
A New Architecture for Trustworthy Autonomic Systems

Thaddeus O. Eze, Richard J. Anthony, Chris Walshaw and Alan Soper
Autonomic Computing Research Group

School of Computing & Mathematical Sciences (CMS)

University of Greenwich, London, United Kingdom

{T.O.Eze, R.J.Anthony, C.Walshaw and A.J.Soper}@gre.ac.uk

Abstract — This paper presents work towards a new architecture

for trustworthy autonomic systems (different from the

traditional autonomic computing architecture) that includes

mechanisms and instrumentation to explicitly support run-time

self-validation and trustworthiness. The state of practice does

not lend itself robustly enough to support trustworthiness and

system dependability. For example, despite validating system’s

decisions within a logical boundary set for the system, there’s the

possibility of overall erratic behaviour or inconsistency in the

system. So a more thorough and holistic approach, with a higher

level of check, is required to convincingly address the

dependability and trustworthy concerns. Validation alone does

not always guarantee trustworthiness as each individual decision

could be correct (validated) but overall system may not be

consistent or dependable. A new approach is required in which,

validation and trustworthiness are designed in and integral at

the architectural level, and not treated as add-ons as they cannot

be reliably retro-fitted to systems. In this paper we analyse

current state of practice in autonomic architecture and propose a

different architectural approach for trustworthy autonomic

systems. To demonstrate the feasibility and practicability of our

approach, a case example scenario is examined. The example is a

deployment of the architecture to an envisioned Autonomic

Marketing System that has many dimensions of freedom and

which is sensitive to a number of contextual volatility.

Keywords - trustworthy architecture; trustability; validation;

autonomic marketing; autonomic system; dependability

I. INTRODUCTION

The autonomic architecture as originally presented in the

autonomic computing blueprint [1] has been widely accepted

and deployed across an ever-widening spectrum of autonomic

system (AS) design and implementations. Research results in

the autonomic research community are based, predominantly,

on the architecture’s basic MAPE (monitor-analyse-plan-

execute) control loop, e.g., [13][14][15][16]. Although several

implementation variations of this control loop have been

promoted, alternative approaches (e.g., [17]) have also been

proposed. In [17], Shuaib et al. presented an ‘alternative’

autonomic architecture based on Intelligent Machine Design

(IMD), which draws from the human autonomic nervous

system. However, research [11] shows that most approaches

are MAPE [2] based. Despite progress made, the traditional

autonomic architecture and its variations is not sophisticated

enough to produce trustworthy ASs. A new approach with

inbuilt mechanisms and instrumentation to support

trustworthiness is required.

At the core of system trustworthiness is validation and

this has to satisfy run-time requirements. In large systems

with very wide behavioural space and many dimensions of

freedom, it is close to impossible to comprehensively predict

possible outcomes at design time. So it becomes highly

complex to make sure or determine whether the autonomic

manager’s (AM’s) decision(s) are in the overall interest and

good of the system. There is a vital need, then, to dynamically

validate the run-time decisions of the AM to avoid the system

‘shooting itself on the foot’ through control brevity. The

traditional autonomic architecture does not explicitly and

integrally support run-time self-validation; a common practice

is to treat validation and reliability as add-ons. Identifying

such challenges, the traditional architecture has been extended

(e.g., in [3]) to accommodate validation. Diniz et al. [3]

extended the MAPE control loop to include a new function

called test. By this it defines a new control loop comprising

Monitor, Analyse, Decision, Test and Execute –MADTE

activities. The main point here is that a self-test activity is

integrated into the autonomic architecture to provide a run-

time validation of AM decision-making processes. But the

question is can validation alone guarantee trustworthiness.

The peculiarity of context dynamism in autonomic

computing places unique and complex challenges on

trustworthy ASs that validation alone cannot sufficiently

address. Take for instance; if a manager (AM) erratically

changes its mind, it ends up introducing noise to the system

rather than smoothening the system. In that instance, a typical

validation check will pass each correct decision (following a

particular logic or rule) but this could lead to oscillation in the

system resulting in instability and inconsistent output. A

typical example could be an AM that follows a set of rules to

decide when to move a server to or from a pool of servers. As

long as the conditions of the rules are met, the AM will move

servers around not minding the frequency of changes in the

conditions. An erratic change of mind (high rate of moving

servers around) will cause undesirable oscillations that

ultimately detriment the system. What is required is a kind of

intuition that enables the manager to carry out a change only

when it is safe and efficient to do so – within a particular

safety margin. A higher level of self-monitoring to achieve,

e.g., stability over longer time frames, is absent in the MAPE-

oriented architectures. This is why ASs need a different

approach. The ultimate goal is not just to achieve self-

management but to achieve consistency and reliability of

results through self-management. These are the core values of

the proposed architecture.

