

Machine Learning Techniques for Mobile Application Event Analysis

Ben Falchuk, Chris Mesterharm, Euthimios Panagos

Applied Communication Sciences (Vencore Labs)

Basking Ridge, NJ, USA

e-mail: {bfalchuk,jmesterharm,epanagos}@appcomsci.com

Shoshana Loeb

InterDigital Inc.

Wilmington, DE, USA

e-mail: Shoshana.Loeb@InterDigital.com

Abstract—As increasing amounts of economic, entertainment

and social activities are occurring using native and web

applications, it has become essential for developers to analyze

user interactions in order to better understand their behavior

and increase engagement and monetization. In this paper, we

describe how JumpStart, a real-time event analytics service,

utilizes machine learning techniques for empowering developers

and businesses to both identify users exhibiting similar behavior

and discover user interaction patterns that are strongly

correlated with specific activities (e.g., purchases). Discovered

interaction patterns can be used for enabling contextual real-

time feedback via JumpStart’s complex event pattern matching.

Keywords - Machine Learning; Analytics; Big Data; Mobile

Apps; Data Clustering;

I. INTRODUCTION

Organizations offering mobile applications of all kinds
(e.g., games, social media, etc.) are presently interested in
learning about how users interact with these applications for
reasons that range from marketing and advertising to
application improvements and user retention. The most
common way to acquire these insights is through the
collection and analysis of events corresponding to specific
actions users take while using an application. Event collection
is typically achieved by using a home-grown or third-party
library (e.g., software development kit – SDK – such as those
offered by Google, Facebook, and Yahoo) for instrumenting
the application code to record information related to specific
user actions (e.g., kill an opponent in a first-person shooter
game). Recorded information is then periodically uploaded to
a back-end system for processing and analysis.

Many of today’s mobile event processing/analytics
offerings expose computed statistical information relating to
key performance indicators (KPI) (e.g., daily active and new
users, day 1 retention, and total sessions) in the form of reports
and visualizations using a small number of pre-defined events
or event attributes. These same offerings may also expose
limited querying interfaces for users to filter the collected
event data or offer the ability to download the collected
information for further analysis by business intelligence and
data mining tools.

A major limitation of such offerings is that they lack
automated techniques for discovering interesting event
patterns in collected events. In addition, they are often limited
in their ability to match and react to such event patterns in real
time. (e.g., notify users about a YouTube video that offers

hints on how to complete the current game level after they fail
three times).

The JumpStart [1] real-time context-aware analytics
service overcomes these shortcomings by offering an end-to-
end solution that enables application developers to capture
events (via a simple SDK), specify event patterns (via a web
portal) that will be matched in real-time as events are streamed
to the service, and associate specific information to be sent
back to the application on event pattern matches. JumpStart
employs machine learning techniques to automatically learn
user behavior in the context of specific applications. Such
deep analysis allows, for example, for the discovery of
otherwise hard-to-detect issues that may be limiting user
experience (e.g., specific levels in a gaming application may
be far too hard for many users).

In this paper, we focus on JumpStart’s machine learning
component. In particular, we discuss how JumpStart applies
supervised and unsupervised machine learning technique to
application event streams for: (1) identifying users exhibiting
similar application behavior and (2) discovering event
patterns that are strongly correlated with specific user
activities within an application. These techniques enable
JumpStart customers (e.g., application developers and
businesses) to understand and control many aspects of their
application. For example, customers can specify event
patterns that, when matched against received event streams,
provide contextual information back to the application to: help
users that are stuck at a particular place in a given game, select
the next level in a game with multiple levels based on the
difficulty level of the level and user skills, offer incentives for
increasing monetization opportunities, etc.. Our mechanisms
and syntax for the aforementioned returned contextual
information (also referred to as triggered alerts) has previously
been described in [2].

The remainder of the paper is structured as follows. In
Section II, we briefly cover related work in the area of mobile
application analytics. In Section III, we offer an overview of
the JumpStart service architecture. In Section IV, we provide
some details about the two example applications used in this
paper during the discussion of the JumpStart machine learning
techniques. In Section V, we discuss the JumpStart machine
learning techniques and present some results for the two
example applications. Finally, in Section VI, we conclude our
work.

