
QoS Driven Semantic Based Grid Service Composition Using AND/OR Trees

Xhemal Zenuni
Faculty of Contemporary Sciences and Technologies

South East European University
Tetovo, FYR of Macedonia

e-mail: xh.zenuni@seeu.edu.mk

Abstract—Composition oriented service discovery is an
important requirement and research challenge in Service
Oriented Architectures (SOA), such as in the third generation
of Grid. It provides added value services, more rapid
application development and improved reusability of existing
services. This paper proposes and formulates a composition
approach where semantic information is used to determine
Grid services dependencies in form of AND/OR tree associated
with semantic QoS information, thus transforming the issue of
service composition discovery to constrained AND/OR tree
search problem. Different constraint forms and QoS
aggregation patterns in such trees are analyzed, and some
major constrained searching techniques that can be applied to
such trees are discussed. Our findings show that AND/OR trees
are expressive in addressing QoS – aware semantic Grid
service composition and able to employ different discovery
searching techniques for that purpose.

Keywords-Grid service composition; QoS; AND/OR tree;
Semantic Web; Ontology;

I. INTRODUCTION

The Web Service Resource Framework (WSRF) [1] set
documents of specifications defines a new formal framework
for building current and future Grid applications based on
Service Oriented Architecture (SOA) principles. In such
Grid, services are becoming the fundamental building blocks
and the basic collaboration element which can be used to
build grid applications and resolve complex scientific
problems.

In this conceptually new approach, composition oriented
service discovery brings multiple benefits. In many
situations, individual services in isolation are limited to
respond to more complex user demands. However with the
combination of several ones together, new solutions not
anticipated in individual services can be implemented and
more complex problems can be solved effectively. In
addition, the same service can be combined in many
composite ones, thus enabling better service re – usability.

On the other hand, when the composition process is
automated, new services can be constructed faster and with
less effort, thus accelerating a rapid application development
in Grid. Moreover, a good service composition middleware
can hide the composition details, by making visible to users
only the available interfaces. In effect, this black – box
encapsulation can simplify their usage.

Service composition system is part of a larger lifecycle
development in Grids and imposes a list of requirements that
can not be definitive. However, in order to achieve enhanced

service composition process, some fundamental
requirements and challenges need to be addressed timely,
especially faced with the service proliferation. The
composition middleware should effectively and efficiently
discover service dependencies and coordination rules of
different services in repositories, and conducting this in an
automatic manner. Secondly, Grid systems are dynamic,
with services created and destroyed on the fly. Service
composition system should be adaptable and must detect
those changes, and make quality decisions at run – time.
Moreover, in large repositories and for a given problem,
more than one solution may exist. The system should allow
the users to define extra non – functional properties and
preferences as a discriminating and/or ranking factor.
Furthermore, QoS becomes a common model for narrowing
the list to best discovered solutions.

Considering all these factors, this paper presents a
holistic approach to service composition based on three
fundamental elements. Semantic Web technology has been
used to model and describe Grid Services functionalities and
QoS features and as enhanced background to determine
service interdependencies. Then, from functional point of
view, these dependencies are expressed in form of AND/OR
tree. Finally, composition services are discovered by QoS
constrained search in such AND/OR trees.

The rest of the paper is organized as follows. Section 2
briefly presents the related work. Section 3 explains the
semantic model developed to describe Grid service features,
and explains how this model enhances the discovery of
services. Section 4 introduces AND/OR trees and how
service dependencies can be expressed through them.
Section 5 explains the different forms of QoS preferences
that a user may express, the aggregation patterns that occur
in AND/OR tree structure and how to calculate end – to –end
QoS dimension of composition services in such situations.
Section 6 investigates some major constrained searching
algorithms that are applicable in AND/OR trees. Finally,
Section 7 concludes the work and gives the future directions
for improvements.

