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Abstract—The study of social networks has gained much
interest from the research community in recent years. One
important challenge is to search for communities in social
networks. A community is defined as a group of users such
that they interact with each other more frequently than with
those outside the group. Being able to identify the community
structure can facilitate many tasks such as recommendation
of friends, network analysis and visualization. In real-world
networks, in addition to topological structure (i.e., links),
content information is also available. Existing community
detection methods are usually based on the structural features
and do not take into account the attributes of nodes. In this
paper, we propose two algorithms that use both structural and
attribute information to extract communities. Our methods
partition a graph with attributes into communities so that the
nodes in the same community are densely connected as well
as homogeneous. Experimental results demonstrate that our
methods provide more meaningful communities than conven-
tional methods that consider only relationship information.
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I. INTRODUCTION

Social networks of various kinds demonstrate a feature
called community structure. Individuals in a network tend to
form closely-knit groups. The groups are called communities
or clusters in different context. Community detection is
the task of detecting these cohesive groups in a social
network [1] [2]. In many real-world networks, in addition to
topological structure, content information is also available.
Data is associated to the nodes and in the form of text,
images, etc. For example in a social network, each user
has information about age, profession, interests, etc. When
content data is available, it might be relevant to extract
groups of nodes that are not only connected in the social
graph but also share similar attributes.

Many existing community detection techniques only focus
on the topological structure of the graph. On the other hand,
data clustering has been studied for a long time but most
algorithms (e.g., k-means, EM) do not deal with relational
data. The work of incorporating structural and attribute data
has not been throughly studied yet in the context of large
social graphs. This is the motivation of our work. Our
key contributions are summarized next. In this paper, we
study the relationship between semantic similarity of users
and the topology of social networks (homophily concept).
We propose two approaches to extract communities on

several real-world datasets. Based on our evaluations, we
conclude that our methods are able to discover more relevant
communities.

II. RELATED WORK

Detecting communities in a social network is still an open
problem in social network analysis. In literature, many com-
munity detection methods have been proposed. According
to [1], these approaches can be divided into four categories:
node-centric, group-centric, network-centric and hierarchic-
centric. Some popular methods are modularity maximization
[3] [4], Givan-Newman algorithm [5], Louvain algorithm
[6], clique percolation [7], link communities [8]. [2] and [9]
provide a throughout review of the topic. However, these
methods ignore the attributes of the nodes. Below are some
studies that incorporate node attributes in the clustering
process. Steinhaeuser et al. [10] proposed an edge weighting
method NAS (Node Attribute Similarity) that takes into
account node attributes. A community detection method is
then proposed based on random walks. The complexity of
the algorithm is O(n2logn) (for random walks) or O(n)
(for scalable random walks) where n is the number of
nodes. Zhou et al. [11] defined a unified distance measure
to combine structural and attribute similarities. Attribute
nodes and edges are added to the original graph to connect
nodes which share attribute values. A neighborhood random
walk model is used to measure the node closeness on
the augmented graph. A clustering algorithm SA-Cluster
is proposed, following the K-Medoids method. The time
complexity of the algorithm is O(n3).

Coupling relationship and content information in social
network for community discovery is an emerging research
area because current methods do not focus on social graphs
or they are not efficient for large-scale datasets.

III. PROBLEM STATEMENT

An attributed graph is denoted as G = (V,E,X), where
V is the set of nodes, E is set of edges, X = X1, ..., Xd is
the set of d attributes associated with the nodes in V . Each
vertex vi is associated with an attribute vector (x1i , ..., x

d
i ).

The goal of this work is to find communities in an attributed
graph, that is to partition the graph into K disjoint groups
(i.e., communities) Gi = (Vi, Ei, X), where V = ∪Ki=1Vi
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and Vi∩Vj = ∅ ∀i 6= j. Nodes in the same communities are
expected to be highly connected and have similar attributes.

Before clustering, a similarity measure must be deter-
mined. Our algorithms do not depend on the details of the
measurement. Let simA(i, j) be the similarity between a
pair of nodes (i, j) in an attributed graph G = (V,E,X).
The measure should reflect the degree of closeness of the
nodes in terms of their attribute values. An attribute can be
classified as continuous, discrete or textual.

