
The Interoperability Challenge for Autonomic Computing

Richard John Anthony
The University of Greenwich

Park Row, Greenwich

London SE10 9LS, UK

+44 (0) 208 331 8482

R.J.Anthony@gre.ac.uk

Mariusz Pelc
The University of Greenwich

Park Row, Greenwich

London SE10 9LS, UK

+44 (0) 208 331 8588

M.Pelc@gre.ac.uk

Haffiz Shuaib
The University of Greenwich

Park Row, Greenwich

London SE10 9LS, UK

+44 (0) 208 331 8588

H.Shuaib@gre.ac.uk

Abstract - Interoperability is an emerging need for autonomic

computing systems, which stems from the very success of these

systems. Autonomic computing is increasingly popular; soon

autonomic control components will be commonplace, and

present in almost every large or complex application. This

inevitably leads to situations where multiple autonomic

components coexist and interact either directly or indirectly

within the same application or system. Problems can arise

when numerous independently designed autonomic components

interact. We advocate a service-based approach to

interoperability and present a set of requirements for such an

approach. We briefly present a universal interoperability

service which automatically discovers and manages potential

conflicts between manager components.

Keywords - Autonomic systems, Interoperability, Services

I. INTRODUCTION

Autonomic Computing (AC) is increasingly popular, and

has become a mainstream concept. Autonomic components

will soon be commonplace and it is inevitable that there will

be an increasing trend of co-existence amongst autonomic

managers. As there are currently no universal standards for

autonomic systems design, or for the provision of

interoperability amongst managers, there can be no

guarantees that separately-designed managers will operate

harmoniously together. Almost all systems use multi-vendor

software solutions and this implies that there will be a great

variety of potential manager components existing, even for

any one specific function of a system. For many systems,

autonomic management will arrive incrementally; as new

functionality is introduced, and through upgrades of non-

managed components to new managed versions. In some

cases the introduction of management capabilities will not

be obvious – third party developers may deliver components

with internal management that is not exposed at interfaces

to other components.

Any multi-manager scenario leads to potential conflicts.

Direct conflicts occur where Autonomic Managers (AMs)

attempt to manage the same explicit resource. Indirect

conflicts arise when AMs control different resources, but

the management effects of one have an undesirable impact

on the management function of the other. This latter type of

conflict is expected to be the most frequent and problematic,

as there are such a wide variety of unpredictable ways in

which such conflicts can occur. The effects of indirect

conflict will also be less obvious to detect and harder to

diagnose than the direct conflicts. The effects of conflicts

can vary widely, including e.g., a cancellation effect of

opposing managers, and serious performance or stability

problems. The problem is illustrated with an example:

consider a system with two AMs: a Power Manager (PM1)

which shuts down servers that have been idle for a short

time; and a Performance Manager (PM2) which attempts to

maintain a pool of idle servers to ensure high

responsiveness to high priority applications. Each service

was developed and evaluated in isolation and both

performed perfectly, however the respective vendors did not

envisage that they would co-exist. Bringing a shutdown

server back on line has a latency of several seconds, thus

PM1’s ‘locally correct’ behaviour defeats PM2’s

contribution. As each manager is unaware of the presence

and behaviour of the other, the problem can only be

resolved if an external agent (such as a human system

manager) can detect, diagnose, and identify a solution to the

problem.

The contributions of this paper include: firstly we

evaluate the nature and scope of the interoperability

challenge for autonomic systems and identify a set of

requirements for a universal solution (section III). We

present a work-in-progress service-based interoperability

service which enables exploration of these requirements

(section IV). Section V outlines a management description

language which is intended for use by developers to ensure

consistent description of AMs’ management capabilities.

Automatic detection of management conflicts is discussed

in section VI. The interoperability service is evaluated in

section VII and finally we conclude (section VIII).

II. BACKGROUND

A clear demonstration of the need for interoperability

mechanisms is provided in [1] where two independently-

developed autonomic managers were implemented. The first

dealt with application resource management, specifically

CPU usage optimization. The second, the power manager,

was responsible for modulating the operating frequency of

the CPU to ensure that the power cap was not exceeded. It

was shown that without a means to interact, both managers

throttled and sped up the CPU without recourse to one

another, thereby failing to achieve their intended

13Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

optimisations and potentially destabilising the system. We

envisage widespread repetition of this problem until a

universal approach to interoperability is implemented.