We look at the current state of practice in the work

towards AS trustworthy architecture in Section II. We propose

an AS trustworthy architecture in Section III and present a

case example in Section IV. Section V concludes the paper.

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

II. CURRENT STATE OF PRACTICE TOWARDS

TRUSTWORTHY ARCHITECTURE

In this section, we look at the current state of practice

and efforts directed towards AS trustworthiness. We analyse

few proposed trustworthy architectures and some isolated bits

of work that could contribute to trustworthy autonomic

computing. Trustworthiness requires a holistic approach, i.e.,

a long-term focus as against the near-term needs that merely

address methods for building trust into existing systems. This

means that trustworthiness needs to be designed into systems

as integral properties.

A trustworthy autonomic grid computing architecture is

presented in [4]. This is to be enabled through a proposed fifth

self-* functionality, self-regulation. Self-regulating capability

is able to derive policies from high-level policies and

requirements at run-time to regulate self-managing

behaviours. One concern here is that proposing a fifth

autonomic functionality to regulate the other functionalities as

a solution to AS trustworthiness assumes that trustworthiness

can be achieved when all four functionalities perform

‘optimally’. The four self-* functionalities alone do not

ensure trustworthiness in ASs. For example, the self-*

functionalities do not address validation which is a key factor

in AS trustworthiness. Amongst effort focused on validation

include [3][5][6]. As explained earlier, Diniz et al. [3] has

extended the MAPE-based autonomic architecture to

incorporate a self-test activity to guarantee run-time validation

of AM decisions. This is a huge step towards AS

trustworthiness. The approach in [5][6] is another extension

of the MAPE-based structure to include self-testing as an

integral and implicit part of the AS. The same model for AS

management using autonomic managers (AMs) is replicated

for the self-testing. In the self-test structure, test managers

(TMs) (which extend the concept of AMs to testing activities)

implement closed control loops on AMs (such as AMs

implement on managed resources) to validate change requests

generated by AMs. Although not a ‘trustworthy’ solution in

itself, King et al. [5] introduces an important concept (nested

control looping) useful for the proposed trustworthy

architecture as explained in Section III.

Another idea is that trustworthiness is achieved when a

system is able to provide accounts of its behaviour to the

extent that the user can understand and trust. But these

accounts must, amongst other things, satisfy three

requirements: provide a representation of the policy guiding

the accounting, some mechanism for validation and

accounting for system’s behaviour in response to user

demands [7]. The system’s actions are transparent to the user

and also allows the user (if required) the privilege of

authorising or not authorising a particular process. This is a

positive step (at least it provides the user a level of confidence

and trust) but also important is a mechanism that ensures that

any ‘authorised’ process does not lead to oscillation and/or

instability in the system resulting in misleading or unreliable

results. One powerful way of addressing this challenge is by

implementing a dead-zone (DZ) logic presented in [8]. A DZ,

which is a simple mechanism to prevent unnecessary,

inefficient and ineffective control brevity when the system is

sufficiently close to its target value, is implemented in [8]

using Tolerance-Range-Check (TRC) object. The TRC object

encapsulates DZ logic and a three-way decision fork that flags

which action (left, null or right) to take depending on the rules

specified. The size of the DZ can be dynamically adjusted to

suit changes in environmental volatility. A key use of dead-

zones is to reduce oscillation and ensure stability despite high

extent of adaptability. A mechanism to automatically monitor

the stability of an autonomic component, in terms of the rate

the component changes its decision (for example when close

to a threshold tipping point), was presented in [12]. The

DecisionChangeInterval property is implemented in the

AGILE policy language [12] on decision making objects such

as rules and utility functions. This allows the system to

monitor itself and take action if it detects instability at a

higher level than the actual decision making activity.

A. Trustworthy architecture life-cycles representing current

practice

We argue that trustworthiness cannot be reliably

retrofitted into systems but must be designed into system

architectures. We track autonomic architecture (leading to

trustworthiness) pictorially in a number of progressive stages

addressing it in an increasing level of detail and

sophistication. Figure 1 provides a key to the symbols used.

