
A Formal Methodology for Procedural Security Assessment

Komminist Weldemariam and Adolfo Villafiorita
Center For Information Technology

Fondazione Bruno Kessler
Trento 38100, Italy

Email: (sisai,adolfo)@fbk.eu

Abstract—Formal analysis techniques can deliver important
support during ICT-based innovation (or redesign) efforts in
e-government services. This paper discusses a formal method-
ology for assessing the procedural security of an organization.
We do so by explicitly reasoning on critical information flow
named assets flows. With this it is possible to understand how
critical assets are modified in unlawful manner, which can
trigger security and privacy violations, thereby (automatically)
detecting security weaknesses within an organization under
evaluation.

Keywords-procedures; security assessment; modeling and
analysis; formal methods.

I. INTRODUCTION

Currently, several organizations and enterprises across
many countries are evaluating and introducing ICT-based
solutions with the aim of improving and delivering quality
(public) services. For instance, very recently the Italian
Government launched a certified email (in Italian “Posta
Certificat@”) service for its citizens [1]. This service enables
citizens to legally communicate with the public administra-
tion or institutions through a certified e-mail system, with the
aim of achieving a paperless bureaucracy, thereby reducing
time, energy and money waste for institutions and citizens.
In this setting, a significant portion of asset that can contain
information and data, much of which is sensitive (e.g., the
certified email account), is managed and controlled by in-
troducing organizational regulations and procedures in order
to enhance the security and privacy of (non-) digital assets.
Such sensitive assets can also be used in business exchanges
among (in the above scenario, e.g., citizens with PA) inter-
business collaborations and (virtual) organizations with a
certain understanding on the different roles the participants
play; and, at the same time by including assumptions on
their correct and incorrect behaviors, and their rights, duties,
and obligations in order to avoid misunderstanding and
ambiguities in such business relationships. Not to mention,
these assets and their interrelations can also contain inherent
weaknesses or vulnerabilities [2], [3], [4] and which are of
two types.

The first, although out of scope, is technical vulnerabilities
(for which a number of techniques exist), a hardware or
software weakness, or design deficiency, that leaves a system
open to attack, thereby resulting in unacceptable risk of

information compromise, information alteration, or service
denial [5]. The second one is procedural vulnerabilities,
weaknesses within an organization due to the lack of proper
implementation of security policies related to managerial or
procedural deficiency, resulting in compromising the security
and privacy of the organization as well as individuals within
the organization [3], [6]. However, techniques that can help
to model and assess such vulnerabilities are absent or very
unsatisfactory, and thus procedural security analysis.

This paper complements our previous work [7] by show-
ing how formal techniques can be used for the modeling and
analysis of procedures in an organization under evaluation.
We do so by presenting a formal framework for representing
organization system as assets-flows. The concepts of our
framework (roles and actors, actions and processes, respon-
sibilities and constraints) can allow (business or security)
analysts to capture organization model in a way that is
both intuitive and mathematically formal. The use of a
formal technique can allow us to determine whether a
given information stipulates certain (procedural) security
properties —e.g., that the responsibilities assigned to roles
are fulfilled and that the constraints are maintained. With
this it is possible to understand how critical assets are
modified in unlawful manner within an organization. Thus,
we believe that, this is important for both developed and
developing nations where the development and deployment
of ICT-based solutions in several areas of security-critical
e-government services or applications are in progress.

The next section briefly describes the background ma-
terial for procedural security analysis. Its formal model is
presented in Section III. Section IV discusses the mapping
of such model into executable specifications. Finally, con-
clusion and future work are discussed in Section V.