Early work has focussed on bespoke interoperability

solutions for specific systems. [2] proposes a distributed

management framework that seeks to achieve system-wide

Quality of Service (QoS) goals. Autonomic controllers are

added and removed from the system based on applications’

QoS requirements. The controllers communicate indirectly

with one another using the system variables repository. If a

controller were to fail, other controllers reading this

repository take over the responsibilities of the failed

controller. Other works take a more direct approach to

autonomic element interaction. For instance, in [3] the

autonomic elements that enable the proposed data grid

management system communicate directly with one another

to ensure that management obligations are met. The

relationship between each type of autonomic element is

peer-to-peer – potentially leading to high interaction

complexity. In contrast, [4] adopts a three-level hierarchical

relationship to autonomic element interactions. Individual

autonomic elements form the lowest level of the hierarchy.

Multiple devices are grouped into servers and servers are

further grouped into clusters. The autonomic element at

each level interacts with the autonomic elements above and

below it to achieve autonomic power and performance

management.

Several works deal with interoperability from the

viewpoint of homogenous competing managers. [5]

implements a two-level autonomic data management system

that optimizes the managed system so jobs are not starved of

resources. A global manager is tasked with allocation of

physical resources to a number of virtual servers in an

optimal and equitable manner. Local managers oversee each

virtual server, using fuzzy logic to infer the expected

resource requirements of the applications that run on the

virtual servers. [6] describes an experiment to separate out

the Monitoring and Analysis stages of the MAPE loop into

distinct autonomic elements, with designed-in interactions

between them. Monitoring capabilities are implemented in a

node called an agent, with the analysis aspect implemented

in a node called a broker. Information received from the

environment are processed by the agents and forwarded to

the broker where it is further analyzed. One or more agents

feed information to a specific broker. An example of

bespoke designed-in interaction between autonomic

elements is provided in [7]. Three types of autonomic

elements work hierarchically to provide scalable

management, differentiated in terms of their operating

timescale and scope of responsibility. This example serves

to differentiate interaction between components which is

achieved here, from the concept of interoperability which

has stricter requirements. The fact that the various elements

are part of a single coherent service with designed-in

support for interaction means that the full challenge of

interoperability is not encountered in this situation. [8]

illustrates the complexity of combining multiple

management domains into a single controller. In this work a

joint QoS and Energy manager is developed using a design-

time oriented approach tuned for a specific environment and

is thus highly sensitive to its operating conditions. This tight

integration approach is not generalisable and the resulting

combined manager would appear to be more costly to

develop and test than two independent managers.

The majority of work to date has targeted planned

interoperability between designed-for-collaboration AMs

working towards a common goal. This is a valuable step

towards AM interoperability, although these solutions

generally lack a formal definition of the interfaces or where

defined, these interfaces are specific to the system in

question; preventing wide applicability and reusability.

Custom solutions are expensive to develop and are sensitive

to changes in target systems, and thus generally restrictive

and not future-proof. A significant issue is that they do not

tackle the problem of unintended or unexpected interactions

that can occur when independently developed AMs co-exist

in a system.

This challenge has been recognised for some time, for

example [9] defines a number of interfaces to aid autonomic

element interactions. Several ‘vision’ papers [10], [11], [12]

identify interoperability as a key challenge for future

autonomic systems. [10] argues that mechanisms that define

interoperability between autonomic elements must be

reusable to limit complexities i.e., it must be generic enough

to capture all communications across the board but also

prevent bloatedeness. A standard means must exist for

exchanging contexts between communicating elements to

allow one autonomic element to understand the basis for the

action of another. [10] also identifies the need for a function

to translate the output of one element to the format

understood by another. [11] identifies some necessary

components for autonomic element interaction, including: a

name service registry for autonomic elements; a system

interaction broker and a negotiator. An interface

specification must also take cognizance of hierarchy

amongst autonomic elements. [12] observes that a strict and

specified communication behaviour should be enforced, to

prevent interoperating autonomic elements from

communicating through undocumented or backdoor

interfaces.

III. INTEROPERABILITY ISSUES

We posit that interoperability support (or lack of it) will

become a make-or-break issue for future autonomic systems

which inevitably contain multiple AM components.

