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Abstract—Currently, intrusion detection systems (IDSs) are
being widely deployed in various computer networks aiming
to detect all kinds of attacks. But the major problem is that a
large amount of alarms are generated during their detection
and most of them are non-critical alarms. This issue greatly
increases the analysis workload and reduces the effectiveness
of an IDS. We argue that this bottleneck stems primarily from
the lack of contextual information to the intrusion detection
systems. To mitigate this issue, we propose an architecture of
context-based non-critical alarm filter to help filter out these
non-critical alarms. In particular, our alarm filter consists of
an indexing component to link input alarms to corresponding
contextual information, an analysis engine aims to filter out
non-critical alarms according to contextual information and a
monitor engine to update index values. In the evaluation part,
we explored the initial effectiveness of our non-critical alarm
filter in a deployed network environment. The experimental
results show that our alarm filter is promising and effective in
filtering out non-critical alarms.

Keywords-Intrusion detection; Network security; Non-critical
alarm filter; Context-based system

I. INTRODUCTION

Computer systems have become vulnerable to attacks with
the rapid development of networks. According to the latest
released Internet Security Threat Report from Symantec [7],
the trend of malware attacks is increasing significantly. More
than 286 million unique variants of malware were discovered
and up to 6,253 new vulnerabilities were recorded.

To address these network threats, intrusion detection sys-
tems (IDSs) [1, 2] have been widely deployed into different
kinds of organizations (e.g., assurance company) aiming
to safeguard computer security and network environment.
The security administrators can rely on them to detect and
identify attacks and prevent future uses of known exploits
and vulnerabilities. Moreover, the use of intrusion detection
systems is a powerful complementary solution to firewall
technology through defending against attacks and suspicious
network traffic that are missed by the firewall.

In general, there are two traditional types of intrusion
detection systems according to their detection techniques.
One is the signature-based intrusion detection systems (also
called rule-based IDS), which are mainly based on attack
signatures to detect various attacks and threats. This kind
of detection systems has to maintain a signature database

and keep updating it to the latest version periodically. The
signatures are usually extracted from the previously detected
malicious network packets, therefore, the signature-based
IDS can only identify known attacks. Take Snort [6, 12]
as an example, this lightweight rule-based network intrusion
detection system detects attacks by monitoring and analyzing
network packets (e.g., UDP, TCP, IP). The common Snort
rule format is shown as follows:

Action-type protocol-type Source-ip Source-port ->
Destination-ip Destination-port (content:“attack signature”;
msg:“attack msg”;)

The other type of IDSs is called anomaly-based intrusion
detection systems. Compared to the signature-based IDS, the
anomaly-based IDS has the capability of identifying novel
attacks. In reality, the anomaly-based approach will pre-build
a normal profile to model the normal network traffic by
training relevant systems with machine learning algorithms.
During the detection, this approach aims to detect deviations
through comparing current events with the normal profile.
In actual deployment, the signature-based approach is more
prevalent than the anomaly-based method in that the false
alarm rate of anomaly-based systems is significantly higher
than the signature-based detection systems since it is very
hard to build a good normal profile in most cases [3].

Problem. Although the IDSs are proven to be effective in
detecting network attacks, their generated large number of
alarms greatly increase the analysis workload for a security
officer. What is worse, most of these alarms are false alarms
or non-critical alarms [8, 9]. The false alarm rate (or non-
critical alarm rate) is a major limiting factor in encumbering
the high performance of an IDS [5]. This issue primarily
stems from the fact that current IDS detects not only the
intrusions, but also unsuccessful attack attempts. Whereas
it is hard for an IDS to decide the situation of an attack
attempt (whether it is a successful attack or not), it has to
report all detected attack attempts to security officers with
the purpose of reducing security risk [4]. In this case, it is a
big challenge for a security officer to analyze the information
of real attacks without discarding all non-critical alarms
since these non-critical alarms can greatly make negative
effects on the final analysis results.

To more explicitly illustrate this problem in this paper, we
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learn from the previous research work [10] and provide the
definition of non-critical alarms as below:

Definition of non-critical alarms. A non-critical alarm is
either not related to a malicious activity or not related to
a successful attack. In other words, a non-critical alarm is
either a false positive or a non-relevant positive.

