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Abstract— We study the Container Storage Problem in port
terminal (CSP), which consists to effectively manage the
storage space so asto increase the productivity of port. When a
ship arrives, the inbound containers are unloaded by Quay
Cranes (QC) and then placed on quays. So, they are collected
by Straddle Carriers (SC). Each is able to carry one container
at atime, and storeit in itsstorage location. In order to reduce
the waiting times of ships, we propose a mathematical model
which minimizes the total distance traveled by SC between
quays and container yards. In this paper, we take into account
additional constraintswhich are not considered previousy. We
also propose an effective branch-and-cut algorithm (BC-CSP),
which is an optimal resolution method. Performed simulations
provethe effectiveness of our algorithm.

Keywords-Container Storage Problem; complexity; branch-
and-bound; CPLEX.

l. INTRODUCTION

In a seaport, the container terminal manages &tbrec
concerning containers. Generally, three types oftainers
are distinguished: outbound, inbound, and transséip
containers. All these containers are temporarificletd in
the container yard, before leaving the port. Ouilgdbu
containers are brought by External Trucks (ET) @ieked
up by SC which store them in their storage locatéond then
loaded onto vessels. Inbound containers are unio&den
vessels by QC, transported to their storage logatiy SC,
and then recuperated later by ET. Nowadays, thepettion
between ports is very high. Therefore, each of théss to
improve continuously the quality of its service darder to
attract more customers. The most important critdda
measure service level include the waiting time dfvithich
collect inbound containers. In fact, when an ETivas at
port and claims a specific container, it waits dgrall the
time required to retrieve it. If the desired con&iis under
others, it may be necessary to move these congaiimdirst.
This kind of movements, named reshuffles, are whymtive
and require so much time. Therefore, it is verydngnt to
optimally store containers so as to avoid them. tAeio
important criterion to measure the quality of seevis the
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time required to unload ships. The importance &f thctor
is justified by the fact that it is more beneficfat both the
port and the customers to shorten the stay of lgedsest, it
is better for the port to quickly free the berthsarder to
allocate them to others incoming vessels. Secoenkerglly,
ship-owners rent vessels; therefore, they tend itinmze
the berthing durations in order to reduce rentatsorhese
two issues are addressed in this paper. We coreichedern
container terminal, which uses SC instead of Irtefmucks
(IT). The advantage of a SC is that it is ableiftoand to
store a container itself; therefore it is not neeeg to use
Yard Cranes (YC). A storage yard is composed ofisgv
blocks. In order to allow good circulation of S@ch block
is composed of bays which are separated by smedlesp In
every bay, there are stacks wherein containerstared. A
stack must have a height inferior or equal to thmt Ifixed
by the port authorities. Fig. 1 shows an examplédlotk
wherein circulate straddle carriers.

Fig. 1 Straddle carriers circulating in a contasngaird

We propose in this paper an effective method teesttie
container storage problem. For this, we proposeea& n
mathematical model which determines the optimumag®
plan and minimizes the time required to transporttainers
between quays and storage areas. For the numsoicdion
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of the model, we propose an effective branch ant cupurpose of their work is to determine the bestegwawhich

algorithm (BC-CSP), which is an exact method.

The remainder of the paper is organized as folloavs:
literature review is given in the second part. Ataded
description of the addressed problem is exposeterthird
part. The complexity of the problem is discussedtlie
fourth section, while the proposed mathematical ehdsl
explained in the fifth section. The branch-and-gigiorithm
is itemized in the sixth section; the numericalufess are
presented in the seventh section. Our conclusigiven in
the eighth section.

minimizes re-handles in an import container yarar fhis,
they developed a mathematical model based on pitisiab
distribution functions to evaluate the number cfhefles.
Kim and Kim [8] considered a segregation stratemgtore
inbound containers. This method does not allow iptac
newly arriving containers over those which arrivestlier.
Therefore, storage spaces are allocated to eashl\sssas to
minimize the number of reshuffles expected durihg t
loading operations. Jinxin et al. [9] proposed ateger
programming model, which addressed the trucks sdimgd
and the storage of inbound containers. They mirgéchit the

