
Optimization of Proxy Caches using Proxy Filters

Fabian Weber, Marcel Daneck, Christoph Reich

Hochschule Furtwangen University

78120 Furtwangen, Germany

{fabian.weber, marcel.daneck, christoph.reich}@hs-furtwangen.de

Abstract— Web proxy caches are a widely used tool to reduce

the network load by storing often needed web pages.

Increasing amounts of data transferred require new intelligent

caching strategies with smarter replacement algorithms to

predict, which web documents will be requested most likely in

the future. However, these algorithms are relatively complex

and require a lot of computing power. This paper describes an

approach to design more intelligent and efficient web caches by

adding a document filter that decides whether a document

should be cached or whether it should be ignored in order to

save disk space. The filter uses server connection information

for its decision. The evaluation shows a reduction of required

cache space of almost 90% compared to a traditional proxy

cache.

Keywords - Proxy; Cache; Filter; Replacement-Algorithm;

LRU; LRU-threshold; LRU-MIN; SIZE; Log2(SIZE); Hybrid;

MIX; GreedyDual-Size

I. INTRODUCTION

Whenever multiple users have to share a single internet
connection, bandwidth bottlenecks are imminent. This
problem occurs in the private as well as business sector. In
the latter case, bottlenecks often harm productivity, as the
employees have to wait for websites, documents etc. to be
loaded. To circumvent this problem, a common practice is to
use a web proxy cache server. Proxy caches store web
documents that are frequently requested by web users to
avoid repeated downloads of the same information from the
originating web server and therefore reduce bandwidth
utilization. Typically, this server is located in the local
network and avoids WAN (Wide Area Network) bottleneck
at the edge server.

However, the utilization of a proxy cache introduces a
few difficulties when working with large amounts of data
transferred [1]. The main problem is that the cache can only
store a limited amount of documents, because of the limited
disk space available. To cope with this problem, more
intelligent cache replacement algorithms are needed to
increase the efficiency of the cache. These algorithms are
very complex and require a high amount of computational
power, effectively limiting the efficiency of a proxy cache
not only by disk space, but also by CPU power.

However, some of the documents downloaded need
caching more than others. For example, files that are served
with a speed almost as fast as the proxy server’s connection
do not benefit as much from caching as files transferred from
a very slow originating server. A filter can ensure the files
that benefit mostly are more likely to be cached and to
remain in the cache.

This paper describes the basis to proxy caches in Section
II, outlines the state of the art and technology in Section III
and shows a new way to increase the efficiency of proxy
caches without having to use complex replacement
algorithms by filtering the web documents in Section IV. In
Section V, the new proxy filter is evaluated and a conclusion
can be found in Section VI.

II. TRADITIONAL PROXY CACHES

Caching is divided into three main areas: Client-Caching
[2] is performed at the user’s own system by the browser.
Server-Caching (or Reverse-Proxy-Caching) [2] on the other
hand is accomplished by a remote server. This technique is
normally used to reduce the work load of a web server. The
proxy server is therefore located in the network of the
originating web server. The performance improvements are
most notably with web servers that handle complex dynamic
websites. The last area is Proxy-Caching. Here, the proxy
server is located at the client’s subnet, ensuring high
bandwidth and low latency for this connection. Every
document request of the client is sent through the proxy
server. This enables the server to cache frequently accessed
documents and deliver them to multiple users through the
local network infrastructure, rather than through the
relatively slow internet connection [3].

The utilization of proxy caching has a wide range of
advantages: a) Internet users will benefit from faster page
load times through a higher bandwidth and therefore have a
better web experience. b) The internet-infrastructure can be
improved by decreasing the outbound network traffic,
effectively increasing the total network performance. Since
large enterprises often buy their internet connection volume-
based, reduction of the internet traffic can also save
expenses. c) Web servers can benefit from proxy caching,
because the work load on these servers is reduced [3]. This
leads to higher performance without the need of hardware
upgrades.

There are some important issues to be considered when
using a proxy server:

 Even though mass storage is not very expensive, proxy
cache servers do have space limitations. When the
available disk space is filled, a replacement algorithm is
utilized to decide which documents can be evicted in
order to make room for new documents. Therefore, an
optimal algorithm must be chosen depending on how
clients are using the web. Several of these algorithms
will be discussed in the related work section of this
paper.

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

 Another requirement for a cache server is to ensure the
consistency of the stored documents. This can be
realized using one of two methods: Either the cache
server asks the web server, whether the cached
document has been changed in the meantime, or the web
server can inform the cache server about a change of the
document. The last method is not very popular, since
there are no well-defined standards and it is much harder
to implement.