Bespoke or application-specific approaches to

interoperability only offer a temporary respite at best, as

they suffer a number of significant limitations which

include:

1. Lack of flexibility and ability to scale - it is unrealistic

to keep adding signals and functionality to deal with each

possible interaction between any combination of AM’s.

14Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

2. Having many isolated pools of interoperability is too

complex. AC became popular fundamentally as a means of

controlling, or hiding, complexity. It is undesirable from

maintainability and stability perspectives to actually add

excessive complexity in the process of solving the

complexity problem.

3. It is not technically feasible to achieve close-coupled

interoperability (i.e., where specific actions in one AM react

to, or complement those of another) unless the source code

and detailed functional spec. is available for each AM.

4. It will not be cost effective or timely. The cost and

complexity of a bespoke solution spirals exponentially as

the number of interacting AM’s increase (consider a near-

future cloud computing facility with multi-vendor

management software systems and with autonomic

management embedded into platforms, operating software,

application software and also infrastructure such as power

management and cooling systems – this is a complexity and

stability storm just waiting to happen).

5. Re-development of managers to facilitate specific

interoperability, and especially to deal with conflicts that

arise unexpectedly, is reactive and incremental (and thus

always ongoing).

6. It is not possible to know the nature of AMs not yet

built, or to predict exactly where conflict will materialise in

advance of adding a particular AM into a running system.

The issues highlighted above strongly suggest that it is

necessary to deal with interoperability proactively by

developing managers that are interoperability-enabled from

the outset. We propose a service-based approach to

interoperability, in which an Interoperability Service (IS) is

responsible for detecting possible conflicts of management

interest, and granting or withholding management rights to

specific AMs as appropriate. In this way the IS performs all

of the active interoperability management, and AMs only

participate passively by providing information and

following control commands from the IS. The IS interacts

with AMs via a special interface which they must support.

We identify a number of requirements for a universal IS

solution:

 Be application-domain independent and system

independent.

 Able to represent AMs’ management interests in a

standard way that facilitates accurate conflict detection.

This includes recognising resources which are not

directly managed, but are nevertheless impacted by the

behaviour of the manager.

 Have variable conflict-detection sensitivity which is run-

time configurable to suit specific system requirements.

 Have a hierarchical architecture so as to deal with both

local and global conflicts, and conflicts that occur across

different levels in a complex system.

 Be proactive and automated; these are mandatory

qualities for sustainable systems containing dynamic

combinations of AM’s with potentially complex

interaction patterns.

 Able to automatically suspend and resume AM

management activity on the basis of conflict detection

and resolution.

 Support independently developed and tested AMs which

in the presence of other AMs are susceptible to conflicts

that they cannot locally detect or handle.

 Sufficiently trustworthy that compliant AM’s are

certifiable for safe co-existence – regardless of platform,

vendor etc.

IV. AN INTEROPERABILITY SERVICE

This section presents an initial IS for exploration of the

requirements identified above. The IS maintains a database

of all registered AMs along with a mapping of the resources

they manage and their scope of operation and management.

AMs register with the service via a standard interface and

provide details of their management capabilities using a

standardised description language. The IS detects potential

conflicts and sends appropriate signals to one or more AMs

to e.g., stop or suspend their management activity. The

strengths of this approach are that it is scalable,

generalisable, has low component-interaction complexity

and because conflict management is handled within the IS,

the AMs are not involved in negotiation with peers. The

service has a hierarchical structure for scalability, enabling

conflict detection at both global level (such as system-wide

security management) and local level (such as platform-

wide, or VM-wide, resource management) with respect to a

particular AM. Additional levels can be added, with a

communication infrastructure resembling that of a typical

hierarchical service such as DNS. It is important that

conflict-detection is performed at the correct level. For

example, an autonomic VM scheduler only has a potential

conflict with an autonomic memory manager if they are

both operating on the same processor unit.

The architecture is formed around a number of regular

interfaces and a communication protocol which define the

interaction between the components of the system, as

outlined in figure 1. A number of interfaces are specified,

and form three groups:

IS-AM interaction is supported by two interfaces.