Figure 2 illustrates the progression, in sophistication, of

autonomic architectures and how close they have come to

achieving trustworthiness. Although this may not be

exhaustive as several variations and hybrids of the

combinations may exist, it represents a series of discrete

progressions in current approaches. Two distinct levels of

sophistication are found: 1. The traditional autonomic

architecture (a and b) basically concerned with direct self-

management of controlled/monitored system following some

basic sense-manage-actuate logic defined in AC. For the

prevailing context, AC is just a container of autonomic logic

which, could be based on MAPE or any other control logic.

To add a degree of trust and safeguard, an external interface

for user control input is introduced in (b). This chronicles

such approaches that provide a console for external

administrative interactions (e.g., real-time monitoring,

tweaking, feedback, knowledgebase source, trust input, etc.)

with the autonomic process. 2. On the horizon (c and d) are

efforts towards addressing run-time validation. Systems are

able to check the conformity of management decisions and

where this check fails; VC sends feedback to AC with

DependabilityCheck

AC VC

 DC

Sensor (source of ambient/context information) S

Figure 1. Pictographic key used for the architecture

Actuator (executing of autonomic decisions) A

AutonomicController ValidationCheck

Direct control

Feedback

External injection / control / arbiter

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

notification of failure (e.g., policy violation) and new decision

is generated. An additional layer of sophistication is

introduced (d) with external touch-point for higher level of

manageability control. This can be in the form of an outer

control loop monitoring over a longer time frame an inner

(shorter time frame) control loop (e.g., as presented in [5]).

At the level of current sophistication (state-of-the-art),

there are techniques to provide run-time validation check (for

behavioural and structural conformity), additional console for

higher level (external) control, etc. Emerging and needed

capabilities include techniques for managing oscillatory

behaviour in ASs. These are mainly implemented in isolation.

What is required is a holistic framework that collates all these

capabilities into a single autonomic unit. Policy autonomics is

one of the most used autonomic solutions. Autonomic

managers (AMs) follow rules to decide on actions. As long as

policies are validated against set rules the AM adapts its

behaviour accordingly. This may mean changing between

states. And when the change becomes rapid (despite meeting

validation requirements) it is capable of introducing

oscillation, vibration and erratic behaviour (all in form of

noise) into the system. This is more noticeable in highly

sensitive systems. So a trustworthy autonomic architecture

(TAA) needs to provide a way of addressing these issues.

III. TRUSTWORTHY AUTONOMIC ARCHITECTURE

In this section we introduce our proposed TAA. We start

with a general view of the architecture and then move on to

explain its components. Figure 3 explains a trustworthy

autonomic architecture that embodies self-validation and

dependability. The architecture builds on the traditional

autonomic computing solution (denoted as the

AutonomicController component). Other components include

ValidationCheck (which is integrated with the decision-

making object to validate all AutonomicController decisions)

and DependabilityCheck component which, guarantees

stability and reliability after validation.

The AutonomicController component (based on e.g.,

MAPE logic, Intelligent Machine Design framework, etc.)

monitors the managed sub-system for context information and

takes decision for action based on this information. The

decided action is validated against the system’s goal

(described as policies) by the ValidationCheck component

before execution. If validation fails (e.g., policy violation), it

reports back to the AutonomicController otherwise the

DependabilityCheck is called to ensure that outcome does not

lead to, e.g., instability in the system.

The DependabilityCheck component has a sub-

component (Predictive sub-component) that allows it to

predict the outcome of the system based on the validated

decision. It either prevents execution and sends feedback in

form of some input parameters to the AutonomicController or

calls the actuator.

A. Overview of the proposed architecture components

We present the architecture in a number of progressive

stages addressing it in an increasing level of detail. First, we

define the self-management process as a Sense–Manage–

Actuate loop where Sense and Actuate define Touchpoints

(the AM’s interface with a managed system) and ‘Manage'

the embodiment of the autonomic management. Figure 4 is a

detailed representation of the architecture.

Traditionally, the AutonomicController (AC) senses

context information, decides (following some rules) on what

action to take and then executes the action. This is the basic

routine of an AM and is at the core of most of the autonomic

architectures in use today (Figure 2). At this level the

autonomic unit matters but the content of the unit does not

matter much, i.e., it does not matter what autonomic logic

(e.g., MAPE, IMD, etc.) that is employed as far as it provides

the desired autonomic functionalities. So, the AC component

provides designers the platform to express rules that govern

target goal and policies that drive decisions on context

information for system adaptation to achieve the target goal.