 A last possible feature of a proxy cache is to predict the
user’s behavior and to pre-load documents the user is
likely to request next.

This paper focuses on a method to improve the efficiency of
proxy caches by using the concept of content filtering for
proxy caches (proxy filters) explained in Section IV.

III. RELATED WORK

Until now, optimization efforts in the field of proxy
caching are mostly aimed to improve the underlying
replacement algorithm. Such an algorithm is applied
whenever a new document has to be stored while the cache
storage is already full. Next, some of these replacement
algorithms will be shown and analyzed.

One of the most well-known replacement algorithm is
LRU (least recently used) [4]. As the name suggests, this
algorithm always evicts the least recently used document
from the cache. Therefore, a simple list is used. Upon
request, a document is moved to the top, while the document
to be deleted is taken from the bottom of the list. This
procedure also explains the very low complexity of this
algorithm at () [5]. The major downside of this algorithm
is its simplicity of predicting which document will be
requested in the future and therefore the hit rate of cached
documents is rather low. Another downside is the weakness
to calculate the cost of caching a requested document. This
means, a large downloaded and cached document will
overwrite many small and maybe more frequently used
websites. Many important websites are replaced by one
rather useless document.

To take countermeasures against these problems, some
LRU derivatives were developed. One of these derivatives is
LRU-threshold [6], which supports the definition of a
maximum document size. Documents that exceed the given
size threshold are never cached (not even if storage space is
left). Apart from that, LRU-threshold acts like LRU.

SIZE [7] and Log2(SIZE) [7] represent two algorithms
that use the document size as their primary caching decision.
While SIZE always evicts the largest document first,
Log2(SIZE) groups the documents by a logarithmic value of
their size. Within a group, the least frequently used
document is evicted (using LRU). Both of these algorithms
have a complexity of (()) [5].

Another popular LRU derivative is LRU-MIN [6]. This
algorithm replaces larger documents earlier than smaller
documents. Therefore, whenever a new document of size
has to be cached, all documents with size greater or equal to
 are grouped. Within this group, the document is selected

with LRU. If no documents remain with size , ⁄ is

used as selector (then ⁄ and so on). The disadvantage of

the algorithm is the inability to consider the cost of a
document. On caches with very large storage spaces, a high
amount of computing power will be required to utilize this
algorithm as it has a very high complexity of () [5].

All the aforementioned algorithms assume that large
documents (like file downloads) are less frequently requested
than small documents (i.e., websites) and therefore less
important to cache. This assumption may have been true a
few years ago, but a study in [8] suggests an oncoming
change in user behavior. With Web 2.0 and media services
like YouTube even large documents (i.e., videos) will be
requested frequently. Eventually, these files are also eligible
for caching.

In [9], Wooster and Abrams introduce the Hybrid
algorithm, designed to reduce the document access delay.
Therefore, the algorithm considers the round trip time
(RTT), the bandwidth between proxy server and originating
server as well as the quantity of requests since a specific
document has been stored into the cache. Using these
parameters, a utility value is calculated for each document in
the cache. The document with the lowest utility value finally
gets replaced. This algorithm is the basis of the MIX
algorithm, developed by Niclausse, Liu and Nain [10]. In
MIX, the time since the last access of a document in the
cache is added to the formula, thus introducing a possibility
to remove obsolete documents like LRU does. Different to
LRU, however, is that all characteristic parameters of the
Hybrid algorithm are considered, too. Both methods provide
benefits when documents from very slow servers are fetched.
These web documents produce a very high utility value,
courtesy of the low server bandwidth and therefore stay in
the cache for a relatively long time. Because these files
would normally be served very slowly, the performance gain
is very high. On the other hand, documents that are on fast
servers will be saved as well (even if the remote server speed
is almost as high as the request speed from the proxy cache).
These documents will ultimately be evicted in the near
future, but at first they will get cached and replace other,
more important documents. Additionally, both algorithms
have a relatively high complexity of (())

Cao and Irani introduced the GreedyDual Size (GDS)
algorithm in [11], which is an improvement of Young’s
GreedyDual [12]. The GDS algorithm calculates the cost to
cache for each document. Key parameters are the connection
time, access time, transfer time and document size.
Whenever a document has to be evicted, the file with the
lowest value is deleted, like with Hybrid and MIX. GDS
additionally incorporates a LRU-like behavior by subtracting
the value of an evicted document from the values of all
remaining documents. If a document is requested again while
it is still remaining in the cache, its value has to be restored.
This way, less frequently requested documents gradually
lose their value and get evicted. The major benefit of GDS is
clearly the consideration of caching costs. Therefore, large
documents originating from fast servers get a relatively low
value and are deleted shortly. If the connection speed of the

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

remote server is slow, the documents are rated with a high
value – even though they are relatively large – and stay in the
cache for a longer time. Additionally, small documents are
also treated the same way: if they are downloaded from a
very fast remote server, the utility value of these documents
is low (because the performance improvement of caching
these documents is very low). Ultimately, these documents
will be evicted soon and do not have to be kept for an
unnecessary amount of time. The disadvantage of this
algorithm on the other hand is the high complexity of
 (()) [5].