IAdvertise {Advertise, Unregister, Heartbeat} is used by

AMs to signal joining (register), leaving and heartbeat

messages to the IS. Advertise is accompanied by a list of

resources that the AM either wishes to manage directly, or

that the developer has identified might be impacted by the

manager’s behaviour. Unregister is used by an AM to signal

an orderly shutdown, and Heartbeat (normally invoked

periodically) enables (when absent) the IS to detect when a

manager crashes or leaves abruptly. In either case, the AM’s

management interests are unregistered and the conflict

detection analysis is triggered, so that any AMs which were

suspended but are no longer in conflict with the system can

be resumed.

IInteroperate {Run, Stop, Suspend, Resume, Throttle} is

used to receive directives from the IS. The AM developer

15Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

uses the IS API to map these directives onto the AM-

internal behaviour. Run is accompanied by a sub-list of the

requested resources that the AM can manage, so partial

conflicts can be handled without suspending the entire

manager. Stop shuts down the AM. Suspend backgrounds

the AM (part or all of its management activity). Resume

reactivates a suspended AM. The IS uses Throttle to specify

different rates of activity to potentially conflicting AMs to

prevent certain oscillatory patterns developing.

 Figure 1. The Interoperability Service (IS) architecture.

IS-IS interaction is facilitated by a single interface.

ICommunicate {Forward, Locate, Elect, SetISLevel,

GetISLevel} supports hierarchical operation. Forward is

used to pass messages between local ISs which want to

control global resources and the Global IS instance; this is

the basis of system-wide and cross-level conflict detection.

The remaining functions support the hierarchical IS

structure itself including leader election for robustness.

Locate returns the current service coordinator IS instance

(which also performs the role of global conflict detection).

Elect initiates an election if no coordinator instance is

found. SetISLevel sets the IS level to be either Local or

Coordinator. GetISLevel is used by each IS instance to

determine its status during Locate and Elect events.

The IS provides an external management interface.

IConfigure {SetMode, GetMode, SetSensitivity,

GetSensitivity, StatusReport} is a configuration and

reporting interface which allows external system

management utilities to perform system-specific

configuration and generate status reports. SetMode and

GetMode allow configuration of the service to allow

different levels of safety; ‘Safe’ requires that all of a

particular AM’s management activity is suspended when it

is found to be involved in a conflict, whilst ‘Permissive’

allows partial suspension. SetSensitivity and GetSensitivity

are used to configure the conflict detection sensitivity level.

StatusReport collects status information and statistics for

report generation and IS performance monitoring.

The IS architecture specification precisely defines the

interfaces, and with its accompanying communication

protocol, defines the message formats and sequences that

form the inter-component communication. It also specifies

the semantics of this communication. Figure 2 shows how

the IS functionality is integrated with the various

components of the system.

Figure 2. Internal architecture of the system components and the integration

of the IS interfaces with these components.

Figure 3. State diagram held by IS, for each registered AM.

The software developer retains flexibility with respect to

the internal design and behaviour of the business logic of

AM components and system configuration utilities. The

architecture specification does not restrict the management

approach, internal structure or control / adaptation

techniques used within an AM component. The AM

developer must integrate the API calls into the manager

such that the control behaviour meets the IS specification.

Where an AM manages multiple resources the developer

can choose to implement Suspend such that it is effective at

the level of the AM itself, or only on the management

activity that has been notified as being in conflict. Similarly,

the developer can decide the AM-internal semantics of

Suspend so as to isolate the management output (effecter

output) of the manager whilst still running the monitor,

analyse and plan parts if desired. This approach facilitates

the IS’ regulatory control over the AM when conflicts

occur, whilst enabling ‘warm’ start-ups of components

when conflicts are resolved.

An instance of a state model is maintained for each

Independently
developed
Autonomic
Managers

Key
Interoperability Service
operational communication
Interoperability Service
configuration and reporting

Runtime system object / resource

Direct management relationship

Impacted by manager behaviour
(darker implies stronger impact)

()

()

Interoperability Service

(Global instance)

IS-internal interface

Config and
reporting
interfaces

System manager’s
configuration and
reporting utility

Config and
reporting
Interfaces
(user side)

Knowledge

Analyse Plan

Monitor Execute

Interoperability Service interfaces

Knowledge

Analyse Plan

Monitor Execute

Interoperability Service interfaces

Interoperability Service

(Local instance)

AM interfaces

Config and
reporting
interfaces

IS-internal interface

The developer links in the Interoperability library and
uses IS API calls to map the IS’s signals onto behaviour
in the component (so as to implement Advertise, Run,
etc. in the AM component, and SetMode, SetSensitivity
etc. in the system configuration utility).