Il LITERATURE REVIEW same time the number of congestions, the waitimg tbf

There are many papers addressing the storage #ticks, and the unloading time of containers. Ththars
outbound containers than inbound containers. Homevedesigned a genetic algorithm to solve the model,amother
there are some papers which consider both simaiteshe  heuristic algorithm which gave them best results.and Qi
Zhang et al. [2] considered in addition to theseo tw [10] treated the storage problem of inbounds caetaiin a

categories, those which are in transition, that maea modern automatic container terminal. They aimed to

containers which are unloaded from some vesselsaamd
waiting for being loaded onto others. They usedrtiéng-
horizon approach [2] to solve the storage spaamation
problem. For each planning horizon, they solvedpitodlem
in two steps formulated as mathematical programsthé
first step, they determined the total number oftaimers
assigned to each block at a period so that the loaxk of
loading and unloading of each vessel are balarideeh, in
the second step they determined the number of ioensa
associated to every vessel in order to minimize tttal
distance traveled to transport these containera fjoays to
the storage blocks. Bazzazi et al. [3] proposedenetic
algorithm to solve an extended version of the $for@pace
Allocation Problem (SSAP). It consists
temporarily locations to the
containers in the storage yard according to thgged
(regular, empty, and refrigerated). They aimedaiatce the
workloads between blocks with the goal to minimihe
time required to store or to retrieve containeeskRand Seo
[4] dealt the Planar Storage Location AssignmermtbRm
(PSLAP), in which only planar movements are allowEude

minimize reshuffles in two steps. For this, thegtfresolved
the block space allocation problem for newly armiyi
inbound containers, and then after the retrievihgsame
containers they tackled the re-marshaling proceissesder
to re-organize the block space allocation. Theygeatgd
three mathematical models of storage containeedjrst is a
non-segregation model, the second is a singlegberio
segregation model, and the last is a multiple-perio
segregation model. They conceived a convex costanket
flow algorithm for the first and the second modelsd a
dynamic programming for the third. They found tts re-
marshaling problem is NP-hard and then designesliadtic
algorithm to solve it. We considered in [1] a coméa

to allocateterminal wherein reshuffles are not allowed. Weppsed a
inbound and outboundnew mathematical model to allocate storage spaoces t

inbound containers in such a way that no reshuffliéisbe
necessary to retrieve them later. We designed aichyb
algorithm including genetic algorithm and simulated
annealing to solve it.

In most container terminals, the departure times of
inbound containers are unknown. K. H. Kim and K.K¥m

purpose of PSLAP is to store inbound and outboun@onsidered in [11] a container terminal in whickerth is
containers so as to minimize the number of movindimited free time storage for inbound containersydnd
obstructive objects. The authors made a matherhaticshich customers have to pay storage costs per tiniy.

formulation of PSLAP and proposed a genetic algorito
solve it. Lee et al. [5] combined the truck schedyband the
storage allocation problems. They considered indoamnd
outbound containers, and tend to minimize the weilsum
of total delay of requests and the total traveletiof yard
trucks. For numerical resolution, they proposed yarid
insertion algorithm. Kozan and Preston [6] devetbpzn
iterative search algorithm using a transfer modad an
assignment model. At first, the algorithm deterrdine
cyclically the optimum storage locations for inbduand
outbound containers, and secondly, it found
corresponding handling schedule. They solved tlodlem
using a genetic algorithm, a tabou search algoriémd a
hybrid algorithm.

Concerning inbound containers, most of paperswlital
the management of reshuffles. Sauri and Martirpf@posed
three different strategies to store inbound coetainThe
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The authors proposed a mathematical model to firel t
optimal price schedule.

Papers dealing with the storage problem of auibo
containers have generally different goals. Preatwh Kozan
[12] proposed a Container Location Model (CLM) tors
outbound containers in such a way that the timeiceerof
container ships is minimal. They designed a genetic
algorithm for the numerical resolution. Kim et 4lL3]
developed a dynamic programming model to deterrttive
storage locations for outbound containers accorthntheir

thaveight. They minimized the number of relocationpented

during the ships loading. They also made a decisiea
using the set of optimal solutions to support teak
decisions. Chen and Lu [14] addressed in two stBps
storage space allocation problem of outbound coetsi In
the first step, they used a mixed integer programgmnodel
to calculate the number of yard bays and the nunaber
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locations in each of them. So, in the second stiegy
determined for each container the exact locatiorre/ht
must be stored. Woo and Kim [15] proposed a metiood
allocate storage spaces to groups of outbound ioensa
They reserved for each group of containers haviegsame
attributes, a collection of adjacent stacks. At #mal, the
authors proposed a method to determine the negeszgarof
the storage space expected for all the outbounthicens.
Kim and Park [16] gave two linear mathematical nisde
store outbound containers. In the first, they abmrgd a
direct transfer, and so, in the second, they dedh an
indirect transfer system. They designed two heaarist
algorithms to solve these models. The one is basethe
duration-of-stay of containers, and then, they ubedsub-
gradient optimization technique in the other.

r) checkingl < p < q <r <n,if (v,,v,)0E and
(vy,V, ) UE then(v,,v, ) OE.

