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Abstract—Lane detection is crucial for an Autonomous Driving
System (ADS). While traditional lane detection methods have
limitations, machine learning has shown promise, though many
deep learning networks struggle with variable lane detection.
High Definition (HD) Maps provide comprehensive road infor-
mation but are expensive and inflexible. This research proposes
eLaneNet, a flexible, cost-effective, and robust lane detection
system that adapts to diverse driving scenarios. By incorporating
the number of lanes into the network, we demonstrate improved
adaptability and potential advancements in autonomous driving
technologies. We also introduce new evaluation metrics, namely,
capacity, lost capacity and unsafe driving measure to assess
lane detection techniques more comprehensively. We also propose
evaluation of lane detection techniques by using a lane abstraction
approach instead of the traditional line abstraction method.
Through extensive evaluation and comparisons, we showcase the
superiority of eLaneNet over LaneNet in detecting lanes. Using
the TuSimple dataset, we show that eLaneNet performs better
than LaneNet in detecting lanes. This research contributes to
bridging the gap between ML techniques and HD maps, offering
a viable solution for effective and efficient lane detection in an
ADS.

Keywords—Convolutional Neural Network; Enhanced LaneNet;
lane detection; ELaneNet; semantic segmentation; autonomous
driving; knowledge guided machine learning.

I. INTRODUCTION

Astonishingly, 94% of road accidents are caused by human
error, highlighting the potential for significant reduction in
human error [1]. Addressing this issue, an Autonomous Driv-
ing System (ADS) emerges as a possible solution to decrease
human error. The anticipated benefits of autonomous vehicles
include crash prevention, reduced travel times, improved fuel
efficiency, and parking benefits, with estimated savings of up
to $2000 per year per autonomous vehicle and potentially
reaching nearly $4000 when considering comprehensive crash
costs [2].

Lane detection is a crucial vision problem in the context of
autonomous vehicles and Advanced Driver Assistance Systems
(ADAS). It involves the identification and tracking of lane
markings on the road to determine the vehicle’s position within
its lane. In order to ensure safe and accurate travel on roads
and highways, autonomous driving systems heavily depend
on accurately detecting lane lines. The ultimate aim is to
achieve accuracy in locating and tracking lane markings, even
in challenging environmental conditions.

There is no shortage of methods, which have been suggested
for lane detection [3]–[5]. Traditional methods which rely on
handcrafted features and heuristics were initially proposed [6].
In challenging scenarios, including adverse weather condi-
tions, occlusions from other vehicles, and complex urban
road networks, traditional lane detection techniques often fail,
highlighting the imperative for robust and adaptable solutions
as emphasized in [6].

With the advent of machine learning and deep learning
techniques, researchers have explored their application to the
lane detection problem. However, numerous existing models
have limitations when it comes to detecting an arbitrary
number of lanes. This is because they are typically designed
to detect a maximum of ‘n’ lanes, where ‘n’ is a specific,
predefined number. Although deep learning networks such as
LaneNet [6], can detect arbitrary number of lanes, there is
room for improvement in this area.

Another approach to solving lane detection involves the
use of HD maps. The authors in study [7] define an HD
map as a map which contains all critical static properties (for
example, roads, buildings, traffic lights, and road markings)
of the road/environment necessary for autonomous driving,
including the object that sensors cannot appropriately detect
due to occlusion. HD maps, while an attractive solution,
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are not entirely free of challenges. In particular, there is a
prohibitive cost associated with producing and modifying HD
maps.

In this paper, we seek to enhance lane detection accuracy
by leveraging additional data while avoiding the prohibitive
costs associated with HD maps. Ultimately, we aim to create a
robust and adaptable lane detection system that can effectively
navigate complex driving scenarios and contribute to the
advancement of autonomous driving technologies.

To establish a reliable baseline for lane detection experi-
ments, LaneNet [6] was chosen. State-of-the-art lane detection
networks, such as LaneNet, take only the driving scene as input
and produce an output representing the detected lane lines.
However, other information on road systems is usually readily
available. For example, some governments have information
on road width and the number of lanes on the road on their
website. We decided to explore the impact of readily available
information, such as the number of lanes (NoL), on the impact
of lane detection networks. We chose the NoL as the input
parameter because the NoL on the road is usually constant
for a long time. To do this, we modified an existing lane
detection network, LaneNet, to incorporate the input image
and the number of lanes on the road. We call this modified
network eLaneNet. LaneNet and eLaneNet were evaluated
on the TuSimple dataset to compare their performance. New
metrics were also introduced to evaluate the performance of
lane detection networks because of the limitations of existing
metrics.

The contributions introduced in this paper are summarized
as follows:

(C1) By integrating the NoL associated with a driving scene
into the lane detection process, we propose eLaneNet as
a new approach to address lane detection challenges.

(C2) Due to the limitations of conventional line abstracting
methods, we propose that a lane abstracting method
should be used to assess the performance of lane detection
algorithms. In addition, we introduce capacity, lost capac-
ity and unsafe driving measures as performance metrics
since they are more specific to lane detection than general
metrics, such as recall.

