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Abstract—As increasing amounts of economic, entertainment 

and social activities are occurring using native and web 

applications, it has become essential for developers to analyze 

user interactions in order to better understand their behavior 

and increase engagement and monetization. In this paper, we 

describe how JumpStart, a real-time event analytics service, 

utilizes machine learning techniques for empowering developers 

and businesses to both identify users exhibiting similar behavior 

and discover user interaction patterns that are strongly 

correlated with specific activities (e.g., purchases). Discovered 

interaction patterns can be used for enabling contextual real-

time feedback via JumpStart’s complex event pattern matching. 

Keywords - Machine Learning; Analytics; Big Data; Mobile 

Apps; Data Clustering; 

I. INTRODUCTION 

Organizations offering mobile applications of all kinds 
(e.g., games, social media, etc.) are presently interested in 
learning about how users interact with these applications for 
reasons that range from marketing and advertising to 
application improvements and user retention. The most 
common way to acquire these insights is through the 
collection and analysis of events corresponding to specific 
actions users take while using an application. Event collection 
is typically achieved by using a home-grown or third-party 
library (e.g., software development kit – SDK – such as those 
offered by Google, Facebook, and Yahoo) for instrumenting 
the application code to record information related to specific 
user actions (e.g., kill an opponent in a first-person shooter 
game). Recorded information is then periodically uploaded to 
a back-end system for processing and analysis. 

Many of today’s mobile event processing/analytics 
offerings expose computed statistical information relating to 
key performance indicators (KPI) (e.g., daily active and new 
users, day 1 retention, and total sessions) in the form of reports 
and visualizations using a small number of pre-defined events 
or event attributes. These same offerings may also expose 
limited querying interfaces for users to filter the collected 
event data or offer the ability to download the collected 
information for further analysis by business intelligence and 
data mining tools. 

A major limitation of such offerings is that they lack 
automated techniques for discovering interesting event 
patterns in collected events. In addition, they are often limited 
in their ability to match and react to such event patterns in real 
time. (e.g., notify users about a YouTube video that offers 

hints on how to complete the current game level after they fail 
three times). 

The JumpStart [1] real-time context-aware analytics 
service overcomes these shortcomings by offering an end-to-
end solution that enables application developers to capture 
events (via a simple SDK), specify event patterns (via a web 
portal) that will be matched in real-time as events are streamed 
to the service, and associate specific information to be sent 
back to the application on event pattern matches. JumpStart 
employs machine learning techniques to automatically learn 
user behavior in the context of specific applications. Such 
deep analysis allows, for example, for the discovery of 
otherwise hard-to-detect issues that may be limiting user 
experience (e.g., specific levels in a gaming application may 
be far too hard for many users). 

In this paper, we focus on JumpStart’s machine learning 
component. In particular, we discuss how JumpStart applies 
supervised and unsupervised machine learning technique to 
application event streams for: (1) identifying users exhibiting 
similar application behavior and (2) discovering event 
patterns that are strongly correlated with specific user 
activities within an application. These techniques enable 
JumpStart customers (e.g., application developers and 
businesses) to understand and control many aspects of their 
application. For example, customers can specify event 
patterns that, when matched against received event streams, 
provide contextual information back to the application to: help 
users that are stuck at a particular place in a given game, select 
the next level in a game with multiple levels based on the 
difficulty level of the level and user skills, offer incentives for 
increasing monetization opportunities, etc.. Our mechanisms 
and syntax for the aforementioned returned contextual 
information (also referred to as triggered alerts) has previously 
been described in [2]. 

The remainder of the paper is structured as follows. In 
Section II, we briefly cover related work in the area of mobile 
application analytics. In Section III, we offer an overview of 
the JumpStart service architecture. In Section IV, we provide 
some details about the two example applications used in this 
paper during the discussion of the JumpStart machine learning 
techniques. In Section V, we discuss the JumpStart machine 
learning techniques and present some results for the two 
example applications. Finally, in Section VI, we conclude our 
work. 
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II.  RELATED WORK 

The past several years have seen a dramatic rise in big 
data, application (app) analytics, and ever-increasing 
sophistication in advertising and monetization [4]. Both 
startups and well established technology companies are in the 
game, including (but not limited to): Facebook, Flurry, 
Google, Amazon, Adobe, and Riot. Smaller startups for 
analytics include Localytics, Swrve, Countly, MixPanel, and 
Apptimize, to name only a few. Without this increasingly 
necessary new breed of tools, developers would have very 
limited insight into how users interact with their apps, 
especially standalone apps that do not depend on a backend 
server component (in the cloud or private data center). 