Interoperability library

Interoperability
Service business

logic

Interoperability Service

IConfigure
{ SetMode,
GetMode,

SetSensitivity,
GetSensitivity,
StatusReport }
(service side)

ICommunicate
{ Forward,

Locate,
Elect,

SetISLevel,
GetISLevel }

The AM’s internal behaviour is unknown to the IS.
The IS places no restrictions on the management

technique or control / adaptation technology used.

IS
API

Application-
specific

Autonomic
Manager

business logic

Autonomic Manager

IAdvertise
{ Advertise,
Unregister,
Heartbeat }

IInteroperate
{ Run,
Stop,

Suspend,
Resume,
Throttle }

Interoperability library

System
configuration

utility
business logic

IS
API

IConfigure
{ SetMode,
GetMode,

SetSensitivity,
GetSensitivity,
StatusReport }

(user side)

System-specific configuration utility

Register

Running
(Conflict free)

Conflict
possible

Suspended

StoppedOther AMs already
registered

NO AMs
registered

No potential
conflict

detected

Stop (Potential
Conflict

detected)

Suspend (Potential
conflict detected)

Resume
(conflict
resolved)

Potential
conflict

detected

16Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

registered AM (see figure 3). The information held in these

models drives the IS’ conflict management behaviour and is

the basis on which AMs’ management rights are governed.

During AM registration, if no other AMs are registered the

new AM is granted management rights for the resources

requested and signalled that it can Run. If other AMs are

already registered, the IS evaluates whether or not there is a

possible conflict of interest, and if so signals the AM to

either Stop (in which case the AM must attempt re-

registration at a later time driven by some external event) or

Suspend (in which case the IS will signal the AM that it can

Resume, i.e., manage, once the conflict has been resolved).

V. MANAGEMENT DESCRIPTION LANGUAGE

We discuss the need for a standard description of AMs’

management interests, and briefly introduce our current

language which is extensible to accommodate

improvements in our understanding of ways actual and

potential conflicts arise.

The IS facilitates interoperability amongst (unknown in

advance) AMs which have been developed independently of

each other, and thus do not directly support interoperability

amongst themselves. The overall goal is to maximise the

management freedom of AMs whilst at the same time

ensuring that the system remains stable; requiring that the IS

must also:

 Detect AMs and learn their characteristics (via

registration);

 Identify potential conflict, determine the consequences

and the level of risk, and achieve a system-specific

balance when taking decisions to resolve conflicts by

suspending or stopping AMs’ management activities;

 Automatically resume suspended AMs when conflicts

are resolved (e.g., when other AMs leave the system);

 Enable cooperation between AMs. For example to share

learnt knowledge concerning system state, volatility etc.

To perform these functions, the IS needs certain

information detailing each AMs’ management domain and

specific resources of interest. This information must use a

standard language format, and a fixed vocabulary of key

terms so that automated searching for overlaps of interest

can be performed effectively. The information will be

provided at run time by the AM via the IS API (the

information is provided ultimately by the AM developer).

Conflicts can arise in several ways. Direct conflicts

occur where multiple AMs attempt to manage the same

resource or object. However conflicts can be indirect (and

less obvious) because a manager’s activity may impact

resources other than those directly managed. Categories of

this include cross-application conflicts, for example

increasing a specific application’s use of a particular

resource such as network bandwidth reduces the availability

of bandwidth available to other applications. Another

category of indirect conflicts are cross-resource conflicts,

for example increasing processor speed to maximise

throughput increases direct power usage and may also

increase power requirements for cooling systems (which

may have their own autonomic management systems). Some

system characteristics such as security policy, power usage,

server provisioning strategy etc. may be managed at both

the system-wide level, and locally at the level of individual

computing node or cluster. This can lead to conflicts

between global and local managers, resulting in parts of the

system being out-of step with global policy, and/or

inefficient behaviour. It will be difficult to identify every

possible case of indirect conflict with certainty, and the

extent of management impact in such cases is also highly

variable. Therefore the description information provided by

AMs must be sufficient to derive a similarity measure

between their management interests and effects. The

language needs to contain appropriate categories to express

areas of management concern in a structured way, i.e., from

high-level domain in which the manager operates down to

specific resources that are managed, and also to express

characteristics including the management scope (global or

local) and specificity (e.g., organisation specific, application

specific).