II. PROCEDURAL SECURITY ANALYSIS

A typical approach for inherent information flow within
an organization is access control (see, e.g., in [8]). That is the
accesses of objects by subjects, restricted by specific access
permissions —e.g., by assigning read and write permissions
to some sensitive assets. Moreover, approaches such as based
on formal techniques and methodologies have been used
to model (system) processes [9], [10], [11], [12]. These
works mainly concentrate on constructing business process

146

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

models with correct creation and termination of artifacts
during their lifecycle, by providing some supports to perform
automated analysis. Accordingly, some of these approaches
hint integrations with existing formal methods’ tools. How-
ever, they hardly concentrate on security analysis especially
on analyzing the security of organizational or procedural
weaknesses. As noted in [13], [14], risks and attacks not only
depend upon the security levels the new systems offer, but
also occur by circumventing on the procedures and controls
regulating the way in which the systems are operated. For
example, what happen if one can get a fake certified email
by circumventing the procedures required for request and
delivery of such services. Obviously, this could lead to
maliciously communicate with the PA thereby accessing
public services accordingly. Therefore, it is important to
analyze the security of such procedures that grant accesses
to sensitive data and services, and thus procedural security
analysis.

To be able to conduct a security analysis, at least enough
information must be present to deal with assets and global
threats, i.e. at an abstract level, subjects and objects in the
procedures and system must be identifiable. The starting
point of the procedural security analysis methodology is
an initial model, describing a coarse procedure or system
process without security-related aspects. This model de-
scribe the procedure or procedures to be analyzed in a
systematic way. Secondly, we extend this model with attack
information, meaning that we generate an extended model
from the model defined in the previous step. In the extended
model, thus, not only assets are modified according to what
the procedures define but they can also be transformed by the
(random) execution of one or more threat actions. Thirdly,
the encoding of the asset-flows in terms of executable
specifications is performed using formal language. Fourth,
we specify security properties for formal analysis. More
specifically, we specify the (un-)desired (procedural) security
properties —namely, the security goals that have to be
satisfied (unsatisfied), are then encoded using mathematical
formula, which in turn together with the model are given
as input to the analysis tool. Thus, we perform security
verification and assess the results. Security verification is
the verification that the global security requirements are
fulfilled with respect to the threat scenario. If the result of the
security verification is that a particular security requirement
is violated, there is a corresponding attack on the procedures
and consequently on the system. Otherwise, the procedure is
secure given the assumptions included in the model. This is
obviously via the model checker, i.e., if a property is proved
to be false, the analysis tool generates a counterexample
which opens up further discussion.

III. A FORMAL MODEL OF PROCEDURAL SECURITY

Figure 1 shows a high-level representation of the infor-
mation and the behavioral (i.e., the lifecycle) models of

assets. The perspective shown in the figure offers three
complementary views: workflow, assets class, and state
machine diagram views. In the workflow diagram view,
workflow activity sequences are defined. The state machine
view describes the behavior of an asset in terms of a
transition system in which transitions are enabled due to
explicit execution of workflow activities. The activities in
the workflow are transformation functions that influence the
behaviors of the assets. A finite state transition diagram for
each feature of an asset constitutes the global state machine
for that asset.

Workflow Activity

triggers
-status
-location
-value
-content
...

Asset class and Asset flow

Figure 1. An asset-flow view of a business process model

For instance, Figure 2 shows a simple example of asset-
flow model for asset instance A with three states [s1], [s2],
and [s3]. The corresponding finite state machine, therefore,
will possibly have three sequential states each of which
corresponds to A’s current features values.

P

[s1]
A

P

[s2]
A

[s3]
A

Figure 2. Example of a single instance Asset-flow model in three states.

A. Formalization of the Model Elements

We assume the following notations and their definitions:
• T p be a set of primitive types, such as bounded integer

and boolean;
• C be a set of asset classes (names);
• A be a set of attributes (names);
• IDC be a set of identifiers that describes the identifiers

for each asset class C ∈ C;
• S is a set of assets states, where each s ∈ S is a sort

of truth assignment over the variables values.
Note that all the above sets are finite, which is essential

for the formal verification process such as by using model
checkers.

