunction and thus 
a misleading alarm would be released. This being the case, 
level1 is preferable rather than any higher level, since it is 
the level at which a malfunction is detected while in its early 
stages. Finally, due to the number of the basic components, 
which is potentially huge, monitoring and reasoning about 
those events at level0 is computationally expensive or even 
unworkable, whereas level1 offers the required context and 
knowledge of local mode.  

III. DISTRIBUTED ON-LINE SAFETY MONITOR 

(DOSM)  

As shown in Fig. 1, the DOSM lies between the target 
system and the interface of the system operators. During 
normal operation, the role of the DOSM is confined to 
providing simple feedback about those conditions. The 
DOSM plays its role during abnormal operating conditions, 
which are triggered by and follow the occurrence of faults. In 
that role the DOSM achieves three real-time time safety 

tasks: fault detection and diagnosis, optimising alarm 
annunciation and automatic control of faults.  In order to 
achieve those tasks, the DOSM employs three elements (see 
also Fig. 1): (a)  a DMM which holds the reference 
monitoring knowledge, in other words, the DMM references 
the MAGs which in turn reason and achieve the three safety 
tasks; (b) Distributed Data Structures (DDS), which hold the 
necessary sensory measurements used by MAGs in order to 
monitor operational parameters and reason on the operational 
conditions of the monitored system; (c)  A MaMS which is a 
set of BDI agents that are deployed over the components of 
the system to reason locally and collaborate globally towards 
achieving the three safety tasks.  

A. Distributed Monitoring Model (DMM) 

MAGs should be, in the first place, able to track the 
operational behaviour of the monitored components over 
different states, i.e. EFSs and ESs. Accordingly, both normal 
and abnormal behaviour should be modelled and recorded in 
the DMM. For that purpose, state-machines provide the 
means of recording behaviour at all levels of the architectural 
hierarchical decomposition of the system (see Fig. 1.). 
Accordingly, the spine of the DMM is a hierarchy of state-
machines that describes dynamic behaviour. In those state-
machines, every EFS or ES is represented as a state and 
every event whose occurrence results in a state transition is 
represented as a trigger event. 

Practically, there are relationships among every sub-
system and its parent and child components. For instance, the 
failure of a component within a sub-system may trigger a 
transition of the sub-system in a recovery state where another 
component changes function to compensate for the initial 
failure. Such relationships can be implemented in the state-
machines in a similar way to the following example: 

Let us assume that the flight control computer sub-
system (FCCS) and power plant sub-system (PPS) are 
siblings and have the same parent, the aircraft control sub-
system (ACS). During the cruising mode, an event may 
trigger a state transition to EFS of the approaching mode in 
the state-machine of the FCCS. That EFS appears as a trigger 
event whose occurrence triggers a state transition in the 
state-machine of the ACS, i.e. the parent, to the EFS of the 
approaching mode. The latter EFS appears, similarly, as a 
trigger event whose occurrence triggers a state transition in 
the state-machine of the PPS, i.e. a child, to the EFS of the 
approaching mode.  

Similarly, ESs of the children could also trigger state 
transitions in the state-machines of the parents and vice 
versa. Consider, for example, when an engine of a two-
engine aircraft fails; the FS of that engine triggers a state 
transition to the DS in the state-machine of the PPS. That 
DS, in turn, triggers a state transition to new EFS of the 
operative engine in which the lost functionality of the faulty 
engine is compensated. 

In the state-machine of the sub-systems of level1, trigger 
events appear as (a) events that are originated by the BCs of 
level0, which might be failure, corrective or normal events; 
(b) events that are originated by the parent states, such as the 
EFS or ESs of the parent. In the state-machine of a sub-
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system of the levels extending from level2 to leveln-1, 
trigger events appear as EFSs and ESs of the parent and the 
children. Finally, in the state-machine of the system, i.e. 
leveln, trigger events appear as EFSs and ESs of the children. 

