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Abstract— In this paper, the problem of interference aware
routing using local mobility management (LMM) is addressed in
multihomed wireless networks in which multiple fixed relay nodes
are deployed to locally maintain and deliver mobility information
collected from the surrounding mobile users. We present a new
interference aware routing algorithm that uses the signal to
interference noise ratio (SINR) value as the routing metric. The
LMM model, based on the Hidden Markov Model (HMM), is
implemented to calculate the SINR value of a specific link at
particular time instances. This information is used to proactively
perform route construction based on least interference. We
minimize the total cost of routing as a cost function of SINR
while guaranteeing that the load on each link does not exceed
its capacity. We compare our LMM and SINR based routing
algorithms with conventional counterparts in the literature and
show that our algorithms have better prediction accuracy while
reinforcing routing paths with high link quality and low latency.

Keywords – Interference; hidden markov model; SINR
routing; mobility prediction

I. INTRODUCTION

In recent years, services supported by mobile communi-
cations have expanded from simple voice traffic to various
multimedia applications, resulting in the rise of 4G systems.
These 4G cellular systems are required to provide high and
homogeneous data rates over the complete cell coverage area
while assuring a level of quality of service (QoS). Traditional
cellular architectures, where each Mobile Station (MS) directly
communicates with the Base Station (BS), are not capable to
provide such homogeneous high bit rates due to the signal
attenuation with increasing distance. Achieving the defined 4G
objectives requires installing either a higher number of base
stations, or integrating cellular and ad-hoc networking tech-
nologies. The integration of cellular and ad-hoc technologies,
also referred to as Multi-hop Cellular Networks (MCN) [1],
has gained significant research attention given its capacity to
achieve the 4G objectives by substituting a direct MS-BS
link by multi-hop links using intermediate nodes (relays) to
retransmit the information from source to destination. Various
architectures are available to MCNs [2], including both fixed
and mobile relays. In this paper we focus on MCNs with fixed
relay nodes where the base station communicates directly with
fixed relay nodes which in turn cooperatively relay information
in an ad hoc fashion to other users in connectivity range. In

this architecture, each fixed relay behaves as a “pseudo-base
station” or “home” for the mobile users by providing services
(i.e., routing and mobility management) that would normally
be taken care of by the base station in a centralized manner.
This is termed a multihomed MCN. The concept of multihom-
ing has been extensively discussed in the context of Mobile
IP [3] to improve network connectivity and manage mobility.
Multihomed architectures have also been predominantly used
to develop fault-tolerant routing protocols by ensuring that user
nodes have multiple connection opportunities in the event that
one home relay fails [4], [5].

A. Motivations and Related Work

The cooperation between fixed relays and the base station
is the cornerstone for efficient communication at the network
layer. A mobile user, MS, is served by a nearby relay node that
forwards packets (potentially over multiple wireless hops) to
the BS. In addition to traffic forwarding and route decision
making, the relays also have the responsibility of manag-
ing user mobility by collecting information regarding user
movements from one home relay to another. This essentially
reduces the burden on the base station by localizing mobility
management.