Fundamental features shared by many of today’s mobile 
analytics offerings include: SDKs for various platforms 
(Android, iOS, etc.), in-app event collection and warehousing, 
creation and analysis of app “funnels” consisting of sequences 
of key in-app events, event charting dashboards for various 
metrics (including KPI, retention, number of active users), 
analysis of user base demographics and personas, and push 
notifications. Furthermore, the very desirable ability to 
manage campaigns, such as A-B variants, is also rapidly 
becoming fundamental. 

Although existing mobile analytics solutions can compute 
a large number of metrics, developers still bear the burden of 
understanding how specific application events (e.g., 
purchases) are correlated with user interactions prior to these 
events. Our work lifts this burden by employing machine 
learning techniques that learn event patterns that are: (1) 
common across many users, and (2) correlated with specific 
user actions. Developers can then register discovered patterns 
with JumpStart and associate specific information (i.e., 
actionable alerts) that is sent back to the app when these 
patterns are matched in near real time [2]. 

The two main machine learning techniques utilized by 
JumpStart are: Bayesian Rule Lists [6] and Falling Rule Lists 
[7]. These are machine learning algorithm for returning a 
classifier that can be easily interpreted by humans. This can 
be compared to techniques that learn a complex rule, such as 
[5]. Interpretability is an important constraint as we want a 
user of JumpStart to be able understand and modify these 
rules. We build on these algorithms in novel ways. The most 
interesting is a new clustering technique that uses Falling Rule 
Lists to do dynamic hierarchical clustering. 

III. JUMPSTART OVERVIEW 

JumpStart aims to be the first cross-platform solution to 
offer near real-time detection of user behavior patterns 
associated with past and current user interactions with mobile 
applications. User behavior pattern matches can trigger 
actionable alerts aimed to achieve specific goals, such as 
increased user retention and monetization. Our 
implementation uses the Esper pattern matching engine [3] 
and is cloud based to allow scalability for multiple 
applications and users. This allows devices to respond to user 
events that match patterns stored on the server with latencies 
based primarily on the quality of the network connection. 

Fig. 1 shows the high-level architecture of JumpStart. 

Input and output adaptors are responsible for connecting to 
data sources or sinks and retrieving or storing/sending events. 
The analytics component is responsible for on-line and batch 
processing of events and computation of various metrics (e.g., 
daily active and new users, user retention, session and users 
per hour, event funnels of various lengths). The machine 
learning component, the main focus of this paper, is 
responsible for discovering correlations between events that 
reflect specific user interactions with an application utilizing 
supervised and unsupervised learning. The profile manager 
component is responsible for managing user profiles in terms 
of both statistical properties (e.g., session duration and event 
distributions) and user-specific event patterns discovered by 
machine learning. Finally, the real-time rules processor is 
carrying out real-time complex event processing and matching 
of event patterns, referred to as triggers in the remainder of the 
document. 

As a simple example of JumpStart event collection, 
consider a game that has multiple levels (the basketball game 
described in Section IV). By recording events that correspond 
to level completion and failure, JumpStart can gauge the 
difficult of a level. A level that is easy to complete will require 
few attempts before success while a more difficult level might 
require many attempts. 

Fig. 2 shows the ratio of the number of failures to the 
number of successes. While there are a range of opinions on 
how the game level difficulty should progress, it is without 
controversy that we do not want to advance to a new level that 
is considerably easier than the last level. At a minimum, the 
JumpStart framework gives us the analytics to determine if the 
order of levels is appropriate. If it is discovered that certain 
levels are too easy or hard, they can be removed, redesigned, 
or moved to a more appropriate location in the game, as the 
case may be. 

Things get more interesting when we use the real-time 
nature of the JumpStart rules processor. With JumpStart we 
can detect how well a user is doing on a particular level by 

Figure 1.  JumpStart high-level architecture 
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comparing the level’s outcome and time taken to those of the 
previous level via the appropriate event pattern. The output of 
the event pattern match can trigger a modification to the levels 
and even the creation of a non-linear path through the levels. 
This can reduce the churn of users who are bored by simple 
levels or frustrated by difficult levels. While some of this logic 
could be built into the application, using JumpStart is 
advantageous because: 

1. Since it analyzes events from the entire user-base (not 
just the user in question), it can anticipate churn before 
it happens by, for example, clustering the user in with a 
“high churn” group. 