II. RELATED WORK

Many works on service discovery and automated service
composition have been reported, especially as Artificial
Intelligence planning problem [2]. However, the focus here
is more on graph approaches based on I/O data and semantic
information of services, which closely relates to our work.
Liang [3] proposes a semi – automated method for service
composition based on AND/OR graphs and applies the

70

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

REV* searching algorithm to find composite services.
However, in this approach, the role and usage of semantic
information in such model is not comprehensible. In
addition, it didn’t consider the scale of services. On the other
hand, Gu [4] advances the work by presenting a faster
service composition method, where indexing of services
plays critical role for acceleration of composition algorithm.
It proposes also a method how to handle semantic
relationship between I/O data, but yet the method doesn’t
fully explore advantages and conversion of semantic
information. Yan [5] goes further, especially by improving
the searching algorithm to support the recognition,
conversion and usage of semantic information described in
OWL format. However, in this approach, as with all the
other above, service composition is mainly seen from
functional aspect of services. They have been used to
determine the service dependency graph and then a searching
algorithm is applied to find composite services. Our work is
distinguished at least in two aspects, which we consider as
contributions. First, we developed QoS ontology for
describing the non – functional aspects of services, allowing
users to define QoS preferences as well. This becomes
necessity with service proliferation, and when many
solutions may be anticipated. Secondly, we extended some
searching algorithms for AND/OR trees to find composite
services that fits to user constraints.

III. SEMANTIC GRID SERVICES

Industry standards for Grid Services, such as UDDI
(Universal Description, Discovery and Integration) [6],
WSDL (Web Service Description Language) [7] and SOAP
(Simple Object Access Protocol) [8] focus on operational
and syntactical details, which in turn make service
publication, discovery and composition process very
restricted. To overcome the limitations of keyword oriented
searching with such standards, Semantic Web technologies
have gained momentum as an approach that can provide
better background and enhanced service discovery and
composition mechanisms based on semantic information.

To this point, the ontologies for service discovery and
composition can be defined at two main levels. The first
level consists of domain – specific ontology, which describes
specific domain concepts, in form of class and sub – class
hierarchy, individuals of such classes and other relationships
in them, such as synonyms, etc. The second level consists of
an upper ontology, which provides uniform description of
provided services. Several upper ontologies [9][10] for
service modeling have been reported, mainly to describe
them in terms of IOPE (Inputs, Outputs, Preconditions,
Effects) which drive the composition process, but as
discussed in [11], such ontologies have two main drawbacks
when applied to Grid Services. Grid services usually act
upon some resource, and the semantic information of Grid
“resource” is absent. And secondly, the QoS features of
services are not represented. To overcome these limitations,
a new ontology model that includes these two aspects was
presented in [11].

This ontology model allows semantic description of
different aspects of Grid Services. The robustness of this
model can be seen in many directions. First, a search
algorithm can recognize different relationships defined in
domain specific ontology, such as instance and concept
relationships, other relationships such as synonyms, and use
the semantic information to better recognize the
relationships of different services and their coordination
rules.

Secondly, service providers can describe multiple
dimensions of any arbitrary QoS parameter for the services
they provide, such as its overall impact, if it is measurable,
the metric, the unit used and so on. This features become
important ranking and/or discriminating factor in service
provisioning.

Finally, service requestors and providers can express
their QoS preferences in different forms, especially using
different measuring units, and a search algorithm can support
their equivalence if the relationships of different units if they
are priory defined.

IV. AND/OR BACKGROUND

An AND/OR graph (and AND/OR tree as special case)
[13] is a structure commonly used in automatic problem
solving where the solution involves decomposing the
problem into smaller problems, and then the solution is
found by solving this small tasks. It is a generalization of
directed graphs, consisting of two types of nodes
(connectors), namely AND connectors if there is a logical
AND relationships in such nodes, and OR nodes if there is
such logical relationship. In such graphs, the terminal nodes
are solved nodes. If non – terminal node has OR successors,
then this node is considered as solved only if at least one of
its successors is solved. Contrary, if non – terminal node is
AND node, then it is solved only all of its successors are
solved.

These characteristics place AND/OR graphs as powerful
formalism to express service dependency graph of services,
because it can handle n – to – m relationships of I/O. Such
dependency graphs are created by analyzing inputs and
outputs of available services.

Figure 1. AND/OR tree representing service dependencies

71

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

For example, if four services are available in a service
repository, such as s1={In(d3,d6}, Out{d1}}, s2={In{d2,d5},
Out{d1}}, s3={In{d5,d7}, Out{d6}} and s4={In{d7}
,Out{d2}}, then the service dependency graph can be
represented in AND/OR tree like in Figure 1.

For example, if a user specifies the request in form of
desired outputs (or resource) O={d1} and the available
inputs I={d3, d5,d7} then a solution can be found in two
ways. The first solution is using a chain of services: s1 and
s3. The second solution is the service chain: s2 and s4.
Indeed, in large repositories more then one solution can be
anticipated. In this case, QoS features become a common
model to discriminate and distinguish the different solutions.
Therefore, service composition model should allow users to
define non – functional demands as well as an important
requirement faced in huge service repositories.