A consequence of the increased use of cellular networks is
the inherent interference that is induced. Wireless interference
is influenced by node mobility and can lead to performance
degradation. The time varying mobility patterns of the users
(i.e., mobility patterns, speed, direction etc.) can cause new
interference to be induced at neighboring nodes [6]. Interfer-
ence can be controlled/mitigated in the network layer i.e., with
routing. In order to design an effective routing algorithm that
mitigates the interference experiences of the wireless links, the
mobility of the users must be considered. Mobility assisted
routing has been studied in the literature for several years,
more recently focusing on ad hoc and delay tolerant net-
works [7], [8]. However, none of these works discuss the direct
impact of interference on the routing protocols. More recently,
in [6], mobility aware routing using interference constraints
was developed. However, the interference is modeled using
the protocol model which induces binary conflicts (either two
links interfere or they do not despite neighboring simultaneous
transmissions) which is not true in practice. Our focus is on the
use of the signal to interference noise ratio (SINR) interference
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model (also known as the physical interference model), which
is based on practical transceiver designs of communication
systems that treat interference as noise. Under the SINR
model, a transmission is successful if and only if the SINR at
the intended receiver exceeds a threshold such that the signal
can be decoded with acceptable bit error probability. Although
the SINR model has been shown to be more computationally
complex than the protocol model, it also provides a more
practical and realistic assessment of wireless interference [9].
Routing protocols using SINR to model interference have been
studied in both static networks [10], [11], [12] and mobile
networks [13]. However, although the work of [13] uses SINR
for route selection, the mobility modeling is based on the
random waypoint model, and therefore no specific mobility
prediction is introduced. In addition, [13] does not correlate
wireless interference with mobility.

Our objective in this paper is to study SINR and its rela-
tionship to interference based routing using localized mobility
management information.

B. Contributions and Organization

The contributions of this paper are two-fold. First, we
propose a localized mobility management (LMM) model based
on the Hidden Markov Model (HMM) where the mobility
information (i.e., location) of each user is collected by the
corresponding home relay node for movement prediction pur-
poses. Second, we develop a SINR based routing algorithm
which uses the location of a mobile user at time t to determine
least interfering paths. Specifically, we develop the routing
algorithm such that the link costs are derived from the SINR
values and the chosen routes have minimum cost (minimum
interference). In addition, we ensure that the capacity of each
link is not violated when the traffic is routed.

The rest of the paper is organized as follows: Section II
describes the system model. In Section III, we discuss the
LMM model used in this paper while in Section IV the
SINR based routing algorithm is developed. The performance
evaluation of the LMM model and SINR routing algorithm is
discussed in Section V. We conclude the paper in Section VI.

II. SYSTEM MODEL

The multihomed MCN that is the focus of this paper is
shown in Fig. 1. Each home relay interacts with a set of mobile
users as well as with each other. In addition, as in traditional
MCNs, the various MS nodes can also interact with each other.
Thus a MS node may use other MS nodes to relay information
to a home relay or to the BS. It must be noted that a MS can
directly interact with a BS rather than a home relay if it is
closer to the BS than to the home relay. The BS is connected
to the wired infrastructure and behaves as a gateway to the
Internet. The LMM model that is used to predict the next
location of each user node is handled by the individual home
relays. Each home relay collects and maintains information
regarding the movement of the mobile users connected to it.

To understand the interaction between the various compo-
nents of our framework, we provide a block diagram given
in Fig. 2. The block diagram shows the LMM model and

Fig. 1. Multihomed MCN where sets of user nodes are connected to a home
relay and home relays communicate with other home relays in its transmission
range to transmit information to the base station

its relationship to the SINR based routing algorithm. The
prediction of the user’s movement is driven locally by a HMM
that is performed by each home relay. The current mobility
information and the history of the user’s past movements
is used to make predictions. This information is maintained
in the mobility database of each home relay which keeps
track of users that are connected, were connected or will be
connected (prediction) to the home relay. The next predicted
location of the mobile user, as determined by the home relay,
is broadcast to other home relays within transmission range
so that they may update their databases accordingly. This
updated information is then used to calculate the induced SINR
interference at the receiver to proactively construct paths with
least interference. The calculation of the SINR value at a time
t in a mobile setting must be computed instantaneously. To
facilitate the SINR calculation and the execution of the LMM
and routing algorithms, it is assumed that the user nodes are
quasi-mobile [14]; each user moves with a certain velocity
and for a time T stays at one location before moving to a new
random location.