A co-comparability graph is the complement of a
comparability graph.

An undirected grapls = (V,E)is a permutation graph if
and only if there are a sequence of verticégs...,V,, of V
and a permutation of the vertices such that for allandj
satisfying 1<i< j<n, (v,v,)UE if and only if
a(i)>a()).

Theorem 1 A graphG is a permutation graph if and only

Among the few papers dealing only transshipmentf G and its complement are comparability graphs [18].

containers include that of Nishimura et al. [17]hey
developed an optimization model to store temporaril
transshipment containers in the storage yard, amgoged a
heuristic based on lagrangian relaxation method tfar
numerical resolution.

Ill.  CONTEXT

When a container ship arrives at port, QCs unloag

containers and place them on quays. So, they akegiup
by SCs, which carry and store them in the contajred.
The firsts containers which are placed on quaydtedirst
picked up. In order to avoid congestion on quayhickv
could increase the time required to unload shipg, w
minimize the total distance traveled by SCs betweeays
and the container yard. In this study, we consitler
following five main hypotheses:
(1) Reshuffles are not allowed,
(2) In each stack, containers are arranged acaptdin
(2.a) the same order that they are unloaded frops,sh
(2.b) and the descending order of their depariare,t
(3) In a stack, all containers have same dimensions
(4)We take into account containers which are alrgadsent
in the storage areas before the start of the nenage period,
(5) We respect the maximum capacity of each stack.

Excepted (2.a), these hypotheses are coadide[1].

IV. COMPLEXITY OF THEPROBLEM

In this section, we study the complexity of the C8P
particular, we show that it is equivalent to theuBded
Coloring Problem (BCP); therefore, is NP-hard ire th
general case.

A. Some reminders about the BCP
Let us begin by recalling some concepts and defirst
that will be useful for the following.
1) Preliminary notions Let G(V,E) be an undirected
graph,V is the set of vertices arttlis the set of edges.

G is a comparability graphif and only if there are a
sequence of verticeg,,...,V,, of V such that for eacfp, g,
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2) The bounded coloring problen@iven an undirected
graphG = (V,E), a set of s color$,,... |, an integeH and
a vector that gives the weight of assigning a Cd)||d.'0 a
vertex of the graph. The bounded coloring probleith w
minimum weight consists to determine a minimum \ueig
coloring of G using at mosst colors in such a way that a
olor is assigned to at mddtvertices.

Theorem 2 [19] The bounded coloring problem with
minimum weight is NP-hard for the class of permotat

graphs foralH = 6.

B. Equivalence between the CSP and the BCP

We show that the CSP is NP-hard. For thesjitroduce
an undirected grap®(N,O,T) = (V,E)constructed from an
instance of the CSP, whekeis the set of containers a
and T are vectors, which give respectively the unloading
order and the departure times of each container.gfaphG
is constructed as follows. A vertex of the graphresponds
to a container. To simplify notation, the indieXs used to
denote both a container and the vertex of the grelpilch
corresponds to it. There is an edge between twicesik

andk’ if and only if O, <O, andT, <T,.. We have the
following lemma.

Lemma 1The graphG(N,O,T)obtained from a instance
of CSP is a permutation graph.

Proof To prove that the graphG(N,O,T) is a
permutation graph, it suffices to show that it is
comparability graph as well as its complement ([Eesorem
1).

First, we show thab(N,O,T)is a comparability graph.
The vertices are ordered according to the same tirdethe
unloading of the corresponding containers from shifptwo
containersk andk’ are unloaded from ships at the same time

(that is to say ifO, =0O,.), then the verticek andk’ are
ordered in the ascending order of their departuimed. If
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Oy =0, andT, =T, then the vertices are ordered in theLemma 2:Let ICSP = (N,O,TN,,H,r,R,d) an instance of

Iexicpgraphical order.. Without loss of. generalityvg the container storage problem. The CSP has a ot
consider that the vertices are numbered in therdft is  this instance if and only if the bounded H-coloripgpblem
previously determined. Now, consider any threeieesk, k’ on the graplG(N,0,T)has a solution.

andk” of the graph such th& < k'< k", (k,k') O E and
(k',k")OE. we will prove that necessarily

(k,k"YOE. As (k,k") OE and(k',k") O E, we have Theorem 3 The container storage problem is equivalent to
O, <O, and T, <T,. , and we have als@®,. <O,. the bounded coloring problem with minimum weight.

