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Abstract—In recent years, there have been many large social
gatherings and stampedes. High-density crowd counting and
density estimation have become a research hotspot in the field
of video surveillance. However, traditional datasets expose the
limitations of a single perspective and limited crowd size, which
cannot meet the research needs of a wide-area place. This paper
proposes a new large-scale multi-view dataset, taking the urban
life square near Jinji Lake in Suzhou city, Jiangsu Province,
China as the research object. A single camera cannot cover the
whole place, so we collect surveillance images from multiple
perspectives. The low-altitude monitoring image has obvious
human characteristics, while the high-altitude monitoring image
provides the trend of crowd distribution. Combining these two
kinds of information, the trend of crowd change can be predicted
more accurately. This dataset is characterized by rapid crowd
change in a short time, large aggregation scale and complex
illumination conditions, which brings new challenges to crowd
counting research.

Index Terms—Crowd counting; Semantic understanding; Data
fusion.

I. INTRODUCTION

With the rapid development of urbanization, more large-
scale competitions, cultural exchanges, and entertainment ac-
tivities are held. The actual crowd is often greater than the
number of people that can be accommodated in the venue,
which has caused a series of unexpected safety problems [1].
To improve event management and safety, related research has
shifted focus to the field of crowd technology [2]. Thanks
to the widespread use of video surveillance systems, the
all-around installation of video capture equipment provides
more research data for the field of crowd density estimation,
making it possible to accurately count crowds in dense places.
Different from other datasets, the pedestrian features in the
crowd dataset are small and fuzzy, which makes it more
difficult to capture. In addition, changes of perspective, over-
dark or over-exposed environmental illumination, and crowd
occlusion hurt feature extraction, as shown in Figure 1.

Figure 1. Example from CROWD SZ.

At present, a lot of research is devoted to crowd counting
in natural scenes. Some public places such as squares and
stations also have a strong demand for accurate real-time
crowd counting [3]. Traditional crowd counting methods are
mainly divided into two categories: detection-based methods
[4]–[7] and regression-based methods [8]–[10], [21]. Early
crowd studies mainly used detection-based methods. First,
assuming that the crowd is composed of individuals, use the
sliding window detector to detect the crowd and calculate
the crowd count. In a dense crowd environment, however,
detection-based methods are difficult to solve the problem of
serious occlusion inside crowds. Therefore, regression-based
methods were introduced. By learning the mapping of a feature
to the number of people, these methods extract the foreground
features and then use a regression function to estimate the
number of people. The mapping process usually adopts the
linear [12] or piecewise linear [11] function model. In recent
years, more attention is paid to the crowd counting technology
based on deep learning. It is different from the traditional
crowd counting method, which uses multiple convolutional
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neural networks to extract head features of different sizes.
This method can get better prediction results for densely
distributed regions. Zhang et al. [13] proposed a crowd count-
ing model (Crowd CNN) based on a six-layer convolutional
neural network. By alternately optimizing the true value of
the crowd count and the true density map of the crowd, better
robustness was obtained. Bai et al. [28] extracted the global
coarse-grained motion of the crowd from the perspective of
high altitude. The local fine-grained density characteristics of
people with line of sight occlusion are extracted from the low
altitude perspective, and a holographic model of the tempo-
ral and spatial evolution of crowd situation is established.
Fu et al. [14] designed two ConvNet cascaded classifiers
to estimate crowd density by optimizing the convolutional
neural network. Zhang et al. [15] proposed a Multi-Column
Convolutional Neural Network (MCNN) structure to extract
multi-scale image features. After image inputting, the crowd
density estimation map was obtained. Finally, the density map
was integrated to obtain the estimated crowd count value. Hu
et al. [16] used the ConvNet structure to extract crowd features
and then used two signals of crowd count and crowd density to
learn crowd characteristics and estimate the number of people.
Jiang et al. [17] focused on the improvement of density maps,
using additional multi-scale markers to increase the diversity
of deep neural networks, and achieve the high-performance
crowd density map estimation. From the traditional detection-
based and regression-based methods to the application of deep
learning frameworks, most of the current methods count by
extracting human head features of different scales. Unfortu-
nately, such methods cannot effectively deal with the problem
of target detection in dense crowds in natural scenes. The main
problems are:

• The change of perspective and the position of equipment
will lead to a great change in the size of the human head
in dense crowds, and then the feature extraction method
based on a single or finite-size convolution kernel has
difficulty extracting the full size of a human head.