Fig. 2. Block diagram that illustrates the interaction between the LMM
model and the interference aware routing algorithm

III. LMM MODEL

A HMM is a statistical Markov model in which the system
being modeled is assumed to be a Markov process with
unobserved (hidden) states. In a regular Markov model, the
state is directly visible to the observer, and therefore the state
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transition probabilities are the only parameters. In a hidden
Markov model, the state is not directly visible, but output,
dependent on the state, is visible. A HMM has two kinds
of stochastic variables: state variables (hidden variable) and
the output variables (observable variable). A HMM can be
defined as follows:
S : {s1s2...sN} are the N hidden states of the system
O : {o1o2...oN} are the values of the observed sequences
Π : {π} is the initial state probabilities. πi indicates the
probability of starting in state i
A = {aij} are the state transition probabilities where aij
denotes the probability of moving from state i to j

aij = P (tk = sj |tk−1 = si)

B = {bik} are the observation state probabilities where bik is
the probability of emitting symbol k at state i

bik = P (ok|tk = sj)

The 3-tuple (A,B, π) provides a complete specification of
the HMM for the system considered in this paper.

A. Mobility Model Using HMM

To track the state of a mobile user we apply two approaches:
1) forward-backward algorithm and 2) re-estimation algorithm
for the HMM parameters discussed above. The main steps of
the tracking algorithm can be summarized as follows:

1) Apply HMM re-estimation algorithm to obtain initial
estimates of (A,B, π) of the HMM.

2) Apply the HMM forward-backward estimation algo-
rithm to predict at time t the next state of a user.

3) Obtain refined estimates of (A,B, π) by again applying
the HMM re-estimation algorithm to the given observa-
tion sequences.

These steps are performed at each home relay node during
each observation interval. We define the observation interval
as the time intervals during which observations (mobility
information is collected) occur. The observation interval is
assumed to be segmented into T subintervals indexed by
1, 2, ..., T . T is defined as the time during which the mobile
user remains stationary. Thus, the time during which the node
remains stationary is the predicted state of the mobile network
in the HMM.

1) Forward-Backward Algorithm: A forward-backward
algorithm is an algorithm for computing the probability of
a particular observation sequence in the context of hidden
Markov models [15]. The algorithm first computes a set
of forward probabilities which provide the probability of
observing the first k observations in the sequence and ending
in each of the possible Markov model states. The algorithm
also computes a set of backward probabilities which provide
the probability of observing the remaining observations given
an initial state. For our model, we define the following
forward and backward variables:

Forward variables:
αt(n) = P [ot1, state n sojourn ends at t], t ≥ 1

α∗t (n) = P [ot1, state n sojourn begins at t+ 1], t ≥ 1

Backward variables:
βt(n) = P [oTt |sojourn in state n begins at t], t ≤ T
β∗t (n) = P [oTt |sojourn in state n ends at t− 1 t ≤ T

The forward variables are then computed inductively for
t = 1, 2, ..., T . Similarly, the backward variables are computed
inductively for t = T, T−1, ..., 1. After computing the forward
and backward variables, a state estimate can be found. Let us
define,

γt(n) = P [oT1 ; st = n]

as the probability that s is observed to be in state n at time t.
Then the estimate of st is given by

ŝt = arg max1≤n≤N
γt(n)

P [oT1 ]
, t = T, T − 1, ..., 1

2) Re-estimation Algorithm: A simple iterative procedure
for re-estimating the HMM parameters each time a node
moves is reported in [15] and implemented in this paper.

IV. SINR BASED ROUTING USING LMM MODEL

This section will discuss the formulation of the SINR
routing algorithm using the developed LMM model.

A. Challenge of Routing with Interference and Mobility

Using the LMM model based on the HMM, we are able
to track the movement of the users to determine which relay
it is connected to. Interference depends on the existence of
other sources/intermediate relays and their spatial separation.
Thus the routing decision of a given source-BS pair becomes
coupled to the routing decision of other source-BS pairs. To
determine appropriate routing paths from the relay to the BS
that are cognizant of interference, we use SINR as a routing
metric.