Given these requirements, the standard management

description should include (see figures 4 and 5 for an

example):

Category. Mandatory. The highest-level and most generic

descriptor used to identify the AM’s domain of interest.

Terms include: {Power general, Performance general,

Security general, ... }

Zone. Mandatory. A second level, more specific sub-

category enabling developers to differentiate between

specific management functions. Terms include: {Power

system, Power platform, Power cooling ... Performance

system, Performance CPU, Performance disk, Scheduling,

VM management, ... }

Impact. Mandatory. A numerical indicator Impact Factor

(IF), (where 0 < IF ≤ 1), is defined to express the strength of

the management influence. A directly controlled resource is

assigned the value 1. A value close to 0 indicates that the

particular AM has a weak influence on the resource whilst

values close to 1 indicate that the resource is closely

impacted by changes to one that is directly managed by the

AM; for example an AM directly controlling CPU speed (IF

= 1) has a strong indirect influence on VM performance (IF

≈ 0.8). Term: { ImpactFactor(value) }

Scope. Mandatory. Whether the manager has local or global

impact. Terms: { Local, Global }

Specificity. Optional. The extent of manager operation.

Terms include: { System-wide, Application-wide, Platform-

wide, Process-wide, User-specific, ... }

Trigger. Optional. Facilitates expression of temporal

aspects such as periodicity or operating timescale, as well as

specific events that invoke the management activity. Such

characteristics can potentially be used to detect

combinations of AMs at risk of causing of instability in the

form of oscillation or control divergence. Terms include:

17Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

{Period(value), Event(name) , ... }

Parameter. Optional. Identifies specific context parameters

that are of interest to the AM. Term: { Name(value) }

Envelope. Optional. Expresses range of, and/or the number

of dimensions of, control freedom. This can potentially help

to avoid false positive detections of conflict, when managers

operate in the same domain but have non-overlapping

envelopes of operation. Terms include: { Name(range,

value) }

VI. CONFLICT DETECTION

For the initial exploration we use a conflict detection

technique based on pair-wise fuzzy similarity measures of

AMs’ management interests. This uses a summation of

weighted terms, derived from AMs’ management

descriptions (see sections V and VII). Conflict detection

activity is triggered by events such as the registration of a

newly-discovered AM, or the departure of an AM from the

system. The items that comprise the management

description form a vector. Weights are allocated to the items

to signify relative importance.

A dynamically configurable conflict threshold (0 <

ThreshC ≤ 1) is used to tune the conflict detection

sensitivity (via SetSensitivity, on IConfigure). A potential

conflict is detected if the similarity measure of a pair of

vectors exceeds ThreshC. It is intended that the sensitivity

level is configured by the facility manager, via a control

console application (or automated), and can be changed at

run time as necessary. This enables safety critical systems to

operate with very low tolerance to potential conflicts,

whereas in domains where only e.g., efficiency is at stake, a

higher tolerance can lead to benefits of having more AMs

working simultaneously (bearing in mind that a ‘potential

conflict’ may not be realised).

VII. EVALUATION

We demonstrate the operation and benefit of the IS in a

data centre scenario in which two independently developed

AMs coexist. A scheduling manager (AM1) has a main goal

of maximising throughput by keeping all resources utilised

where possible. A power manager (AM2) is designed to

minimise power usage by slowing down processor speed or

by shutting down entire processor units where possible. The

co-existence of these AMs creates a high potential for

conflict. For example AM2 will attempt to shutdown an

underutilised resource as soon as load level starts to fall,

whilst AM1 will attempt to bring unused resources into play

as soon as load levels increase (or a backlog develops).

Depending on the sequence of load level changes it is

possible that oscillation will build up between the actions of

these two managers.