But, the nature of ASs raises one significant concern;

input variables (context info) are dynamic and (most times)

not predictable. Although rules and policies are carefully and

robustly constructed, sensors sometimes do inject rogue

variables that are capable of thwarting process and policy

deliberations. In addition, the operating environment itself can

(d)

(c)

(b) (a) S AC A S AC A

S AC A VC

S AC A VC

 Figure 2. Pictorial representation of trustworthy autonomic architecture life-cycles.

Figure 3. Trustworthy autonomic architecture

Managed System (MS)

DependabilityCheck A
u

to
n
o

m
ic

S

y
st

em

ValidationCheck

 AutonomicController

MS

VC

DC

AC

(b)

(a)

Figure 4. Detailed trustworthy autonomic architecture

fa
il

fa
il

pass
AC VC DC

pa
ss

Sensor

Actuator

recalibration feedback

control feedback

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

have varying volatility –causing a controller to become

unstable in some circumstances. Thus a mechanism is needed

to mitigate behavioural (e.g., contradiction between two

policies, goal distortion, etc.) and structural (e.g., illegal

structure not conforming to requirement, division by zero,

etc.) anomalies. This is where the ValidationCheck (VC)

component comes in. It should be noted that AC will always

decide on action(s) no matter what the input variable is. Once

the AC reaches a decision, it passes control to the VC which

then validates the decision and calls the Actuator (Figure 2c)

or the DependabilityCheck (DC) (Figure 4) otherwise it sends

feedback to AC if the check fails (while retaining previous

passed decision). The VC is a higher level mechanism that

oversees the AM to keep the system’s goal on track. The

ultimate concern here is to maintain system goal adhering to

defined rules, i.e., adding a level of trust by ensuring that

target goal is reached only within the boundaries of specified

rules. It is then left for designers to define what constitute

validation pass and validation fail. Actual component logic

are application specific but some examples in literature

include fuzzy logic [18], reinforcement learning [19], etc.

It is also important to consider situations above this level

where, despite the AM taking legitimate decisions within the

boundaries of specified rules, there’s the possibility of overall

inconsistency in the behaviour of the system. I.e., each

individual decision could be correct (by logic) but the overall

behaviour is wrong. A situation where the AM erratically

(though legally) changes its mind, thereby injecting

oscillation into the system, is a major concern especially in

large scale and sensitive systems. Therefore it is necessary to

find a way of enabling the AM to avoid unnecessary and

inefficient change of decision that could lead to oscillation.

This task is handled by the DC component. It allows the AM

change its decision (i.e., adapt) only when it is necessary and

safe to do so. Consider a simple example of a room

temperature controller in which, it is necessary to track a

dynamic goal –a target room temperature. The AM is

configured to maintain the target temperature by

automatically switching heating ON or OFF. A VC would

allow any decision or action that complies with the basic logic

‘IF RoomTemperature < TargetTemperature THEN

ONHeating ELSE IF RoomTemperature >

TargetTemperature THEN OFFHeating’. With the lag in

adjusting the temperature the system may decide to switch

ON or OFF heating at every slight tick of the gauge below or

above target (when room temperature is sufficiently close to

the target temperature). This may in turn cause oscillation

which, can lead to undesirable effects. The effects are more

pronounced in more sensitive and critical systems where such

changes come at some cost. For example, a data centre

management system that erratically switches servers between

pools at every slight fluctuation in demand load is cost

ineffective. One simple way of configuring a DC to mitigate

this problem is by using dead-zone logic. In this case, a

system has to exceed a boundary by a minimum amount

before action is taken. Small deviations into the dead-zone do

not result in actuations. The DC component may also

implement other sub-components like Prediction, Learning,

etc. This enables it to predict (based on knowledge, trend

analysis, etc.) the outcome of the system and to decide

whether it is safe to allow a particular decision or not. So after

validation phase, the DC is called to check (based on specified

rules) for dependability. DC avoids unnecessary and

inefficient control inputs to maintain stability. If the check

passes, control is passed to the Actuator otherwise feedback is

sent to AC. DC is capable of tweaking input to the controller

as feedback from its prediction. A particular aspect of concern

is that for dynamic systems the boundary definition of DC

may itself be context dependent (e.g., in some circumstances

it may be appropriate to allow some level of changes which

under different circumstances may be considered

destabilizing).