A type T is an element of the primitive types Tp and the
class identifiers C; namely, T = Tp ∪C (we assume that Tp
and C are disjoint).

147

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

Definition 3.1: An asset class signature is a triple
〈C,A, ψ〉 where C ∈ C, A ∈ A is a a set of attributes
for the asset class C, and ψ : A → T is a total function that
maps each attribute of an asset into its corresponding type.

Without loss of generality, we assume a fixed interpreta-
tion domain associated to each T type. That is the domain
of each type t ∈ T , denoted Dt, is defined in the following
way: if t ∈ Tp is a primitive type, then the domain Dt is
some known set of values of type (e.g., integer or boolean);
if t ∈ C an identifier type, then Dt defines existing instances
of an asset class identifier for t (i.e., Dt = IDt). We require
all variables must have their corresponding values all along
their life. For undefined location and unassigned content of
an asset, we use an undefined and a null constant values
respectively. The interpretation is that the location is not
known and the content value is not either assigned yet or
reset to contain null.

Definition 3.2: An asset instance is a triple 〈IDC , C, φ〉,
where IDC ∈ ID is a class identifier and φ a partial
function, given an instance of a class C, that assigns each
variable a ∈ AC of type t ∈ T a value in Dt (i.e.,
φ(a) = Dt(ψ(a))).

An asset can have multiple instances. We denote the set
of asset instances by ~OC,C∈C and ~O for all instances over
Σ. However, in this work, we mainly focus on how a single
asset instance I ∈ ~OC can evolve from some initial state
through other states. The set of variable-value pairs for I
defines the state of a given asset. The state of an asset is,
therefore, the current situation called “snapshot” of an asset
instance I and its value is the truth assignment over the
variables. An asset is initial, if all the variables are in their
initial state and φ is undefined for some attributes and final,
if all the variables values do not change anymore.

The information provided previously is the basis for the
formalization, namely how we represent the assets structure
and workflows to arrive at what we call executable models.
The formalization allows the model to be more amenable to
formal analysis, hence it shifts the focus to dynamic aspects
of the assets.

1) Defining Workflow formally: As noted earlier, the
initial values for the variables of an asset can be assigned at
the time of the instance creation or otherwise assigned by an
analyst. However, only due to the execution of a workflow
activity over these variables can possibly change the initial
configuration of the asset.

Roughly speaking, a workflow activity is described by
input assets, preconditions, and effects of the activity over
the assets (a similar interpretation can be found in [9], [11],
[15]). The effect of a workflow activity is regarded as a
change in state of the input assets. Not all assets change
their states thought, since it is not always the case that an
execution of a workflow activity enables state transition to
all the input assets (e.g., reading the content of a password
does not change its state).

For each executable workflow activity we specify which
actors participate in the workflow with predefined privileges
or responsibilities or both. These information not only allow
to describe who does what during the execution of an
activity, but, more importantly in the context of organiza-
tional security modeling and analysis, who manages what
data and with what privileges. Such information are static,
namely they are known before executing a workflow (e.g., as
described in a legal document or contractual agreement be-
tween two entities) and are encoded in our model to describe
a workflow scenario. We, therefore, use these information
along with the activities to describe a workflow model as
a deterministic finite state machine in which the states are
constructed by a set of activities, and the transitions are
described by the current state and a matching condition over
the accessory information.

Formally, we define the workflow model as follows.
Definition 3.3 (W): A workflow model is a quadruple

〈P, s0, sf , C,∆〉 where
• P is a set of activities or processes (names);
• s0, sf ∈ P are initial and final activities of the work-

flow respectively;
• C is guard expression over accessory information, and;
• ∆ ⊆ P × C × P is a transition relation between a

current activity and its successor activities in which a
transition is labelled with a condition over accessory
information.