If the attributes are discrete, a commonly used similarity
measure is based on the simple matching criterion. The
similarity between two nodes in an attributed graph is deter-
mined by examining each of the d attributes and counting
the number of attribute values they have in common.

For continuous attributes, the most commonly used metric
is based on the Euclidean distance.

simA(i, j) =
1

1 +
√∑

d(xdi − xdj )2

If the attributes are textual, we first need to transform them
into numeric values. A text document can be represented as
bag of words. Each word is represented as a separate variable
having numeric weight. The most popular weighting schema
is tf-idf (term frequency-inverse document frequency). Each
document is then represented as a vector of weight. To mea-
sure the similarity between two document vectors, cosine
similarity is the most widely used metric.

IV. COMMUNITY DETECTION ALGORITHMS

In this section, we present two methods to discover com-
munities in an attributed graph, given a similarity measure.

A. Algorithm SAC1

Our first approach is based on the modification of New-
man’s well-known modularity function. Given a graph of n
nodes and m edges, Gi,j represents the link (i, j), di is the
degree of node i. If a graph is partitioned into K clusters,
Newman’s modularity [3] can be written as

QNewman =

K∑
l=1

∑
i∈Cl,j∈Cl

S(i, j) (1)

where the link strength S(i, j) between two nodes i and j
is measured by comparing the true network interaction Gij

with the expected number of connections (di · dj)/2m

S(i, j) =
1

2m
·
(
Gi,j −

di · dj
2m

)
Newman’s modularity does not include the attribute simi-
larity between nodes. We define the ”modularity attribute”
QAttr of a partition as

QAttr =
∑
C

∑
i,j∈C

simA(i, j) (2)

where simA is the attribute similarity function.
Next, we introduce a composite modularity as a weighted
combination of modularity structure (1) and modularity
attribute (2)

Q =
∑
C

∑
i,j∈C

(α · S(i, j) + (1− α) · simA(i, j)) (3)

α is the weighting factor, 0 ≤ α ≤ 1.
The next step is to find an approximate optimization of Q

(direct optimization is a NP-hard problem [12]). We follow
an approach directly inspired by the Louvain algorithm [6].
The algorithm starts with each node belonging to a separated
community. A node is then chosen randomly. The algorithm
tries to move this node from its current community. If
a positive gain is found, the node is then placed to the
community with the maximum gain. Otherwise, it stays in
its original community. This step is applied repeatedly until
no more improvement is achieved.
When moving node x to community C, the composite
modularity gain is calculated as

∆Q = α ·∆QNewman + (1− α) ·∆QAttr (4)

in which
• Gain of modularity structure ∆QNewman :

∆QNewman =
∑

i,j∈C∪x
S(i, j)−

∑
i,j∈C

S(i, j)

=
1

2m

(∑
i∈C

Gi,x −
dx
2m

∑
i∈C

di

)
• Gain of modularity attribute ∆QAttr :

∆QAttr =
∑

i,j∈C∪x
simA(i, j)−

∑
i,j∈C

simA(i, j)

=
∑
i∈C

simA(x, i)

The first phase is completed when there is no more pos-
itive gain by moving of nodes. Following Louvain, we can
reapply this phase by grouping the nodes in the same com-
munities to a new community-node. The weights between
new nodes are given by the sum of the weight of the links
between nodes in the corresponding communities [6]. To
determine the attribute similarity between two communities,
we propose two approaches. The first is to sum up the
similarity of their members, the second way is to set to the
similarity of their centroids.

