
A Microcontroller-based HF-RFID Reader Implementation for the SD-Slot

Andreas Loeffler, Andreas Deisinger
Chair of Information Technologies

Friedrich-Alexander-University of Erlangen-Nuremberg
Erlangen, Germany

Email: loeffler@like.eei.uni-erlangen.de, Andreas.Deisinger@e-technik.stud.uni-erlangen.de

Abstract—This work describes an RFID reader system based
on an emulated file system to be used in SD-capable systems.
Off-the-shelf SD-compliant HF-RFID readers, generally, use
the SDIO interface for connecting to computers and PDAs.
Therefore, the usage of SDIO-compatible SD card readers is
essential to assure correct operation. In contrast to the adoption
of SDIO, this work shows an approach to be used with every SD
card reader, not necessarily requiring the SDIO specification.
This leads to an HF-RFID system to be applied in computer
environments (PDA, PC, etc.) where independence of operating
systems and special drivers is of great importance. Adding
RFID functionalities to existent systems could help to minimize
the gap between real and digital world. This approach offers
this particular functionality to any SD-compliant host device.

Keywords-Radiofrequency identification, file systems, micro-
controllers, smart cards, emulation.

I. INTRODUCTION

The market for RFID applications is still expanding [1].
Therefore, the need for RFID readers [2], particularly mobile
RFID readers, is increasing.

There are plenty of RFID readers for nearly every pos-
sible kind of interface, like Ethernet [3], SPI, serial port,
Bluetooth, USB, etc. Interfaces mainly used by mobile de-
vices are, apart from wireless interfaces, USB, SecureDigital
(SD), and some proprietary interfaces. The USB interface
on mobile devices is usually driven in device mode not
in host mode. Moreover, there exist various USB socket
implementations and particular derivatives. These are some
reasons why various RFID readers are connected to (pri-
marily mobile) computers and PDAs using the SD interface
[4]. Unfortunately, common RFID reader implementations
(e.g., [5], [6]) usually prefer the SD Input/Output (SDIO)-
interface. Using SDIO instead of standard SD has several
disadvantages. The first drawback is the need for an SDIO-
compatible SD card reader. The second disadvantage is the
need for various drivers to be installed using such an SDIO-
capable RFID reader. As some readers only support drivers
for one specific operating system, there is rather no reason
in upgrading existing systems with RFID functionalities.
Besides, the costs of such SDIO readers are usually higher
compared to ordinary RFID readers.

The subject of this paper describes an approach to realize
an SD-capable (not SDIO) HF-RFID reader to be used in
every ordinary SD card reader. It is important to outline

the advantages of the implementation. There are two major
issues to be regarded. First, full operating system indepen-
dence, and, second, no additional drivers need to be loaded
as the computer’s operating system will recognize the reader
as an emulated SD card.

This paper will focus on the hardware part and the
realization of such a system and is organized as follows.
Section II gives a short description of the system. Section III
shows the verification and Section IV the limitations of the
current implementation of the system. A conclusion and
references for future work are given in Section V.

Application system (PC)

HF-RFID reader module

Emulator

File system (FAT16)

SD protocol
SD card reader

File system driver

SD driver

Application

SD-capable
RFID reader

SD bus

Figure 1. The block diagram of the whole system, including the SD-
capable reader (left block) linked via SD bus to the application system
(right block, e.g., a PC or PDA)

II. SYSTEM

This section will provide an overview of the system as
a whole. Figure 1 shows the concept of the SD-capable
HF-RFID reader. On the left side, there is the current SD-
capable RFID reader prototype connecting several blocks
including one block for the emulation of the SD card
protocol and one block for emulating a File Allocation Table
(FAT)-16 file system [7]. The content of the file system is
represented by mapped objects; these objects include links
to the RFID reader’s firmware itself, providing the RFID
transponders’ data (e.g., the Unique Identifiers (UIDs) of
several transponders within the read range of the RFID

112

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

reader).
The right side of Figure 1 is represented by an ordinary

SD card reader, either externally connected, e.g., via USB, or
an internal one. The goal of this system is to provide the SD-
capable application system (i.e., a PC, PDA or smartphone)
with the data of the RFID transponders read out. This is
realized by creating a file within the emulation of the FAT
file system, which is subsequently read out by the application
system. This file includes the data of the transponders, i.e.,
the output of the RFID reader. This is also known as RFID
uplink channel. The downlink channel, i.e., data from the
reader to the tags, may also be realized using a file-based
approach. By writing information into an emulated file,
the SD-capable reader may notice the change and forward
the commands to the underlying RFID reader hardware.
Because of simplicity reasons, the system described in this
work exclusively provides an RFID uplink channel, i.e., the
connection from the the RFID transponders to the SD card
reader or application, respectively.