B. Problem Formulation

For our analysis, we model the multihomed MCN as a
graph, G(V,E), where V is the set of nodes (relays, mobile
users and base station inclusive) and E is the set of links.
Let VN be the set of mobile users and let VM be the set of
home relays. Note that the network has only one base station.
The successful reception of a packet depends on the received
signal strength, the interference caused by the simultaneously
transmitting nodes, and the ambient noise level η. The SINR
of a link (i, j) is given as follows

SINRij =
Pj(i)

η +
∑

k∈V ′ Pj(k)
≥ β (1)

where Pj(i) is the received power at node j due to node i,
V ′ is the subset of nodes in the network that are transmitting
simultaneously, and β is the SINR threshold. Our proposed
routing protocol is implemented to route data using the least
interfering path out of all path possibilities. If a link has a
high SINR, it is an indication that it is experiencing low
interference.
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Each link (i, j) has an associated cost which is derived
from the SINR value calculation. Each link also has an
associated capacity denoted uij . The capacity is formulated
using Shannon’s formula, given in Eq.2.

uij = log2(1 + SINRij) (2)

In addition, the flow of packets from node i to its neighbor
j over wireless link (i, j) is represented by fij .

C. SINR Based Routing

The position of each user node at time t affects the cumu-
lative SINR on each link. The SINR is also affected by the
path loss model and channel gain. The SINR at time t on link
(i, j) is given by Eq.3,

SINR(t)ij =
GijPj(i)(t)

η +
∑

k∈V ′ GkjPj(k)(t)
≥ β (3)

where Gij is the channel gain on link (i, j) (in the simulations,
the channel gain of each link is calculated using a Rayleigh
fading model and an appropriate path loss factor), Pj(i)(t) is
the received power at node j due to node i at time t, and k is a
simultaneously transmitting node. The corresponding capacity
uij is then modified to be

uij(t) = log2(1 + SINRij(t)) (4)

The SINR is calculated during each observation interval, t ∈
T .

In order to determine the least cost (least interfering) paths,
we use the minimum cost flow optimization technique. In
our case, the cost of a link is motivated by the amount of
interference on that link due to neighboring transmissions
and/or noise. As we are using SINR as the routing metric,
the higher the SINR, the better the link quality. Therefore, we
want to minimize the inverse of the SINR value.

The objective of the SINR routing problem is to deliver all
the data packets generated by the user nodes to the base station
in the most cost-effective (least interfering) manner without
exceeding the link capacities. Formally, the problem can be
stated as follows.

minimize
∑

(i,j)∈E

SINR(t)−1fij(t) (5)

subject to∑
j:(i,j)∈E

fij(t)−
∑

j:(j,i)∈E

fji(t) = di(t),∀i ∈ VN (6)

∑
k:k∈VM∪BS

(
∑

j:(k,j)∈E

fkj(t)−
∑

j:(j,k)∈E

fjk(t)) = −
∑

i:i∈VN

di(t)

(7)
0 ≤ fij(t) ≤ uij(t) (8)

In the above formulation, di represents the rate at which the
data packets are generated at user node i per unit time. The first
constraint (Eq. 6) ensures flow conservation at each node. The
second constraint (Eq. 7) ensures that the base station receives
all the packets generated by all the nodes. The flow of packets
on a link must not exceed its capacity and this is ensured by
the third constraint (Eq. 8).

1) Solution: The above defined problem is similar to the
minimum-cost flow problem, known in the operations research
literature [16]. We will convert the above problem into the
minimum-cost circulation problem as follows.

1) Add a super source x, and a super base station node y,
to the graph G(V,E).

2) Add directed links (x, i), connecting the super source x
to node i, for all i ∈ VM ∪ VN . Set costs of these links
to 0 and the capacities to di.

3) Add directed links (j, y) connecting the base station and
relay nodes to the super base station y. Set costs of these
links to 0 and the capacities to infinity.