The above definition is meant to express the fact that there
exist a set of activities within a particular workflow, that
describes a procedure under analysis, in which by knowing
the current state of the workflow, and if a condition is
met, it should be obvious to determine the next state of
the workflow. We call an instance of a workflow model, a
program counter “pc” that contains the value of the current
state (i.e., the active activity) in the workflow. There is one
program counter “pc” for each workflow model at run time.
In actual business process or workflow specification, in fact,
it is possible to have multiple activities that can run in
synchronous or asynchronous mode. We focus on sequential
execution of a workflow in this work.

2) Defining Asset-flows formally: The state of an asset
is specified by the assignments of values to variables (or
simply valuations), which allows to describe the evolution
of an asset. The evolution is expressed by the sequence of
states through which an asset undergoes during the execution
of a process. Since the state of an asset is described by the
valuations over its variables, therefore, it makes sense to en-
code the state of each variable as a finite state machine. The
workflow instances, along with some matching conditions,
define transitions for modeling the lifecycle of the assets.
Thus, an asset-flow can easily be modeled using a transition
system that facilitate formal analysis.

Definition 3.4: An asset-flow model (AFM) is a 5-tuple
〈AS, I,Wπ, Cπ,∆π〉 where

148

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

• AS ∈ S is a finite set of assets’ (instances) states;
• I ⊆ AS is an initial states of the assets;
• Wπ is a set of workflow instances;
• Cπ is a set of conditions constructed over the attributes

representing the matching construct as a guard, that
specify the condition must meet for the state to be
changed, along with the current activity;

• ∆π ⊆ AS × Wπ × Cπ × AS is a transition relation
between a current state of an asset and its successor
states in which a transition is labelled with an activity
and a condition.

A collection of individual AFM constitutes assets-flow
models, and we represent it byM. Therefore,M is regarded
as the global configuration of the domain of interest, namely
the procedures under analysis. The semantic of the global
configuration M can be interpreted in the following way.
Each m ∈ M is regarded as an abstract state machine,
which has three major components: a workflow activity se-
quence (possibly maintained in a queue), a workflow activity
dispatcher, and an activity processor. Workflow activities
are added to the end of the activity queue. The activity
dispatcher chooses, dequeues, and provides the next “pc”
(i.e., an activity) to the activity processor. Each “pc” is then
used as a transformation function that can possibly change
the state of an asset by modifying or changing one or more
variables values of the asset. One state machine per feature
variable encodes the lifecycle of that state variable. A set of
such state machines constitutes the global state machine for
the corresponding asset instance. By defining a semantic for
the state machines corresponding to each feature of an asset
and linking it with m ∈ M, therefore, we have implicitly
defined how M behaves.

B. Model Extension

In order to analyze what are the possible attacks of a
given (set of) procedures, we need to encode asset threats
in the nominal model and generate the extended model for
M. Structurally, in fact, there is no difference between M
and the extended model. However, the main difference lies
on the assets state set and on the transitions specification.
This means that, the extended model possibly will have more
states than the other due to the execution of threat-actions
that can change the state of an asset into an undesired one.
On the transitions side, on the other hand, the definition did
specify the fact that transitions are triggered only by nominal
workflow activities. We need to incorporate in the extended
model the fact that an asset could be in any possible states
and that such states can also be changed by the execution
of malicious processes.

However, it is pretty straightforward from the definition
we gave and by extending the definition of the workflow
model to include all the malicious processes that an adver-
sary might execute. Thus, in extended model, assets are not
only manipulated according to what should happen in the

nominal case, but can also be transformed by the execution
of one or more assets threat-actions.

IV. ENCODING USING FORMAL LANGUAGE

Assets-flow models M can become executable specifica-
tion to allow formal analysis through verification tools on
their evolution, including their malicious evolution due to
threat-actions. Our aim here is to represent the model M
into executable specification using NuSMV input language
[16]. As noted in [16], the NuSMV semantic is based on a
state-based formalism in which the behavior is defined by
Kripke transition systems. However, the definition we gave
forM is an action-based formalism in which the behavior is
defined by (a sort of) labelled transition systems. Thus, we
need to rearrange the previous definition to align with the
semantic of Kripke structure so that the encoding of NuSMV
specifications can be tackled.