Experiments comparing eLaneNet to LaneNet across met-
rics such as capacity, lost capacity, unsafe driving measure, and
accuracy consistently showed eLaneNet’s superior effective-
ness. This was observed in both the lane and line abstraction
approaches, where entities for metric calculations were lanes
and lane lines, respectively.

The structure of this paper is outlined as follows. Section II
provides a review of related work.In Section III, we discuss
the original LaneNet implementation and then delve into
its enhanced version, eLaneNet, explaining the introduced
modifications. Section IV of the paper introduces the new
evaluation metrics proposed to assess the performance of
lane detection systems. In Section V, we quantitatively and
visually compare the performance of LaneNet and eLaneNet.
Section VI concludes our work and briefly discusses possible
future work.

II. RELATED WORK

In this section, we provide a comprehensive overview of
pertinent literature and frequently employed datasets pertain-
ing to Lane Detection in Autonomous Vehicles.

A. Lane Detection Methods

Various studies [8]–[11] have outlined diverse approaches
for detecting and predicting lane lines.These methods can be
generally classified into two categories: Traditional Methods
and Deep Learning Methods.

Traditional Methods: In the era predating the rise of
deep learning, lane detection relied on conventional geometric
modeling techniques, such as line detection or fitting. The
lane detection process usually involved four main stages:
image preprocessing, feature extraction, model fitting, and
lane tracking. Feature extraction encompasses the utilization
of attributes, such as texture, gradients, and colors to discern
essential features crucial for the identification of lane lines.
Image preprocessing involved tasks such as converting colored
RGB images to grayscale, reducing noise, selecting the Region
of Interest (ROI), and conducting edge detection [12].

ROI selection involves vanishing point detection, perspec-
tive analysis with a projective model, and sub-sampling [13].
The idea behind using the vanishing point is that a correctly
estimated vanishing point provides a strong clue about the
region to localize. The authors in study [14] tackled road
detection, by estimation of the vanishing point associated
with the main (straight) part of the road, followed by the
segmentation of the corresponding road area based on the
detected vanishing point. Perspective analysis with a projective
model, leverages the concept that parallel lane markings within
the real-world plane converge at a vanishing point within the
image plane. This approach frequently employs perspective
analysis to refine the scope of detection to a precise region,
which is then identified as the ROI. Through the establishment
of a cohesive projection that interconnects the image plane,
real-world plane, and camera plane, the process of extracting
the ROI is streamlined. In study [15], a perspective projection
model connects the camera and road plane, projecting lane
marker edge points onto a road-space grid. The central lane
line is defined by points on the grid’s upper and lower edges,
with each grid segment described by its offset from the lower-
left point and the horizontal deviation between endpoints. In
subsampling either a predefined or an adaptive region of the
image is used to determine the ROI. Examples are given
in [16].

Edge detection operators can be classified into Gradient and
Laplacian operators, although there are additional operators
that do not strictly adhere to these categories [17]. The
gradient method detects edges by looking for the maximum
and minimum in the first derivative of the image. The Lapla-
cian method uses zero crossings in the second derivative
of the image to find edges. Gradient based edge detectors
include Roberts, Sobel and Prewitt operators while Laplacian
based edge detectors include Marrs-Hildreth edge detector.
The authors in study [17] studied various edge detectors and
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concluded that under noisy conditions, Canny, LoG, Sobel,
Prewitt, Roberts’s exhibited better performance, respectively.
They also concluded that Canny’s edge detection algorithm
has a better performance compared to the others on images.

Generally, two kinds of features exist for extracting lane
lines: colors and edges [18]. Lane detection techniques can be
grouped into edge-based methods, color-based methods and
hybrid (edge and color) methods [13]. The Hough transform
and its variants, such as, Adaptive Hough Transform and
Probablistic Hough Transform are the most popular edge-
based methods [13]. Steerable filter is also an edge-based
technique that has been applied in many research [19] [20]
[21] [22] with good results especially when road markings
exhibit a clear and uniformly smooth appearance. Color-based
methods have the limitation of being influenced by lighting
and hence are not widely used by researchers. An example of
a colour based method, HSILMD, was proposed by the authors
in [23]. In HSILMD, full-color images are transformed into
HSI color representation within a region of interest (ROI) to
detect the road surface on the host vehicle. Using the Fuzzy
c-Means algorithm, intensity distribution differences within
an ROI row of pixels are recorded and clustered, enabling
lane marking detection via selected intensity and saturation
thresholds. Hybrid methods usually combine width, length,
and location of lines with gray levels and brightness values
of pixels, which improve the extraction results. An example is
given in [24].

Images captured by vehicle cameras are captured in a con-
tinuous sequence. This sequential nature of image acquisition
allows for an overlap between lanes detected in the current
frame and those from the preceding frame. By leveraging
information from both the current and previous frames, we can
anticipate lane positions and track their evolution over time,
enabling a more robust and accurate lane tracking process.
Common trackers include Kalman filters and Particle filters
[12].