A. Hardware

This subsection describes the hardware of the SD-capable
RFID reader. Figure 2 shows the basic blocks the reader
is built upon. Peripheral parts include a Debugging inter-
face, an RFID interface to connect to an earlier developed
HF-RFID reader module, a Programming interface to be
able to program the microcontroller (µC) of type Atmel
AT32UC3A1512 [8] using either the JTAG interface or USB,
and a power supply module providing primarily the µC with
3.3 V.

The main part of the hardware is a 32 bit µC of the
AT32UC3A family from Atmel. The main task of the device
is the communication with the SD card reader connected
over the SD bus. Figure 3 shows the prototype of the
SD-capable HF-RFID reader. The microcontroller is in the
center of the figure as well as the SD interface (right hand
side) that may be connected to an SD card reader. The
RFID interface for connecting the RFID module is shown
at the bottom of the figure, whereas the JTAG interface
serves as programming and debugging interface for the µC’s
firmware. The USB and RS-232 connections at the top are
used as programming (USB) and system debugging (RS-
232) sources. System debugging includes the retrieval of
system status and error messages, which are generated by
the firmware of the µC.

B. Firmware

The next two paragraphs give further details of the SD
protocol and its realization within the reader.

1) Basics of the SD Protocol: The SD protocol is a
Master-Slave protocol, which means that every step during
communication is triggered by the master (SD card reader)
followed by the slave’s (SD-capable HF-RFID reader) re-
sponse. After inserting the RFID reader into an SD card

RFID interface

µC
AT32UC3A

 RFID module

RS-232-
Level converter

MAX3232

Programming
interface

JTAG

Debugging
interface

RS-232 LEDs/
Buttons

SD bus

USB

Power supply
3.3 V

Step-Down-
Converter

GPIO

UART

RS-232

UART

5 V
JTAG

USB

3.3 V
3.3 VGPIO

Figure 2. Block diagram of the reader’s hardware

RFID

interface

JTAG

interface

Micro-

controller

USB

SD

interface

RS-232

Figure 3. The prototype of the SD-capable RFID reader, shown without
the external RFID reader module, which is usually connected to the RFID
interface

reader, the card reader tries to access the emulated card.
The SD card reader checks the type of card inserted. This
could be either an SD or a Multimedia Card (MMC) [9], a
predecessor of the SD card. The communication speed at this
point has a maximum clock rate of 400 kHz (from the SD
card reader), which is defined by the standard. So far, only
one communication line on the SD bus is used. The firmware
could be implemented in such a way, that it would support
both standards. However, due to less strict timing issues and
less complexity the focus is on the MMC protocol, which
is downward compatible to the SD standard.

Following the assignment as MMC card, some features
like supply voltage, maximum speed, number of communi-
cation lines on the SD bus, capacity of the card, etc. are
requested by the SD card reader. Due to several issues (see
Section IV) the supply voltage is determined as 3.3 V, the
maximum speed of the emulated card is set to 400 kHz, the
number of communication lines is set to one and the capacity
of the card is determined as 128 MBytes. These setup values
are processed within the so called Card Identification mode

113

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

running at low speed (max. 400 kHz). Subsequently, the card
enters the Data Transfer mode making the card’s content
available, e.g., to the OS. Within this data-transfer mode,
every time the SD card reader requests data information, a
data block of 512 Bytes needs to be transferred from the
MMC card, which is emulated by the microcontroller, to
the card reader and vice versa. This project uses the FAT16
architecture to implement a particular memory structure.
FAT16 is used because of its prevalence in almost all
computer systems. Therefore, the microcontroller has to
emulate a FAT16 formatted memory architecture containing
Master Boot Record (MBR), Volume Boot Record (VBR),
and the root directory. The SD card reader, finally, provides
the application system, usually a PC, PDA or smartphone,
with the emulated card’s data, i.e., files and directories.
Currently, there are four files (FAT.HEX, ROOTDIR.HEX,
VBR.HEX and RFID.TXT) with the latter file containing the
information (in this case the UIDs) of the RFID transponders
(see Figure 6). The other three files contain the structure of
the emulated FAT, VBR, and root directory.