• The number of targets contained in a dense crowd varies
greatly, and the number changes significantly in a short
time. An image can contain several thousands of people.
Therefore, the method based on multi-frame fusion de-
tection can not be applied to the estimation of the number
of people with obvious differences.

• Research objectives in a dense crowd are often unevenly
and irregularly distributed. It is difficult to describe the
change in the global situation using methods based on
statistical reasoning.

In view of the typical weaknesses of the dense crowd
target detection methods, existing studies lack of dense crowd
scenarios to meet the research needs. Some existing crowd
datasets are mostly ideal, with a single scene and unchanged
illumination, which cannot fully reflect the complexity of the
problem, such as UCSD [18], Mall [19], WorldExpo’10 [20],
UCF CC 50 [13], Shanghaitech [15] and so on. UCSD [18]
is the first dataset in the crowd counting field. It consists of

2,000 frames of images and pedestrian annotations in each
frame, and the video frames are extracted from a single scene.
The density of images in this dataset is low, with an average
of 15 people in each image. Chen et al. [19] collected a
new dataset Mall with different illumination conditions and
crowd density. The images in this dataset have a higher crowd
density. But, like UCSD, they are all part of a single video
sequence, so the scene does not change. WorldExpo’10 [20]
contains 108 videos in 5 different scenes, with a total of 3,980
frames of images. UCSD and Worldexpo’10 contain only low
and medium density scenarios and lack high-density scenarios.
The UCF CC 50 dataset [13] specializes in collecting ultra-
highdensity crowd scenes and contains only 50 images. The
generalization ability of the training network with a limited
number of training samples is reduced, which affects the test
results. The Shanghaitech dataset [15] has better diversity than
previous datasets in terms of scenes and density levels. It is
divided into two parts: part A (including images of a high-
density crowd) and part B (including images of a lowdensity
crowd). It contains 1,198 images with 330,165 annotations.
Although these datasets provide some images for counting,
they are lacking in sample number, image complexity, and
scene diversity. Qi Wang et al. [22] proposed a new dataset
Nwpucrowd, with 5,109 images and 2,133,238 annotations,
which has been greatly improved in terms of quantity and
provides a platform for researchers to compare the calculation
results of the test set. Sindagi et al. [23] proposed a dataset
called JHU-CROWD++, which was collected under different
scenes and environmental conditions, including some images
based on severe weather and illumination changes. However,
these two datasets did not fully consider background inter-
ference factors in the nature scene, and the identification of
human body contour is very unsatisfactory in the high-altitude
image with an ultra density of the crowd.

This is the motive for our work. In response to the existing
problems of the above datasets, this article introduces a large-
scale multi-view crowd counting dataset. Table 1 describes the
parameter comparison between our dataset and other typical
crowd datasets. We collected 5,610 images and 1,738 video
files from the monitoring equipment. The images come from
different heights and angles (including two high perspectives
and nine low perspectives), and the illumination of the scene
changes significantly at night. In terms of perspective se-
lection, to facilitate the research of multi-perspective fusion
algorithm, the dataset fully considers the basic principle that
a high-altitude perspective must include a low-altitude per-
spective coverage area, which mainly reflects the interrelation

TABLE I. COMPARISON BETWEEN CROWD SZ AND OTHER CROWD
DATASETS.

Dataset Resolution Images Min Max Multi-view Density change
Shanghaitech Part A different 482 33 3,139

! !Part B 768*1,024 716 9 578
UCF CC 50 different 50 94 4,543 ! %

UCSD 158*238 2,000 11 46 % %

Mall 480*640 2,000 13 53 % !