B. Algorithm SAC2

Our first algorithm SAC1 repetitively checks all nodes,
leading to O(n2) complexity. To reduce the computational
cost, we propose another approach that only makes use
of a node’s nearest neighbors. Given an attributed graph:
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Algorithm 1 Structure-Attribute Clustering Algorithm
SAC1
Input: An attributed graph G = (V,E,X) and a similarity

matrix
Output: A set of communities

Phase 1 : Initialize each node to a separated community
repeat

for i ∈ V do
for j ∈ V do

Remove i from its community, place to j’s com-
munity
Compute the composite modularity gain ∆Q

end for
Choose j with maximum positive gain (if exists) and
move i to j’s community
Otherwise i stays in its community

end for
until No further improvement in modularity
Phase 2
• Each community is considered as new node
• Reapply Phase 1

G = (V,E,X), we define a k-nearest neighbor graph (k-
NN) Gk = (V,Ek) as a directed graph in which each
node has exactly k edges, connecting to its k most similar
neighbors in G. The similarity measure between 2 nodes i
and j is defined as

S(i, j) = α ·Gi,j + (1− α) · simA(i, j)

where simA(i, j) is the attribute similarity function, Gi,j

represents the link (i, j). Note that we can replace Gi,j

by other similarity measurements such as Jaccard similar-
ity, cosine similarity, etc. [13] discussed several similarity
metrics based on local information. Similar to the previous
algorithm, we use α as a weighting factor.

We apply the measurement S in the first place to construct
the nearest neighbor graph. In Gk, a structural edge repre-
sents the similarity between nodes (in terms of structure and
attribute) in the original graph G.

The naive approach to build k-NN graph uses O(n2)
time and O(nk) space. However substantial effort has been
devoted to speed up the process, such as parallel algorithms
([14], [15]), approximation algorithms ([16], [17]). In most
recent work, [18] introduced NN −Descent, an algorithm
for approximate k-NN construction with an arbitrary simi-
larity measure. The method is scalable with the empirical
cost O(n1.14).

We propose a simple algorithm with two phases: con-
structing a k-NN graph Gk and finding structural com-
munities in Gk to obtain the final clustering. In Phase 2,
various methods can be employed to find communities. In
our experiments, we choose Louvain as the detection method

Algorithm 2 Structure-Attribute Clustering Algorithm
SAC2
Input: An attributed graph G = (V,E,X)
Output: A set of communities

Phase 1: Construct k-NN Graph Gk

Phase 2: Apply detection method to find structural com-
munities in Gk. The result corresponds to the communi-
ties in G

because of its scalability. We set k equal to the average
degree of the nodes in the graph G.

V. EXPERIMENTAL STUDY

A. Experimental Datasets

We perform experiments to evaluate our algorithm on
several real social networks:
Political Blogs Dataset: A directed network of hyperlinks
between weblogs on US politics, recorded in 2005 by
Adamic and Glance [19]. This dataset contains 1,490 we-
blogs with 19,090 hyperlinks between these webblogs. Each
blog in the dataset has an attribute describing its political
leaning as either liberal of conservative.
Facebook Friendship Datasets: The datasets contain the
Facebook networks (from a date in Sept. 2005) from these
colleges: Caltech, Princeton, Georgetown and UNC Chapel
Hill [20]. The links represent the friendship on Facebook.
Each user has the following attributes: ID, a student/faculty
status flag, gender, major, second major/minor (if applica-
ble), dormitory(house), year and high school.
DBLP Dataset: A co-authorship network with 10,000 au-
thors, captured from the DBLP Bibliography data in four
research areas: database (DB), data mining (DM), informa-
tion retrieval (IR) and artificial intelligence (AI). Each author
has two attributes: prolific and primary topic. Details of this
dataset can be found in [11].

One of the most fundamental characteristic of social
network is homophily [21]. The principle of homophily
states that actors in a social network tend to be similar
(i.e., to share some common attributes) with their connected
neighbors, or ”friends”. In order to show this feature, for
each attribute a in the dataset (e.g., political view, dormitory,
year), we compute the probability that two friends are similar
and compare to the probability of a random pairwise sample

Psl = P (Similar|Link) =
|(i, j) ∈ E : s.t. ai = aj |

|E|

Ps = P (Similar) =
|(i, j) : s.t. ai = aj |
|E| · (|E| − 1)

Table I shows that the similarities between friends are
significant higher than random, according to a particular
attribute. In Political Blogs, 90% of connected blogs are sim-
ilar, compared to 49% of random pair. In Caltech network,
similarity in dormitory are significant between friends (42%
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Table I: Homophily measurement in experimental datasets