2. It allows us to make modifications based on real user 
data as opposed to doing expensive customer trials that 
delay the release of the application and might be dated 
by the time the application is released. 

IV. EVENT GENERATING APPLICATIONS 

In this paper, we give experimental results for two 
applications. The first application is a game where either a 
single player or two players can compete in a basketball 
shooting contest. The game is composed of thirty levels of 
varying difficulty. For our experiments, we have 7,395 users, 
122 unique types of events, and more than 630,000 collected 
events. Example events include taking a shot, missing a shot, 
completing a level, failing a level, and completing a section of 
the tutorial. In this paper, we call this game basketball. 

The second application sends printed letters to members 
of the military. Many members of the military are not allowed 
access to the internet and need to receive physical letters. This 
application allows users to easily and simply compose these 
letters. For our experiments, we have 3,400 users, 55 unique 
events, and more than 137,000 collected events. Example 
events include buying tokens to send letters, starting a new 
letter, typing a letter using the keyboard, and taking a picture 
to send with the letter. In this paper, we call this application 
post office. 

We have also performed experiments on three other 
applications: a music application, an event scheduling 
application, and a novelty humor application (with more that 

11 million events). We obtained similar results but do not have 
the space to include these additional experiments. 

V. MACHINE LEARNING WITH EVENTS 

While analytics based on event data provides a useful tool 
for learning user behavior, machine learning techniques can 
often find non-obvious correlations that a human might miss. 
In this section, we give several techniques that find patterns 
that, while interesting on their own, can be used as a source of 
inspiration for creating event pattern expressions to be 
matched by JumpStart. 

For the learning algorithms we are going to use, we need 
to represent a sequence of events as a fixed length {0, 1}n 
vector. We use the following mix of standard features. 

 We take the last three events in the sequence and create 
a feature for every possible event type value (referred 
simply as event in the remainder of this paper). For 
example, if the last event is A, we create a binary feature 
A=1 to represent that the last feature is event A. 

 We use a bag-of-words on the events in the sequence. 
We include single words and pairs. For example, if the 
events A and B occur consecutively in the event stream 
we create three binary features, A and B for the single 
events and A+B for the pair of consecutive events. 

 We remove repeated consecutive events and represent 
them with special features that take into account the 
count. For example, if the event stream has 8 
consecutive A events, we create features A, A>1, A>3, 
A>7. Notice that we create the features based on powers 
of 2. 

In all cases, if a feature occurs more than once in an event 
sequence, we remove the repeats. In the following sections, 
we will occasionally add or remove features for specific 
learning problems. 

A. Algorithms 

We consider two algorithms for building understandable 
rules: the Bayesian Rule List (BRL) algorithm [6] and the 
Falling Rule List (FRL) algorithm [7]. Both algorithms return 
rules in the form of a decision list. A decision list is an ordered 
sequence of rules such that the first rule that is true makes the 
prediction. A rule is a conjunction of predicates that predicts 
a probability that the label is true. Fig. 3 gives an example of 
our notation. 

 

rule 1 (90%) 
 A+B 
 C 
rule 2 (5%) 
 D=3 
default (10%) 

Figure 3.  Decision list notation example 

In this example, rule 1 has two predicates. First, the 
consecutive events A followed by B must occur somewhere 
in the sequence of events. Second the event C must occur 
somewhere in the sequence. If these two predicates are true, 
then the decision list gives 90% probability that the label is 1. 
If rule 1 fails, we check rule 2. In this example, rule 2 is true 
if event D is the third to last event in the sequence. If rule 2 is 

 
Figure 2.  Basketball game level difficulty 
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true, then the decision list predicts label 1 with 5% probability. 
The final rule is the default rule. If all the previous rules fail, 
we predict label 1 with 10% probability. 