V. MEASURING QOS OF COMPOSITE SERVICES

In large repositories with services that overlap in their
functionality, QoS is becoming natural discriminating and
ranking factor. Quality of service is important in composite
services as well, as they should not respond to business
complex needs only, but they must perform within the limits
of given QoS constraints.

User preferences over quality of service parameters can
take different forms. In certain cases, user may express
certain QoS requirements over a single variable only, such
as the response time solely. But in many situations, users
have more complex demands, and the quality of composite
service is evaluated based on multiple variables, like
response time, cost, throughput, and so on. Moreover,
preferences may come in form of constraint satisfaction or
constraint optimization problem. In former situation, given
the AND/OR tree with QoS data, the quest is to find
solutions that satisfy the given constraints. In later case, the
composition system should be able to find “the best”
solution that maximize or minimize the given objective
function.

Based on this, different QoS constraints over composite
services can be applied, ranging from single variable as
constraint satisfaction problem to multiple variable as
constraint optimization problem. The later is considered
especially difficult situation. In presence of multiple QoS
parameters, it is a difficult task to find the optimal solution
and there must be tradeoffs among different quality criterion.
It is not always possible to find a solution with minimum
execution time, minimum cost and highest availability rate of
services.

Moreover, not all QoS parameters follow the same
aggregation pattern when doing end – to – end planning. The
solution of AND/OR tree is rather sub tree than a path, and
this in turn involves combination of parallel and sequential
vertices. This implicates different aggregation patterns when
calculation the global QoS of the composite service. Indeed,
for the computation of the global QoS, four different
aggregation functions have been identified, and brief
explanation is provided in what follows:

1. No aggregation can be applied: certain QoS can not be
aggregated. This is especially true for non – measurable
ones, such as the requirement that each service has to
support “SOAP v2.0” or “X.509” digital certificate for
communication. In this case, such QoS are used on the
level of local planning, even when end – to – end QoS
analysis is performed.

2. Critical Path Calculation: in parallel structures, for
some QoS is taken into consideration the maximum
value as valid. Such example is the execution time of
services. There is no point to further minimize the value
of the lower execution time in parallel structure, since
has no affect to global QoS.

3. Sum function: some QoS are aggregated using pure
sum function. For example, the price of the composite
service is calculated as the sum of all involved services
in solution, regardless in parallel or in sequential
manner.

4. Average sum: some QoS parameters, such as
reputation, are aggregated as average sum of all
involved services in solution.

VI. SEARCHING COMPOSITE SERVICES

Different searching techniques can be applied to
AND/OR trees, depending on the form of QoS preferences.
We have mainly considered multiple QoS parameters, and
three fundamental searching approaches that can be applied
in such situations are discussed in what follows. First
approach can be used for QoS constraint optimization
solution, and the other two algorithms for multiple QoS
constraint satisfaction solutions.

First, in presence of multiple QoS values, we can
transform them in a single value using the equation described
in:

N

i
ii QoSwtw

1

* (1)

where N is the number of different QoS taken into
consideration, wi is the weight that the user gives to QoS
parameter i. In addition, the following condition should hold:

]1,0[iw and

N

i
iw

1

1. Thus, the multidimensional QoS is

transformed into one single value. In this situation, the AO*
algorithm [10] can be applied directly to find composite
services.

The limitations of first method is that not every QoS can
be expressed using the Equation 1. Many QoS are not
measurable and are not numbers. In this case, the first
approach is not applicable. In addition, we may want to
express some specific QoS boundaries that we do not want to
be exceeded. Thus, the issue is transformed to constrained
satisfaction problem, and not optimization one.

A critical issue when attempting to find the solution tree
at run time is the ability to calculate QoS aggregate values of
the multiple parameters that are presented in Section 5, and
how to eliminate nodes that exceed the preset QoS threshold
from further expansion. Non – measurable QoS parameters

72

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

are easy to use, because those services that violate these
criteria’s are automatically discarded during AND/OR tree
expansion. For other patterns, we modify the QoS
parameters values of all related nodes in the solution path
recursively using the modification formulas as follows:

 For Critical Path Calculation (e.g. execution time):

nodeORisnpET

nodeANDisnpETnET
nET

),(

),()(
)((2)

where p is parent node of n.
 For sum pattern(e.g. price):

nodeORisncice

nodeANDisncice
nice

i
i

i
i

),(Prmax

,)(Pr
)(Pr

 (3)

where ci are children’s of node n.
 For average sum (e.g. reputation) the situation is

more complex, and we keep two data, i.e. the
reputation of node and how many services
contributed to that reputation (N):

nodeORisnNcR

nodeANDisn
NRN

cRnR

NnR

ii
i

i
i

i
i

),/(min

,
)(

)()(

)/(
 (4)

where ci are children’s of node n.
Then, two major approaches could be applied directly:

breadth – first constrained searching and depth – first
constrained searching. The pseudo – code for constrained
breadth – first searching in bottom – up fashion is presented
in Algorithm 1.