We now give the main result of this section

andT,. <T,. . We thus obtain thdD, <O,. <O,. and Proof: To establish this result, we prove that an instasic
T, <T, <T,., which implies that the grapB(N,O,T)has ;[/Zersgsfetllscgiuyaézné)t'?’ Jfll n ::srt:n;:)ea(r)]f i;ZTaS;P(ﬁe
an edge between verticds and k”. So G(N,0,T) is a ' I }
comparability graph. storage container problem ar@(N,O,T) the permutation
Now, we will prove that the complement®{N,O,T)  graph associated. Consid&CP = (G(N,O,T),HNp,d) an

denotedé(N,O,T) is also a comparability graph. First, instance defined on the grags(N,O,T) whereNp is the

note that there is an edge between two verticasdk’ of ~ humber of colorsH is the bound, and a matrix containing
the weights. According to the Lemma 2 a solutionthe

“G(N,O,T) if and only if there is no edge B(N,O,T)  Csp is a solution of the BCP, and similarly a statiCSP
betweenk andk’ in other wordsO, <O,. andT, >T,. .  corresponds to a color of BCP and vice versa.llovis then

J— k . . .
The vertices ofG are ordered in the same order as those otthat the COStdp of assigning a containek LIN to the

G. As before, for any three verticesk’, andk” of the graph  stack p[J N b is the same as the assignment of the vértex

é(N ,O,T) such that k<k'<k",(k,k")JE and to the color corresponding to the starkSo, the cost of H-

T coloring in the grapl&(N,O,T)is the same as the cost of the
k' kOE, we have Ok < Ok' < Ok" and solution of the corresponding CSP and vice versardfore,

Tk > Tk, >Tk,, . So, Ok < Ok,, and Tk >Tk,, , and then we can find the optimal solution of the CSP if amd if we
— find the optimal solution of BCP.

there is an edge between and k” in G(N,O,T) .

= . . According to the Theorem 2 the bounded coloringlam is
Therefore, G(N,O,T) is also a comparability graph. ! )

( ) P ygrap NP-hard for the class of permutation graphdif=>6. It
L . . therefore follows from Theorem 3 that the CSP ishdRd if
Now, it is easy to see that a solution & tlontainer N

storage problem is a solution of the correspondiognded H=6.
coloring problem. In fact, a similar result is given [20].
Consider an instanckCSP = (N,O,T,Np ,H,r,R,d) of the
CSP and the grap&(N,O,T) associated. Now, consider an
H-coloring of G(N,O,T)that has s colors. Each color of the

Corollary 1 The container storage problem is NP-hard if the
maximum capacity of every stack is superior or etuaix.

bounded coloring problem is matched to a stackef@SP. V. MATHEMATICAL MODELING
Indeed, as all vertices having the same color farstable |n the mathematical model, we use the followingded:
set, in other words they are not connected by algee p: stack,

therefore any two containers corresponding to temices of k container.

this stable set satisfy these two inequalifids < O,. and

. The data of the problem are:
T, 2T,.. The unloading order as well as the departure N : number of containers,

times of containers corresponding to the vertidea stable N : number of stacks,

set are compatible; thereby, they can be stored same P

stack if it has enough empty slots. In additiorer¢hare at Cy: number of empty slots in the stack p,

most H vertices in this stable set. So, the number of . . .

containers assigned to the corresponding staakfésiar or I, type of container which can be placed in thelstac
equal toH. Therefore, an H-coloring corresponds to a valid P,

assignment for the CSP. Similarly, it is easy te teat a t_: departure time of the container which was on the
solution of the CSP is a solution of the H-boundebbring P .

problem in the graphG(N,0,T) We have the following top_of the stack p at the begin of the new storage
lemma. period.
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R, : type of the container k,
T, : departure time of the container k,
Ok : unloading order of the container k from ships.

d'; : traveled distance to transport the containerdmf

quay to stack p,
G(V,E) a graph, wher# is the set of vertices arilthe set
of edges. Every vertex represents a container,|\dhd N.

There is an edge between two vertitgsand V,. if and

only if T, <T,. andO, <O,., this means that containler
andk’ can’t be assigned to a same stack.