Both rule list algorithms are Bayesian algorithms that try 
to learn accurate - yet short - decision lists. The FRL algorithm 
has the extra constraint that a rule that is earlier in the list 
should have a higher probability of predicting the label than a 
rule that occurs later in the list. While this extra constraint can 
return a less accurate decision list, it makes the rules easier to 
interpret because many people will only consider the first few 
rules. A major competitor to these algorithms is decision trees. 
Experiments have found that the accuracy of the rule list 
algorithms is comparable to decision trees [8]. Decision lists 
also tend to be easier to understand because they are just a one 
sided subset of decision trees. 

All experiments were performed using a single core of a 
2011 vintage 2.4 GHz processor. The computational time for 
both algorithms, on the problems we studied, was on the order 
of a minute. While BRL does not scale as well on larger 
problems there is active research in improving its 
computational performance [9]. 

B. Supervised Learning 

The first technique we cover is based on supervised 
learning. In supervised learning we have a set of objects, and 
we want to predict labels for these objects. For example, an 
object might be all the events in a session of a game and we 
want to predict if a user will make a purchase during the 
session. In order to learn a prediction model, we take a set of 
training data that consists of already labeled objects and use 
them to induce a classifier. 

Typically, this classifier is used to predict labels for new 
objects. Instead we are focused on creating rules that describe 
the classifier and can be used to understand the data and 
generate triggers (e.g., register event patterns with the 
JumpStart rules processor). These rules can often reveal 
correlations that while reasonable in hindsight are difficult for 
humans to create by inspecting the data. 

We perform three types of experiments based on events 
from the previously described post office application. The 
label for these experiments is based on a purchase event 
enabling the sending of future letters. For each experiment, we 
have a baseline level of performance based on this label. For 
example, out of the set of users we are considering say 25% 
make a purchase. Therefore, a rule that predicts a purchase 
with 25% probability is making a safe baseline prediction. 
Rules that have higher probability point to an informative 
situation where a purchase is more likely than the baseline. 
Rules that have a lower probability point to situations where a 
user is less likely to make a purchase. Note that cases at the 
baseline probability suggest that the user is “on the fence” 
with regard to a purchase. 

A typical use of these algorithms is to run both the BRL 
and FRL multiple times to find interesting decision lists. In 
our experiments, we ran each algorithm twice (reporting here 
on only a subset of results; for the non-reported experiments, 
we get qualitatively similar results). 

The first experiments are based on the initial 30 events 
generated by a user. Our goal is to predict if the user will 

eventually make a purchase. The baseline probability that a 
user makes a purchase is 31%. Fig. 4 gives the results of using 
FRL to generate a decision list. 

 

rule 1 (60%) 
 user_logged_in+compose_new_letter_screen 
 launch_camera 
rule 2 (37%) 
 compose_letter_kb 
default (7%) 

Figure 4.  FRL applied to post office for first 30 events 

In this case, based on the first rule, if right after a user logs 
in to the application the user starts to compose a letter and at 
some point in these initial 30 events the user takes a picture 
then there is a 60% chance that the user will eventually make 
a purchase. If the first rule fails, then rule 2 is about equal to 
the baseline. However, if rule 2 also fails, then there is a good 
chance the user will never make a purchase. This suggests it 
is important to get a user actively creating a letter as soon as 
they start using the application. 

The second experiments predict whether a user will make 
a purchase during a session based on the initial 15 events of 
the session. The baseline probability that a user makes a 
purchase is 25%. Fig. 5 gives the results of using BRL to 
generate a decision list. 

 

rule 1 (2%) 
 1=menu_opened 
rule 2 (68%) 
 letters_billing_appear 
 user_info-user_logged_in 
rule 3 (47%) 
 launch_camera 
rule 4 (11%) 
 kin_pressed_from_menu+menu_closed 
rule 5 (27%) 
 compose_letter_kb 
default (3%) 

Figure 5.  BRL applied to post office for first 15 events of session 

Here we see that if a user opens a menu on the last event 
in our window of 15 events, he is unlikely to make a purchase. 
This rule might be a rare occurrence, but it suggests something 
that might need further study. (We also see this in some non-
reported rule lists.) Next, we see that if a user does billing 
along with logging in right after the start of the session, then 
they are likely to make a purchase. If we reach rule 3, using 
the camera is likely to lead to a purchase as the user is 
probably creating pictures to send with the letters. Finally, if 
we get through all the rules then the user is extremely unlikely 
to make a purchase. 