Consider the whole architecture as a nested control loop

(Figure 3b) with AC the core control loop while VC and DC

are intermediate and outer control loops respectively. In

summary, a system, no matter the context of deployment, is

truly trustworthy when its actions are continuously validated

(i.e., at run time) to satisfy set requirements (system goal) and

results produced are dependable and not misleading.

IV. CASE EXAMPLE

This example is used to illustrate how powerful our

proposed architecture is (in terms of cost savings, improved

reliability and trustability) when compared to traditional

architectures. We compare three autonomic managers that are

based on AC (Figure 2a), AC+VC (Figure 2c) and

AC+VC+DC (Figure 4). We use rule-based (policy

autonomics) approach in this example.

The case example used deploys one of the current

technology innovations –Autonomic Marketing. Autonomic

Marketing employs the fundamentals of autonomic computing

to monitor the market ambience and uses current (real-time)

information to formulate appropriate marketing strategies for

dynamic, adaptive and effective target marketing. The term is

used to describe a step-change in the sophistication of

automated marketing systems, in which the marketing activity

itself is dynamically configured and contextualised to suit the

current market conditions [9]. This has been proposed by the

Autonomic Marketing Interest Group (AMIG) and they have

in [9] defined some initial concepts and promise of the

technology. An autonomic marketing system tracks current

market state (which can be from several sources and is subject

to influences such as market conditions, customer

demographics, significant world events, trends from social

media analysis, weather, seasonal information, etc.) and

makes marketing decisions based on the analysis of the

information gathered. This is representative of many real-

world systems of high complexity and sensitive to several

sources of environmental volatility.

In this example, we implement a particular aspect of

Autonomic Marketing, that of targeted television advertising

during a live sports competition airing. A company is

interested in running an adaptable marketing campaign on

television with different adverts (of different products

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

appealing to audiences of different demographics) to be aired

at different times during a live match between two teams.

There are three adverts (Ad1, Ad2 and Ad3) to be run and the

choice of an ad will be influenced by, amongst other things,

viewer demographics, time of ad (local time, time in game,

e.g., half time, TV peak/off-peak time, etc.), length of ad

(time constraint), cost of ad, who is winning in the game, etc.

This is a typical example of a system with many dimensions

of freedom and very wide behaviour space. For brevity, we

divide the behaviour space into four different zones and

express them along two dimentions of freedom (Mood and

CostImplication) as shown in Figure 5.

The two dimensions of freedom represent a collation of

all possible decision influencers into two key external

variables –Mood and CostImplication. Mood is defined by

two variables (MatchScore i.e., info about who’s winning and

WeatherInfo) while CostImplication is defined by another two

variables (TimeOfAd and LengthOfAd). An action (in this

case, RunAd 1, 2 or 3 or Null) is defined for each zone. Each

action (ad) is thus activated only in its allocated zone

following specified policy (excerpt shown in Figure 6).

Internal variables (e.g., L_BenchMarkMatchScore and

U_BenchMarkTimeOfAd), design-time specified, are used to define

decision benchmarks.

If MatchScore < L_BenchMarkMatchScore And WeatherInfo < L_BenchMarkWeatherInfo Then
 Mood = "LOWMood"
 ElseIf MatchScore > U_BenchMarkMatchScore And WeatherInfo > U_BenchMarkWeatherInfo

Then
 Mood = "HIGHMood"
 Else : Mood = "Null"
End If
If TimeOfAd < L_BenchMarkTimeOfAd And LengthOfAd < L_BenchMarkLengthOfAd Or

TimeOfAd > U_BenchMarkTimeOfAd And LengthOfAd > U_BenchMarkLengthOfAd
Then

 CostImplication = "LOWCostImplication"
 ElseIf TimeOfAd > U_BenchMarkTimeOfAd And LengthOfAd > M_BenchMarkLengthOfAd Then
 CostImplication = "HIGHCostImplication"
 Else :CostImplication = "Null"
 End If
Select Case DecisionParameter
 Case "LOWMoodLOWCostImplication"
 CurrentAction(CurrentActionCounter) = "RunAd1"
 Case "HIGHMoodLOWCostImplication"
 CurrentAction(CurrentActionCounter) = "RunAd2"
 Case "HIGHMoodHIGHCostImplication"
 CurrentAction(CurrentActionCounter) = "RunAd3"
 Case Else
 CurrentAction(CurrentActionCounter) = "NullAction"
 End Select

Figure 6. Excerpt of decision policy used.