Definition 4.1: Let APs are set of atomic propositions
ranged over some boolean expressions on the valuations
of the variables. An asset flow model (AFM) is a Kripke
structure over a set of atomic propositions AP defined by a
quadruple 〈ASK , IK ,∆K ,LK〉 where
• ASK is a finite set of assets (instances) states;
• IK ⊆ ASK is set of initial states;
• ∆K ⊆ ASK × ASK is a transition relation between a

current state of an asset and its successor states;
• LK : ASK → 2AP is the labeling function which

returns the set of atomic propositions which hold in
a state.

The encoding of M in the NuSMV input language can
be treated as a problem of defining a mapping between
the two structures, i.e., between the structure specifying the
model M and the Kripke structure. More specifically, the
following encoding rules are defined to map M into the
NuSMV counterpart.

Rule 1: The workflow model is encoded in NuSMV as a
special module, and each workflow activity pi ∈ P for i =
1, . . . , n representing the domain activities (i.e., processes)
in W are encoded in the NuSMV input language as a scalar
variable program counter (pc) in which pi are its symbolic
values.

In order to determine the state transition of the program
counter, we introduce some predicates (see Table I). They
are mainly associated with the accessary information, such
as actor-role and actor-activity assignments. The table also
shows the corresponding state variables in NuSMV input
language.

Rule 2: The accessary information are encoded in the
NuSMV input language within the Workflow module in
the following way (see also Table I):
• For each actor-role assignment, we introduce a vari-

able assign a r. assign a r is true iff the predicate
AssignR(a,r) is true for an actor a ∈ Actor and a role
r ∈ Role;

149

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

Table I
ACCESSORY INFORMATION AS PREDICATES.

Predicate Meaning NuSMV variable
AssignR(a,r) assignment of actor a ∈ Actor to role r ∈ Role assign a r
AssignA(a,p) assignment of actor a ∈ Actor to an activity p ∈ P assign a p
r Active for a role r ∈ Role is active for actor a ∈ A activefor a r
ExecA(a,p) actor a ∈ A executes an activity p ∈ P exec a p

• For each actor-process assignment, we introduce a
variable assign a p. assign a p is true iff the predicate
AssignA(a,r) is true for an actor a ∈ Actor and an
activity p ∈ P ;

• For each role activation r Active for a, we define a
state variable Activefor a r;

• Similarly, we define a variable Exec a p for every actor
performing an activity, i.e., iff ExecA(a,p) is true.

Rule 2 defines accessary information for the transition
relation of pc state variable. Notice that activities can only
be executed if the activity instance in question is assigned
to an actor —i.e., ExecA(a,p) ⇒ AssignA(a,p). Moreover, a
group of actors can perform the same activity, as discussed
in the previous chapter.

Rule 3: For each asset instance in ~O, a NuSMV module
is defined:

MODULE ASSET_NAME (...)

Rule 4: An asset with no content in M1 is mapped to
a symbolic value “null” in NuSMV. Similarly, an asset
whose current location is not known or unspecified in M1

is mapped to a symbolic value “unspecified” in NuSMV.
Rule 5: The location, representing all the possible places

of an asset, is encoded in the NuSMV input language
as scalar variables loc in which loci for i = 1, . . . , n
and “undefined′′ are its symbolic values. The content,
representing all the contents of an asset at a particular
point of time, is encoded in the NuSMV input language
as content in which contenti for i = 1, . . . , n and
“null′′ are its symbolic values. The value, representing all
security risk values for an asset, is encoded in NuSMV
input language as value in which noV alue, low, high
and critical are its symbolic values. Finally, each domain
specific property of an asset in an asset-flow model is
encoded as a boolean value in NuSMV.

