
Towards a Software Defined Multi-Domain Architecture for the Internet of Things

Leonel Piscalho Junior
Lisboa, Portugal

email: leopiscalho@gmail.com

José Moura
Instituto de Telecomunicações

ISCTE - Instituto Universitário de Lisboa
Lisboa, Portugal

email: jose.moura@iscte-iul.pt

Rui Neto Marinheiro
Instituto de Telecomunicações

ISCTE - Instituto Universitário de Lisboa
Lisboa, Portugal

email: rui.marinheiro@iscte-iul.pt

Abstract — The emerging communication networks tend to
aggregate heterogeneous networking infrastructures as well as
data flows with very distinct requisites. This implies that the
complete satisfaction of Quality of Service (QoS) metrics is very
difficult to achieve, using the legacy management solutions.
Alternatively, the Software Defined Networking (SDN)
paradigm offers a logical centralized management of the
necessary network resources for data flows, namely the ones
originated in sensor devices. Therefore, this work investigates a
solution that meets the QoS requirements of traffic from remote
Internet of Thing (IoT) devices. To achieve this goal, we have
designed a SDN-based solution that manages a network
topology formed by several domains. We assume each network
domain is controlled by its own SDN controller. In addition, our
solution assumes that the several SDN controllers need to be
orchestrated among them to maximize the management
efficiency of the available end-to-end network resources. This
orchestration is done via an SDN transit domain ruled by the
ONOS SDN-IP application. We have emulated network
topologies with IoT devices to evaluate the proposed solution in
terms of its functionality, robustness against network failures,
and QoS support. Analyzing the obtained results, our solution
can support a cross-controller SDN domain communication. It
is also capable of reacting automatically to topology failures. In
addition, it can prioritize the traffic within the network
infrastructure, providing to the end users strong guarantees on
the desired quality for the exchange of data associated to the
applications they aim to use.

Keywords-Multi-domain; SDN; IoT; QoS

I. INTRODUCTION
The exponential data traffic growth and the network

heterogeneity are challenging the legacy networks. This
occurs due to the high-level of complexity to interconnect
several services and smart devices, both related to the
emerging paradigm of IoT. They exchange real-time
information through the networking infrastructure to be
processed by intelligent applications. This implies not only
various types of traffic, but also the ability to offer QoS
guarantees across the network [1]. With the advent of SDN, it
offers new ways to design more flexible networks.

SDN stands out for its flexibility, programmability and
centralized logical management, which separates the data
layer from the control layer, allowing the passage of logical
operations from the data plane devices to a centralized
software controller, which operates over those devices [2].

Due to the size, heterogeneity, and complexity of current
networks, approaches based on multiple domains are very

scalable. This domain multiplicity consists in the network
division in different administrative domains, each managing
its network subset and optimizing both the domain
performance and the fulfilment of QoS requisites.

Previous research [3] tries to improve the IP domain
routing management and provide end-to-end QoS paths [4].
Nevertheless, the available work is mostly based on a
centralized controller approach that handles routing within a
single administrative domain, offering very limited results. In
this way, the SDN configuration of inter-domain scenarios is
very pertinent. The orchestration among all the SDN
controllers is also vital to ensure reliable end-to-end services,
such as routing, and QoS deployment.

The interaction between the different SDN domains
depends on an inter domain routing protocol, and BGP is a
very popular protocol for this. ONOS [5] and ODL [6] are
SDN controllers that support distributed scenarios. They are
also most commonly used in wide area networks (WANs).
Nevertheless, these two SDN controllers have slight
performance differences as shown in [10], where ONOS
seems to be a better choice for our current WAN scenario.

The authors of [7] suggest a solution designated by Inter
Cluster ONOS Network application (ICONA). This solution
manages a large networking scenario under the same
administrative domain (i.e., GEANT) with geographically
distributed controllers. Another contribution [8] proposes a
gradual implementation of SDN-based solutions over
different administrative domains that interoperates with other
non-SDN based domains. They study a peering application
among distinct Autonomous Systems (ASs) called SDN-IP,
which runs at the top of the ONOS SDN controller.