In conclusion, the utilization of a complex replacement
algorithm like Hybrid, MIX or GreedyDual Size results in a
high hit/miss-ratio and a reasonable good selection of
documents to be evicted, but with the need of high
computing power (especially with large caches) caused by
the high complexity of these algorithms. Furthermore, none
of these algorithms takes into consideration whether the
caching of a specific document entails a performance
improvement in the first place.

In Table 1, an overview of the aforementioned
algorithms is shown.

TABLE 1: OVERVIEW OF SELECTED REPLACEMENT ALGORITHMS [5]

Replacement

algorithm

Relevant keys Complexity

LRU Time since last

access
 ()

LRU-threshold File size
Time since last

access

 ()

LRU-MIN File size
Time since last

access

 ()

SIZE File size (())

Log2(SIZE) File size (())

Hybrid File size
Round-Trip-Time

Bandwith between

proxy and server
Number of hits

 (())

MIX File size

Round-Trip-Time
Bandwith between

proxy and server

Number of hits
Time since last

access

 (())

GreedyDual Size File size

Connection time
Access time

Transfer time

 (())

IV. PROXY FILTER

Current proxy caches generally only limit the maximum
document size. Documents that exceed this size are never
cached while documents smaller than the maximum size are
always cached and replace other documents if the storage is
full. Admittedly, as shown in the last chapter, a wide range
of more or less smart replacement algorithms can be used to
select documents for eviction, but none of these considers
whether it is reasonable to store a web document in the cache

or not. The assumption is that it might be better not to cache
a document at all, because the performance improvement of
storing a document in the cache is not worth it.

For example, dynamic web pages that take a long time to
generate can be cached, while images or style sheets
embedded in the site are not cached because they are static
files located on the originating web server and provide very
low access latency. In this specific case, transfer time is a
less important criterion than access time.

A. Concept

The decision whether a document should be cached or
not is done by a proxy filter module. Several factors
influence the decision and have to be taken into account by
the proxy filter:

File size: The file size is an important factor, because the
cache can store a lot more small files than large files. This
basically means that a large file occupies the space that
otherwise very many small files would use and is therefore
considered less valuable. Contrary to existing algorithms, the
file size is not considered an absolute limit, but it is
relativized with the other factors.

Request time: This reflects the time needed to connect to
the remote server and send the request. The request time is
particularly interesting because servers that operate under
high load and reach their connection limit cannot react to the
request in a decent time frame.

Access time: High access times are mostly a result of
dynamic content, which has to be computed by the server.
This is, for example, the case with Web-Content-
Management systems, forums or other Web 2.0 pages. The
access time is measured by the timespan between sending the
request and receiving the first byte of the response.

Transfer time: Another interesting factor is the transfer
time. If it is an unusual high value, caching the document
may result in high performance improvements despite the
eventually large file size. Documents that are fetched with a
low bandwidth generally achieve a higher performance gain
than documents transferred through a fast connection.

A few samples of latency distributions for web requests
are shown in Figure 1. The first bar represents the download
of a small static style sheet file from a heavily used server
(request time is relatively high). The second element
represents accessing a dynamic website. Here the request
time is very low, while the access time is extremely high.
This document will benefit from a great performance gain
upon caching. The last bar visualizes the download of a large
file. The most notable factor is the transfer time. Caching
benefits for this file have to be evaluated by consideration of
the server’s bandwidth (the file size in relation to the transfer
time).

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

Figure 1: Exemplary latency distribution for web requests

To be able to determine, which documents should be
cached, the factors mentioned above have to be weighted and
summed up. Therefore, in a first step, the weighting of each
factor has to be configured. The algorithm then multiplies
each factor with the associated weighting and sums the
(weighted) factors up. More precisely, the filter uses the
formula:

where stands for the request time, is the access time,
 the transfer time and is the file size. , , and

are the weightings for each factor. If the result is greater than
or equal to zero, the document is considered relevant for
caching. Documents with ratings less than zero will not be
cached, because these documents would not get enough
performance gain when loaded from the cache as opposed to
being loaded from the internet.