Operation: During its initialisation each AM registers

with the IS. The management capabilities of each AM are

described using the standard language and categories

described earlier. AM1 directly controls a parameter

performance within the general management category

performance general, and specific sub-zone CPU

performance; and indirectly influences a parameter power

within the general category performance general, and sub-

zone system performance. AM2 directly controls a

parameter power within the general category power general,

and the specific zone of interest system power; and

indirectly influences a parameter performance within the

general category performance general, and the specific zone

of interest CPU performance.

a) AddACItem ("Performance", "Performance General",

 "CPU Performance", "1.0", "Local");

AddACItem ("Power", "Performance General",

 "System Performance", "0.5", "Local");

RegisterAsAM ();

b) AddACItem ("Power", "Power General",

 "System Power","1.0","Local");

AddACItem ("Performance", "Performance General",

 "System Performance", "0.5", "Local");

RegisterAsAM ();

c) bool AddACItem(char *ParameterName, char *Category,
 char *Zone, char *Impactfactor, char *Scope);

Figure 4. API calls to register AMs’ management interests.

The API calls for manager registration are shown in

Figure 4a (for AM1), and 4b (for AM2), where AddACItem

means ‘Add autonomically controlled item’; its template is

shown in figure 4c. Figure 5 shows the XML equivalent

representation for AM1.

<!-- Autonomic Manager Configuration Specification

Language -->

<MetaData>

 <ConfigAuthor Name="Mariusz Pelc" Organisation="UoG" />

 <TimeStamp Time="12:00" Date="20/12/2010" />

 <AMDescription>

 <AM ID="AM1">

 <ACItems>

 <ACItem ID="Performance" Scope="Local">

 <Category>Performance General</Category>

 <Zone>CPU Performance</Zone>

 <ImpactFactor>1.0</ImpactFactor>

 </ACItem>

 <ACItem ID="Power" Scope="Local">

 <Category>Performance General</Category>

 <Zone>System Performance</Zone>

 <ImpactFactor>0.5</ImpactFactor>

 </ACItem>

 </ACItems>

 </AM>

 </AMDescription>

</MetaData>

Figure 5. XML representation of the Management Description Language.

Scenario 1: Each manager registers separately in the

system in the absence of the other. ThreshC = 0.6. AM1

requests management rights for CPU performance, and also

notifies a potential impact on system power. As there are no

other AMs present, the IS grants AM1 permission to

manage unimpeded. Similarly, for AM2 (in the absence of

AM1) the IS grants rights to manage system power level

and also to have an indirect impact on system performance.

Scenario2: AM1 registers and is granted rights to

manage the resources it requested. AM2 then registers

whilst AM1 is still present. ThreshC=0.6. The IS performs

18Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

conflict detection analysis, based on the AMs’ announced

Impact Factors (IFs) for each requested managed item. This

determines whether AM2 can be granted the requested

management rights: Power directly managed (IF=1.0), and

Performance potentially affected indirectly (IF=0.5). An

indirect conflict is detected: AM1 already manages a system

performance characteristic (specifically CPU performance),

when AM2 registers, requesting to manage system power,

but also announcing a potential impact on system

performance. The IS does not detect a direct conflict with

the power management, but the weighted conflict level for

system performance (found to be 0.6875) exceeds the

current ThreshC (0.6). The IS suspends the newly

registering manager to prevent possible instability (this

manager will be automatically resumed if AM1 leaves the

system and there are no other conflicts with other AMs

registered in the meantime). Figure 6 shows the resulting

message sequence.

 Key: Snd - Send message MNA - MNACK MAC - MACK MRu – Mrun

 Rcv - Received message Mad – MAdvertise MSu - MSuspend

Figure 6. Message sequence for scenario 2.

Scenario 3: As scenario 2, but with ThreshC = 0.8, i.e.,

the IS is less sensitive to potential conflicts (this

configuration may be better suited to non-critical systems

where some potential for conflict may be acceptable, i.e.,

the tradeoff between safety and management flexibility is

shifted). The resulting message sequence is shown in Figure

7. In this case no conflicts are detected and the newly

arriving AM2 is granted rights to manage system power

level, and to have an impact on system performance, thus

potentially interacting with AM1.

Figure 7. Message sequence for scenario 3.

VIII. CONCLUSION

We have outlined the case for greater research effort in

the area of interoperability of autonomic managers. We

have discussed why bespoke and custom solutions will not

work in the long term and argued for a universal standard

for interoperability. In line with this we have identified

requirements for a service-based approach.