The decision variables are defined as follows:

1 if containdris assigned to stagk

<
I

0 otherwise

We propose the following mathematical model:

N Np
Minimize) > dfx; (1)
k=1 p=1
NP
> xs=1 Ok=1...,N @)
p=1

xs+x5 <1 OKK)OE p=1..N, (@)

P
Op=1...,N, @

=0, Op=1..,N 5)

ka{o,l} Op=1..,N,,k=1..,N (6

The objective function (1) minimizes theatodistance
traveled between ships and the container yard. t€onts
(2) require that each container is assigned tmglesistack.
Constraints (3) ensure that the containers of atatk are
arranged following the same order that they weleaded
from ships, and the decreasing order of their dapatimes.
Constraints (4) enforce the stack capacity. Com&rg5)
secure the compatibility between containers arksta

Let k a vertex of the grapl € K < N ), N(k) the set
of its neighborsp’ a stack {< p'<s N ). Constraints (3)
lead to the following neighborhood inequality agdm].

DX +INK)|XE < [N(K)| @)

KON(K)
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Proposition 1:For an integer solution, the inequalities (3)
and (7) are equivalents.

Proof: It suffices to prove that (7) implies (3), becatise
reverse is highlighted by the definition of (7).

Since XE, is a binary variable, then it can be equal toegith
orl.
k _ k' — )
e If X, =1 then pr. =0. Therefore, for allk
KOIN (k)

X< =0.

have D

neighbor of K,
Therebyx s + X =1, OK'TN(K) .

o If X;. =0 then ZX;:S|N(k)| which means
KON(K)

we

that for allk’ belonging taN(k), X;'. can be equal to either O
or 1. Thus,XE, + X';: <1 0OK'TIN(K) .

VI. BRANCH-AND-CUT ALGORITHM

The branch-and-cut is an improvement of bihench-
and-bound, which is an exact resolution method.hEafc
these two methods uses a search tree to explosolion
space. To do this, the search space is dividedsntaller
subsets, each representing a node of the seaschSoe the
problem is solved by considering one by one allssth
This strategy is calledivide and conquer.

To build the search tree, we first createrbot node; it
corresponds to the released problem. Other nodée dfee
are obtained by making connections.

In the branch-and-cut, unlike the branct-bound, at
each node of the search tree, some constrainedaalid
inequalities are added to the released problem so as to
improve the solution.

A. Relaxation of the problem

After the relaxation of integrity constrtsr(6), we find
that the total number of constraints of the matharah
model remains great. Therefore, since the adjacency
constraints (3) are equivalent to the neighborhood
inequalities (7), so we delete them from the mdahelwing
that the admissibility of solutions will be ensurbg the
gradual addition of valid inequalities along tharxh-and-
cut algorithm.

B. Preprocessing
The number of variables increases dependimghe
number of stack{N ) and containergN). In the case

where all stacks were empty at the beginning ofstioeage
period, we can reduce the number of variables. Wsider
that all containers are equidistant to the sta&sowing
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that, generallyN ; =2 N, we only use thé\ stacks which

are more near to quays. This allows to significangiduce
the number of variables and to speed up the cortipata

C. Upper bound

To find an upper bound, we solve the bounderex
coloring problem on the graph defined in sectionBéch
color corresponds to a stack. We use a heurisgorighm
which colors vertices one by one following the aegling
order of their number of uncolored neighbors. Fache
vertex, it chooses among the admissible colorsotiethat
fits to the nearest stack. The eligible colors tr@se not
assigned to a vertex which is a neighbor of thesictaming
vertex, and correspond to the stacks which are fulbt
Whenever a vertex is colored, the number of emjatly of
the stack corresponding to the used color is retluce

D. Branchings rules

We use the classical branching rule. At ezaihe of the
search tree, we create two branches by roundingatgest

fractional variable. LeIX,k) this variable. We pub(; =0in
a branch; it means that contaidewill not be assigned to

stackp in this branch. Then, in the other branch, we put

X’k) =1, which means that contain&rwill inevitably be
assigned to stagkin this branch.

E. Separation method

4: Then, we seek all neighborhood inequalities #rat not
satisfied by the solution of the current node, ameh we
add them to the released problem.
5: We solve the problem again using the CPLEX solve
6: If the solution is integer and inferior to BSeth we
update BS.
7: If the solution is fractional and inferior to Bi$en we do:
7.a: Perform connections,
7.b: Choose an unexploited node,
7.c: Go back to 3.

VII.