Contributions. To improve the performance of IDSs by
filtering out the non-critical alarms, we advocate that making
the IDSs be aware of the contextual information of their
deployed contexts is a promising method to achieve the
improvement [10, 11]. In this paper, therefore, we develop
and construct a context-based non-critical alarm filter to
help filter out the non-critical alarms aiming to improve the
effectiveness of IDSs and reduce the workload of a security
officer. In particular, our proposed context-based non-critical
alarm filter consists of three major components: namely,
an indexing component, an analysis engine and a monitor
component. For the indexing component, its main function
is to link the input alarms to corresponding look-up tables
which consist of contextual information. The analysis engine
aims to compare the contextual information with the input
alarms to determine whether the input alarms are critical or
not. The monitor component is responsible for recording
alarm information and updating the index values in the
indexing component periodically. In terms of the indexed
contextual information, our alarm filter can be adaptive to
the specific network contexts.

To explore the feasibility and effectiveness of our context-
based non-critical alarm filter, we implemented and evalu-
ated this alarm filter under an established network environ-
ment with Snort. During the experiment, we converted all
original Snort alarms to the type of contextual alarms (see
Section IV). Then our alarm filter analyzed the contextual
alarms by comparing to the stored contextual information
and finally output the critical alarms. The initial experi-
mental results show that our alarm filter is encouraging and
effective in our network settings.

The rest of this paper is organized as follows: in Section
II, we describe research papers that relate to false alarm
reduction such as alert verification, alert correlation and
machine learning based methods; Section III illustrates the
architecture of our context-based non-critical alarm filter and
gives an in-depth description of each component; Section IV
presents our experimental methodology and shows the ex-
perimental results; limitations and future work are presented
in Section V; finally, Section VI states our conclusion.

II. RELATED WORK

A variety of solutions have been proposed aiming to re-
duce the number of non-critical alarms in intrusion detection.
These efforts fall roughly into two general folders: indirect
reduction such as IDS signature enhancement; and direct
reduction including alert correlation, alert verification and
kinds of machine learning based approaches.

For the signature-based IDSs, the false alarm rate (or non-
critical alarm rate) depends heavily on the capability of their
signatures. Therefore, signature enhancement is regarded as
a promising approach to control the false alarm rate. Sommer
and Paxson [14] proposed and designed a type of contextual
signature as an improvement for the string-based signature
matching. They then developed a signature engine for Bro
as follows: low-level context by using regular expressions
and high-level context by taking advantage of the semantic
information from Bro’s protocol analysis. In addition, Cost
et al. [13] proposed Vigilante, a new approach to create a
signature for the execution path of worms under an end-
to-end environment. Followed by above work, Brumley et
al. [15] improved Vigilante and provided the definition of
vulnerability signature that is a representation for the set
of inputs to satisfy a specific vulnerability condition. In
the evaluation, they showed that this new type of signature
achieved an improvement over existing signatures.

To directly reduce the non-critical alarms, the common ap-
proaches are alert correlation, alert verification and building
alarm filters by using machine learning algorithms.

Debar and Wespi [16] proposed an aggregation and cor-
relation algorithm to manage IDS alarms and relate these
alarms together in order to output a condensed view of the
reported security issue, and they also designed an aggre-
gation and correlation component to handle alarms which
were generated by probes. Then, Cuppens and Miege [17]
introduced an architecture of CRIM, a cooperative module
for IDSs to manage, cluster, merge and correlate alarms.
The function of this module is to recognize alarms and
create a new alarm from various alarms. The method of
alert verification is to help determine whether an attack is
successful or not, which is regarded as a pre-processing step
for alert correlation in achieving good correlation results
[19]. Gagnon et al. [10] evaluated the feasibility of using
target configuration (i.e., operating system and applications)
as contextual information for identifying non-critical alarms.
Several other work (e.g., [21], [20], [32]) further showed
that the alert verification improved the quality of alerts by
effectively verifying the results of intrusion attempts and
enhanced the performance of alert correlation.

Another widely used method in filtering out non-critical
alarms is constructing an alarm filter through using machine
learning algorithms. Pietraszek [31] described an adaptive
alert classifier based on an analyst’s feedback to help reduce
false positives by using machine learning techniques. This
classifier could discard alerts in terms of their classification
confidence to reduce the workload of an analyst. Law and
Kwok [18] proposed a method to decrease the number of
false alarms by using a KNN classifier (k-nearest-neighbor
classifier). Alharbt and Imai [23] illustrated an algorithm by
using continuous and discontinuous sequential patterns to
detect abnormal alarms. Davenport et al. [26] implemented
a support vector machine to control false alarms.
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Figure 1. The architecture of context-based non-critical alarm filter with the deployment of network intrusion detection system.