Deep-learning-based methods: Deep learning lane detec-
tion methods can be grouped into: encoder-decoder CNN,
Fully-Convolutional Neural (FCN) networks with optimization
algorithms, CNN+RNN, and GAN model [25].

1) Encoder-decoder CNN: The encoder-decoder CNN ar-
chitecture is frequently employed in semantic segmentation
tasks [25]. Two examples worth discussing are LaneNet [6]
and IBN-Net [26]. In the original LaneNet, which we would
improve upon in this paper, an encoder-decoder network was
used for binary and instance segmentation. Binary segmenta-
tion consists of segmenting the pixels into lanes and back-
ground. Instance segmentation consists of generating embed-
dings for lane pixels. IBN-Net improves on LaneNet by using
an attention-based encoder-decoder network for lane detection.
IBN-Net’s encoder-decoder network also generates a binary
and instance embedding. The difference between IBN-Net and
LaneNet in the encoder-decoder network is that the encoder
and decoder are connected by a self-attention layer.

2) FCN with optimization algorithms: In this architecture,
lane detection, lane-marking identification, and vanishing-

point extraction are achieved using optimization algo-
rithms [25]. Commonly used optimization algorithms include
clustering and subsampling. The architecture employs the
concept of a vanishing point to guide the predictions of
lane markings and road regions. VPGNet [27] leverages the
vanishing point as a guiding factor and optimizes the joint
prediction of lane information and road layout. This results in
improved accuracy and robustness in handling complex road
scenes. Deep learning methods for lane detection involving
clustering is dominated by semantic segmentation algorithms.
Image pixels are classified by the deep neural network, and the
lane line information is extracted by clustering and other post-
processing methods. An example of a deep learning method
involving clustering is LaneNet.

3) CNN+RNN: Lane detection methods employing
CNN+RNN architectures operate on the premise that the
combination of Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) allows for the utilization
of spatial and sequential information present in road scenes
respectively. Through a series of convolutional and pooling
layers, CNNs are adept at extracting progressively abstract
features, which are crucial for accurate lane detection.
However, the analysis of road scenes necessitates the
consideration of not only spatial features but also the
evolution of lane configurations over time. RNNs excel at
modeling sequential data by incorporating memory of prior
inputs, thus capturing the dynamic nature of lane movements
over frames. The unified CNN+RNN architecture therefore
acquires the capacity to understand both immediate lane
contexts and the evolution of the lane over time [25] [28].
This can be helpful in estimating the positions of lanes that
have been obscured in the current driving scene.

4) GAN model: Given that certain lane detection methods
rely on semantic segmentation, and given that Generative Ad-
versarial Networks (GANs) are equipped to perform semantic
segmentation tasks, GANs can also serve a purpose in lane
detection applications. Two loss functions are used to guide the
process of semantic segmentation in GANs. The generator loss
function is responsible for ensuring that the GAN produces
correct predictions while the discriminator loss term is more
concerned with the overall image being segmented. It ensures
that the individual pixel-wise predictions are consistent with
each other. Thus, the discriminator evaluates the authenticity
and quality of the predictions generated by the generator in a
GAN. Examples of this approach are given in [29]–[31].

B. Datasets

Some common lane detection datasets include: TuSimple,
BDD100K and Unsupervised LLAMAS.

1) TuSimple dataset - The TuSimple dataset was obtained
from US highways and display a range of weather conditions.
It consists of 358 images for validation, 2,782 images for
testing and 3,626 for training, totalling 6,408 images.

2) BDD100K dataset - This dataset is drawn from more
than 50,000 rides across New York and the San Francisco
Bay Area city from streets, residential areas, and highways.
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It contains 100K driving videos, each lasting 40 seconds.
The videos are split into training (70K), validation (10K) and
testing (20K) sets. The dataset is made of 720p high resolution
images, with a frame rate of 30 fps and GPS/IMU recordings
to preserve the driving trajectories. Ten tasks are associated
with the dataset: image tagging, lane detection, drivable area
segmentation, road object detection, semantic segmentation,
instance segmentation, multi-object detection tracking, multi-
object segmentation tracking, domain adaptation, and imitation
learning.

3) Unsupervised LLAMAS dataset - Comprising of 100,042
labeled lane marker images, the unsupervised LLAMAS
dataset stems from approximately 350 kilometers of recorded
drives. The image labels are automatically generated, first by
projecting markers into camera images, and then through fur-
ther optimization to enhance label accuracy. The dataset anno-
tations include pixel-level annotations for dashed lane markers,
as well as the 3D and image space endpoints for individual
markers, along with lane associations for each marker. The
challenges presented within this dataset encompass a pixel-
level binary segmentation problem, a segmentation problem
intertwined with lane association, and a lane estimation task.

III. METHODOLOGY

In this section, we present the well-established LaneNet
network. Subsequently, we introduce the enhanced version of
the LaneNet network, eLaneNet.