The system goal is defined by a set of rules (Figure 7)

that the AM must adhere to in making decisions. Basically,

AC is concerned with making decisions within the boundaries

of the rules while VC validates decisions for conformity with

the rules. DC verifies that the measure of success is achieved.

DC also improves reliability by instilling stability in the

system. One way of achieving this is by introducing dead-

zone boundaries (Figure 5b) within which, no action is taken

(avoiding erratic and unnecessary changes) –in this case, a

running ad is not changed. The size of the boundaries, which,

though can be dynamically adjusted to suit real-time changes,

is initially design-time specified.

AC will, at every sample collection, decide (by running

the policy in Figure 6) which action (ad) to run. Because it is

wired to make fresh decision at every policy run, it is bound

to send trap (notice of change of ad). But before that decision

is implemented, VC validates it for pass/fail. It is important to

define what pass/fail means in this context: if decided action

is same as previous action (running ad), VC returns fail (then

no trap is sent and no change is made) and passes control to

AC while retaining previous action. VC also returns fail if

policy is violated in decision making, i.e., decision must be

within the boundaries of specified benchmarks (e.g., a “Null”

return should not influence action change). Control is passed

to DC each time VC returns a pass. DC is concerned with the

measure of success aspect of the rule. In this case, a TRC

(Tolerance-Range-Check) is implemented: DC returns fail if

ActionChange is more than one within the first five sample

collections and subsequently if action changes at every

sample instance. So DC maintains action change at maximum

of one within the first five sample collections and

subsequently maximum of two in any three sample instances.

This will help calm any erratic behaviour that could arise.

Take for instance, there could be a 360 degrees change in

‘Mood’ within a short space of time (e.g., a team’s status in a

game can change from winning→losing→winning within a

very short space of time) which is capable of adversely

affecting the choice of an ad. Figure 8 (a) and (b) are excerpts

of managers of VC and DC, respectively.

The need for a new and different approach is reinforced

by the capabilities exhibited in DC. It addresses situations

where it’s possible for overall system to fail despite process

(in terms of structural, legal, syntactical, etc.) correctness.

1. Extract external variables (decision parameters) at defined time interval
and decide on action

2. Send trap msg and change action if (*condition omitted*) otherwise retain
previous action

3. …
4. If current action is same as previous action, do not send trap and do not

change action
 =================Measure of Success================

5. Cost of action change (total ad run) must fall within budget
6. Rate of change should be considerably reasonable
7. …
8. Turnover should justify cost

Figure 7. Excerpt of rules defining system goal.

D

Figure 5. System behaviour space in two dimensions of freedom

Key:

L = Low, H = High
m = Mood
c = CostImplication

D = Dead-Zone

CostImplication

M
oo

d

HmLc HmHc

LmHc LmLc

CostImplication

M
oo

d

HmLc

(RunAd2)

HmHc

(RunAd3)

LmHc

(Null)

LmLc

(RunAd1)

(a)

(b) D

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

In the experiment presented here, a computer program is

written to simulate three autonomic managers (AC, AC+VC

and AC+VC+DC). Four external variables, now referred to as

context samples, (MatchScore, WeatherInfo, TimeOfAd and

LengthOfAd) are fed into the managers at every sample

collection instance. Sample collection instances are defined

by a set time interval which can be fixed (design-time

specific) or dynamically tuned. Based on policies (Figure 6),

the managers decide how, when and which ad to change. The

simulation was run for a total duration of 50 sample collection

instances. During this duration, the managers are analysed for

total number of ad changes and the distributions of those

changes. For accurate analysis and comparison, the same

sample at the same time instance and interval are fed into the

managers concurrently. Samples may (most likely) change at

every time instance and separately feeding these to the

managers will lead to unbalanced judgment.

A. Experimental Results

Results presented are for a simulation of 50 sample

collections. All three autonomic managers (AC, AC+VC and

AC+VC+DC) are analysed based on number of ad changes

and number of ad distributions.

The optimisation of the proposed architecture in this

autonomic marketing scenario is in terms of achieving

balance between efficient just-in-time target-marketing

decision and cost effectiveness (savings maximisation) while

maintaining improved trustability and dependability in the

process. Figure 9 shows the behaviour of the managers in 50

sample collections in a game duration in which the proposed

architecture (AC+VC+DC) shows significant gain in stability

and cost savings. It’s clearly seen, for example, how

(AC+VC+DC) smoothened the high fluctuation rate (high

adaptability frequency) experienced between the 5
th

 and 25
th

sample collections. In general, the average ad change ratio of

about one change in three samples (1:3) is reduced to one

change in ten samples (1:10), representing an overall gain of

about 31.25% in terms of stability and cost efficiency.