50Copyright (c) IARIA, 2016. ISBN: 978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence

II. RELATED WORK

The past several years have seen a dramatic rise in big
data, application (app) analytics, and ever-increasing
sophistication in advertising and monetization [4]. Both
startups and well established technology companies are in the
game, including (but not limited to): Facebook, Flurry,
Google, Amazon, Adobe, and Riot. Smaller startups for
analytics include Localytics, Swrve, Countly, MixPanel, and
Apptimize, to name only a few. Without this increasingly
necessary new breed of tools, developers would have very
limited insight into how users interact with their apps,
especially standalone apps that do not depend on a backend
server component (in the cloud or private data center).

Fundamental features shared by many of today’s mobile
analytics offerings include: SDKs for various platforms
(Android, iOS, etc.), in-app event collection and warehousing,
creation and analysis of app “funnels” consisting of sequences
of key in-app events, event charting dashboards for various
metrics (including KPI, retention, number of active users),
analysis of user base demographics and personas, and push
notifications. Furthermore, the very desirable ability to
manage campaigns, such as A-B variants, is also rapidly
becoming fundamental.

Although existing mobile analytics solutions can compute
a large number of metrics, developers still bear the burden of
understanding how specific application events (e.g.,
purchases) are correlated with user interactions prior to these
events. Our work lifts this burden by employing machine
learning techniques that learn event patterns that are: (1)
common across many users, and (2) correlated with specific
user actions. Developers can then register discovered patterns
with JumpStart and associate specific information (i.e.,
actionable alerts) that is sent back to the app when these
patterns are matched in near real time [2].

The two main machine learning techniques utilized by
JumpStart are: Bayesian Rule Lists [6] and Falling Rule Lists
[7]. These are machine learning algorithm for returning a
classifier that can be easily interpreted by humans. This can
be compared to techniques that learn a complex rule, such as
[5]. Interpretability is an important constraint as we want a
user of JumpStart to be able understand and modify these
rules. We build on these algorithms in novel ways. The most
interesting is a new clustering technique that uses Falling Rule
Lists to do dynamic hierarchical clustering.

III. JUMPSTART OVERVIEW

JumpStart aims to be the first cross-platform solution to
offer near real-time detection of user behavior patterns
associated with past and current user interactions with mobile
applications. User behavior pattern matches can trigger
actionable alerts aimed to achieve specific goals, such as
increased user retention and monetization. Our
implementation uses the Esper pattern matching engine [3]
and is cloud based to allow scalability for multiple
applications and users. This allows devices to respond to user
events that match patterns stored on the server with latencies
based primarily on the quality of the network connection.

Fig. 1 shows the high-level architecture of JumpStart.

Input and output adaptors are responsible for connecting to
data sources or sinks and retrieving or storing/sending events.
The analytics component is responsible for on-line and batch
processing of events and computation of various metrics (e.g.,
daily active and new users, user retention, session and users
per hour, event funnels of various lengths). The machine
learning component, the main focus of this paper, is
responsible for discovering correlations between events that
reflect specific user interactions with an application utilizing
supervised and unsupervised learning. The profile manager
component is responsible for managing user profiles in terms
of both statistical properties (e.g., session duration and event
distributions) and user-specific event patterns discovered by
machine learning. Finally, the real-time rules processor is
carrying out real-time complex event processing and matching
of event patterns, referred to as triggers in the remainder of the
document.

As a simple example of JumpStart event collection,
consider a game that has multiple levels (the basketball game
described in Section IV). By recording events that correspond
to level completion and failure, JumpStart can gauge the
difficult of a level. A level that is easy to complete will require
few attempts before success while a more difficult level might
require many attempts.

Fig. 2 shows the ratio of the number of failures to the
number of successes. While there are a range of opinions on
how the game level difficulty should progress, it is without
controversy that we do not want to advance to a new level that
is considerably easier than the last level. At a minimum, the
JumpStart framework gives us the analytics to determine if the
order of levels is appropriate. If it is discovered that certain
levels are too easy or hard, they can be removed, redesigned,
or moved to a more appropriate location in the game, as the
case may be.

Things get more interesting when we use the real-time
nature of the JumpStart rules processor. With JumpStart we
can detect how well a user is doing on a particular level by

Figure 1. JumpStart high-level architecture

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence

comparing the level’s outcome and time taken to those of the
previous level via the appropriate event pattern. The output of
the event pattern match can trigger a modification to the levels
and even the creation of a non-linear path through the levels.
This can reduce the churn of users who are bored by simple
levels or frustrated by difficult levels. While some of this logic
could be built into the application, using JumpStart is
advantageous because:

1. Since it analyzes events from the entire user-base (not
just the user in question), it can anticipate churn before
it happens by, for example, clustering the user in with a
“high churn” group.