Our approach is related to alert verification that aims to
filter out non-critical alarms by considering the contextual
information. The previous work (e.g., [10], [20]) was mainly
explored the feasibility of alert verification while our work
towards constructing a non-critical alarm filter. We acknowl-
edge that our work is based on the previous results that it is
appropriate and feasible to combine contextual information
such as OS information and applications with IDS alarms.
Differently, our work further develop this method in practice
and towards automating this approach.

III. CONTEXT-BASED NON-CRITICAL ALARM FILTER

In this section, we illustrate the architecture of our pro-
posed context-based non-critical alarm filter. The alarm filter
mainly contains three components: an indexing component,
an analysis engine and a monitor component. A high-level
diagram with these major components of this architecture is
demonstrated in Fig. 1.

As illustrated in Fig. 1, the network intrusion detection
system is deployed between an external network and an
internal network in detecting network attacks by examining
network packets. Its generated alarms are forwarded into
our context-based non-critical alarm filter. There are three
main components in the alarm filter: a monitor, an indexing
component and an analysis engine. First of all, the monitor
component records both source IP address and destination
port number of an input alarm into a database and updates
the indexing component periodically. Then the NIDS alarms
are all forwarded to the indexing component in searching
for the contextual information according to their index
values. Finally, the analysis engine specifically compares the
input alarms with relevant contextual information to identify
whether the input alarms are critical or not. In addition, the

non-critical alarms can be discarded or stored in another
database for back-up and future analysis.

In the next three subsections, we give an in-depth descrip-
tion of these three major components respectively.

A. Monitor Component

The main task of the monitor is to collect statistical data
and to update the index values in the indexing component.
In this work, we use source IP address and destination port
number as the index values. The construction of the monitor
is shown in Fig. 2.

According to Fig. 2, when an alarm arrives, the monitor
component first records its source IP address and destination
port number into a database. The database is responsible for
storing the source IP addresses and destination port numbers
for all input alarms and updating the index values in the
indexing component periodically. After recording the index
values, then the input alarms are forwarded to the indexing
component without any modification.

Based on the above descriptions, the database (as shown
in Fig. 2) mainly contains two items: source IP address
and destination port number. The major operations of the
database are described as below.

• If the source IP address of the input alarm is brand
new, then the database will create a new value corre-
sponding to this IP address under the item of source IP
address. For the new source IP address, the database
can directly record its destination port number in the
item of destination port number.

• While if the source IP address has been logged before,
then the database will record the new updating date for
this IP address. For the logged source IP address, the
database has to check the destination port number.
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Figure 2. The construction of the monitor component in our alarm filter.

– If the destination port number has not been logged,
then the database will create a new value corre-
sponding to this destination port number under the
item of the destination port number

– If the the destination port number has been logged,
then the database will record the new updating date
for this destination port number.

According to the specific updating date (which is deter-
mined by an administrator), the database can delete a source
IP address if it is too dated to reduce the list length of the
source IP address. Therefore, the database can be up-to-date
and be adaptive to the alarm changes in real environment.

B. Indexing Component

The purpose of the indexing component1 is to category
incoming alarms based on their IP addresses and port
numbers. There are two index items: source IP address and
destination port number. Our scheme maintains a complete
CI database that stores all available contextual information.
In this component, the contextual information can be indexed
in terms of recorded alarms’ IP addresses and port numbers.
For example, if an alarm was matched in the previous
comparison, then its source IP address and destination port
number will be recorded and be linked to that contextual
information.

When alarms pass through the monitor and arrive at this
component, the component will first check the source IP
addresses of the input alarms in terms of the look-up table.
If a match is identified, then the component will look for the
item of destination port number in the look-up table and try
to find another match. If a matched destination port number

1In fact, this component can be incorporated into the analysis engine in
real deployment, but it provides the key connection between the monitor
and the analysis engine. Due to its importance, we consider it as a major
component in the architecture of our alarm filter.

is also detected, then the relevant alarms will be forwarded
to the analysis engine based on the above two items.