Figure 10 shows the distribution of ads across the 50

sample duration (“NullActions” i.e., ‘run no ad’ are not

shown). This also corroborates the significant gain by the DC

component. In (c), for example, only one Ad3 is run while

two Ad2 are run in (b) by the (AC+VC+DC) AM. This directly

translates to adaptive cost savings. Recall from Figure 5(a)

that Ad2 is run when Mood is high and Cost is low (best value

for money) while Ad3 is run when Mood and Cost are both

high (when it costs more to run an Ad).

While it has been shown that the proposed approach is

capable of maintaining reliability by reducing inefficient

adaptation (cutting off unnecessary adaptations), it should be

noted that reducing alone is not the answer. If the rate is very

low it will not be right either. For example, if the behaviour of

the manager falls within the shaded area of Figure 9, it shows

that the manager is almost inactive (or not making decisions

frequently enough). For every application, it is necessary to

determine which rate is appropriate or cost effective in the

long run. The proposed approach provides a way for tuning

this (e.g., through adjusting the width of the TRC dead-zone).

Figure 10. A distribution of the ads (Ad1, Ad2 and Ad3).
(Note: If printed in black/white, the top graph is AC followed by VC and DC)

(a)

(c)

(b)

If Mood <> "Null" And CostImplication <> "Null" Then
 DecisionContainer(IntervalCounter) = Mood & CostImplication
 DecisionParameter = DecisionContainer(IntervalCounter)
 ‘<Omitted>
 ‘<Omitted>
 ‘<Omitted>

End if
If CurrentAction(CurrentActionCounter) = CurrentAction_
(CurrentActionCounter - 1) Then

 ‘CurrentAction = CurrentAction(CurrentActionCounter - 1)
 ‘<Omitted>
 ‘<Omitted>
 ‘<Omitted>

If IntervalCounter - IntervalCounterDC(Interval - 1) > 4 Then
 ActionChangeCounterDC = ActionChangeCounterDC + 1
 ‘<Omitted>
 ‘<Omitted>
 ‘<Omitted>

End if

Figure 8. Excerpt of VC and DC managers

(a)

(b)

Figure 9. A sample of managers’ behaviour in a 50 sample collection.
(Note: If printed in black/white, the top graph is AC followed by AC+VC

and then AC+VC+DC)

67Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

There is a cost associated with bad or over frequent decisions

and also a cost with not making frequent enough decisions.

Success is measured by striking a balance between the two.

V. CONCLUSION

A new architecture for trustworthy autonomic systems

has been presented. Different from the traditional autonomic

solutions, the proposed architecture consists of mechanisms

and instrumentation to support run-time self-validation and

trustworthiness. At the core of the architecture are three

components, the AutonomicController, ValidationCheck and

DependabilityCheck, which allow developers specify controls

and processes to improve system trustability. An analysis of

the current state of practice in autonomic architecture shows

that a new approach is required in which validation and

trustworthiness are not treated as add-ons as they cannot be

reliably retro-fitted to systems. Validation alone does not

always guarantee trustworthiness as logical processes/actions

could sometimes lead to overall system instability. There are

situations where, for example, despite the autonomic

manager’s legitimate decisions within the logical boundaries

of specified rules, there’s the possibility of overall erratic

behaviour or inconsistency in the behaviour of the system.

This is why autonomic systems need a new approach.

To demonstrate the feasibility and practicability of our

approach, a case example scenario has been presented. The

case scenario demonstrates how the proposed architecture can

maximise cost, improve trustability and efficient target

marketing in a company-centric Autonomic Marketing

System that has many dimensions of freedom and is sensitive

to a number of contextual volatility. As this approach is new,

future research work will focus on improving the robustness

of the proposed architecture. This includes adding a

predictive/learning sub-component to the DependabilityCheck

component and verifying how results of this approach can

vary in other contexts to see which factors could influence its

adoption or not in practice.

ACKNOWLEDGEMENT: Graphs are plotted using

csXGraph ActiveX / OCX control by Chestysoft [10].