Knowledge about the normal behaviour, i.e. EFS and 
normal events, of the system and its sub-systems can be 
obtained from design models, such as Data Flow Diagrams 
(DFD), Functional Flow Block Diagram (FFBD) and models 
in the Unified Model Language (UML) that model the 
system during the design life cycle. Knowledge about 
abnormal behaviour, i.e. ESs, abnormal events, assessment, 
guidance, and corrective measures, can be obtained by 
applying the Functional Failure Analysis (FFA) or HAZard 
and OPerability study (HAZOP) techniques on those models. 

During the monitoring time, MAGs monitor only trigger 
events whose occurrence triggers transitions from the current 
state in the state-machine. As such, the computational load of 
the MAGs would be less and prompt responses to the 
occurrence of the events would be obtained.  

In the state-machines of the sub-systems of level1, every 
failure event would be associated with (a) an alarm statement 
that would be quoted and provided to the operators upon the 
occurrence of the failure event; (b) corrective measures that 
can be applied to control the failure; (c) diagnosis, if the 
failure and the underlying cause are in a one-to-one 
relationship the cause would be associated, otherwise a 
diagnostic process should take place. Note, some corrective 
measures might be achievable only after diagnosing the 
underlying causes. In the state-machines of higher level sub-
systems, normal and abnormal events are associated with a 
field of (a) assessment of the consequent operational 
conditions; (b) guidance on directing the hazards at that 
level. Knowledge of those fields can be obtained from the 
HAZOP.  

A failure event and its underlying cause might not always 
be in a one-to-one relationship. Therefore, a diagnostic 
model that can relate failure events to their underlying cause 
is needed. The fault tree, a popular model used in safety 
assessments, can be used as a diagnostic model as it logically 
records the propagation paths and the associated symptoms 
of failure a long with underlying causes. In HiP-HOPS, fault 
trees are automatically constructed from the topology of a 
system and local failure logic specified at component level. 
This method can be applied to construct diagnostic fault trees 
for failure events that appear as trigger events in the state-
machines of level1 sub-systems. Corrective measures could 
also be incorporated in the failure mode nodes of the fault 
tree.    

As shown above, knowledge encoded in the DMM is 
obtained from the design models and by applying classical 
manual safety analysis techniques (FFA, HAZOP, FMEA, 
Fault Tree analysis) [12] or more modern semi-automatic 
safety analysis techniques (HiP-HOPS) [5]. Hence, it could 
be said that a safety assessment model could be useful to 
derive a DMM after (a) associating the abnormal events with 
the alarm, controlling and diagnosis knowledge; (b) 
augmenting the states of the state-machines by assessment 
and guidance fields and the diagnostic model with the 
required corrective measures; (c) formalising the trigger 

events of the state-machine and the symptoms of the 
diagnostic model as monitoring expressions that could be 
evaluated computationally in real time. The deriving process 
would contribute essentially to providing the DOSM with 
thorough and consistent monitoring knowledge. Note that in 
this paper we adopt the HiP-HOPS as a safety assessment 
tool to produce the DMM. 

B. Formal Monitoring Expressions and Distributed Data 

Structure (DDS) 

Low level events that monitor the physical process and 
trigger state transition in the state-machines at Level1, 
should be formalised as monitoring expressions that 
reference parameters of the physical process. Through 
evaluating those expressions, the occurrence of the 
corresponding trigger events or symptoms could be verified. 
In the formalisation process, an event or a symptom is 
expressed as a constraint. In its simple form, a constraint 
consists of three main parts: (a) the status of operational 
conditions which is either a state of a child or the parent or a 
sensory measurement defined by the identifier of the relevant 
sensor; (b) a relational operator – equality or inequality; (c) a 
threshold whose violation results in evaluating that 
expression with a true truth value, i.e. the relevant event or 
symptom occurs. Thresholds might appear as a numerical or 
Boolean value.  