Due to the low number of literature contributions
supporting end-to-end QoS in IoT networks with scarce
resources, the SDN-IP application is very important to achieve
our goal for ensuring QoS support in distributed systems with
multiple SDN controllers. Therefore, the research question
that motivated our work is “How to Provide the necessary
resources to meet QoS and robustness requirements for traffic
from heterogeneous IoT devices in a distributed system with
multiple SDN controllers?”.

The main contributions of the this paper are the
deployment of a SDN solution that manages resources from
ASs to meet QoS and robustness requirements for routing
heterogeneous traffic across those ASs. The routed traffic is
from heterogeneous devices, including IoT ones, located at the
network edge.

The remaining part of the current paper is following
described. Section II presents the literature review in the

61Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

related research areas. Section III discusses the design of the
proposed solution. Section IV is about the deployment of the
proposed contribution. Section V discusses the performed
tests and their results. Finally, Section VI presents some
general conclusions about the current contribution and some
promising future work.

II. LITERATURE REVIEW
This section briefly revises the literature in the next topics:

SDN architecture, inter-domain communication, and IoT.

A. SDN Architecture
The SDN is a new emerging network paradigm to simplify

networking management, where the data and control layers
are separated. In addition, SDN enables the programming of
the network operation [2]. This programming can be made
with distinct levels of hardware abstraction. In this way, the
SDN controller can program the network devices at the data
plane but the former needs to know in advance some specifics
from the latter ones, such as the number and characteristics of
ports at each device. In a distinct way, a networking
application at the top-most layer of the SDN architecture, as
shown in Fig. 1, can program the network topology without
knowing any detail about the network data plane.

Figure 1. SDN architecture.

Fig. 1 shows an SDN architecture with three layers. The
bottom layer is the data layer, which consists of compatible
SDN devices, like routers and switches. The intermediate
layer is the control layer. It is formed by the controllers that
have the global vision of the network. The control layer
communicates with the devices at the data layer through a
Southbound protocol (e.g., OpenFlow). The application layer
is the top-most layer. It communicates with controllers via
Northbound APIs (e.g., Restful); this layer has several running
applications that deploy many relevant management services.

Separating these layers, there are two vertical
communication channels to connect each pair with
Northbound/Southbound APIs, as well as East/Westbound
APIs to provide horizontal communication between
controllers, aiming the federation between domains.

B. Inter-Domain Communication
Initially, SDN was based on a single controller’s approach

to manage an entire network. Despite its simplicity in terms of
both development and operation, it faces some limitations
when deployed in large networks, regarding reliability and
scalability. An SDN design with a single controller can
become unreliable due to the issue of a single point of failure.
Moreover, a single SDN controller can become overwhelmed
when working with multiple simultaneous requests from the
data plane [9]. Alternatively, a multiple controllers approach,
provides solutions to mitigate the problems just discussed,
such as the single point of failure, and low scalability [2][9].
The authors of [9] discusses some challenges imposed to
SDN-based solutions with multiple controllers for managing
large networks, such as, complexity, scalability, consistency,
reliability and load balancing.

There are several distributed architectures formed by
multiple SDN controllers namely horizontal or hierarchical
[2]. They also discuss several methods to establish
communications among SDN controllers. In [1], a
comparative study of the most currently used SDN controllers
is presented. From these, we highlight ODL and ONOS. Both
support a fully distributed architecture and an SDN
implementation across diverse networking domains [2].
Although these two options are similar, there are some
differences [10], which justifies ONOS as a more suitable
controller than ODL to explore the full potential of SDN in
carrier-grade scenarios, as the one of our paper.

A multi-domain SDN architecture refers to a set of
different administrative SDN domains or ASs that exchange
information regarding network status, configuration, or other
relevant network services, such as packet routing to a
destination. In addition, Border Gateway Protocol (BGP) [11]
is the most commonly used protocol to provide the end-to-end
IP routing services over administrative domains. Then, each
SDN controller needs to process an external learned BGP
route to a destination prefix and translate it to local routing
rules, which are only valid within the network domain the
controller is responsible for. It is expected that summing up
the individual routing contributions from the diverse SDN
controllers results in a final aggregated outcome that fulfils the
end-to-end BGP route.

C. IoT Overview
An Internet of Things (IoT) domain is a network of

physical devices and sensors with embedded technology that
interacts with the local environment. The IoT network not
only collects data but it also exchanges the data to some
servers located at remote clouds or even to some fog servers
located at the network periphery. There are many IoT
scenarios, such as health, home automation, smart
transportation, environmental monitoring, or smart grids.