2. It allows us to make modifications based on real user
data as opposed to doing expensive customer trials that
delay the release of the application and might be dated
by the time the application is released.

IV. EVENT GENERATING APPLICATIONS

In this paper, we give experimental results for two
applications. The first application is a game where either a
single player or two players can compete in a basketball
shooting contest. The game is composed of thirty levels of
varying difficulty. For our experiments, we have 7,395 users,
122 unique types of events, and more than 630,000 collected
events. Example events include taking a shot, missing a shot,
completing a level, failing a level, and completing a section of
the tutorial. In this paper, we call this game basketball.

The second application sends printed letters to members
of the military. Many members of the military are not allowed
access to the internet and need to receive physical letters. This
application allows users to easily and simply compose these
letters. For our experiments, we have 3,400 users, 55 unique
events, and more than 137,000 collected events. Example
events include buying tokens to send letters, starting a new
letter, typing a letter using the keyboard, and taking a picture
to send with the letter. In this paper, we call this application
post office.

We have also performed experiments on three other
applications: a music application, an event scheduling
application, and a novelty humor application (with more that

11 million events). We obtained similar results but do not have
the space to include these additional experiments.

V. MACHINE LEARNING WITH EVENTS

While analytics based on event data provides a useful tool
for learning user behavior, machine learning techniques can
often find non-obvious correlations that a human might miss.
In this section, we give several techniques that find patterns
that, while interesting on their own, can be used as a source of
inspiration for creating event pattern expressions to be
matched by JumpStart.

For the learning algorithms we are going to use, we need
to represent a sequence of events as a fixed length {0, 1}n
vector. We use the following mix of standard features.

 We take the last three events in the sequence and create
a feature for every possible event type value (referred
simply as event in the remainder of this paper). For
example, if the last event is A, we create a binary feature
A=1 to represent that the last feature is event A.

 We use a bag-of-words on the events in the sequence.
We include single words and pairs. For example, if the
events A and B occur consecutively in the event stream
we create three binary features, A and B for the single
events and A+B for the pair of consecutive events.

 We remove repeated consecutive events and represent
them with special features that take into account the
count. For example, if the event stream has 8
consecutive A events, we create features A, A>1, A>3,
A>7. Notice that we create the features based on powers
of 2.

In all cases, if a feature occurs more than once in an event
sequence, we remove the repeats. In the following sections,
we will occasionally add or remove features for specific
learning problems.

A. Algorithms

We consider two algorithms for building understandable
rules: the Bayesian Rule List (BRL) algorithm [6] and the
Falling Rule List (FRL) algorithm [7]. Both algorithms return
rules in the form of a decision list. A decision list is an ordered
sequence of rules such that the first rule that is true makes the
prediction. A rule is a conjunction of predicates that predicts
a probability that the label is true. Fig. 3 gives an example of
our notation.

rule 1 (90%)
 A+B
 C
rule 2 (5%)
 D=3
default (10%)

Figure 3. Decision list notation example

In this example, rule 1 has two predicates. First, the
consecutive events A followed by B must occur somewhere
in the sequence of events. Second the event C must occur
somewhere in the sequence. If these two predicates are true,
then the decision list gives 90% probability that the label is 1.
If rule 1 fails, we check rule 2. In this example, rule 2 is true
if event D is the third to last event in the sequence. If rule 2 is

Figure 2. Basketball game level difficulty

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence

true, then the decision list predicts label 1 with 5% probability.
The final rule is the default rule. If all the previous rules fail,
we predict label 1 with 10% probability.

Both rule list algorithms are Bayesian algorithms that try
to learn accurate - yet short - decision lists. The FRL algorithm
has the extra constraint that a rule that is earlier in the list
should have a higher probability of predicting the label than a
rule that occurs later in the list. While this extra constraint can
return a less accurate decision list, it makes the rules easier to
interpret because many people will only consider the first few
rules. A major competitor to these algorithms is decision trees.
Experiments have found that the accuracy of the rule list
algorithms is comparable to decision trees [8]. Decision lists
also tend to be easier to understand because they are just a one
sided subset of decision trees.

All experiments were performed using a single core of a
2011 vintage 2.4 GHz processor. The computational time for
both algorithms, on the problems we studied, was on the order
of a minute. While BRL does not scale as well on larger
problems there is active research in improving its
computational performance [9].

B. Supervised Learning

The first technique we cover is based on supervised
learning. In supervised learning we have a set of objects, and
we want to predict labels for these objects. For example, an
object might be all the events in a session of a game and we
want to predict if a user will make a purchase during the
session. In order to learn a prediction model, we take a set of
training data that consists of already labeled objects and use
them to induce a classifier.