WorldExpo 10 576*720 3,980 1 253 ! !

CROWD SZ different 5,610 1 673 ! !
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(a) Bounding box annotation (b) Human head annotation

Figure 2. Annotation.

and spatial complementarity of different perspectives. At the
same time, the images selected from the dataset also highlight
the different crowd density levels, illumination conditions,
perspective distortion, and other conditions.

In summary, the main contributions of this article are as
follows:

• We propose a new large-scale multi-view dataset for
crowd counting and density estimation. The dataset in-
cludes 5,610 images and 1,738 videos, which makes up
for the lack of diversity in traditional datasets;

• For the stock data of the dataset, a large number of
complete head annotation files are carefully prepared;

• For the key elements of dense crowd vision, different
scene video frames with good statistical dispersion are
provided;

• Fully considering the basic principle of ”the high-altitude
perspective must include the low-altitude perspective cov-
erage area”, our dataset provides global and local images,
and allows to calculate the number of people in wide-
area places according to the time correlation and spatial
complementarity between them.

The rest of the paper is structured as follows. Section II
describes the annotation method and the classification of the
dataset. Section III gives the specific nature of the dataset and
some statistical information of the data. Section IV provides
the experimental procedures and data of the two methods, and
performs crossdataset verification to verify the generalization
ability of the dataset. Section V concludes the paper.

II. ANNOTATION

A. Dataset
In the crowd dataset, image acquisition equipment and

acquisition scenarios are the main reasons for the deviation of
the dataset. To eliminate the deviation, we collected videos and
images in the CROWD SZ dataset from monitoring equipment
at different locations in Suzhou Jinji Lake Fountain Square.
We recorded the specific location of each perspective and the
specific time of each image to ensure that the image time
between different perspectives is consistent with the subject
of observation. For video files with different perspectives, we
save a one-minute video as one file, which also guarantees
consistency between different perspectives.

B. Classification
CROWD SZ is divided into image sets and video sets. The

image set contains high-altitude images and low-altitude im-

ages, with high-altitude images having two perspectives. The
low-altitude images are divided into nine perspectives. Each
folder contains 510 images and the corresponding pedestrian
header annotation file. Video sets and image sets follow the
same classification criteria; Each subclass contains 158 video
files and each subclass contains a 1-minute video. We divided
the annotation files into training set and test set according to
a 3:1 ratio.

C. Annotation method

In the direction of pedestrian detection, many datasets use
bounding box annotation [24] and pedestrian torso line annota-
tion [25]. In our dataset, there is a large number of images with
pedestrian occlusion and overlap. If the above two annotation
methods are still used, multiple boundary boxes and pedestrian
trunk lines will overlap extensively, and the pedestrian in
the image cannot be accurately detected, resulting in error
counting results. Considering the counting requirements, we
annotate the head of the pedestrian in the image. As shown in
Figure 2, the head position of each pedestrian is marked with
a red cross. The marking process is mainly divided into two
parts: crowd image labeling and transforming crowd image
labeling into a crowd density map.

The label density map generation process is as follows:
First, xi represents the center coordinates of the human head.
If there is a human head at a specific position xa, it can be
expressed as δ(x − xa), which means that there is a actual
person at the xa coordinate position. If there are N heads in
a picture, then this picture can be represented as follows:

H(x) =

N∑
i=1

δ(x− xi) (1)

The density map of the image is generated by the function
and gaussian kernel convolution. Due to perspective distortion
in the scene, the size of each human head needs to be con-
sidered to determine the diffusion function before generating
the density map. The size of the head is usually the distance
between the centers of two adjacent people. Therefore, we
adopt an adaptive method to determine the parameters of each
person. The formula for generating the final density map is
as shown in (2), where G represents the Gaussian kernel, σ
is the standard deviation of the Gaussian kernel, and β is a
set value, usually 0.3. Suppose there are k people around this
person. d represents the average of the sum of the Euclidean
distances of the head from its k neighboring heads.