Otherwise, if a dis-match is either identified in the item of
source IP address or in the item of destination port number,
the relevant alarms will be regarded as fresh alarms (which
have not been logged before) and have to be compared with
the complete CI database. After the comparisons, the source
IP address and destination port number of these fresh alarms
will be recorded.

C. Analysis Engine

The analysis engine aims to compare the input alarms with
relevant contextual information. The contextual information
is the key element to our alarm filter, we mainly consider two
major types: Networking features and Target configuration.

• Networking features consist of many different kinds of
network information such as network topology, protocol
specifications. These features can reflect the character-
istics of distinct network environments.

• Target configuration usually refers to the information
obtained from operating systems or applications. The
information is used to help determine whether a target
system is vulnerable to a given attack. For example, a
Windows-based virus or worm cannot be running under
a Linux system.

The basic information of known exploits can be extracted
from various vulnerability databases such as Security Focus
[29], National Vulnerability Database [24], Common Vul-
nerabilities and Exposures [27], Open Source Vulnerability
Database [28]. What is more, the use of scanners [22] is
an alternative if the information is not available in these
vulnerability databases.

In this work, we use the operating system (OS) and appli-
cation (APP) as the contextual information in the analysis
engine. The evaluation steps are listed as follows:

1) If the target OS is marked as non-vulnerable to this
exploit, then relevant alarms are non-critical alarms.

2) If the target APP is marked as non-vulnerable to this
exploit, then relevant alarms are non-critical alarms.

3) If the target OS is marked as vulnerable to this exploit,
then relevant alarms are potential critical alarms.

4) If the target APP is marked as vulnerable to this ex-
ploit, then relevant alarms are potential critical alarms.

5) If 3) and 4) are both fulfilled, then relevant alarms are
regarded as critical alarms.

IV. EVALUATION

In this section, we constructed an experimental network
environment by using Snort (version 2.9.0.5) [6], Wireshark
[30] and packet generator [25] to evaluate the performance
of our context-based non-critical alarm filter. The network
environment is illustrated in Fig. 3.

As shown in Fig. 3, the network traffic goes through from
the source network (Internet) to the target network (Internal
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Figure 3. The deployment of experimental environment.

network). The Snort is deployed between these two networks
aiming to identify attacks by checking the network packets.
Our context-based non-critical alarm filter is deployed close
to the Snort and all the Snort alarms will be forwarded
to our alarm filter. The Wireshark is used to record the
network packets and provide statistical data for analyzing
experimental results.

A. Experimental Methodology

In the experiment, we use the Snort alarms as the basis
for our evaluation but these original alarms do not contain
any contextual information. In this case, we develop the
type of contextual alarms by adding the application and OS
information to the original Snort alarms before forwarding
them to the analysis engine. The conversion is completed
by an additional module which is designed to convert the
original Snort alarms to contextual alarms.

By means of the concept of contextual alarms, the evalu-
ation process is as below. First of all, the target network will
communicate with the source network (i.e., using QQ, MSN
and browsing the internet). The Wireshark will monitor and
record all the network packets. Then, we used the packet
generator to simulate some malicious packets by modifying
the contents of three packet types: ICMP, TCP and UDP
according to Snort rule database such as icmp.rules, tel-
net.rules and scan.rules.

Through sending out malicious packets, Snort can gener-
ate a number of alarms (including both real alarms and non-
critical alarms) by examining the network packets. All the
generated alarms will be forwarded into our alarm filter and
converted to the contextual alarms by adding the information
of target applications and OS. In the analysis engine, all
contexture alarms will be compared with relevant contextual
information followed by the evaluation steps (see Section
III). The outputs of our alarm filter are critical alarms.

B. Evaluation Results

By understanding the experimental methodology, we give
several examples of the contextual alarms in Table I. There
are totally 8 items as follows: packet type, source IP address,
destination IP address, source port number, destination port
number, alarm description, application information (APP)
and OS information.

In Table I, the first contextual alarm is related to TCP
packets that come from the source IP “197.218.177.1” to
the destination IP “172.16.114.15”, the source port number
is 20 and the destination port number is 80. The appli-
cation information of this alarm is “IE application” and
the target OS is “Windows”. The description of this alarm
is “ATTACK-RESPONSES 403 Forbidden”. The other two
contextual alarms are similar to the first one.

Table I
SEVERAL EXAMPLES OF CONTEXTUAL ALARMS.