 

 

Figure 6.  Sliding Window Example 

The third experiment is based on a sliding window over 
the event sequence. The idea is that we want to make a timely 
prediction about whether a user is about to make a purchase. 
We use a window size of 15 events. We want advanced notice 
that the user is going to make a purchase so we don't look for 
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purchase events right after the end of the window. Instead, we 
have a gap of 5 events. To give us more flexibility, we look 
for a purchase that occurs in the 5 events that follow the gap. 
Fig. 6 gives a graphical explanation based on window of size 
5, a gap of size 3 and label of size 5. Because this instance 
generation technique creates a large number of instances that 
don't have a purchase in their label window, we de-skew the 
labels by randomly selecting negative instances to ensure that 
10% of the instances have a purchase label. Fig. 7 gives the 
results of the FRL algorithm, but only reports the first five 
rules. 

 

rule 1 (36%) 
 new_recipient_next_pressed 
 letters_new_next_pressed 
rule 2 (28%) 
 compose_new_letter_screen+compose_letter_kb 
 launch_camera  
rule 3 (26%) 
 confirmation_for_purchase_letters 
 compose_new_letter_screen+compose_letter_kb 
rule 4 (20%) 
 launch_camera+compose_letter_kb 
 compose_new_letter_screen 
rule 5 (19%) 
 new_recepient+compose_letter_kb 
 compose_letter_kb>1 

Figure 7.  FRL applied to post office with sliding window 

All of these rules show that a user in the process of creating 
a letter has a higher probability of making a purchase. This is 
not surprising. However, it is interesting how the ordering of 
the rules can be interpreted as giving insight on the relative 
importance of the various actions. 

What we are lacking with previous FRL example is the 
kind of actions lead to a user not making a purchase. This is a 
result of how FRL builds a decision list with the highest 
probabilities first. To study events that do not lead to a 
purchase, we flip the labels on the problem. This creates a 
decision list where the top rules are more likely to predict that 
the user does not make a purchase. Fig. 8 gives the first five 
rules generated by the FRL algorithm. 

 

rule 1 (0%) 
 menu_opened+units_pressed_from_menu 
 units_pressed_from_menu 
rule 2 (0%) 
 2=menu_closed 
 menu_opened 
rule 3 (0%) 
 1=menu_closed 
 menu_closed 
rule 4 (0%) 
 1=menu_opened 
rule 5 (0%) 
 edit_profile_pressed_from_menu 
 menu_closed+menu_opened 

Figure 8.  FRL applied to post office with sliding window and flipped 

labels 

Here we observe interesting evidence that a user who uses 
the menu is unlikely to make a purchase in the near future. 
This matches our previous result dealing with sessions and 
suggests that any enticement for a user to make a purchase 
should wait until they are done using the menu. 

C. Clustering 

For many applications it is useful to organize similar users 
or sessions. We can automate this task by applying an 
unsupervised clustering algorithm. One problem with 
clustering is that it is difficult to understand the results. In this 
section we give results on using the FRL algorithm to better 
understand clusters and therefore help generate possible event 
patterns that can be used for generating actionable alerts. 

The simplest form of our algorithm is easiest to explain 
with an example. Assume we create three clusters. We use 
these clusters to create three supervised learning problems. 
For each problem the instances in the cluster get a label of 1 
while the instances in other clusters get a label of 0. Now we 
can apply FRL to learn a decision list that concisely describes 
each cluster. We use the FRL algorithm because we want our 
decision list to give preference to the high probability rules 
that describe what examples are in the cluster. 

A further refinement of the algorithm is to add the ability 
to do dynamic hierarchical clustering. By this we mean that 
after the initial clustering one can use the insights provided by 
the rules returned to select clusters to expand. For example, 
assume we want to expand cluster B. We just rerun our simple 
algorithm to create a new clustering and new set of rules just 
using examples from cluster B. We can repeat this process to 
create a clustering tree with rules to explain the various 
clusters. 

We believe our novel technique has many advantages over 
a traditional hierarchical clustering. 

 The decision lists give an understanding of the various 
clusters. This includes how one cluster relates to another 
based on their ancestry. 

 Instead of having to interpret a dendogram and picking 
an appropriate level of granularity, one can use our top 
down dynamic procedure to explore the data. 

 The technique has a computational advantage in that we 
can decide to only explore the interesting part of the data 
to a depth that is informative. 