F (x) =

N∑
i=1

δ(x− xi ) ∗Gσi
(x), with σi = βdi (2)

III. THE NATURE OF CROWD SZ
A. Image collection location and pixel size

Compared with other datasets, the original sizes of the
images in our dataset are 1, 920 ∗ 1, 080, 2, 560 ∗ 1, 440 , etc.,
while the image sizes of other existing datasets mostly do not
exceed 1, 000 ∗ 1, 000. For example, the image size in UCSD
is 158 ∗ 238. The picture size in Mall is 480 ∗ 640.
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(a) Low density (b) Medium density

(c) High density (d) Ultra high density

Figure 3. Examples of crowd images with different density
levels.

B. Density distribution

In terms of density (here, we define density as the number
of people contained in a single image.), as shown in Figure
3, we divide it into four density levels:

• Low density: the count value is between zero and fifty.
• Medium density: the count value is between fifty and five

hundred.
• High density: the count value is between five hundred

and one thousand.
• Ultra high density: count value above one thousand.
Compared with other datasets with a single density dis-

tribution, our dataset has made progress in the diversity of
density. We counted all the pictures included in the dataset,
and finally got the distribution of people as shown in Table
II. In this dataset, low-density images account for a relatively
high proportion of 42%, medium-density images account for
35%, high-density images account for 15%, and ultra high-
density images account for 8%, which is enough to meet the
research of different density images demand.

C. Diversity

Scene diversity is an important attribute of the dataset. Our
dataset contains images taken by cameras at different heights
and angles. The scenes, illumination, and pedestrian forms
are diverse. As shown in Figure 4, the images in the dataset
can be divided into a high-altitude image and low-altitude
image according to spatial distribution, strong illumination
image, and weak illumination image according to illumination
conditions, and close-up scene image and remote scene image
according to perspective. Figure 5 depicts the statistical data
of the above-mentioned scene diversity. In terms of spatial
distribution, high-altitude image data accounts for 1/5 of all

TABLE II. DIFFERENT DENSITY DISTRIBUTION IN CROWD SZ.

Density Low Medium High Ultra high Total
No. of images 2,389 1,941 460 820 5,610

(a) High altitude im-
age

(b) Strong illumina-
tion image

(c) Close up scene

(d) Low altitude im-
age

(e) Weak illumination
image

(f) Remote scene

Figure 4. Examples of different types of images in
CROWD SZ.

(a) (b)

Figure 5. The characteristics of CROWD SZ.

data, while low-altitude image data accounts for 4/5 of all data.
In the illumination condition category, the number of images
with strong illumination accounts for 1/2 of the total, while
the other 1/2 are images with weak illumination. Similarly,
under the perspective position category, the number of close-
up images and remote images each account for 1/2 of the
total.

IV. EVALUATION

In this section, we evaluate some typical crowd counting
algorithms on the CROWD SZ dataset. We choose MCNN
[15] and CSRNet [26] as the benchmark algorithms for low-
altitude image processing in the dataset. Here, MCNN uses
three columns of different scale convolution kernels to adapt
to different scales of human head sizes, and finally combines
the three columns of neural networks to obtain a density
map. The CSRNet network model is divided into a front-end
network and a back-end network. The front-end network will
use VGG [27] (Visual Geometry Group Network) with the
fully connected layer removed, and the back-end network will
use a hollow convolutional neural network. Its purpose is to
generate high-quality crowd density maps while maintaining
the resolution while expanding the perceptual field.

A. Image preprocessing

One of the advantages of our dataset is that it contains many
night scenes. Take the challenging scenes shown in Figure
6 as an example. To recognize the pedestrian characteristics
better, we preprocessed the images, the image needs to be
grayed first to obtain the density map. This preprocessing
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6. Image preprocessing: (a)(d)(g) is the original image,
(b)(e)(h) is the density map obtained from the input original
image, and (c)(f)(I) is the density map obtained by graying
the original image.