Furthermore, this filter can be designed to act intelligent
by setting the weightings dynamically. This way, the system
would be capable of adjusting itself to changed conditions
like an increase in available storage space. To implement
such intelligent behavior, a background task could be set that
runs at the end of the day and analyzes the hit/miss ratio,
byte-hit/miss ratio etc. of the proxy cache and adjust the
parameters accordingly. At the next run, this optimization
job can compare the last results with the new test results and
adjust the weightings again.

The proxy filter does not take the place of cache
replacement algorithms. These algorithms still have to be
used whenever a new document has to be saved to the
already filled storage space. However, these algorithms will
be used less often since documents that would get evicted
again after a short timespan will never be cached in the first
place.

Figure 2: Activity diagram of a proxy cache with enabled filter

Static CSS file

Dynamic website

Large download

Request time Access time Transfer time

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

The proxy filter – which is placed before the actual
caching logic (see Figure 2) – improves the performance of
the total proxy cache. The hit/miss ratio of the cache will not
be greatly improved by utilization of a proxy filter, but the
cache will work much more efficiently. One reason is that
important documents are not replaced by less valuable files.
Another reason is due to the lightweight algorithm for
filtering, which requires much less computing power. As
shown in Table 1, most of the replacement algorithms have a
complexity of at least (()). For big caches with many
stored documents, a lot of documents have to be analyzed for
replacement decision. Some of the algorithms analyze every
document in the cache and therefore need a lot of compute
power. The filter algorithm, however, just has to analyze the
current document. The resulting complexity is ().

Figure 2 shows how the proxy filter is integrated into the
proxy cache. If a document is requested and already stored in
the cache it is directly delivered. If a document is requested
and not stored in the cache it is downloaded from the
addressed web server logging the file size, request time,
access time and transfer time. According to these parameters
a decision whether this document needs to be cached or not
can be reached.

V. EVALUATION

To be able to evaluate this concept, a first step was to
collect proper test data. Therefore, various websites were
visited, files downloaded and media streamed. Meanwhile,
all web requests were logged, causing a total of 6644 data
sets. Each of these data sets reflects one downloaded
document of types like websites, embedded pictures, style
sheets and JavaScript files, as well as video files, etc.

In total, these 6644 files take around 505 MB of space
and the download time of these files (including connection
time, access time and transfer time) was about 1 hour and 35
minutes.

TABLE 2: WEIGHTING OF FACTORS

Factor Weighting

File size -1

Request time 50

Access time 100

Transfer time 250

To evaluate the filter algorithm, for each data set the

performance improvement has to be determined when it is
stored in the cache. Using the filter we can decide if it is
worth to store a document or if it is better not to store it and
save the cache space for other documents. As mentioned
above, the factors file size, request time, access time and
transfer time needed to be weighted. Therefore, the weights
were configured as shown in Table 2 (these values were
selected experimentally).

A sample calculation in Table 3 shows, how the
document rating was concluded from the factors and weights
of three exemplary documents:

TABLE 3: RATINGS OF EXEMPLARY DOCUMENTS

File size

[Bytes]

Request

time [ms]

Access

time [ms]

Transfer

time [ms]

Rating

142,694 < 1 1,514 4,352 1,096,706

91,989 < 1 31 203 -38,139

10,121,411 140 250 133,693 23,333,839

The first document has a high access time as well as a

high transfer time, meaning a low server bandwidth. The
document rating is therefore positive and the document gets
cached.

The size of the second document is even smaller than the
first document, but because of its low access time and high
bandwidth, the rating is negative. This document does not
get cached, because caching would not bring a high
performance gain (the originating server is almost as fast as
the proxy cache).

Even though the third document is with almost 10 MB
rather large, it is cached because of the very high transfer
time indicating a server with a slow internet connection. This
way, long waiting times when downloading this file are
circumvented.

After applying the algorithm with the weightings from
Table 2, it indicates that of the 6644 requested documents,
5682 (that is 85.5%) would have been cached. These 85.5%
of files take 63 MB storage space, meaning a reduction of
disk space of more than 87%.

To estimate the performance improvements achieved by
caching these documents, the request time at the proxy
server was set at 10 ms and access time was set to be 30 ms.
In practice, these values are most likely even lower. Since
the proxy cache is typically located in the physical network
of the users, the bandwidth was assessed at 100 Mbit/s.