In this section, we present the numericalltssof our
branch-and-cut algorithm. For the implementatior, use
SCIP, which is a framework allowing a total contadlthe
solution process. The experiments were performéuus
computer DELL PRECISION T3500 with an Intel Xeon 5
GHz processor.

To test the effectiveness of our algorithne, maturally
compare it to CPLEX version 12.5. Performed tests
several instances prove that BC-CSP is very fadtifis
able to solve large instances which can not beesoly
CPLEX because requiring a lot of memory.

In Table I, we note the execution times @-8SP and
of CPLEX for various instances.

— means that the execution is interruptedabse it
lasted more than 3 hours.

--- means that the computer memory is insigfit to
resolve this instance.

NUMERICAL RESULTS

At each node of the search tree, before iogat

branches, we use a simple heuristic algorithm tk lfor
neighborhood inequalities which are violated. Tdhls, we
treat one by one all variable which is superiof01tp in the

optimal solution of the current node. foJ one of these

variables ands an integer initialized to zero. We calculate
the numbeiN(k)| of neighbors of the vertéx Then, we add

to Sthe value ofXE multiplied by|N(k)|. And we seek all

variablesX';: such thak andk’ are neighbors angkp’, and

we add the sum of their values3olf S >|N(k)| then there
is a violated inequality therefore we add to thb-ptoblem
a constraint to avoid this.

F. Description of the algorithm

1. We begin by solving the problem using a heuristi
algorithm to find an upper bound named BS.

2: Then, we create the root node of the searchvitdgeh
represents the released problem.

3: We solve the sub-problem using the CPLEX solver.
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TABLEI. NUMERICAL RESULTS
N N BC-CSP CPLEX
P

10C 50C 0 sel 2 min 58 se
150 500 1 sec 15 min 45 sec
100 700 0 sec 4 min 11 sec
10C 150( 0 sel 11 min 16 se
50 200 0 sec 2 sec
200 200 3 sec 14 min

80 100 0 sec 1 min 5 sec
9C 10C 0 sel 1 min 29 se
100 100 0 sec 2 min 11 sec
15C 20C 1 ser 53 min 50 se
100 3500 0 sec

100 3500 0 sec

200 3500 3 sec

30C 350( 14 se

40C 350( 41 se

500 3500 1 min 36 sec

60C 350( 6 min 13 se

70C 350( 5 min 57 se

800 3500 9 min 49 sec

900 3500 15 min 35 sec
100( 350( 1 h 41 min 26 s¢
1100 3500 1 h 43 min 47 sec
1200 3500 2 h 5 min 4 sec
1300 3500 2 h 21 min 20 sec
1400 3500 —
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In Table I, we remark that, in the most casiés
resolution of a great instance requires more titvan tthe
resolution of a small instance. However, in somgesawe
observe the reverse. This phenomenon can be @astify
the influence of the values of parameters like daparture
times, the unloading order, etc. In fact, in sarases the
search tree can have too lot of nodes; therefose
exploration may require more time. But, even witlese
instances, our branch-and-cut algorithm is fasteant
CPLEX.

The mathematical model of our container stogagbdlem
has too many variables, especially when there dot af
empty stacks in the terminal. Therefore, the elation of
the farthest stacks reduces the size of the protdech
improves the resolution. Fig. 2 shows that prepssicg
reduces the execution times.

m without preprocessing

B with preprocessing

] . I I I|L L L
3 4 5 6 7 8 9 10 11 12

Instances

Fig. 2 Comparisons of execution times
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As can be seen in Fig. 2, the preprocessingiase
efficient when the number of stacks is superiorthe
number of containers.

VIIl.  CONCLUSION AND FUTURE WORK

In this paper, we studied the container gf@rproblem.
We widely improve the work that we did in [1] by
considering additional constrains in order to awveshuffles
at quays. We take into account the order in whittainers

(1]

it2)

(3]

(4]

5]

(6]

(7]

(8]

9]

(10]
(11]
(12]
[13]

(14]

are unloaded from vessels, and we minimize thel tota

distance traveled by SC between quays and contgards
in order to shorten the berthing times of shipse Tiajor
contribution of this paper is the effective braraid-cut
algorithm, which is very fast and is able to solyeat
instances. This is an exact resolution method,kanthe
hybrid algorithm proposed in [1], which has an ager
percentage deviation equal to 10.22%. It may baiplesto
improve our branch-and-cut algorithm;
prospect to design more effective branching rulesl a
separation methods. We also plan to adapt our apprto
container terminals which use modern equipmentsh s1s
automatic guided vehicles.
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therefore we
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