Typically, this classifier is used to predict labels for new
objects. Instead we are focused on creating rules that describe
the classifier and can be used to understand the data and
generate triggers (e.g., register event patterns with the
JumpStart rules processor). These rules can often reveal
correlations that while reasonable in hindsight are difficult for
humans to create by inspecting the data.

We perform three types of experiments based on events
from the previously described post office application. The
label for these experiments is based on a purchase event
enabling the sending of future letters. For each experiment, we
have a baseline level of performance based on this label. For
example, out of the set of users we are considering say 25%
make a purchase. Therefore, a rule that predicts a purchase
with 25% probability is making a safe baseline prediction.
Rules that have higher probability point to an informative
situation where a purchase is more likely than the baseline.
Rules that have a lower probability point to situations where a
user is less likely to make a purchase. Note that cases at the
baseline probability suggest that the user is “on the fence”
with regard to a purchase.

A typical use of these algorithms is to run both the BRL
and FRL multiple times to find interesting decision lists. In
our experiments, we ran each algorithm twice (reporting here
on only a subset of results; for the non-reported experiments,
we get qualitatively similar results).

The first experiments are based on the initial 30 events
generated by a user. Our goal is to predict if the user will

eventually make a purchase. The baseline probability that a
user makes a purchase is 31%. Fig. 4 gives the results of using
FRL to generate a decision list.

rule 1 (60%)
 user_logged_in+compose_new_letter_screen
 launch_camera
rule 2 (37%)
 compose_letter_kb
default (7%)

Figure 4. FRL applied to post office for first 30 events

In this case, based on the first rule, if right after a user logs
in to the application the user starts to compose a letter and at
some point in these initial 30 events the user takes a picture
then there is a 60% chance that the user will eventually make
a purchase. If the first rule fails, then rule 2 is about equal to
the baseline. However, if rule 2 also fails, then there is a good
chance the user will never make a purchase. This suggests it
is important to get a user actively creating a letter as soon as
they start using the application.

The second experiments predict whether a user will make
a purchase during a session based on the initial 15 events of
the session. The baseline probability that a user makes a
purchase is 25%. Fig. 5 gives the results of using BRL to
generate a decision list.

rule 1 (2%)
 1=menu_opened
rule 2 (68%)
 letters_billing_appear
 user_info-user_logged_in
rule 3 (47%)
 launch_camera
rule 4 (11%)
 kin_pressed_from_menu+menu_closed
rule 5 (27%)
 compose_letter_kb
default (3%)

Figure 5. BRL applied to post office for first 15 events of session

Here we see that if a user opens a menu on the last event
in our window of 15 events, he is unlikely to make a purchase.
This rule might be a rare occurrence, but it suggests something
that might need further study. (We also see this in some non-
reported rule lists.) Next, we see that if a user does billing
along with logging in right after the start of the session, then
they are likely to make a purchase. If we reach rule 3, using
the camera is likely to lead to a purchase as the user is
probably creating pictures to send with the letters. Finally, if
we get through all the rules then the user is extremely unlikely
to make a purchase.

Figure 6. Sliding Window Example

The third experiment is based on a sliding window over
the event sequence. The idea is that we want to make a timely
prediction about whether a user is about to make a purchase.
We use a window size of 15 events. We want advanced notice
that the user is going to make a purchase so we don't look for

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence

purchase events right after the end of the window. Instead, we
have a gap of 5 events. To give us more flexibility, we look
for a purchase that occurs in the 5 events that follow the gap.
Fig. 6 gives a graphical explanation based on window of size
5, a gap of size 3 and label of size 5. Because this instance
generation technique creates a large number of instances that
don't have a purchase in their label window, we de-skew the
labels by randomly selecting negative instances to ensure that
10% of the instances have a purchase label. Fig. 7 gives the
results of the FRL algorithm, but only reports the first five
rules.

rule 1 (36%)
 new_recipient_next_pressed
 letters_new_next_pressed
rule 2 (28%)
 compose_new_letter_screen+compose_letter_kb
 launch_camera
rule 3 (26%)
 confirmation_for_purchase_letters
 compose_new_letter_screen+compose_letter_kb
rule 4 (20%)
 launch_camera+compose_letter_kb
 compose_new_letter_screen
rule 5 (19%)
 new_recepient+compose_letter_kb
 compose_letter_kb>1

Figure 7. FRL applied to post office with sliding window

All of these rules show that a user in the process of creating
a letter has a higher probability of making a purchase. This is
not surprising. However, it is interesting how the ordering of
the rules can be interpreted as giving insight on the relative
importance of the various actions.