Recent work [12] has highlighted the relevance of SDN-
based systems for controlling network domains formed by IoT
devices and surveyed previous related contributions.
However, SDN solutions for wireless networks and, more
specifically, in wireless sensor (and actuators) networks do
not abound [13]. Delivering end-to-end service orchestration
chains, across multiple SDN domains, for an IoT

62Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

infrastructure deployment, including data collection at the
cloud, edge processing, and publishing services with quality
differentiation is still at its infancy [14].

The present paper provides some novel contributions
regarding the line of research discussed in the current section.

III. PROPOSAL DESIGN
As previously mentioned, the main goal of the current

paper is to investigate a solution that meets the QoS
requirements of data traffic originated at IoT devices in a
heterogeneous network with multiple domains ruled by SDN
controllers. We next discuss the design of our proposal.

Fig. 2 shows the design of a network topology formed by
multiple administrative domains.

Figure 2. System design.

Each administrative domain is controlled by an SDN
controller located at the intermediate level of the proposed
architecture. In this way, SDN domain A works as a transit
AS, which interconnects different externals SDN domains (B
and C) that interface with the domain A, through BGP routers.

The data plane is formed by switches, BGP routers, and
end host devices. At the application plane, there are BGP
speakers that behave like BGP route reflectors, learning from
the BGP routers IP destination prefixes and passing them to
the SDN-IP application. Then, this application interacts with
the SDN controller. From the previous interaction, the BGP
learned paths are mapped to compatible data flow rules, which
are transferred via Southbound protocol to the switches.

At the top layer are running applications that define how
the network operates. In the transit domain A, the SDN-IP
application allows, as already explained, the routing of
packets among BGP ASs. The previous routing implies the
forwarding of packets among the diverse switches belonging
to the SDN Domain A. In addition, some auxiliary
applications in the SDN controller of Domain A are also
required (e.g., Configs and ProxyARP).

One of the most important QoS concept is that the traffic
should not be treated equally, e.g., we need to prioritize the
usage of communication link resources. Therefore, in our
proposal we also prioritize the traffic in a network that is a
mixture of IoT and legacy flows. The traffic prioritization is
based on creating distinct virtual output queues offered at the
data plane switches. In addition, some flow rules are installed
in the data plane switches. These flow rules allow traffic to be
served by different queues according to the traffic priority. In

our work, we assume that the traffic priority is unrelated with
the priority field normally used in OpenFlow flow rules. An
interesting future prospect could be to use the OpenFlow
priority field for controlling the traffic quality.

IV. PROPOSAL DEPLOYMENT
This section discusses the testbed topology and the

deployment of our proposal to manage that topology. It aims
to satisfy QoS requirements in the presence of heterogeneous
flows, some originated from remote IoT devices. The network
infrastructure is formed by several administrative domains.

A. Multi-Domain Topology
Table I lists all software and tools used to deploy and

validate our proposal.
TABLE I. SOFTWARE USED IN THE DEPLOYMENT

Category Software / Technology
Northbound Application SDN-IP

SDN Controller ONOS 1.15.0
Software Switch OpenvSwitch 2.9.2

Southbound Communication OpenFlow
Interdomain Protocol BGP

Network Emulator Mininet
BGP Software Quagga

Traffic Analyser Wireshark, Tcpdump
Virtual Hypervisor Oracle Virtual Box

VM Operating System Ubuntu 16.04
Traffic Generator and Measurement Iperf

Video transmitter Application VLC

Firstly, the general idea is to deploy a scenario that
provides end-to-end communication among diverse SDN
domains. A virtual network topology was built to meet these
conditions and is presented in Fig. 3. The proposed system
consists of three administrative SDN domains, each managed
by its own ONOS SDN controller. In the top-most layer of the
current architecture the SDN-IP application is running that
enables the communication between SDN domains using
BGP. At the data path layer there are terminal hosts and
software switches (i.e., OpenvSwitch) interacting to the
associated SDN controller via Southbound (i.e., OpenFlow).