Simple constraints may suffice for simple monitoring 
tasks. In general, though, events may require more 
complicated forms of constraints to be evaluated. In turn, 
such constraints might require (a) the status of a parameter to 
be calculated over a number of sensory measurements; (b) 
two operational operators, when the threshold is a range of 
values rather than a single value; (c) a threshold that 
represents a sensory measurement or a calculation of more 
than one measurement. Moreover, the status of parameters 
and the threshold might be calculated to find the average of 

the change of a quantity over an interval (t), i.e. 
differentiation, or the volumes from different sensory 
measurements at definite timings, i.e. integral calculus. 

For the evaluation process of such monitoring 
expressions, we pre-declare a number of data structures that 
could hold satisfactory sensory measurements and the result 
of the calculation and the evaluation process. For every sub-
system of level1, a DDS would be allocated to hold those 
structures; as shown in Fig. 1.For holding historical sensory 
measurements we use an updatable buffer of one-dimension 
array data structure that could hold two or more up-to-date 

sensory measurements. Such a structure is updated every t 
by (a) inserting the current measurement, which is collected 
at the current time (T) from the relevant sensor; (b) shifting 

out the earliest measurement, which is collected at T-2t in 
the past. As such, that structure holds two (or more) 

measurements collected at current time T and T- t in past. 
Sensors may deliver spurious measurements because of 

(a) their own transient failures; (b) mode changes, which 
might be followed by an interval of unsteady behaviour in 
which the monitored parameter may temporarily fluctuate 
outside normal thresholds. One way of filtering out such 
spurious sensory measurements is by evaluating the 
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monitoring expressions successively over a filtering interval 
and based on a number of measurements. The final result of 
that evaluation is obtained by making accumulative 
conjunctions among the successive evaluations. If the final 
result is s true truth value, this means that the delivered 
measurements remain the same over the filtering interval, 
which is a confirmation that a parameter is persistently out of 
threshold and a sign of a persistent anomaly present - as 
opposed to a spurious measurement or a transient anomaly. 
The filtering interval of every expression is defined by 
examining both the conditions that may result in spurious 
measurements and the time intervals at which the involved 
sensors are requested by the monitor.  

A three-value technique: „True‟, „False‟, and „Unknown‟, 
is also employed to save evaluation time and produce earlier 
results in filtering spurious measurements and in the context 
of incomplete sensory data without violating the evaluation 
logic. Consider, for example, the following two expression 
forms: 

 Expression OR (Expression, t)   (1)  

 Expression AND (Expression, t)  (2)  

Evaluating either of those expressions; (1) or (2), may 

require waiting time equal to t, i.e. until evaluating 

(Expression, t) part, regardless of the instant evaluation of 
the „Expression’ part of either of the expressions. Knowing 
that the disjunction of „True‟ with „Unknown‟ is „True‟ and 
the conjunction of „False‟ with „Unknown‟ is „False‟, both 
expressions; (1) and (2), can be evaluated instantly. 
Therefore, in cases in which the „Expression’ part of 
expression (1) is evaluated to „True‟ and the „Expression’ 
part of expression (2) is evaluated to False, both (1) and (2) 
could be evaluated instantly to „True‟ and „False‟, 
respectively. 

C. Multi-agent Monitoring System (MaMS) 

As shown in Fig. 1, MAGs are deployed over the sub-
systems and the system, and appear as a number of 
subsystem MAGs (Ss-MAGs) and a system MAG (S-MAG), 
respectively. Fig. 2 shows a general illustration of the MAG. 
By perceiving the operational conditions and exchanging 
messages with other MAGs, a MAG obtains the up-to-date 
belief, deliberates among its desires to commit to an 
intention and achieves a means-ends process to select a 
course of action, i.e. plan. The selected plan is implemented 
by the MAG as actions towards achieving the monitoring 
tasks locally and as messages sent to other MAGs towards 
achieving those tasks globally. Upon having a new belief, 
MAG achieves a reasoning cycle; deliberation and means-
ends processes. 