REFERENCES

[1] IBM, An architectural blueprint for autonomic computing,

IBM Whitepaper, 2004

[2] Kephart Kephart and David Chess, The Vision of Autonomic

Computing. Computer, IEEE, Volume 36, Issue 1, January

2003, pp. 41-50

[3] Andrew Diniz, Viviane Torres, and Carlos José, A Self-

adaptive Process that Incorporates a Self-test Activity,

Monografias em Ciência da Computação, No. 32/09, Rio De

Janeiro – Brasil, Nov. 2009.

[4] Xiaolin Li, Hui Kang, Patrick Harrington, and Johnson

Thomas, Autonomic and trusted computing paradigms, In

Proceedings of ATC'2006, pp. 143-152

[5] Tariq King, Djuradj Babich, Jonatan Alava, Peter Clarke, and

Ronald Stevens, Towards Self-Testing in Autonomic

Computing Systems, Proceedings of the Eighth International

Symposium on Autonomous Decentralized Systems

(ISADS'07), Arizona, USA, 2007

[6] Tariq King, Alain Ramirez, Peter Clarke, and Barbara

Quinones-Morales, A Reusable ObjectOriented Design to

Support SelfTestable Autonomic Software, Proceedings of the

2008 ACM symposium on Applied computing, Fortaleza,

Ceara, Brazil, 2008, pp. 1664-1669

[7] Stuart Anderson, Mark Hartswood, Rob Procter, Mark

Rouncefield, Roger Slack, James Soutter, and Alex Voss,

Making Autonomic Computing Systems Accountable,

Proceedings of the 14th International Workshop on Database

and Expert Systems Applications (DEXA), 2003

[8] Richard Anthony, Policy-based autonomic computing with

integral support for self-stabilisation, Int. Journal of

Autonomic Computing, Vol. 1, No. 1, pp. 1–33. 2009

[9] Carl Adams, Richard Anthony, Wendy Powley, David Bell,

Chris White, and Chun Wu, Towards Autonomic Marketing,

The 8th International Conference on Autonomic and

Autonomous Systems (ICAS), pp. 28-31, St. Maarten 2012.

[10] Chestysoft csXGraph:

 Last accessed date 29th June 2012.

[11] Thaddeus Eze, Richard Anthony, Chris Walshaw, and Alan

Soper, Autonomic Computing in the First Decade: Trends and

Direction, The 8th International Conference on Autonomic and

Autonomous Systems (ICAS), pp. 80-85. St. Maarten 2012.

[12] Richard Anthony, Policy-centric Integration and Dynamic

Composition of Autonomic Computing Techniques, The 4th

International Conference on Autonomic Computing (ICAC),

2007, Florida, USA

[13] Markus Huebscher and Julie McCann, A survey of autonomic

computing—degrees, models, and applications, ACM

Computer Survey, 40, 3, Article 7 (August 2008)

[14] Christoph Reich, Kris Bubendorfer, and Rajkumar Buyya, An

autonomic peer-to-peer architecture for hosting stateful web

services, The 8th IEEE International Symposium on Cluster

Computing and the Grid (CCGRID 08), pp. 250-257, 2008.

[15] Fang Mei, Yanheng Liu, Hui Kang, and Shuangshuang Zhang,

Policy-based autonomic mobile network resource management

architecture, The 2nd International Symposium on Networking

and Network Security (ISNNS 10), pp. 144-148, April 2010.

[16] Joao Ferreira, Joao Leitao, and Luis Rodrigues, A-osgi: A

framework to support the construction of autonomic osgi-

based applications, Technical Report RT/33/2009, May 2009.

[17] Haffiz Shuaib, Richard Anthony, and Mariusz Pelc, A

Framework for Certifying Autonomic Computing Systems, The

7th International Conference on Autonomic and Autonomous

Systems (ICAS), pp. 122-127, 2011, Venice, Italy

[18] Ting-Jung Yu, Robert Lai, Menq-Wen Lin, and Bo-Rue Kao, A

Fuzzy Constraint-Directed Autonomous Learning to Support

Agent Negotiation, The 3rd International Conference on

Autonomic and Autonomous Systems (ICAS), pp. 28, 2007,

Athens, Greece

[19] Han Li and Srikumar Venugopal, Using Reinforcement

Learning for Controlling an Elastic Web Application Hosting

Platform, The 8th International Conference on Autonomic

Computing (ICAC), pp. 205-208, 2011, Karlsruhe, Germany

www.chestysoft.com/xgraph/instructions.pdf

68Copyright (c) IARIA, 2012. ISBN: 978-1-61208-239-4

EMERGING 2012 : The Fourth International Conference on Emerging Network Intelligence