A. LaneNet

LaneNet is structured as a two-step lane detection network
as illustrated in Figure 1. Two-step lane detection methods are
composed of a feature extracting step and a post-processing
step [32]. LaneNet’s feature extraction stage comprises the use
of deep learning techniques to segment an image into two
categories: binary segmentation and instance segmentation.
The post-processing phase involves clustering, which groups
lane pixels into clusters. Lane pixels belonging to the same
lane will be in the same cluster. Finally, the fitting operation
employs mathematical models to precisely define the trajectory
of each lane, further enhancing the accuracy of lane boundary
representation. The details of each part of LaneNet’s architec-
ture are explained below. Similar processes in both eLaneNet
and LaneNet have the same number in Figure 1 and Figure 2.

Input Image (input 1) and Resize Image (process 2): In
the image processing pipeline, input images are resized from
their original resolution of αm × βn × c pixels to a reduced
resolution of (m×n×c), where αm, βn,m, n, c ∈ N. Resizing
the images allows for faster computation and accommodates
GPU and memory constraints.

Shared Encoder (process 3): LaneNet’s shared encoder
architecture is based on the ENet encoder-decoder network
[33]. Two modifications to ENet’s architecture was introduced
in LaneNet’s shared encoder. Firstly, the output of ENet was
adapted to create a two-branched network, accommodating
both binary segmentation and instance segmentation branches

within LaneNet. Secondly, in LaneNet, only the first two stages
(stages 1 and 2) of ENet’s encoder are shared between the two
branches, while the full ENet decoder (stages 4 and 5) serves
as the backbone for each separate branch. This means that
stage 3 of ENet’s encoder is not used in LaneNet.

The binary segmentation branch produces a one-channel
image while the instance segmentation branch produces an N-
channel where N represents the embedding dimension. In this
context, a k-channel image indicates that information about
a specific attribute of a pixel is stored in k-dimensions. As
an example, consider a color image with three channels: red,
green, and blue. Each channel encodes the intensity of its
respective color at each pixel, allowing for the representation
of a wide spectrum of colors in the image. In the binary seg-
mentation map of the binary segmentation branch, an output
of 1 indicates that a pixel belongs to a lane instance while an
output of 0 indicates that the pixel belongs to a background. In
the N-channel image produced by the instance segmentation
branch, an embedding dimension encodes information about
which lane instance a pixel belongs to.

Segmentation Branch (process 5): The segmentation
branch of the network is designed to produce a binary seg-
mentation map, which classifies the pixels into either lane
or background categories. The class weighted cross entropy
loss [33] is used to account for imbalance between the lane
pixels and the background pixels. As stated earlier, the output
of the segmentation branch is a binary segmentation map
which classifies pixels into either lane or background. Since
the background pixels far exceed the lane pixels, there is an
imbalance between the lane pixels and the background pixels.
To address this, the class weighted cross entropy loss [33] is
used to account for the imbalance between the lane pixels and
the background pixels.

Embedding Branch (process 4): Embeddings produced by
the embedding branch have the characteristic that lane pixels
belonging to the same lane have similar embeddings while lane
pixels belonging to different lanes have different embeddings.
This phenomenon is achieved by using the clustering loss func-
tion in (1). In (1), the Lv term minimizes the distance between
pixel embeddings belonging to the same lane. Another way to
interpret this phenomenon is that the Lv term is a variance
term that applies a pull force on each embedding towards the
mean embedding of pixels belonging to that lane.

In order to ensure, we can distinguish between lane pixels
belonging to different lanes, a distance term (Ld) is introduced.
The Ld term pushes the cluster centers away from each other.
In this context, a cluster center refers to the mean embedding
of pixels belonging to a particular lane. Both terms are hinged.
That is, the Lv term activates when an embedding is at a
distance of more than δv from its cluster center. The pushing
force, Ld between the cluster centers only activates when the
centers are at a distance less than δd from each other. In this
context, δd is the minimum distance allowed between cluster
centers while δv is the maximum distance allowed between
an embedding and the mean embedding of its corresponding
cluster. Let K denote the number of clusters (lanes), Nk the
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Figure 1. LaneNet architecture [6].

Figure 2. ELaneNet architecture.

number of elements in cluster k where 1 ≤ k ≤ K, xi is the
ith pixel embedding in cluster k, µk the embedding of cluster
k, ∥·∥ the L2 distance, and [x]+ = max(0, x) the hinge, the
total loss L is equal to Lv + Ld. The quantities Lv and Ld

are defined in (1).


Lv = 1

K

∑K
k=1

1
Nk

∑Nk

i=1 [∥µk − xi∥ − δv]
2
+

Ld = 1
K(K−1)

∑K
kA=1

∑K
kB=1
kA ̸=kB

[δd − ∥µkA
− µkB

∥]2+
(1)

The LaneNet clustering process is performed iteratively
with the loss function in (1) until the network converges.
Upon convergence of the network, clusters will emerge in
the embeddings of lane pixels. These clusters will exhibit a

separation distance larger than δd from adjacent clusters, with
each cluster possessing a radius smaller than δv .