Graph #Nodes #Edges Attribute Psl Ps

Political Blogs 1,490 16,716 Leaning 0.90 0.49
Caltech 796 16,656 Dorm 0.42 0.12

Princeton 6,596 293,320 Year 0.53 0.13
Georgetown 9,414 425,638 Year 0.58 0.13

UNC 18,163 766,800 Year 0.43 0.15
DBLP 10,000 28,110 Topic 0.35 0.01

compared to 12%). In the graphs Princeton, Georgetown and
UNC, friends are more likely to have the same class year.
In DBLP, authors are most likely not connected if they do
not share the primary topic.

The analysis of homophily demonstrates the correlation
between structure and attribute information in real social
networks. For that matter, node attributes could provide
valuable information to facilitate community discovery.

B. Evaluation Measures

We extract the communities from the above datasets, using
6 different methods:
• Attribute-based clustering: K-means method is used to

group nodes based on the similarity in attributes (link
information is ignored).

• Random walks: Method proposed by Steinhaeuser et
al. [10], based on random walks and hierarchical clus-
tering. The walk length is set to the number of nodes.

• Louvain algorithm on unweighted graph.
• Fast greedy: Method proposed by Clauset et al. [22]

based on the greedy optimization of modularity. The
graph is weighted by node attribute similarities.

• Our proposed algorithms SAC1 and SAC2.
To evaluate the quality of these methods, we compare
the number of communities, size of communities,
modularity structure, modularity attribute and additional
two measurements: density D and entropy E

D =

K∑
c=1

mc

m

where mc is number of edges in community c, m is the
number of edges in G, K is the number of communities.
D reflects the proportion of community intra-links over total
number of links. High density denotes good separation of
communities.

E =

K∑
c=1

nc
n
· entropy(c)

entropy(c) = −
∑
i

pic log(pic)

where nc is the number of nodes in community c, n is the
number of nodes in G, pic is the percentage of nodes in c

with attribute i. Communities with low entropy means they
are more homogeneous with respect to the attribute ai.

C. Comparison of SAC1 and SAC2

Because our approaches make use of the parameter α as a
weighting factor between structural similarities and attribute
similarities, we first examine the community qualities with
different values of α. Figure 1 plots the modularity structure
(E.q (1)), modularity attribute (E.q (2)) and modularity
composite (E.q (3)) of SAC1’s communities (in 4 graphs),
for α ∈ [0, 1]. The x-axis represents the values of α, the y-
axis represents the modularities values. There is an increas-
ing trend of modularity structure and decreasing trend of
modularity attribute since the algorithm gives more favor to
structural similarities as α increases. For SAC2 (not shown
here), the modularities also follow the similar patterns.

(a) Political Blogs (b) Facebook Caltech

(c) Facebook Princeton (d) Facebook Georgetown

Figure 1: SAC1 modularity structure, modularity attribute
and modularity composite for α ∈ [0, 1]

Table II reports the average entropy and density of SAC1
and SAC2 on the datasets. Average entropy of SAC2 is
lower than SAC1’s whereas density of SAC1 is higher than
SAC2’s. That is, SAC2’s communities are more homoge-
neous, but in terms of density, SAC1’s communities are more
dense.
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Table II: Average entropy and density of SAC1 and SAC2

Graph Average Entropy Average Density
SAC1 SAC2 SAC1 SAC2

Political Blogs 0.06 0.1 0.91 0.90
Caltech 0.75 0.33 0.50 0.46

Princeton 1.04 0.41 0.64 0.55
Georgetown 0.91 0.41 0.68 0.60

UNC 1.76 0.51 0.64 0.45
DBLP 3.01 1.24 0.82 0.52

D. Comparison against other methods

1) Number of communities and size distribution: We
observe that SAC1 and SAC2 result in less number of com-
munities than other methods. Figure 2 shows the number of
communities found by Louvain and SAC1. The x-axis repre-
sent values of α, the y-axis is the number of corresponding
communities. The outermost right bar is the number of
communities from Louvain. It is clear that Louvain results
in more communities. The result is similar for SAC2 (Table
III). However, many of the communities found by Louvain
are very small. For instance in Political Blogs, although 276
communities are found, the biggest two communities already
consist of 80 percent of nodes. The rest of communities
have the maximum size of 5 nodes. On the other hand,
our algorithms correctly identified two communities in this
graph, which correspond to two political views: liberal and
conservative. It is observed that for large networks, Louvain
often results in a few mega-sized communities and numerous
small-sized communities. Our methods achieved a more
balanced distribution of community sizes.