To calculate the performance gain, the total response
time (request time, access time and transfer time) for each
document not in the cache was summed up. For each
document that was cached, a request time of 10 ms, access
time of 30 ms and the transfer time according to the file size
through a 100 Mbit/s connection were summed up. In total,
the time required to load all documents would be barely 9
minutes. Compared to the 1.5 hours needed for the initial
download this is a performance improvement of over 90%.

By changing the weightings of the factors, the ratio of
storage space and performance gain can be varied. A short
outlook of these variations is given in Figure 3. The chart
shows clearly that the system works most efficiently while
between 10% and 15% of the traffic is cached. Caching the
other documents would require a huge amount of storage
space while the performance improvements would be at a
minimum.

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

Figure 3: Performance improvement in relation to cached bytes

This chart also shows the difference between a proxy
cache that uses the filter and one that does not. The proxy
filter has the ability to choose the 12% of the documents that
cause 90% of performance improvement by caching. A
proxy cache without this filter is not able to process this
information, since every document is stored, regardless of
the performance gain.

VI. CONCLUSION

Proxy caches can utilize a wide range of cache
replacement algorithms. Depending on the selected
algorithm, different factors are then used to select a
document for eviction whenever storage space is needed to
cache a new document. However, because these algorithms
only take action when a document needs to be deleted, none
of them can predict whether the caching of a specific
document makes sense in terms of performance
improvements.

The newly introduced proxy filter fills this gap by trying
to estimate the performance gain of each document upon
request. Only documents that promise high performance
improvements will be cached. This method highly aids the
selected replacement algorithm – which can still be used
without modifications – because the filter uses less
computational power to execute.

As shown in the evaluation, using the proxy filter only
12% of the transferred amount of data is cached, resulting in
a performance increase of over 90%. Because of this data
reduction the cache has a lot less swap and the replacement
algorithm is utilized less often. This improves the system
responsiveness and saves resources since the replacement
algorithm has to analyze every document cached to select
one to evict while the filter only analyzes the current
document.

REFERENCES

[1] Elias Balafoutis, Antonis Panagakis, Nikolaos Laoutaris and Ioannis
Stavrakakis: Study of the Impact of Replacement Granularity and
Associated Strategies on Video Caching from: Cluster Computing,
Vol. 8, No. 1, pp. 89-100, 2005

[2] Zeeshan Naseh and Haroon Khan: Designing Content Switching
Solutions, Cisco Press, March 14, 2006

[3] Daniel Zeng, Fei-Yue Wang, and Mingkuan Liu: Efficient Web
Content Delivery Using Proxy Caching Techniques from: IEEE
Transactions on Systems, Man, and Cybernetics - TSMC , Vol. 34,
No. 3, pp. 270-280, 2004

[4] Andrew S. Tanenbaum: Modern Operating Systems, Prentice Hall,
2nd Edition: December 6, 2001

[5] Abdullah Balamash and Marwan Krunz: An Overview of Web
Caching Replacement Algorithms from: IEEE Communications
Surveys and Tutorials - COMSUR, Vol. 6, No. 1-4, pp. 44-56, 2004

[6] Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, Stephen
Williams, and Edward A. Fox: Caching Proxies: Limitations and
Potentials from: 4th International World-wide Web Conference, Dec.
1995, retrieved from:
http://www.w3.org/Conferences/WWW4/Papers/155/

[7] Stephen Williams, Marc Abrams, Charles R. Standridge, Ghaleb
Abdulla, and Edward A. Fox: Removal Policies in Network Caches
for World-Wide Web Documents from: Computer Communication
Review - CCR, Vol. 26, No. 4, pp. 293-305, 1996

[8] Geetika Tewari and Kim Hazelwood: Adaptive Web Proxy Caching
Algorithms, Computer Science Group Harvard University Cambridge,
Massachusetts, 2004

[9] Roland P. Wooster and Marc Abrams: Proxy Caching That Estimates
Page Load Delays from: Computer Networks and Isdn Systems - CN,
Vol. 29, No. 8-13, pp. 977-986, 1997

[10] Nicolas Niclausse, Zhen Liu, and Philippe Nain: A New Efficient
Caching Policy for the World Wide Web from: Workshop on Internet
Server Performance, June 1998

[11] Pei Cao and Sandy Irani: Cost-Aware WWW Proxy Caching
Algorithms from: USENIX Symposium on Internet Technologies and
Systems - USITS, pp. 193-206, 1997

[12] Neal Young: The K-Server Dual and Loose Competitiveness for
Paging from: Algorithmica, Vol. 11, No. 6, pp. 525-541, June 1994

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

Ti
m

e
 r

e
q

u
ir

e
d

 f
o

r
re

-l
o

ad

Cached bytes

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