Algorithm 1: Pseudo code for breadth-first AND/OR tree
constrained searching

1:
Put the start node s (s points to desired outputs) on a list called
OPEN

2:
Remove the first node on OPEN and put it on another list, for
example called CLOSED and call this node n.

3:
Update QoS aggregate values recursively in expanded tree using
Equations 2, 3 and 4.

4: Check constraints.

5:
If QoS violated, label then the node n as UNSOLVABLE and
continue. Otherwise go to step 9:.

6: Apply the unsolvable – labeling procedure to the search tree.

7:
If the start node is labeled unsolvable, exit with failure;
otherwise continue.

8:
Remove from OPEN any nodes having unsolvable ancestors and
their influence in the overall QoS values and go to step 2:.

9:

Expand node n, generating all its successors. Put these
successors at the end of OPEN and provide pointers back to n. If
there are no successors, label n as UNSOLVED and go to step
6:, otherwise continue.

10:
If any of the successors are terminal nodes (desired inputs of
services), label them as SOLVED and continue; otherwise go to
2:.

11: Apply the solve labeling procedure to the search tree

12:
If the start node is labeled SOLVED, exit with the solution tree
that verifies that the start node is solved; otherwise continue;

13:
Remove from OPEN any nodes that are solved or that have
ancestors that are solved

14: Go to 2:.

We first create an auxiliary node s and connect it to user
desired outputs. In breadth – first fashions node expansion,
the solution tree is incrementally enlarged by adding more
nodes to AND/OR tree structure, and then we continuously
update the QoS aggregate values of nodes using Equations 2,
3 and 4. If the QoS contribution of the last node violates the
user’s preset QoS threshold then this node is removed from
further expansion, including its influence to the possible
solution tree. We stop the whole procedure when the start
node s is marked SOLVABLE or when there are no further
nodes to expand.

Indeed, the AND/OR tree contains two types of nodes.
Data nodes (input and output of services) which are of type
OR nodes, and they do not contribute directly to the
aggregate QoS values. On the other side, services are AND
type of nodes, because all their inputs must be available for
their successful invocation. These nodes directly contribute
to the overall QoS of composite services.

In following paragraphs we provide an example that
illustrates the way the algorithm proposed in the previous
section works. Assuming the repository presented in Table I,
a simple request given by an imaginary client would be as
follows:

 Output: ZipCode, PriceDollar,.
 Input: Book, GoalCurrency, City.
 Constraints: execution time to be less then 7

millisecond, price to be less then 10 dollars ($), and
reputation to be greater then 0.80.

TABLE I. SAMPLE SERVICE REPOSITORY

Service Input Output QoS
CurrencyConvert
er (CC)

PriceEuro
GoalCurrency

PriceDollar [2,3,0.85]

BookpriceFinder
(BF)

ISBN PriceEuro [1,2,0.87]

ISBNFinder (IF) Book ISBN [3,2,0.80]
ZipCodeFinder
(ZCF)

City ZipCode [2,2,0.82]

CompositeService
(CS)

Book
GoalCurrency

PriceDollar [7,1,0.80]

In Table I, the QoS parameters of services are expressed
in form of a vector. The first element denotes its execution
time in milliseconds (ms), the second parameter denotes its
invocation price in dollars ($) and the third element gives
information about its reputation. Figure 2 illustrates
fragments of trace of breadth – first searching in AND/OR
tree, solving the given problem.

The final solution is found using services ZCF, CC, BF
and IF. Another alternative solution can be obtained using
services ZCF and CS. However, during the tree expansion,
CS exceeds the threshold of execution time to be less than 7
milliseconds.

The best – first constrained search can be applied in
similar fashion, by expanding first the recently generated
nodes firstly.