Rule 3 states that a module is defined for each asset
(instance) in M. In Rule 5, whereas each feature of the
asset is defined as a state variable within the asset module
specification. An unknown location and a null value
are both encoded by symbolic values as defined by Rule 4.

Rule 6: The transition specification for each state variable
is encoded by the current value of the program counter and
some boolean expressions over the current state of the asset.

The above rule (i.e., Rule 6) encodes the transition spec-
ifications. The transition from one asset state to the next
is determined by the current value of the pc and some

condition over the current state of the asset instance.
Since all the above rules are related to the encoding

of M, we need to provide additional rule for encoding
the extended model. The model extension corresponds to
proving an extension in the NuSMV model with one or
more applicable attack-actions. That is, a specification of
how the assets can be in undesired states. This can be done
by associating threat-actions with variables defined inside
the module per asset instance. Moreover, the Workflow
module should also need to be extended in order to include
the malicious process executions. In particular, the model
extension can be done by using the following strategies:
• by defining a scalar state variable to encode all the

possible malicious process within the Workflow mod-
ule. Therefore, the program counter does not only have
values from nominal workflow activities but also from
possible set of malicious workflow activities;

• by defining a transition specification for each activation
of a threat-action on asset instance under the corre-
sponding asset module in NuSMV, where the malicious
activity is in place for enabling the transition;

• by defining boolean variable to monitor the execution
of the corresponding threat-action. This variable will
be true iff when the corresponding threat-action takes
place;

• by introducing a scalar value “garbage” for the content
state variable related to the introduction of malicious
asset and a boolean variable. This variable will be
true iff a predicate associated with the action (e.g.,
MAsset(t)) is true by a threat-action, say t.

The above strategies facilitate the task of model extension,
by adding a number of boolean appendage variables that are
needed to capture the malicious asset flows and the execution
of threat actions to form the extended model specification
in NuSMV input language. In this way, therefore, the
model extension is performed for each applicable threat-
action against the normal flow of assets. At this point,
we have the model representing the assets-flows, which is
ready to supply for the analysis tool. Before the analysis,
however, we need to describe the security properties we
intend to check against the model using standard LTL/CTL
logic. Once all the properties of interest are specified with
respect to the analysis goals, the next activities are formal
verification and analysis of the results. Security verification
is the verification that the global security requirements are
fulfilled with respect to the threat scenario. If the result of the

150

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

security verification is that a particular security requirement
is violated, there is a corresponding attack on the procedures
and consequently on the system. Otherwise, the procedure is
secure given the assumptions included in the model. This is
obviously via the model checker, i.e., if a property is proved
to be false, the analysis tool generates a counterexample
which opens up further discussion.

V. CONCLUSION AND FUTURE WORK

We have described a framework where procedurally rich
systems in model-based assessment drive the construction
of models by extending the usage scenario of procedu-
ral security analysis. The presented approach is aimed at
basic security aspects relevant for organizational-oriented
processes, providing guidelines to analyst performing pro-
cedural security analysis based on explicit reasoning on
assets-flows. The approach can be used to analyze and
evaluate the impact of threats, and consequently to come
out with a set of (security) procedural requirements. Thus,
an organization or enterprise can apply the approach to
assess their procedural security posture prior to introduce
ICT-based solutions. Here, assurance is not implied by the
trust in the model but follows from the formal analysis
of the model. The analysis is based on a set of formal
security requirements and provides formal proofs for use
as countermeasures (i.e., evidence).

The work described here is still in progress, and we
are currently completing the theoretical framework of the
approach. We admit that this work clearly lacks a working
case study, illustrating a proof of concept of the presented
approach. Moreover, the implementation of the approach in
terms of a tool is not discussed. However, we are currently
defining a model-based verification approach using UML.
More specifically, we reuse existing formal semantics for
UML activity diagrams specifying workflow models that
correspond to the asset-flows semantics discussed in this
paper. The semantics will be translated to NuSMV model
based on meta-model transformations. To translate a UML
activity diagram model into the NuSMV counterpart, we
use an intermediate model called activity hyper-edge model
which abstracts the activity diagram, specifically according
to the semantics of the asset-flow model. The definition of
a set of generic library of attack models corresponding to
threat-actions is part of the future work.