Product (process 6) and Clustering (process 7): In the
image’s binary segmentation map, 0s represent background
pixels, while 1s represent lane pixels. Hence, to specifically
extract embeddings related to the lane pixels, we multiply the
results from both the embedding and segmentation branches.
This step effectively eliminates all non-lane pixels, leaving us
exclusively with embeddings associated with the lanes. The
subsequent application of clustering techniques helps identify
distinct lane pixels corresponding to a specific lane instance.
The LaneNet clustering process is executed iteratively, with
the condition δd > 6δv . This condition mandates that the
relationship δd > 6δv is satisfied by the parameters δd and
δv .
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A two step approach is used when selecting a lane em-
bedding to threshold on. First, the selected point is shifted
closer to the cluster center using the mean shift algorithm. This
step helps to refine the initial selection. After this shift, the
thresholding process is applied, which results in the accurate
identification of lane embeddings within the specified radius.
This addresses the concern of accidently selecting an outlier
lane embedding to threshold on.

Lane Fitting (process 8) and Splines (output 9): The
process of fitting the lane in LaneNet is described as follows:
First, assume we have matrix H which is the perspective
transform for converting from the driving scene to bird’s eye
view (BEV).

Assume we have a lane pixel pi = [xi, yi, 1]
T ∈ P where P

is the set of pixels belonging to a particular lane. To transform
the pixel to BEV, we use H to perform the operation Hpi

where H is the perspective transformation matrix and p′
i =

[x′
i, y

′
i, 1]

T ∈ P′, the transformed pixels. After transforming
the pixels to BEV, the least squares algorithm is then used to
fit a low order polynomial,f(y′), through P′.

To evaluate the x-value, x∗
i , of a lane at a given y-coordinate

yi, the point pi = [−, yi, 1]T is first transformed to BEV using
the expression p′

i = Hpi = [−, y′i, 1]T . Since the current x-
value in point pi is irrelevant, we represent it with a -. After
transformation, we use the low order polynomial with which
we fitted the lane curve to evaluate the x-value of a lane at the
given y position. This step is shown as follows: x′∗

i = f(y′i).
We then reproject the point from BEV back to the original
image space using p∗

i = H−1p′∗
i where H−1 is the inverse

perspective transformation matrix. Using this approach, we can
evaluate the x-values at different y-positions.

In LaneNet, the perspective transform matrix, H, is gotten
by training a neural network called HNet. In converting the
image from Bird’s Eye View (BEV) back to the original
image space, we utilized the equation p∗

i = H−1p′∗
i . However,

while implementing H-Net, we encountered an issue during its
training phase where non-invertible matrices were outputted.
This complication prevented the conversion from BEV to the
original space, impeding loss calculation and leading to the
suspension of network training. To address this obstacle, we
chose to skip the lane fitting step altogether. Despite this
omission, both LaneNet and eLaneNet exhibited satisfactory
performance.

B. Improved LaneNet

ELaneNet is enhanced by a simple modification to
LaneNet’s architecture in step 1 and concatenating it with the
resized image in step 2, while keeping the rest of the network
unchanged. To augment the input image with the number
of lanes (NoL), we first performed one-hot encoding on the
lane count. The resulting one-hot encoded representation was
then passed through a fully connected (FC) layer, which
processed the lane information and produced an output ready
for reshaping. This FC layer establishes connections between
every input neuron and every output neuron. After reshaping,
the output from the FC layer was concatenated with the

original image. The resulting combined input served as the
input for the LaneNet model, giving rise to a modified network
known as eLaneNet.

Assume we have an initial image with dimensions 1280×
720 × 3 (αm width × βn height × c channels) and want to
rescale it to a target size of 512 × 256 × 3 (m width ×
n height × c channels). There are two different approaches
with regards to LaneNet and eLaneNet.

In LaneNet, the process of rescaling is straightforward. We
directly rescale the image to the target size of 512× 256× 3.

On the other hand, the eLaneNet approach takes a slightly
different route. The image is first rescaled to 512 × 255 × 3
(m width × (n − 1) height × c channels). Additionally, the
number of lanes is one-hot encoded such that the possible
number of lanes ranging from 1 to m · c has a unique
representation. To represent a lane uniquely, each position in
the array corresponds to the number of lanes associated with
the driving scene. Since there is only one number of lanes
associated with a driving scene, one position in the array is
“hot” (set to 1) while the others are “cold” (set to 0). For
example, 1 lane can be encoded as [1, 0, 0, . . . , 0], 2 lanes
can be encoded as [0, 1, 0, . . . , 0], 3 lanes can be encoded as
[0, 0, 1, . . . , 0] and m·c lanes can be encoded as [0, 0, 0, . . . , 1].

This encoded lane information undergoes further process-
ing: it passes through a fully connected layer and is reshaped
into a tensor of size 512 × 1 × 3 (m width × 1 height ×
c channels). The next step involves combining this reshaped
lane information with the resized image of 512 × 255 × 3.
The concatenation of these two tensors results in an output
tensor of size 512×256×3, resembling the shape used in the
LaneNet approach. This concatenated tensor, which includes
both the image and the encoded lane information, serves as
the input for the LaneNet network.