Each Ss-MAG of level1 would have its perception by 
perceiving (a) its own portion of the DMM which consists of 
a state-machine and a set of fault trees; (b) the corresponding 
DDS in which events and symptoms appear as expressions 
and are evaluated; (c) messages that are received from the 
parent to inform the Ss-MAG  about the new states and the 
siblings, in which they either ask for or tell the given Ss-

MAG about global sensory measurements, as they share their 
DDSs whenever needed. The main desires of a Ss-MAG of 
level1 are to achieve local safety monitoring tasks and global 
collaboration and coordination. On the former desire, the 
intentions are to track the behaviour of the assigned sub-
system and to provide the operators with alarms, assessment, 
guidance, and diagnostics and achieve automatic fault 
controlling. On the latter desire, the intention would be 
achieved by (a) informing the parent about the new states; 
(b) telling or asking the siblings about global sensory 
measurements. 

Each Ss-MAG of the levels extending from level2 to 
leveln-1, would have its perception by (a) perceiving its own 
portion of the DMM which consists of a state-machine of the 
assigned sub-system, and (b) messages received from the 
parent and the children to tell about their new states.  The 
main desires of the Ss-MAGs of those levels are to achieve 
local safety monitoring tasks and global collaboration. On 
the former desire, the intentions are to track the operational 
behaviour of the assigned sub-system and to provide the 
operators with assessment and guidance of their levels. On 
the latter desire, the intention would be achieved by telling, 
i.e. sending messages to, the parent and the children about 
the new states. The perceptions, desires and intentions of the 
S-MAG are similar to those of the Ss-MAGs of the levels 
extending from level2 to leveln-1. The only difference is that 
S-MAG has no parent to exchange messages with. 

According to the Prometheus approach and notation for 
developing MaS [13], Fig. 3 shows the collaboration 
protocols among MAGs to track the operational behaviour of 
the monitored system. Fig. 4, similarly, shows the 
collaboration protocol among the Ss-MAGs of level1 in 
which they share their sensory measurements globally. 

Desires (D)

Beliefs (B) Intentions (I)
Perception 

Messages to MAGs

Actions

Messages from MAGs

Deliberation Means-ends

Reasoning Cycle

 

Figure 2. A general illustration of the MAG. 

 

Ss-MAGs of Level1 Ss-MAGs of Leveln-1 S-MAG 

new_state(State_Name)

new_state(State_Name)

new_state(State_Name)

new_state(State_Name)

 

Figure 3. MAGs‟ collaboration protocol across the hierachical levels. 
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Some Ss-MAG of Level1 Other Ss-MAGs of Level1

ask_for(Measurement) 

tell(Measurement) 

tell(Measurement) 

ask_for(Measurement) 

 

 Figure 4. Collaboration protocol among Ss-MAGs of level1. 

IV. CASE STUDY: AIRCRAFT FUEL SYSTEM (AFS) 

Fig. 5 shows the physical illustration and the basic 
components of the AFS. The AFS functions to maintain safe 
storage and even distribution of fuel in two operational 
modes. The first is the consuming mode in which the AFS 
provides fuel to the port and starboard engines of a two-
engine aircraft. The second is the refuel mode. During the 
consuming mode, and to maintain the central gravity and 
stability, a control scheme applies a feedback-control 
algorithm to ensure even fuel consumption across the tanks.   

Another algorithm is applied similarly to control the even 
distribution of fuel injected from the refuelling point to the 
tanks during the refuel mode. The AFS is arranged in four 
sub-systems: a central deposit (CD), left and right wing (LW, 
RW) deposits and an engine feed (EF) deposit which 
connects fuel resources to the two engines.  

In order to tolerate faults, an active fault-tolerant 
controller strategy is implemented. More specifically, in the 
presence of faults there are alternative flow paths, i.e. 
different configurations can potentially connect the two 
engines to the available fuel resources.  