REFERENCES

[1] Italian Ministry of Public Affairs and Innovation, “It:
Launch of a certified email system to communicate with
the public administration,” http://www.innovazionepa.
gov.it/lazione-del-ministro/iniziative-e-sperimentazioni/
sperimentazione-pec/pec-primo-piano.aspx, October 2010.

[2] Federal Agency for Security in Information
Technology, “IT Baseline Protection Manual,”
http://www.iwar.org.uk/comsec/resources/standards/germany/
itbpm.pdf., October 2000. Last accessed on Feb. 2011.

[3] Common Criteria, “Common Criteria for In-
formation Technology Security Evaluation,”
http://www.commoncriteriaportal.org/, 2007. Last accessed
on Nov. 2010.

[4] S. E. Parkin, A. van Moorsel, and R. Coles, “An Information
Security Ontology Incorporating Human-Behavioural Impli-
cations,” in SIN ’09. ACM, 2009, pp. 46–55.

[5] M. Bishop, Computer Security Art and Science. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[6] B. S. Institution, “BS ISO/IEC 27002:2005 —
Information Technology —Security Techniques —Code
of Practice for Information Security Management,”
http://www.iso27001security.com/html/27002.html, 2005.
Last accessed on Feb. 2010.

[7] K. Weldemariam and A. Villafiorita, “Formal Procedural
Security Modeling and Analysis,” in Proceedings the Inter-
national Conference on Risks and Security of Internet and
Systems, ser. CRiSiS ’08. IEEE, 2008, pp. 249–254.

[8] Ravi S. Sandhu and Edward J. Coyne and Hal L. Feinstein and
Charles E. Youman, “Role-Based Access Control Models,”
IEEE Computer, vol. 29, no. 2, pp. 38–47, 1996.

[9] M. Koubarakis and D. Plexousakis, “A Formal Model for
Business Process Modeling and Design,” in CAiSE, ser.
LNCS, Benkt Wangler and Lars Bergman, Ed. Springer,
2000, pp. 142–156.

[10] R. Eshuis, “Symbolic Model Checking of UML Activity
Diagrams,” ACM Trans. Softw. Eng. Methodol., vol. 15, no. 1,
pp. 1–38, 2006.

[11] K. Bhattacharya, C. E. Gerede, R. Hull, R. Liu, and J. Su, “To-
wards Formal Analysis of Artifact-Centric Business Process
Models,” in Proceedings of the 5th international conference
on Business process management, ser. BPM ’07, vol. 4714.
Springer, 2007, pp. 288–304.

[12] A. Deutsch, R. Hull, F. Patrizi, and V. Vianu, “Automatic
Verification of Data-Centric Business Processes,” in ICDT
’09. ACM, 2009, pp. 252–267.

[13] A. Xenakis and A. Macintosh, “Procedural Security Analysis
of Electronic Voting,” in Proceedings of the 6th international
conference on Electronic commerce, ser. ICEC ’04. ACM
Press, 2004, pp. 541–546.

[14] K. Weldemariam, “Using Formal Methods for Building More
Secure and Reliable e-voting Systems,” Ph.D. dissertation,
University of Trento, Via Sommarive 14, March 2010.

[15] C. E. Gerede and J. Su, “Specification and Verification of
Artifact Behaviors in Business Process Models,” in ICSOC,
ser. LNCS, vol. 4749. Springer, 2007, pp. 181–192.

[16] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pi-
store, M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV
2: An Open Source Tool for Symbolic Model Checking,” in
CAV’02, ser. LNCS. Springer, January 2002, pp. 241–268.

151

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