Figure 2 illustrates the eLaneNet architecture, while Figure
3 and Figure 4 provide a detailed depiction of the process
involved in merging the inputs. The algorithm in Figure 4 first
resizes the input image, then one-hot encodes the lane infor-
mation, extracts lane information using a Fully Convolutional
Network (FCN), reshapes the output, and finally concatenates
it with the resized image to produce the output image with
added lane information.

Figure 3. Concatenating image with lanes.
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Algorithm 1 Add Lane Information

Input:
I: Input image (αm× βn× c)
NoL: Number of Lanes where NoL > 0
m: Width of the target image
c: Number of channels in input image
n: Height of the target image

Output:
outImg: Image with added lane information (m× n× c)

1: procedure
2: // Resize the input image to m× (n− 1)× c
3: resizedImg ← ResizeImage(I, (m, n-1, c))
4: // One-hot encode lane information
5: laneInfo← EncodeLaneInformation(NoL)
6: // Extract lane information using FCN network
7: extractedInfo← FCN(laneInfo, size=mc)
8: // Reshape output
9: laneInfo← Reshape(extractedInfo, (m, 1, c))

10: // Concatenate lane information with the image
11: outImg ← Concatenate(resizedImg, laneInfo)
12: return outImg
13: end procedure

Figure 4. Algorithm for adding lane information to an image.

IV. PERFORMANCE METRICS

Within the LaneNet framework [6], the evaluation of lane
detection accuracy, represented as the average correct number
of points per image, is conducted using the formula outlined
in (2).

Accuracy =
∑
im

Cim

Sim
(2)

with im denoting a driving scene in the dataset, Cim the total
number of correctly predicted points in im and Sim the total
number of ground-truth points in im. A correct point is defined
as one where the disparity between the predicted point and the
ground truth falls below a specific threshold. Equations (3) and
(4) provide the formulas for computing the false positive and
false negative scores, respectively.

False Positive Score (FPSl) =
F l
pred

N l
pred

(3)

False Negative Score (FNSl) =
M l

pred

N l
gt

(4)

with F l
pred denoting the total number of falsely predicted lane

lines, N l
pred denoting the total number of correctly predicted

lane lines, M l
pred denoting the total number of missed ground-

truth lane lines and N l
gt denoting the total number of all

ground-truth lane lines.

As described in contribution C2 of Section I, we propose
the introduction of a novel performance metric referred to as
the capacity of the lane detection system. The mathematical
expression for capacity is provided in (5). To elucidate this
concept, consider a scenario with two lanes on the road. When
the lane detection system accurately identifies both lanes, it
indicates that more ADSs can traverse the road smoothly.
Essentially, this implies that the lane detection system exhibits
a higher capacity by facilitating the full utilization of available
lanes, thereby enhancing overall traffic flow efficiency.

On the flip side, when the system accurately identifies
only one lane but fails to detect the other, it suggests the
possibility of confining all vehicles to a sole lane on the road.
This limitation could result in less-than-optimal utilization
of the road, potentially causing traffic congestion. In these
scenarios, the lane detection system is considered to have
reduced capacity as it cannot efficiently utilize all available
lanes, consequently hampering overall traffic efficiency. We
therefore define the term “capacity” as the system’s ability
to detect and effectively utilize existing lane markings/lanes
on the road. Conversely, lost capacity refers to the system’s
inability to effectively utilize existing lane markings/ lanes on
the road.

We introduce a novel metric called the unsafe driving
measure, alongside capacity and lost capacity considerations.
The unsafe driving measure assesses the lane detection sys-
tem’s potential to yield inaccurate lane predictions, thereby
influencing drivers to make unsafe decisions. False positives
generated by the system wrongly indicate the presence of a
lane. This misinformation may lead the ADS to perceive a road
section as a legitimate lane, prompting an autonomous vehicle
to attempt unsafe maneuvers. The corresponding expressions
for capacity, lost capacity, and the unsafe driving measure are
provided in (5), (6), and (7), respectively.

Capacityl =
TP l

TP l + FN l
(5)

Lost Capacityl = 1− Capacityl (6)

Unsafe Driving Measurel =
FP l

TP l + FN l
(7)

with TP l representing the total count of accurately predicted
lanes, FP l denoting the total count of erroneously predicted
lanes, and FN l indicating the total count of missed ground-
truth lanes. It’s important to highlight the similarity between
the expressions for capacity and the expressions for recall and
false positive score, respectively.

When conceptualizing a lane as a mere line, it may lack the
practical details necessary for effective use. Picture a scenario
where the network outputs only a singular lane line. In this
scenario, crucial information about the lane’s boundaries is
missing, making it difficult for a vehicle to ascertain appro-
priate passing areas. To overcome this limitation, we propose
a more advanced lane abstraction approach.
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In the proposed lane abstraction approach, lanes are con-
sidered as distinct entities as opposed to individual lane
lines. This method proves beneficial by imparting a clearer
understanding of the road configuration, enabling vehicles to
make more informed decisions regarding lane changes and
secure navigation.

To better align with the lane abstraction approach, adjust-
ments were implemented in the following equations to account
for lanes rather than lines. The expressions for the false
positive score and false negative score in the lane abstraction
approach are presented in Equations (8) and (9), respectively.