4) Add a directed link (y, x) connecting the super base
station y to the super source x. Set the cost of the link
(y, x) to −|V |β and the capacity to infinity, where β is
the minimum of any link cost (lower bound of SINR).

5) The modified graph is defined as G′(V ∪{x, y}, E∪E′),
where E′ = {(x, i) : i ∈ VN}∪{(j, y) : j ∈ VM∪BS}∪
{(y, x)}.

2) Analysis of the Solution: Pushing more flow from x to
y will decrease the overall cost of the flow due to the fact
that the link from y back to x has sufficiently large negative
cost. It is clear that the maximum flow is bounded from above
by F = d1 + d2 + ... + d|VN | because F is the maximum
possible flow going out of x, the super source. There are two
possibilities that have to be analyzed.

Case 1:
∑

i:i∈VN
fxi =

∑
i:i∈VN

di
In this case, all the links of the form (x, i), i ∈ VN are

saturated. The maximum-flow is restricted by the capacities
of these links. Consider a link (x, 1) having the capacity d1.
Since all the (x, i) links are saturated, the input flow at node
1 must be d1 +

∑
j:(j,1)∈E fj1 and the output flow must be

equal to the input flow (flow conservation). There must be
paths from node 1 to base stations which carry the flow d1 +∑

j:(j,1)∈E fj1. The same argument holds for other nodes.
Case 2:

∑
i:i∈VN

fxi <
∑

i:i∈VN
di

In this case the maximum flow is restricted by the capacities
on the actual links ((i, j) ∈ A) of the network. The minimum
cost flow algorithm will identify the paths from the user node i
to the base stations which carry the flow d′i where 0 ≤ d′i ≤ di,
∀i ∈ VN . The flow on the links (x, i) would be d′i, ∀i ∈ VN .

V. PERFORMANCE EVALUATION

We first evaluate the LMM model separately to gauge its
effectiveness in prediction accuracy. The initial parameters of
the HMM are randomly generated using a uniform distribution
(the number and locations of users and relays, relay-user
associations and the initial transition probabilities are ran-
domly generated). Once the users begin to move, its movement
history is tracked and stored in the databases of each home
relay for prediction.

We evaluate the SINR based routing algorithm using the
following performance metrics: packet delivery ratio and end-
to-end delay. We use NS-2 to simulate our evaluations and use
CPLEX to solve the optimization formulation for the minimum
cost SINR based routing algorithm.

The simulation environment is based on a 2250m x 2250m
Manhattan type scenario, emulated with the NS-2 software
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platform, with the BS located at the centre of the environment.
The propagation loss is modeled using the Rayleigh fading
model. The traffic is constant bit rate (CBR) with UDP based
traffic at 4 packets per second and payload of 512 bytes.
The data transmission rate is homogeneous among all the
nodes and is set to 12Mbps. The radio transmission range
of each node is 130m. The speed of the user nodes ranges
from 1.5m/s to 5m/s and the simulation time is 1000 seconds.
The simulated networks have 256 subcarriers with a system
bandwidth of 2MHz. We also use different observation interval
times, T . All results shown are an average of 20 different
simulations.

A. Simulation Results for LMM Model
We first evaluate the prediction accuracy of our LMM

model. Prediction accuracy is defined as the ratio of the
number of times a user node moves to different relay nodes to
the ability of the system to predict the location. For example if
node n moves to relay node A and then to relay node B, and
our prediction model predicts correctly that it moved to A but
not B, then the prediction accuracy is 50%. Fig. 3 and Fig. 4
show the prediction accuracy in percentages for two user nodes
in the network. We compare our LMM model with prevalent
prediction models, specifically a generic Markov chain and
a second-order Markov chain. When the user nodes make
first contact with a relay node, the initial, randomly generated
parameters of the HMM are used. Once the user nodes begin
to move, its movement history is tracked and stored in the
databases of each relay node for prediction. Each network that
is simulated has relay nodes varying from 2 to 14 and the
number of users range from 10 to 120. From Figs. 3 and 4,
we can conclude that the LMM has an advantage in prediction
accuracy compared to the Markov and second-order Markov
chains. The results also show that the LMM can better adapt to
a user node’s change in movement. In other words, the LMM
learns faster than the generic Markov based approaches.