What we are lacking with previous FRL example is the
kind of actions lead to a user not making a purchase. This is a
result of how FRL builds a decision list with the highest
probabilities first. To study events that do not lead to a
purchase, we flip the labels on the problem. This creates a
decision list where the top rules are more likely to predict that
the user does not make a purchase. Fig. 8 gives the first five
rules generated by the FRL algorithm.

rule 1 (0%)
 menu_opened+units_pressed_from_menu
 units_pressed_from_menu
rule 2 (0%)
 2=menu_closed
 menu_opened
rule 3 (0%)
 1=menu_closed
 menu_closed
rule 4 (0%)
 1=menu_opened
rule 5 (0%)
 edit_profile_pressed_from_menu
 menu_closed+menu_opened

Figure 8. FRL applied to post office with sliding window and flipped

labels

Here we observe interesting evidence that a user who uses
the menu is unlikely to make a purchase in the near future.
This matches our previous result dealing with sessions and
suggests that any enticement for a user to make a purchase
should wait until they are done using the menu.

C. Clustering

For many applications it is useful to organize similar users
or sessions. We can automate this task by applying an
unsupervised clustering algorithm. One problem with
clustering is that it is difficult to understand the results. In this
section we give results on using the FRL algorithm to better
understand clusters and therefore help generate possible event
patterns that can be used for generating actionable alerts.

The simplest form of our algorithm is easiest to explain
with an example. Assume we create three clusters. We use
these clusters to create three supervised learning problems.
For each problem the instances in the cluster get a label of 1
while the instances in other clusters get a label of 0. Now we
can apply FRL to learn a decision list that concisely describes
each cluster. We use the FRL algorithm because we want our
decision list to give preference to the high probability rules
that describe what examples are in the cluster.

A further refinement of the algorithm is to add the ability
to do dynamic hierarchical clustering. By this we mean that
after the initial clustering one can use the insights provided by
the rules returned to select clusters to expand. For example,
assume we want to expand cluster B. We just rerun our simple
algorithm to create a new clustering and new set of rules just
using examples from cluster B. We can repeat this process to
create a clustering tree with rules to explain the various
clusters.

We believe our novel technique has many advantages over
a traditional hierarchical clustering.

 The decision lists give an understanding of the various
clusters. This includes how one cluster relates to another
based on their ancestry.

 Instead of having to interpret a dendogram and picking
an appropriate level of granularity, one can use our top
down dynamic procedure to explore the data.

 The technique has a computational advantage in that we
can decide to only explore the interesting part of the data
to a depth that is informative.

Next, we give experiments for applying our clustering
technique to the basketball data. Like many problems, the
basketball data does not have an obvious label for supervised
learning, so clustering is the logical approach. Note that
clustering is also useful with problems amendable to
supervised learning - such as the post office problem.

Our FRL based clustering code works with any clustering
algorithm that returns a hard clustering. (A hard clustering is
a clustering algorithm that assigns each example to one
cluster.) We performed experiments with two clustering
algorithms: k-means [10] and spectral clustering [11]. We
found that, with our representation, k-means returned more
meaningful clusters with the added bonus of being much
faster; k-means only took a minute to build the clustering
while spectral clustering took 30 minutes.

For our experiments, we use the same features as
described in the start of Section V with the following
modifications. First, we removed the features that represent
the last three events in the sequence. These features are not
needed as there is no special significance to the last events.
Second, we added a feature called Short for any session that

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence

has less than four events. Based on an early analysis using our
clustering technique, we found this useful to allow the
clustering to identify the large number of short sessions in our
data. Research shows that many users only try an application
once before uninstalling potentially creating many short
sessions.

Our experiments are based on clustering sessions. Using
sessions can be useful for a range of applications. For
example, one might want to understand users based on how
they transition from various session types. For example, a user
who continually returns to the tutorial might need extra
assistance in using the app.

Fig. 9 show the results of generating two clusters for the
basketball data. We have modified our decision list output to
include information on the cluster and the number examples
that are covered by the individual rules. As can be seen in the
output, cluster 0 deals primarily with the game's tutorial while
cluster 1 deals largely with the sessions that are very short.