FPSL =
FL
pred

NL
pred

(8)

FNSL =
ML

pred

NL
gt

(9)

with FL
pred as the count of incorrectly predicted lanes, NL

pred

as the total number of predicted lanes, ML
pred as the count

of missed ground-truth lanes, and NL
gt as the total number

of ground-truth lanes. The formulations for capacity, lost
capacity, and the unsafe driving measure in the lane abstraction
approach are provided in (10), (11), and (12), respectively:

CapacityL =
TPL

TPL + FNL
(10)

Lost CapacityL = 1− CapacityL (11)

Unsafe Driving Measure =
FPL

TPL + FNL
(12)

with TPL denoting the total count of accurately predicted
lanes, FPL representing the overall count of incorrectly
predicted lanes, and FNL denoting the total count of ground-
truth lanes that were missed.

V. EXPERIMENTS AND RESULTS

This section extensively explores experiments comparing
LaneNet and eLaneNet. A thorough analysis of the results
supports the claim that eLaneNet outperform LaneNet, offer-
ing valuable insights into its enhanced performance.

A. Setup

LaneNet and Improved LaneNet:The TuSimple dataset
was utilized for training, and both networks were trained with
an embedding dimension (N) of 4. Additionally, δv was set
to 0.5, and δd was set to 3. The images underwent rescaling
to 512× 256. The training of the network involved using the
Adam optimizer with a batch size of 32 and a learning rate of
5e-4 until convergence.

B. Performance and comparison
Quantitative Analysis: The results for the network using

the line abstraction approach is given in Table I while the
results for the lane abstraction approach is given in Table II.

Line Abstraction In the realm of line abstraction, the com-
parison between eLaneNet and LaneNet reveals that eLaneNet
surpasses LaneNet across various performance metrics, es-
tablishing a subtle yet significant advantage of eLaneNet
over LaneNet. The prowess of eLaneNet becomes particularly
evident in its capacity to mitigate both false positives and
false negatives, ultimately resulting in a higher capacity for
lane detection, and an accuracy of 93.1%. This highlights
eLaneNet’s superior ability to accurately identify existing lane
markings and effectively accommodate vehicles in all lanes,
thereby minimizing instances of lost capacity on the road.

One of the noteworthy strengths of eLaneNet lies in its
exceptional reduction of false positives, with a score of 13.9%,
as opposed to LaneNet’s 23.0%. This discrepancy underscores
eLaneNet’s effectiveness in minimizing the likelihood of erro-
neously identifying non-existent lanes as real. In the context of
an ADS that leverages eLaneNet, this translates to safer and
more reliable driving maneuvers. The reduced false positive
rate implies a decreased risk of the system misinterpreting
irrelevant features as valid lane markings, contributing to
enhanced precision and reliability in autonomous navigation.

In essence, the comparative analysis demonstrates that
eLaneNet not only outperforms LaneNet in terms of overall
accuracy but also excels in specific aspects crucial for robust
lane detection. The higher capacity and lower unsafe driving
measure collectively underscore eLaneNet’s advanced capabil-
ities in identifying and interpreting lane information, making
it a favorable choice for applications demanding precision and
reliability in autonomous driving scenarios.

Lane Abstraction In the comparison between eLaneNet and
LaneNet, the focus was on evaluating various metrics that
are crucial for assessing the performance of lane detection
systems. Unlike traditional approaches that assess metrics
based on individual lines, this evaluation considered a more
comprehensive approach by analyzing metrics at the level of
entire lanes. The results, presented in Table I, shed light on the
superiority of eLaneNet over LaneNet in several key aspects.

Firstly, the metric of used capacity, representing the accu-
racy of identifying lanes, was found to be significantly higher
for eLaneNet (87.5%) compared to LaneNet (80.4%). This
indicates that eLaneNet is more proficient at recognizing and
delineating lanes, contributing to a more accurate representa-
tion of the road environment.

Moreover, the assessment of lost capacity, which reflects
instances where the system fails to identify lanes correctly,
also favored eLaneNet. The lower lost capacity of eLaneNet
suggests that it experiences fewer instances of missing lanes
compared to LaneNet.

In terms of safety, the metric of unsafe driving measure
was introduced, and eLaneNet demonstrated a notably lower
score (27.3%) compared to LaneNet (38.5%). This implies that
an Autonomous Driving System (ADS) utilizing eLaneNet is
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TABLE I. LANE ABSTRACTION

NETWORK USED CAPACITY (RECALL) LOST CAPACITY (FN SCORE) UNSAFE DRIV. MEASURE (FPS SCORE)
ELaneNet 87.5 % 12.5 % 27.3 %
LaneNet 80.4 % 19.6 % 38.5 %

TABLE II. LINE ABSTRACTION

NETWORK USED CAP (RECALL) LOST CAPACITY (FN SCORE) UNSAFE DRIVING MEASURE ACC
ELaneNet 93.1 % 6.9 % 13.9 % 94.5 %
LaneNet 88.9 % 11.1 % 23.0 % 92.3 %

(a) Ground truth (b) LaneNet detects false positive (c) ELaneNet does not detect false positive

(d) Ground truth (e) LaneNet detects false positive (f) ELaneNet does not detect false positive

(g) Ground truth (h) LaneNet misses a lane (i) ELaneNet identifies one missed lane

Figure 5. Lane Detection in LaneNet and eLaneNet.

less likely to result in unsafe driving conditions compared to
its counterpart LaneNet. The lower unsafe driving measure
underscores the importance of accurate lane detection in
enhancing the safety of autonomous vehicles.