As shown in Fig. 6, five monitoring agents are deployed 
over the AFS as follows: four MAGs monitor the four sub-
systems; EF-MAG, CD-MAG, LW-MAG, and RW-MAG. 
The fifth is AFS-MAG which monitors the entire FS. The 
DOSM is implemented by Jason interpreter; it is an extended 

version of AgentSpeak programming language [14].  
In order to achieve fault detection, the four MAGs update 

their DDSs and evaluate the monitoring expressions and thus 
detect any parametric deviations at level1. Consider, for 
example, the deviation “no fuel flow to starboard engine”; 
this deviation could be detected locally by the EF-MAG, 
while the deviation of imbalance between the LW and RW 
deposits is detected through communicating sensory 
measurements globally between LW-MAG and RW-MAG. 

Diagnosis of the underlying causes of a deviation is 
triggered when a deviation is detected. Through exploiting 
fault tree models and combining between depth-first and 
heuristic parse strategies, Ss-MAGs traverse and relate the 
top event in a tree to its bottom faulty components. Consider, 
for example, the deviation “no fuel flow to starboard 
engine”. EF-MAG evaluates symptoms in the relevant fault 
tree to track the propagation path. The expected diagnosed 
causes could be one or more of the fault modes of EF basic 
components; likely, a pipe blockage, an inadvertent closure 
or a fault of a valve, a pump fault, or no fuel in the rear tank. 

To achieve automatic fault controlling, corrective 
measures are provided across the DMM, some of which 
could be taken directly by a MAG and others may require 
global collaboration. Consider, for example, when the 
deviation “no fuel flow to starboard engine” is diagnosed 
with the cause of an inadvertent closure of valve VF5; the 
possible corrective measure that can be taken locally by EF-
MAG is to instruct the controller to reopen that valve. 
However, if that fails to rectify the situation, then a global 
action should be taken through the following steps: (a) EF-
MAG transits to a FS and tells the AFS-MAG about that 
state; (b) AFS-MAG, in turn, executes that state on its state-
machine, achieves the corresponding transition and tells the 
four MAGs about the resulted state; (c) the four MAGs, in 
turn, execute the received state on their state-machines. 
According to their new states the four MAGs apply new flow 
rates for every sub-system. Thus, the FSA configuration will 
be changed and both engines will be fed from the front tank.  
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Figure 5. Physical illustration of aircraft fuel system. 
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Figure 6. Architecture of the MaMS of the AFS. 

When the occurrence of the failure event “no fuel flow to 
starboard engine” is verified, EF-MAG alarms and provides 
the pilots with the corresponding assessment and guidance. 
Moreover, as that failure triggers a state transition in the 
state-machine of the EF sub-system, which in turn triggers a 
transition in the state-machine of the AFS, assessment and 
guidance from the new state of the AFS would also be 
provided to the crew pilots, i.e. multi-level assessment and 
guidance. 

V. CONCLUSION AND FUTURE WORK  

This paper proposed a distributed on-line safety monitor 

(DOSM) based on a multi-agent system and knowledge 

derived from model-based safety assessment. Agents exploit 

that knowledge to deliver a range of real-time safety 

monitoring tasks which have been briefly discussed in the 

context of a study of an aircraft fuel system. The monitor 

can detect symptoms of failure on process parameters as 

violations of simple constraints, or deviations from more 

complex relationships among process parameters, and then 

diagnose the causes of such failures. With appropriate timed 

expressions, the monitor can filter normal transient 

behaviour and spurious measurements. By exploiting 

knowledge about dynamic behaviour, the monitor can also 

determine the functional effects of low-level failures and 

provide a simplified and easier to comprehend functional 

view of failure. Finally, by knowing the scope of a failure, 

the monitor can apply successive corrections at increasingly 

abstract levels in the hierarchy of a system. 
Despite encouraging results certain research issues 

remain to be investigated. The first is that the quality of the 
monitoring tasks and the correctness of the inferences drawn 
by the monitor depend mainly on the integrity and 
consistency of the DMM. The validation of the DMM, 
therefore, is an area for further research. Secondly, more 
work is needed on uncertainty of the diagnostic model and 
the application of the three-value logic.  For that purpose, the 
incorporation of Bayesian Networks will be investigated in 
the future.  
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