Therefore, we have configured the entire network
topology using the Mininet emulator. The topology has three
SDN domains, each managed by its controller. The central
domain (A) works as a transit AS, responsible for
interconnecting the remaining external networks. Each
external network, in this case B, C is considered a different
AS, which interfaces with the central domain (A) through
routers, running Quagga, a well-known software emulator for
routing packets. In the central domain (A), there is an SDN
controller with an SDN-IP application running on its top that
learns BGP routes to destination prefixes previously
announced by the BGP routers of the network topology.

After the learning phase, the SDN controller of domain A
translates each learned BGP route to SDN intents. Then, the
same SDN controller converts each intent in to several flow
rules, which are then transferred from the SDN controller to
the data plane switches, using the OpenFlow protocol. These
switches are the ones previously selected by the SDN

63Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

controller to support an AS transit ingress/egress routing
intent associated to a previously announced BGP IPv4 prefix.

Figure 3. Multi-domain topology.

B. QoS Deployment
This scenario considers a security system monitorization,

installed on the public road. This consists of vigilance cameras
equipped with motion sensors transmitting RTP video flow by
VLC and generic user computers generating UDP traffic.
Motion sensor cameras were simulated using network
devices. The testbed topology for this is shown in Fig. 4.

Figure 4. QoS testbed topology.

We deployed in one SDN domain to test quality of service
(QoS_topology.py), but the same logic can be extended to
larger scenarios implementing multiple domains. We limited
all network links to 10 Mbit/s, using the Traffic Control (TC).

Initially all the traffic is going through the same path and
if the motion sensor detects movement, the vigilance cameras
should have a higher priority than the other non-video traffic.
This implies the video traffic is transferred to a new queue and
consequently can transmit the video with the highest quality
without the competition of another non-video traffic. The
queues are configured in OVS switch s1 using ovs-vsctl within
the Mininet script that builds up the topology used in the
current scenario.

As a conclusion of this sub-section, we assume that the
traffic exchanged through the testing network should not be

treated equally, e.g., we need to prioritize the usage of
communication link resources. Therefore, in our proposal we
will effectively prioritize the traffic in a network that is used
by a mixture of IoT and legacy traffic. The traffic
prioritization is based on creating distinct virtual output
queues offered at the network switches. In addition, we have
used a script that via Northbound API (e.g., HTTP POST
request) forces the installation of adequate flow rules on the
data plane switches. These flow rules allow traffic to be routed
to different queues according to each traffic priority.

V. PROPOSAL EVALUATION
This section evaluates the solution in terms of its main

functionality, the automatic reaction to a network failure, and
the differentiated support of QoS for concurrent flows.

A. System Validation
The ONOS GUI on Fig. 5 shows the SDN ONOS

controlled topology and summary information at the top.

Figure 5. Topology at ONOS web GUI.

There are three SDN controllers, each one represented by a
colour to evidence the network devices controlled by that
controller. The first SDN controller (172.17.0.5) controls the
transit domain, which contains three central switches. The
second SDN controller (172.17.0.6), represented by the light
blue colour, manages the left domain, which contains a single
switch, interconnecting two terminal hosts (for example, h1
with IP address 192.168.1.1/24). The same happen with the
SDN domain (172.17.0.7) represented by red colour on the
right, which contains a switch with two hosts (h3 and h4).
Hence, we have a physically distributed system with multiple
controllers, each managing its own domain autonomously, but
the central domain is managed by the ONOS SDN-IP
Application. We have validated our system using ICMP traffic
originated at host h1 (192.168.1.1) with destination at host h3

64Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

(192.168.2.1). Analyzing Fig. 6, the first ICMP attempt has a
larger Round Trip Time than remaining ones because the SDN
controller after deciding about the message routing path of the
first attempt (reactive mode), it installs in the switches the path
rules for next ping attempts (proactive mode).

Fig 6. Successful connectivity test using ping from h1 to h3.

B. Link Failure Test
System failure detection is a very important aspect for

ensuring fault tolerance in large scale distributed systems. In
our case, if the SDN controller detects a link failure, it should
quickly and effectively divert traffic to an alternate path to
ensure the continuation of the communication service until the
primary link is again operational. The goal is to reduce the
time required to detect a failure and mitigate its negative
impact on the traffic network routing.