We presented initial work towards a service-based

automatic and proactive interoperability service, being

integrated into autonomic components and making them

‘interoperability ready’ in advance of their deployment. Our

approach enables AMs to be developed independently,

requiring that the developer uses a management description

language to describe the component’s management

characteristics. This approach has the main advantage of not

requiring an AM developer to have knowledge of future

AM’s that may exist in the target system, and thus supports

agility i.e., configuration changes, expansion and upgrades.

IX. REFERENCES

[1] Kephart J. O., Chan H., Das R., Levine D. W., Tesauro G.,

Rawson F. and Lefurgy C. Coordinating multiple autonomic

managers to achieve specified power-performance tradeoffs.

4th Intl. Conf. on Autonomic Computing (Jacksonville, FL,

USA, June 2007). ICAC’07. IEEE, 1–9.

[2] Wang M., Kandasamyt N., Guezl A. and Kam M. Adaptive

performance control of computing systems via distributed

cooperative control: Application to power management in

computing clusters. 3rd Intl. Conf. on Autonomic Computing

(Dublin, Ireland, June 2006). ICAC’06. IEEE, 165–174.

[3] Zhao M., Xu J. and Figueiredo R. J. Towards autonomic grid

data management with virtualized distributed file systems.

3rd Intl. Conf. on Autonomic Computing (Dublin, Ireland,

June 2006). ICAC’06. IEEE, 209–218.

[4] Khargharia B., Hariri S. and Yousif M. S. Autonomic power

and performance management for computing systems. 3rd

Intl. Conf. on Autonomic Computing (Dublin, Ireland, June

2006). ICAC’06. IEEE, 145–154.

[5] Xu J., Zhao M., Fortes J., Carpenter R. and Yousif M. On the

use of fuzzy modeling in virtualized data center

management. 4th Intl. Conf. on Autonomic Computing

(Jacksonville, FL, USA, June 2007). ICAC ’07. IEEE, 25-34.

[6] Kutare M., Eisenhauer G. and C. Wang. 2010. Monalytics:

Online monitoring and analytics for managing large scale

data centers. 7th Intl. Conf. on Autonomic Computing

(Washington DC, USA, June 2010). IEEE, 141–150.

[7] Zhu X., Young D., Watson B. J., Wang Z., Rolia J., Singhal

S., McKee B., Hyser C., Gmach D., Gardner R., Christian T.,

and Cherkasova L. 1000 islands: Integrated capacity and

workload management for the next generation data center. 5th

Intl. Conf. on Autonomic Computing (Chicago, IL, USA,

2008). ICAC ’08. IEEE, 172–181.

[8] Poussot-Vassal C., Tanelli M. and Lovera M. 2010. A

Control-Theoretic Approach for the Combined Management

of Quality-of-Service and Energy in Service Centres. In Run-

time Models for self-managing Systems and Applications.

Ardagna D and Zhang L, Eds). Springer Basel AG. 73-96.

[9] White S. R., Hanson J. E., Whalley I., Chess D. M. and

Kephart J. O. An architectural approach to autonomic

computing. 1st Intl. Conf. on Autonomic Computing (New

York, NY, USA, May 2004). ICAC’04. IEEE. 2-9.

[10] Kennedy C. 2010. Decentralised metacognition in context-

aware autonomic systems: some key challenges. In Proc. 24th

American Institute of Aeronautics and Astronautics (AIAA)

Workshop on Metacognition for Robust Social Systems

(Atlanta, Georgia,) AAAI-10, AIAA. 34-41.

[11] Salehie M. and Tahvildari L. Autonomic computing:

Emerging trends and open problems. Workshop on the

Design and Evolution of Autonomic Application Software

(New York, NY, USA, 2005). DEAS’05. ACM Special

Interest Group on Software Engineering. 30. 1–7.

[12] Quitadamo R. and Zambonelli F. Autonomic communication

services: a new challenge for software agents. SpringerLink

Journal of Autonomous Agents and Multi-Agent Systems. 17,

3 (2008), 457–475.

Time

Time

19Copyright (c) IARIA, 2011. ISBN: 978-1-61208-174-8

EMERGING 2011 : The Third International Conference on Emerging Network Intelligence