Next, we give experiments for applying our clustering 
technique to the basketball data. Like many problems, the 
basketball data does not have an obvious label for supervised 
learning, so clustering is the logical approach. Note that 
clustering is also useful with problems amendable to 
supervised learning - such as the post office problem. 

Our FRL based clustering code works with any clustering 
algorithm that returns a hard clustering. (A hard clustering is 
a clustering algorithm that assigns each example to one 
cluster.) We performed experiments with two clustering 
algorithms: k-means [10] and spectral clustering [11]. We 
found that, with our representation, k-means returned more 
meaningful clusters with the added bonus of being much 
faster; k-means only took a minute to build the clustering 
while spectral clustering took 30 minutes. 

For our experiments, we use the same features as 
described in the start of Section V with the following 
modifications. First, we removed the features that represent 
the last three events in the sequence. These features are not 
needed as there is no special significance to the last events. 
Second, we added a feature called Short for any session that 
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has less than four events. Based on an early analysis using our 
clustering technique, we found this useful to allow the 
clustering to identify the large number of short sessions in our 
data. Research shows that many users only try an application 
once before uninstalling potentially creating many short 
sessions.  

Our experiments are based on clustering sessions. Using 
sessions can be useful for a range of applications. For 
example, one might want to understand users based on how 
they transition from various session types. For example, a user 
who continually returns to the tutorial might need extra 
assistance in using the app. 

Fig. 9 show the results of generating two clusters for the 
basketball data. We have modified our decision list output to 
include information on the cluster and the number examples 
that are covered by the individual rules. As can be seen in the 
output, cluster 0 deals primarily with the game's tutorial while 
cluster 1 deals largely with the sessions that are very short. 

 

Cluster 0 has 805 out of 2746 examples 
rule 1 (100%) 799 examples 

 tutorial_sr_for_power_completed 
 tutorial_drag_left_completed 

rule 2 (86%) 7 examples 
 tutorial_sr_for_power 

default (0%) 1940 examples 
 
Cluster 1 has 1941 out of 2746 examples 

rule 1 (100%) 1219 
 Short 

rule 2 (95%) 194 
 user_info+ pvp_pressed 

rule 3 (78%) 438 
 user_info+story_mode_pressed 

rule 4 (47%) 104 
 me_pressed 

default (18%) 791.0 

Figure 9.  Top level FRL clusters for basketball 

Based on this analysis, we decided that cluster 0 is more 
interesting. We expand cluster 0 by creating two new clusters 
only using the examples from cluster 0. We show these 
decision lists in Fig. 10. Cluster 0-0 deals with the tutorial, but 
cluster 0-1 is interesting in that it is primarily deals with users 
who have started playing the game and completed some of the 
initial levels. These can be sessions where the user goes 
straight from the tutorial to playing the game. 

VI. CONCLUSION 

In this paper, we discussed the machine learning 
techniques used by the JumpStart real-time event analytics 
service in the context of two example mobile applications. 
JumpStart applies supervised and unsupervised machine 
learning techniques to application event streams for 
identifying users exhibiting similar application behavior and 
discovering event patterns that are strongly correlated with 
specific user activities within an application. In addition, we 
presented a novel approach that uses the Falling Rule List 
algorithm to concisely describe clusters generated by 
unsupervised machine learning algorithms. Cluster 
descriptions via decision lists enable hierarchical clustering by 
creating new clusters from existing ones. 

Machine learning enables JumpStart customers to gain 
deep insights into how users interact with their applications 
and discover user behaviors that are correlated with specific 
application actions. These capabilities go far beyond the 
computed metrics and aggregate user actions offered by 
existing mobile analytics solutions. 

 

Cluster 0-0 has 420 out of 805 examples 
rule 1 (87%) 79 

 tutorial_sr_power+ tutorial_sr_power_completed 
 missed_shot_0+tutorial_completed 

default (48%) 726 
 
Cluster 0-1 has 385 out of 805 examples 

rule 1 (99%) 323 
 missed_shot_1+shot_punk 
 1_level_0_completed 

rule 2 (96%) 24 
 1_level_1_completed 
 shot_made 

rule 3 (39%) 103 
 missed_shot_0+shot_punk 
 tutorial_pull_back_to_aim_at_target 

default (0%) 355 

Figure 10.  Second level FRL clusters for basketball 
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