Fig. 7 shows selected messages from several traffic
captures made by Tcpdump. At the beginning of the test, the
topology was operating without any failure and the used
routing path between h1 and h3 was through switches s1 and
s2 of the transit Domain A (s1-eth3, s2-eth2). One can also
note that the initial ICMP Request TTL is 64 (h1-eth0) and
then it is decremented down to 61 (h2-eth0), meaning that
message has traversed three routers (i.e., r1, BGP speaker, r2)
on its way to the destination node. Through the shortcut “A”
in the ONOS GUI, which is shown in the first row of Fig. 7,
one can see the traffic path being used and its speed.

To
po

lo
gy

H1-eth0

S2-eth2

S3-eth1

H3-eth0

Figure 7. ICMP request from H1 to H3, S1-eth3 UP

Then, we turned off the link between s1 and s2, forcing
that link to fail. This implied an event communication failure
associated to a specific ONOS intent. This intent is like a
routing path through the transit domain that incorporates the
failed link. Consequently, after the failure occurrence, the

ONOS analyzes the topology of the transit domain to find out
an alternative path, which it should also interconnect the same
ingress/egress points of the transit domain that were being
used before that failure. In the current experiment, as indicated
in Fig. 8, the alternative path through the transit Domain A
was as follows s1-eth4, s3-eth1, s3-eth2, and s2-eth3.

We have validated the SDN-IP/BGP integration proposal,
using a scenario where a failure in a specific routing path was
mitigated by the functional robustness of ONOS intents. For
future work, we aim to measure the time required to detect a
link failure and to successfully detour traffic from that failure.

To
po

lo
gy

H1-eth0

S2-eth2

S3-eth1

H3-eth0

Figure 8. ICMP request from H1 to H2, S1-eth3 DOWN

C. Qos Test Validation
Here, the QoS deployment topology is validated. When

the topology is started, three devices will be enabled, two of
them are VLC terminals and another is an RTP video server.
Each VLC terminal receives a video from a simulated remote
vigilance camera. In the device with the video server, the
streaming of the video was started, which is consumed by two
distinct VLC clients, simulating videos from two remote
webcams. As mentioned, one of the videos is on the switch
priority queue and the other is on the non-priority queue,
sharing the available network resources with other flows.

Fig. 9 shows the rate trend of three flows used in the
current test. It shows the system reaction after the video on the
non-priority queue suffers the interference from UDP traffic,
which tends to starve all the available network resources.
Interference may be accessed using quality monitors [15]
placed at strategic network point.

The trend of Fig. 9 is basically divided into three time
intervals. The first one (between 8s and 24s) is when there is
no interference in the video transmission of camera 2, because
we still have no interference from UDP traffic over the RTP
video traffic that uses the switch non-priority queue. We can
see that when the video transmission starts, the blue line
(camera 1) is transmitting the video at the same rate (1 Mbps)
of the red line (camera 2). In addition, the camera 1 is in the
high priority queue and camera 2 is in the low priority queue.

The second interval begins around 24s, when UDP traffic
is injected for the purpose to cause interference with the

65Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

camera 2 video transmission. Therefore, we can see that UDP
(black line) traffic uses practically all the link bandwidth (i.e.,
around 8 Mbps) and the camera 2 rate significantly decreases
(temporarily below 80 Kbps), degrading the quality of the
received video from that camera (see Fig. 10, right side). This
occurs because the UDP traffic is competing with camera 2
traffic at the same output queue. At this moment, we do not
yet observe any corrective action from the SDN system to
protect the quality of camera 2 video.

Figure 9. Rate trend of the three flows in our QoS test.

In the last time interval of current test, starting around 26s,
the QoS mechanism is applied to improve transmission
quality for camera 2. In this way, a flow rule is dynamically
set to change the video to the switch high priority queue. In
this way, we can see that the video transmission of camera 2
return to its normal rate and consequently enhance the
perceived quality at the receiver. We can conclude that at that
moment the UDP traffic is no longer interfering with the
transmission quality from camera 2.

Figure 10. Remote vigilance videos with UDP traffic competition.

VI. CONCLUSIONS AND FUTURE WORK
The current work main goal was to understand how to

deploy and manage a network infrastructure formed by several
administrative domains, with multiple SDN controllers,
satisfying QoS and robustness requirements of heterogeneous
flows, some originated from IoT devices.