Fig. 3. Comparison of prediction accuracy for the proposed LMM model,
generic Markov chain and second-order Markov chain for User Node 1 in
networks with 120 users

B. Simulation Results of SINR Based Routing Algorithm
The performance of the SINR routing algorithm is evaluated

compared to two SINR based routing algorithms given in [10]

Fig. 4. Comparison of prediction accuracy for the proposed LMM model,
generic Markov chain and second-order Markov chain for User Node 2 in
networks with 120 users

and [13]. In [10], an algorithm, 2-HEAR, is developed in
which a routing metric is used such that a node calculates the
SINR to its neighboring links based on a 2-hop interference
range only. In [13], a modified version of the AODV routing
algorithm is proposed in which SINR is used to calculate the
route quality while using a random waypoint mobility model.
We denote the above approaches as 2-HEAR and AODV-INT,
respectively, in the simulation graphs. To calculate the SINR,
we take the following steps. The received power, Pj(i)(t),
is calculated according to the radio propagation model at the
receiver. The noise, η, is calculated as additive white Gaussian
noise (AWGN) that is modeled as a Gaussian random variable.
The pathloss exponent (LOS/NLOS) is set to 2.35/3.76. The
same networks used in the LMM simulations of Section V-A
are used in the simulations of the SINR routing algorithm.

We first evaluate the packet delivery ratio for our SINR
based routing algorithm and its two relevant counterparts in
the literature. In Fig. 5 and Fig. 6, the results of the packet
delivery ratio for varying node speed and observation intervals
(T = 10ms, T = 1ms) are shown. From the results it can
be seen that our algorithm provides better packet delivery
ratios when compared to the other approaches. We can justify
the better performance of our results as follows: In 2-HEAR
the SINR calculated by each node only includes those nodes
within a 2-hop range which means that even if interference
beyond this range occurs, it is not captured in the routing
metric. If the interference level is high beyond the 2-hop range,
packets drops may occur, requiring retransmissions.The results
of the algorithm from AODV-INT are better than 2-HEAR but
because it does not use a specific mobility prediction model,
it fails to capture precise interference information as is done
in our proposed routing algorithm.

We next evaluate the end-to-end delay of our algorithm
for varying node speeds and T = 1ms. The results are
shown in Fig. 7. The average end-to-end delay is improved
compared to 2-HEAR and AODV-INT mainly due to more
robust routes and less route discoveries. For the LMM model
and the SINR routing algorithm, the density of the networks
impacts the network performance. Simulations were performed
that showed a decrease in the routing performance when the
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Fig. 5. Packet delivery ratio versus varying node speeds for T = 10ms

Fig. 6. Packet delivery ratio versus varying node speeds for T = 1ms

density increased (i.e., routing overhead due to prediction
increased). Therefore, the routing and prediction algorithms
are limited to an extent because of scalability. Due to space
constraints, these simulations are not presented in this paper.

VI. CONCLUSION

In this paper we develop a minimum interference aware
routing algorithm for multihomed wireless networks where
link costs are derived from the SINR values. The mobility
of each user is captured by a localized mobility management
model based on HMM where home relays locally collect
mobility information. We show that our LMM model has better
prediction accuracy than other generic Markov based mobility
predictors. We also show that our SINR based routing algo-
rithm guarantees minimum interference paths by increasing
the packet delivery ratio and reducing latency compared to
established SINR based routing approaches in the literature.
In our future work, we plan to integrate the mobility of relay
nodes to analyze the impact of SINR induced interference on
routing and overall network performance.
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