Packet type TCP TCP ICMP
Sour. IP 197.218.177.1 197.218.176.1 197.218.177.15
Dest. IP 172.16.114.15 172.16.114.15 172.16.112.2
Sour. Port 20 80 –
Dest. Port 80 4000 –

Description
ATTACK-
RESPONSES
403 Forbidden

ATTACK-
RESPONSES
403 Forbidden

ICMP Echo Reply

APP IE QQ –
OS Windows Linux Windows

In addition, Table II gives some examples of the contex-
tual information in the analysis engine.

Table II
SEVERAL EXAMPLES OF CONTEXTUAL INFORMATION IN THE ANALYSIS

ENGINE.

Sour. IP 197.218.177.1 197.218.176.1 197.218.177.1
Dest. IP 172.16.114.15 172.16.114.24 172.16.112.2
Packet Type TCP TCP ICMP
Dest. Port 20 80 21

Description
ATTACK-
RESPONSES
403 Forbidden

ATTACK-
RESPONSES
403 Forbidden

ICMP Echo Reply

APP IE QQ –
OS Windows Linux Windows

The contextual information in the analysis engine contains
7 items: source IP address, destination port number, destina-
tion IP address, packet type, alarm description, application
information (APP) and OS information.

Following by the experimental methodology, we conduct
the experiment and show the initial experimental results in
Fig. 4.

Analysis: As shown in Fig. 4, our alarm filter greatly
reduces the number of Snort alarms in our deployed net-
work environment. For instance, in the 10th hour of our
experiment, the number of Snort alarms is decreased by
48.6% after adding the contextual information. The filtration
accuracy of non-critical alarms is nearly 95% in terms of
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Figure 4. The alarm filtration results with regard to our context-based
non-critical alarm filter in the experiment.

the packet records logged by the Wireshark. The reason
for some missed non-critical alarms is that there is no
relevant contextual information stored in the analysis engine
or the contextual information is not found in some contextual
alarms (i.e., the third contextual alarm in Table I, the target
APP is not recognized).

In this experiment, the false filtration rate (FFR)2 of our
alarm filter is 0 in that we only filter out the alarms which
are regarded as non-critical alarms according to APP and
OS information. While the negative filtration rate (NFR)3

of our alarm filter is about 10% in this experiment since
we regard input alarms as critical alarms by default if the
contextual information is not stored. On the whole, the initial
experimental results show that our context-based non-critical
alarm filter is encouraging in the network environment.

V. LIMITATIONS AND FUTURE WORK

This is an early work on constructing non-critical alarm
filter. Based on our initial experimental results, there are
some issues that we can improve in the future work.

• Anomaly-based detection system. In our current work,
we only investigate the performance of our scheme on
Snort alarms (which are generated from a signature-
based IDS). For the anomaly-based detection system,
we leave it as an open problem for our future work
to investigate the performance of our scheme on the
alarms from the anomaly-based detection systems.

• Contextual information. In this paper, our work uses OS
operating system and application types as the contextual

2FFR: A critical alarm is regarded as a non-critical alarm.
3NFR: A non-critical alarm is regarded as a critical alarm.

information. However, we acknowledge that it is hard to
identify the information accurately in some cases. We
consider it as an open problem for our future work, to
explore other types of contextual information.

Therefore, our future work could include considering and
combining more applicable contextual information into our
alarm filter to help better filter out the non-critical alarms,
or constructing a more powerful alarm type to facilitate our
alarm comparisons. In addition, the future work could also
include comparing our scheme with other research work in
this domain or deploying our alarm filter in a real network
environment to further explore its performance.

VI. CONCLUSION

The large number of non-critical alarms is a big problem
with regard to IDSs. In this paper, we propose a context-
based non-critical alarm filter to help filter out these non-
critical alarms. In particular, our proposed alarm filter con-
sists of three main components: an indexing component,
an analysis engine and a monitor component. The indexing
component uses the source IP address and the destination
port number as the index values to link the input alarms
to corresponding contextual information. Then, the analysis
engine compares the contextual information with the con-
textual alarms which are converted from the original alarms.
The monitor component is used to update the index values in
the indexing component. In the experiment, we explore the
performance of the alarm filter under a constructed network
environment. The initial experimental results show that our
alarm filter is encouraging and effective to reduce the non-
critical alarms in our network deployment and lighten the
analysis burden for security analysts.
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