Our experimental results have shown that the proposed
SDN-based solution can ensure communication between
physically distributed SDN domains via the BGP protocol
through a transit SDN system with the SDN-IP application
running on the ONOS controller. We also demonstrate that our
contribution is sensitive to link failures by redirecting traffic

directly to another available path and ensuring the normal
network operation.

Referring to quality of service, we have also validated
within a network domain ruled by an SDN controller that
traffic prioritization can be deployed. For that, some
OpenFlow rules were installed in the data plane switches,
which have output queues differentiated by the level of quality
of service they aim to serve. In this way, we have shown that
video from remote surveillance cameras, despite the presence
of UDP traffic that normally starves all the available
resources, can be transmitted with an optimum quality, thus
meeting pertinent safety concerns in public environments.
Further work is envisioned for testing the QoS scenario with
IoT IPv6-compatible devices across ASs.

REFERENCES
[1] F. X. A. Wibowo, M. A. Gregory, K. Ahmed, and K. M.

Gomez, “Multi-domain Software Defined Networking:
Research status and challenges,” J. Netw. Comput. Appl., vol.
87, pp. 32–45, Jun. 2017.

[2] Y. Zhang, L. Cui, W. Wang, and Y. Zhang, “A survey on
software defined networking with multiple controllers,” J.
Netw. Comput. Appl., vol. 103, pp. 101–118, Feb. 2018.

[3] A. Gupta et al., “SDX: A software defined internet exchange,”
Comput. Commun. Rev., vol. 44, no. 4, pp. 551–562, 2015.

[4] V. Kotronis, X. Dimitropoulos, R. Kloti, B. Ager, P.
Georgopoulos, and S. Schmid, “Control Exchange Points:
Providing QoS-enabled End-to-End Services via SDN-based
Inter-domain Routing Orchestration,” pp. 3–4, 2016.

[5] P. Berde et al., “ONOS : Towards an Open , Distributed SDN
OS,” pp. 1–6.

[6] S. Badotra, “Open Daylight as a Controller for Software
Defined Networking,” no. May 2017, 2018.

[7] M. Gerola et al., “ICONA: Inter Cluster ONOS Network
Application,” 2015.

[8] D. Gupta and R. Jahan, “Inter-SDN Controller
Communication: Using Border Gateway Protocol,” no. April,
pp. 1–16, 2014.

[9] T. Hu, Z. Guo, P. Yi, T. Baker, and J. Lan, “Multi-controller
Based Software-Defined Networking: A Survey,” IEEE
Access, vol. 6, pp. 15980–15996, 2018.

[10] F. Bannour, S. Souihi, and A. Mellouk, “Distributed SDN
Control: Survey, Taxonomy, and Challenges,” IEEE Commun.
Surv. Tutorials, vol. 20, no. 1, pp. 333–354, 2018.

[11] V. Kotronis, A. Gämperli, and X. Dimitropoulos, “Routing
centralization across domains via SDN: A model and emulation
framework for BGP evolution,” Comput. Networks, vol. 92, pp.
227–239, 2015.

[12] M. Ndiaye, G. P. Hancke, and A. M. Abu-mahfouz, “Software
Defined Networking for Improved Wireless Sensor Network
Management : A Survey,” pp. 1–32, 2017.

[13] A. C. Anadiotis, L. Galluccio, S. Milardo, G. Morabito, and S.
Palazzo, “SD-WISE: A Software-Defined WIreless SEnsor
network,” Comput. Networks, vol. 159, pp. 84–95, 2019.

[14] W. Cerroni et al., “Intent-based management and orchestration
of heterogeneous openflow/IoT SDN domains,” 2017 IEEE
Conf. Netw. Softwarization Softwarization Sustain. a Hyper-
Connected World en Route to 5G, NetSoft 2017, 2017.

[15] J. R. S. Soares, L. A. Da Silva Cruz, P. Assuncao, and R.
Marinheiro, “No-reference lightweight estimation of 3D video
objective quality,” in 2014 IEEE International Conference on
Image Processing, ICIP 2014, 2014, pp. 763–767.

66Copyright (c) IARIA, 2020. ISBN: 978-1-61208-770-2

ICN 2020 : The Nineteenth International Conference on Networks