(a) Political Blogs (b) Facebook Georgetown

Figure 2: Number of communities in SAC1 (plot of α) and
Louvain

Table III: Number of communities in SAC2(α = 0.5),
Louvain and Fast greedy

Graph SAC2 Louvain Fast greedy
Political Blogs 2 277 277

Caltech 7 10 9
Princeton 7 20 24

Georgetown 9 12 42
UNC 7 19 31
DBLP 47 566 864

2) Community quality: Table IV and V compare the clus-
tering entropy and density (with α = 0.5) on two datasets.
It shows that SAC1 and SAC2 result in communities with
lower entropy (higher attribute similarities) than Louvain and
Fast greedy’s communities. For example, in Caltech graph,
the entropy of SAC1 and SAC2 is 0.75 and 0.33 respectively,
while the entropy of Louvain and Fast greedy is 1.65 and
1.71. On the other hand, the density of our methods is a
little lower than the density of these two methods but higher
than attribute-based clustering and random walks. For other
datasets, the results are also similar.

Table IV: Entropy and Density of Caltech’s communities

Method Entropy Density
Attribute-based 0 0.42
Random walks 0 0.35

Louvain 1.65 0.57
Fast greedy 1.71 0.56

SAC1 0.75 0.50
SAC2 0.33 0.46

Table V: Entropy and Density of Princeton’s communities

Method Entropy Density
Attribute-based 0 0.53
Random walks 0 0.47

Louvain 1.71 0.62
Fast greedy 1.80 0.74

SAC1 0.84 0.62
SAC2 0.41 0.55

VI. DISCUSSIONS

Both of our methods are parameterized, i.e., using α as
a weighting factor, the natural question is how to choose α.
Note that the results are quite stable with respect to α. With
no domain knowledge, it is difficult to determine the value
of α a priori. However, in social networks, we expect the
links contain more information than attribute values. Based
on this idea, we propose a strategy to approximate α. It is
illustrated below:
init:
• α = 1
• Set an interval i (e.g., i = 0.1 in our experiments)

repeat
• Compute the optimized clustering corresponding to α
• Let QNewman(α) and QAttr(α) be the modularity

structure and modularity attribute of the partition
• Let α′ = α− i
• Let ∆ = (QNewman(α′) − QNewman(α)) +

(QAttr(α′)−QAttr(α))
• α = α′

until ∆ <= 0
Table VI reports the value of α found using the aforemen-
tioned strategy for SAC1 algorithm. It shows that the com-
munities found are reasonably good in terms of modularity
values.
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Table VI: Optimum α found for the graphs

Graph α QNewman QAttr

Political Blogs 0.5 0.41 0.99
Caltech 0.6 0.31 0.99

Princeton 0.7 0.42 0.96
Georgetown 0.5 0.43 0.98

UNC 0.6 0.33 0.91
DBLP 0.5 0.27 0.83

VII. CONCLUSION AND PERSPECTIVES

In this paper, we studied the issue of community detection
in attributed graphs. We propose two methods that couple
topological structure as well as attribute information in
the detection process. Experimental results in real social
networks demonstrated that our methods achieve a flexibility
in combining structural and attribute similarities, hence
able to bring in more meaningful communities. As future
work, we try to bring further enhancements to our methods,
e.g., reduce the algorithms’ complexity, explore different
similarity functions. We will apply our methods in different
scenarios, for example with textual data or missing attribute
values. We try to understand the roles of links and content
information in the formation of online communities in order
to devise adapted discovery strategies and to model the
dynamic of the networks.
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