Receive command

Calculate
data block

Send control
command

Evaluate command

Evaluate response

Publish response

Insert file

SD emulator
initialization

File system
initialization

RFID driver
initialization

Send response

Send data

SD_DRIVER

FILESYSTEM

RFID_DRIVER

Reset

Start SD emulator

Hardware
initialization

SD_BOARD

sd_emulator_init()

sd_emulator_start()

receive()

r1()...r7()

sendandlisten()

HddEmulator_init()

insertFile()

getMemoryPos()

RFID_init()

check_RFID()

board_init()

Figure 4. Overview of the SD-capable HF-RFID reader’s firmware

2) Realization of the SD Protocol within the Firmware of
the Reader: Figure 4 shows a rough overview of the sys-
tem’s firmware structure and the appropriate work flow. Af-
ter starting the µC by applying power, the system initializes

Card reader

Connection

to PC/PDA

HF-RFID

tag RFID reader

module

USBSD-capable

HF-RFID

reader

Figure 5. The system setup for verification

its hardware parts (Reset). Subsequently, three main parts are
loaded, running in three different threads within a thread-
like environment. In this context, thread-like describes an
environment, in which threads are treated separately but con-
secutively in an quasi-OS (operating system) environment as
the µC includes a single-core CPU. The RFID_DRIVER part
(right hand side in Figure 4) has two main functionalities.
The first functionality covers the control (initialization and
communication) of the RFID module. This includes, e.g.,
the request for the available transponders, with the resulting
and received UIDs, respectively. The second functionality is
the preparation of the transponders’ data for the adoption to
the FAT file system.

Taking a more detailed view at the reader’s firmware
shows, that there is one major problem regarding the timing
issues of the SD protocol. This already above mentioned
problem is further discussed in Section IV.

The part FILESYSTEM (centered in Figure 4) has three
main functionalities. The first one involves the generation
of the underlying FAT16 file system. The file system is ini-
tialized by creating its administrative datasets: MBR, VBR,
and root directory. The communication with the RFID part
(RFID_DRIVER) and the SD part (SD_DRIVER) describes
the second functionality of the FILESYSTEM part. The third
functionality is responsible for creating the appropriate files
within the FAT16 file system. Additionally, the content of
the files has to be created, too, including the transponders’
data (see Figure 6).

The SD_DRIVER part (left hand side in Figure 4) has to
deal with the SD respectively MMC protocol. This means,
all timing issues regarding the SD bus have to be handled by
this part of the firmware. The part is µC hardware dependent,

114

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

and therefore the system’s performance is somehow limited
at this point. The addressed hardware dependence is directly
related to the hardware components, particularly the µC with
its rather limited capabilities to cope with fast incoming
and outgoing signals. This issue is further discussed in
Section IV. However, the realization of this part of the
firmware is mainly done by polling several internal flags
of the µC. The reason for not choosing interrupts is caused
by the overwhelming amount of stack an interrupt-driven
approach would need. The main drawback would not be
the memory usage but the loss of time needed to return
from the sub-functions (e.g., interrupt routines). The main
external signal, and therefore the triggered internal flag of
the µC, is the SD clock signal generated by the SD card
reader. By choosing an interrupt-driven approach, the time
for calling the interrupt function and returning from it (to the
main function) would not fulfill the needs for an appropriate
operation of the system.

By briefly summarizing the firmware architecture, one can
say that the firmware controls the external RFID module
to get the transponders’ data (e.g., the UIDs). This data is
evaluated and packed into the emulated FAT16 structure of
the system. A connected SD card reader may read the FAT16
structure and forward the data to the overlying operating
system, which can display the appropriate data (UID) within
a file.

III. VERIFICATION

This section describes the verification of the SD-RFID
combination. The setup to verify the system is given as in
Figure 5. The figure shows the SD card reader, which is
connected to a computer via USB (left side of the figure),
whereas the SD-capable HF-RFID reader is located in the
center. The RFID reader module (with antenna and RFID
tag) is connected at the upper side of the reader. A USB
debugging connection is shown at the bottom of the picture.
The system is connected to the SD card reader (Type:
Transcend Multi-Card Reader M3).

To prove the correct operation of the system, the SD
card reader and the system were connected to different
operating systems, including Windows XP, Windows 7,
Linux (Ubuntu) and Mac OS X (Snow Leopard). The results
are shown in Figure 6. The screenshot on the left was
made in Windows 7 showing additionally the four different
files, including the RFID.txt containing the UID of the
transponder. The UID with the value of ’00 00 00 00’ stands
for an invalid data communication between transponder and
reader. The current UID of the transponder used is therefore
’3C 50 8B 2A’. The Linux screenshot is located on the
bottom of the picture and shows the capacity of the card;
in this case it is 128 MByte. The background of the picture
shows a Mac OS X screenshot containing the content of
the emulated FAT16 system (top left), the content of the
RFID.txt file (center right), and the information of the SD-

capable HF-RFID reader, called EMULATOR (right side of
the figure).

IV. PERFORMANCE ISSUES

The limitations appearing during implementation are
mostly generated by various SD card reader implementations
of the SD protocol standard. A huge drawback is the mini-
mum clock rate, various card readers manage. The maximum
frequency for initializing the SD card (400 kHz) is managed
and adhered by every card reader.