Cluster 0 has 805 out of 2746 examples
rule 1 (100%) 799 examples

 tutorial_sr_for_power_completed
 tutorial_drag_left_completed

rule 2 (86%) 7 examples
 tutorial_sr_for_power

default (0%) 1940 examples

Cluster 1 has 1941 out of 2746 examples

rule 1 (100%) 1219
 Short

rule 2 (95%) 194
 user_info+ pvp_pressed

rule 3 (78%) 438
 user_info+story_mode_pressed

rule 4 (47%) 104
 me_pressed

default (18%) 791.0

Figure 9. Top level FRL clusters for basketball

Based on this analysis, we decided that cluster 0 is more
interesting. We expand cluster 0 by creating two new clusters
only using the examples from cluster 0. We show these
decision lists in Fig. 10. Cluster 0-0 deals with the tutorial, but
cluster 0-1 is interesting in that it is primarily deals with users
who have started playing the game and completed some of the
initial levels. These can be sessions where the user goes
straight from the tutorial to playing the game.

VI. CONCLUSION

In this paper, we discussed the machine learning
techniques used by the JumpStart real-time event analytics
service in the context of two example mobile applications.
JumpStart applies supervised and unsupervised machine
learning techniques to application event streams for
identifying users exhibiting similar application behavior and
discovering event patterns that are strongly correlated with
specific user activities within an application. In addition, we
presented a novel approach that uses the Falling Rule List
algorithm to concisely describe clusters generated by
unsupervised machine learning algorithms. Cluster
descriptions via decision lists enable hierarchical clustering by
creating new clusters from existing ones.

Machine learning enables JumpStart customers to gain
deep insights into how users interact with their applications
and discover user behaviors that are correlated with specific
application actions. These capabilities go far beyond the
computed metrics and aggregate user actions offered by
existing mobile analytics solutions.

Cluster 0-0 has 420 out of 805 examples
rule 1 (87%) 79

 tutorial_sr_power+ tutorial_sr_power_completed
 missed_shot_0+tutorial_completed

default (48%) 726

Cluster 0-1 has 385 out of 805 examples

rule 1 (99%) 323
 missed_shot_1+shot_punk
 1_level_0_completed

rule 2 (96%) 24
 1_level_1_completed
 shot_made

rule 3 (39%) 103
 missed_shot_0+shot_punk
 tutorial_pull_back_to_aim_at_target

default (0%) 355

Figure 10. Second level FRL clusters for basketball

REFERENCES

[1] InterDigital Inc., “JumpStart”, [Online]. Available from:
http://www.interdigital.com/jumpstart, accessed: 2016.08.26.

[2] B. Falchuk, K.C. Lee, S. Loeb, E. Panagos, and Z. Yao, “Just-
in-time reconnaissance and assistance for video game streams
and players”, Proc. IEEE Consumer Communications and
Networking Conference, Las Vegas, pp. 99-102, 2016.

[3] EsperTech Inc., “EsperTech event series intelligence”.
[Online] Available from: http://www.espertech.com, accessed:
2016.08.26.

[4] T. Leaver and M.A. Wilson (eds.), “Social, casual and mobile
games: the changing gaming landscape,” Bloomsbury
Academic, New York, 2016.

[5] M.A. Alsheikh, D. Niyato, S. Lin, H. Tan, and Z. Han, “Mobile
big data analytics using deep learning and apache spark, IEEE
Network, 30(3), pp. 22-29, June 2016.

[6] B. Letham, C .Rudin, T.H. McCormick, and D. Madigan,
“Interpretable classifiers using rules and Bayesian analysis:
building a better stroke prediction model”, Annals of Applied
Statistics, 9(3), pp.1350-1371, 2015.

[7] F. Wang and C. Rudin, “Falling rule lists”, JMLR Workshop
and Conference Proceedings 38, pp. 1013-1022, 2015.

[8] J.R. Quinlan. “Induction of decision trees.” Machine Learning
Journal, 1(1) , pp. 81-106, March 1986.

[9] H. Yang, C. Rudin, and, M. Seltzer, “Scalable Bayesian rule
lists”, arXiv:1602.08610, 2016.

[10] E.W. Forgy, “Cluster analysis of multivariate data: efficiency
versus interpretability of classifications”, Biometrics, 21, pp.
768-769, 1965.

[11] A.Y. Ng, M.I. Jordan, and Y. Weiss, “On Spectral Clustering:
analysis and an algorithm”, Advances in Neural Information
Processing Systems, pp. 849-856, 2001.

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-509-8

EMERGING 2016 : The Eighth International Conference on Emerging Networks and Systems Intelligence

http://www.interdigital.com/jumpstart
http://www.espertech.com/