(a) Input (b) Output

(c) Input (d) Output

Figure 7. Input and output.

step helps to identify the crowd more comprehensively and
carefully, thus making the numerical calculation more accu-
rate. We also selected images from other datasets at night
or in week-illumination for verification. Experimental results
show that grayscale pretreatment can improve the accuracy of
recognition.

B. Experimental analysis

To evaluate two crowd counting algorithms based on the
CROWD SZ dataset, we randomly selected 65 images in the
dataset, including 31 images with relatively sparse scenes
and 34 images with crowded scenes. Two algorithms, MCNN
and CSRNet, are used to estimate the crowd density. The
experimental results are shown in Figure 7. We select a low-
altitude image as the input data to get the specific number of
people and the output density map.

(a) (b)

Figure 8. (a) is the comparison of prediction results of MCNN
and CSRNet. (b) is the installation location distribution and
corresponding resolution of monitoring devices.

As shown in Figure 8, we list the estimated number of
people in the same image obtained by two algorithms, both
of which predict the image with higher accuracy. The detailed
description is shown in Table III, we use MAE (Mean Absolute
Error) as evaluation criteria, the smaller the value, the higher
the estimation accuracy. In crowded scenarios, CSRNet has
a higher estimation accuracy. On the contrary, MCNN has a
higher estimation accuracy in sparse scenes. Select the high-
altitude density map and the low-altitude density map of the
same time. Finally, as shown in Figure 9, comparing these two
density maps, we can find that the local density is consistent
with the high-altitude density, which also shows that our count
is more accurate and reflects the current crowd density.

At the same tine, we choose the JHUCROWD++ for cross-
dataset induction. Compared with other crowd datasets, JHU-
CROWD++ has a large number of images collected under dif-
ferent environmental conditions and scenes, including severe
weather changes and illumination changes, which makes it
very challenging. We randomly select ten images and evaluate
the accuracy of their count. The results are shown in Table
IV. We used MCNN and CSRNet to estimate the number of
people in the image. The estimated results are the same, which
also shows that our dataset has good applicability. However,
there are also significant differences between the estimates of
MCNN and CSRNet. This shows that CROWD SZ is more
challenging.

TABLE III. COMPARISON OF MAE VALUES BETWEEN MCNN AND
CSRNET IN DIFFERENT SCENARIOS.

Scene
MAE MCNN CSRNet

Sparse scene 0.02839 0.1429
Crowded scene 0.2979 0.1415

TABLE IV. COMPARISON OF MCNN AND CSRNET’S ESTIMATED COUNT
OF IMAGES IN TWO DATASETS.

CROWD SZ JHU-CROWD++
Number Truth MCNN CSRNet Truth MCNN CSRNet

1 7 9.48 11.42 84 82.93 98.65
2 21 17.47 30.39 41 55.22 53.26
3 408 91.08 246.75 13 11.19 14.04
4 39 39.02 32.87 68 28.17 79.23
5 44 39.6 39.71 69 50.32 120.05
6 65 71.63 67.98 42 37.56 58.18
7 17 15.02 10.59 7 5.91 13.02
8 53 46.24 62.52 188 153.5 272.98
9 13 11.48 16.9 65 66.5 81.98

10 23 15.32 24.27 50 47.62 81.52
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(a) High altitude image (b) Low altitude image

Figure 9. Density contrast map of the same area in high
altitude and low altitude.

V. CONCLUSION AND FUTURE WORK

In this work, we introduce a new challenging crowd dataset
for large crowd gatherings. The dataset consists of 5,610
images and 1,738 videos, including a large number of night
scenes. This dataset contains more images than the existing
crowd dataset and has good temporal and spatial correlations
between images under different spatial positions, illumination
changes, and perspective changes. In addition, we provide
a complete header annotation markup file. In this paper, by
using a typical crowd counting target detection algorithm and
cross-dataset validation process, it is proved that the dataset is
larger, more diverse, and more challenging, which is suitable
for practical application and can be used as the basis of dense
crowd counting research dataset. In the future, we will use
spatial complementarity between high altitude images and low
altitude images to count vast areas.
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