Although the SD card (or MMC card) can return its
maximum allowed clock rate to the SD card reader to
prevent the reader to read out data too fast, some SD card
readers ignore that property and start off with a frequency
far too high for the µC to cope with. Other card readers just
reset and search for another card. These problems create
some kind of drawback for this particular system.

The limitations itself are governed by the maximum
clock rate the microcontroller is able to handle. Internal
calculations showed that the maximum clock rate is about
1 MHz using the µC at the maximum clock rate of 66 MHz.
These timing issues are the reason why a flag-driven polling
approach is used instead of choosing an interrupt-driven
approach. It can be shown that polling the flags (which are
also used by the interrupts) provides a higher data throughput
than an interrupt-driven approach. The bottleneck, regarding
the timing problem, occurred at the point where SD data
blocks of 512 Byte have to be transferred from the card
reader to the system and vice versa, as some processes have
to work in parallel, which, of course takes time, if only a
single-core CPU is available.

V. CONCLUSION AND FUTURE WORK

This paper presented an approach to overcome existing
obstacles with RFID reader architectures using the SD
interface. While standard SD reader approaches generally
use the SDIO interface, the work presented in this paper
shows a method to use the standard SD interface to work
with every possible kind of SD card reader. The system
is based on a microcontroller fully emulating a FAT16 file
system to be able to transfer RFID-based data, e.g., the UID
of a transponder, to a superior system, e.g., a PC, PDA
or smartphone, using a standard SD card reader interface.
Therefore, the system not only controls a connected RFID
reader module, but also the SD or MMC card protocol
to communicate with the SD card reader. Successful tests
with various operating systems have been carried out (see
Figure 6) to prove the principle of this structure.

During the work different kinds of limitations were
located. Future implementations should account for these
drawbacks by implementing time robust structures. For
instance, one option would inherit FPGA structures for the
direct interface to the SD card reader. Also, other options

115

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

Windows 7

Linux

Mac OS X

Figure 6. Verification of the system with different operating systems: Linux (Ubuntu 9.04, [10]), Windows 7 [11] and Mac OS X (Snow Leopard, [12])

like CPLDs (Complex Programmable Logic Device) would
come to the fore.

ACKNOWLEDGMENT

The authors would like to thank the Fraunhofer Institute
for Integrated Circuits (IIS) in Erlangen for its support on
this project. Additionally, we would like to thank Heinrich
Dietsch for useful discussions and the anonymous reviewers
for providing helpful comments.

REFERENCES

[1] trading-house.net AG, “Research - RFID Market
to Reach $5.35 Billion This Year, Says
ABI Research,” www.ad-hoc-news.de, Mar 2010.
[Online]. Available: http://www.ad-hoc-news.de/
research-rfid-market-to-reach-5-35-billion-this--/de/
Unternehmensnachrichten/21106631

[2] K. Finkenzeller, RFID Handbook: Fundamentals and Appli-
cations in Contactless Smart Cards, Radio Frequency Identi-
fication and Near-Field Communication. Wiley, 2010.

[3] A. Loeffler, U. Wissendheit, H. Gerhaeuser, M. Hoffmann,
A. M. Zadeh, and D. Kuznetsova, “A SOAP capable HF-
RFID-Reader,” in RFID SysTech 2008 , 4th European Work-
shop on RFID Systems and Technologies, 2008.

[4] SD Association, “http://www.sdcard.org/home/,” Feb 2010.
[Online]. Available: {http://www.sdcard.org/home/}

[5] RFReader Corporation, “http://www.rfreader.com/,” Mar
2010. [Online]. Available: {http://www.rfreader.com/}

[6] Sirit Inc., “http://www.sirit.com/,” Mar 2010. [Online].
Available: {http://www.sirit.com/}

[7] J. Axelson, USB mass storage: designing and programming
devices and embedded hosts, ser. E-libro. Lakeview Research
LLC, 2006.

[8] Atmel Corporation, “http://www.atmel.com/,” Jan 2010.
[Online]. Available: {http://www.atmel.com/}

[9] MultiMediaCard Association, “http://www.mmca.org/,” Feb
2010. [Online]. Available: {http://www.mmca.org/}

[10] R. Petersen, Ubuntu 9.04 Desktop Handbook. Surfing Turtle
Press, 2009.

[11] J. Boyce, Windows 7 Bible, ser. Bible Series. John Wiley &
Sons, 2009.

[12] D. Pogue, Mac OS X Snow Leopard: The Missing Manual,
ser. Missing manual. O’Reilly Media, 2009.

116

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