Although the implementations details are out of the scope
of this paper, a prototype system that serves as proof – of –
the concept discussed in this paper is developed. It consists

73

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

Figure 2. A trace of breadth –first AND/OR tree expansion

of four basic layers. The first layer consist of files and other
semantic data used to describe functional and QoS features if
available services using the ontology scheme presented in
[7]. Second layer consist of the searching function that is
able for semantic discovery of individual services that takes
into account QoS constraints, and JENA API [14] was
selected. The third layer consists in creation of search space
representation and searching techniques for finding
composition services. The Java API JGraphT [15] primitives
and generic infrastructure for graphs has been adopted to
represent AND/OR trees and to implement the searching
approach explained earlier. Finally, the fourth layer is the
user interface through which are entered the QoS constraints
and displayed the result.

VII. CONCLUSION AND FUTURE WORKS

The AND/OR tree represent an elegant formalism to
express the Grid service composition problem with QoS
constraints. The model has high expressiveness, which
consequently allows addressing QoS driven service
composition from different perspectives. Constraints can be
expressed in all shapes, sizes and flavors. In addition,
different searching techniques can be applied to find
composite services that fit to complex user requirements.
Combined with semantic annotations used to describe
functional and non – functional features of services, it
provides flexible infrastructure for composition oriented Grid
service discovery.

Service composition systems except being effective, they
must be able to find composite services in a reasonable time.
In effect, this depends on the underlying implementation
details, such as the data structures used, searching techniques
and cleverness how to combine them in an effective way.
Moreover, the evaluation of the efficiency should be
conducted on clear benchmarks. In absence of widely
accepted benchmarks, the evaluation turns out to be difficult
process. Therefore, our future work will be mainly focused
on investigating and developing efficient, flexible data
structures and searching techniques that address semantic
composition discovery of Grid services based on AND/OR
graphs not effectively but efficiently as well, and compare
them with other approaches on clear benchmarks. The
construction of a friendly user interface would also
contribute as an improvement.

REFERENCES

[1] Web Service Resource Framework. Available online at:
http://www.oasis-pen.org/committees/tc_home.php?wg_abbrev=wsrf
(Last accessed: October 2010).

[2] J. Rao and X. Su. A Survey of Automated Web Service Composition
Methods. In Proceedings of the First International Workshop on
Semantic Web Services and Web Process Composition, SWSWPC
2004, San Diego, California, USA, July 6th, 2004.

[3] Liang, Q.A. and Su, S.Y.W. AND/OR Graph and Searching
Algorithm for Discovering Composite Web Services. International
Journal of Web Services Research, vol.2, no.4, pp. 48 – 67, 2005.

[4] Gu, Zh., Xu, B., and Li, J. Inheritance – Aware Document – Driven
Service Composition. CEC/EEE ’07, p. 513, Tokyo, Japan. IEEE
Computer Society.

[5] Yan, Y., Xu, B. and Gu, Z. Automatic Service Composition Using
AND/OR Graph. 10th IEEE Conference on E – Commerce
Technology and The Fifth IEEE Conference on Enterprise
Computing, E – Commerce and E – Service. p. 335. 2008

[6] UDDI Specification v.3.0.2. Avaliable online at: http://www.oasis-
open.org/committees/uddispec/doc/spec/v3/uddi-v3.0.2-
20041019.htm (Last accessed: October 2010).

[7] WSDL Spec. Avaliable online at: http://www.w3.org/TR/wsdl, March
2001. (Last accessed: October 2010).

[8] SOAP Spec. Available online at: http://www.w3.org/TR/2007/REC-
soap12-part0-20070427/,

[9] OWL – S: Semantic Markup for Web Services. Available online at:
http://www.w3.org/Submission/OWL-S/ (Last accessed: October
2010).

[10] WSMO: Web Service Modeling Ontology. Available online at:
http://www.wsmo.org/ (Last accessed: October 2010).

74

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

[11] Zenuni, Xh., Ismaili, F. and Raufi, B. Ontology Design and
Development for Grid Services. In Proceedings of the Fourth
International Conference of Information Systems and Grid
Technologies. pp. 105-114. 2010.

[12] Nilsson, N. Problem Solving Methods in Artificial Intelligence.
McGraw – Hill 1971.

[13] Martelli, A., and Montanari, U. Optimizing Decision Trees Through
Heuristically Guided Search. Commun. ACM, vol 21, no 12, pp. 1025
– 1039, 1978.

[14] JENA: A Semantic Web Framework for Java. Available online at:
http://jena.sourceforge.net/ (Last accessed: October 2010).

[15] JGraphT: A Free Java Graph Library. Available online at:
http://www.jgrapht.org/ (Last accessed: October 2010).

75

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