Visual Analysis: From Figure 5 presented above, we
can gain some insight into the lane detection capabilities of
LaneNet and ELaneNet.

In the context of false positive detection, the ground truth
images (Figures 5a and 5d) serve as the baseline, representing
the actual lane markings. LaneNet’s performance, as shown
in Figures 5b and 5e, reveal that it tends to detect additional,
false positive lane markings not present in the ground truth.
This suggests that LaneNet may have a tendency to over-detect
lanes in certain scenarios. Conversely, eLaneNet’s results in
Figures 5c and 5f demonstrate that it is more conservative in its
lane detection approach. ELaneNet does not detect these false

positive lane markings, which is advantageous when accuracy
and avoiding false alarms are paramount.

Additionally, when considering missed lane detection, Fig.
5g represents the ground truth with all the lane markings
correctly annotated. However, Figure 5h shows that LaneNet
misses two of the lane markings present in the ground truth.
This indicates that LaneNet may have limitations in accurately
identifying all lane markings. In contrast, Figure 5i illustrates
eLaneNet’s ability to successfully identify one of the two
missed lane marking, showcasing its strength in capturing lane
markings that may be overlooked by eLaneNet.

These sample observations reveal that LaneNet exhibits
a higher false positive rate and often misses lane markings,
whereas eLaneNet excels in capturing missed lane markings
while minimizing false positives. This makes eLaneNet a
better model compared to LaneNet overall. Our LaneNet
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results closely align with the original paper [6], especially
considering the absence of accounting for conditional
homography.

VI. CONCLUSION
This paper introduced an enhanced version of LaneNet

designed for robust lane detection in driving scenarios. The
improved architecture incorporated multiple inputs, namely,
the driving scene and the number of lanes. A fully connected
layer was employed to extract information from the NoL,
which was then combined with the input image to create the
input for LaneNet. The results demonstrated that by reducing
false positives and false negatives, eLaneNet exhibited better
performance compared to LaneNet. Future work aims to
further enhance the model by utilizing lane count information
to extrapolate missing lanes and eliminate false positives.
Additionally, the effectiveness of the eLaneNet will be
assessed using other datasets [34].

REFERENCES

[1] National Highway Traffic Safety Administration, “Traffic Safety Facts
2015 Data: Pedestrians,” U.S. Department of Transportation, Available:
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812115,
April 2015, retrieved: December, 2023.

[2] D. J. Fagnant, K. Kockelman, “Preparing a nation for au-
tonomous vehicles: opportunities, barriers and policy recommen-
dations,” Transp. Res. Part A: Policy Pract., vol. 77, pp. 167–
181, 2015. Available: https://www.sciencedirect.com/science/article/pii/
S0965856415000804, retrieved: December, 2023.

[3] Z. Yang, et al., ”CANet: Curved Guide Line Network with Adaptive
Decoder for Lane Detection,” in ICASSP 2023-2023 IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), pp. 1–5, 2023.

[4] J. Wang, et al., ”A keypoint-based global association network for lane
detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., pp.
1392–1401, 2022.

[5] T. Zheng, et al., ”CLRNet: Cross Layer Refinement Network for Lane
Detection,” in 2022 IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
(CVPR), pp. 888–897, 2022. Available online: Available: https://doi.org/
10.1109/CVPR52688.2022.00097, retrieved: December, 2023.

[6] D. Neven, B. De Brabandere, S. Georgoulis, M. Proesmans, L. Van
Gool, “Towards End-to-End Lane Detection: an Instance Segmentation
Approach,” in 2018 IEEE Intelligent Vehicles Symposium (IV), pp.
286–291, 2018. Available online: Available: https://doi.org/10.1109/IVS.
2018.8500547, retrieved: December, 2023.

[7] Z. Bao, S. Hossain, H. Lang, X. Lin, “A review of high-definition map
creation methods for autonomous driving,” Eng. Appl. Artif. Intell., vol.
122, pp. 106125, 2023. Available online: Available: https://doi.org/10.
1016/j.engappai.2023.106125, retrieved: December, 2023.

[8] L. Chen, Q. Li, Q. Mao, Q. Zou, “Block-constraint line scanning method
for lane detection,” in 2010 IEEE Intelligent Vehicles Symposium, pp.
89–94, 2010.

[9] A. B. Hillel, R. Lerner, D. Levi, G. Raz, “Recent progress in road and
lane detection: a survey,” Mach. Vis. Appl., vol. 25, no. 3, pp. 727–745,
2014.
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