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Abstract—Yield enhancement is a key issue in semiconductor
manufacturing. Data mining tools can therefore be helpful,
by extracting hidden links between numerous complex pro-
cess control parameters. In order to highlight correlations
between such parameters, we developed a complete Knowledge
Discovery in Databases (KDD) model, called MineCor. Its
mining heart uses a new method derived from association
rules programming, based on lectic search and contingency
vectors. After recalling these concepts, this paper focuses on
data preprocessing and transformation functions, which have
an important impact on final results. An overall presentation
of these functions, of some significant experimental results and
of associated performances are provided and finally discussed.

Keywords-Data Mining, Semiconductor Manufacturing, De-
cision Correlation Rule, Data Preparation.

I. INTRODUCTION AND MOTIVATION

In this Section, we first introduce why and how data
mining techniques are useful to detect the main parameters,
which have an impact on yield loss in semiconductor fabri-
cation capabilities. Then, we present our approach, based on
a complete KDD model. It determines the main correlated
production parameters impacting the yield, and is based on
important preliminary preparation tasks.

A. Data mining techniques in semiconductor fabs

Data Mining specifies data models, which may be rules,
anomalies or trends that are of interest. To improve quality in
manufacturing areas, mining techniques extract knowledge
to identify hidden patterns in the parameters that control pro-
duction processes [1]. Unfortunately, there are no scalable
models for associated applications, but only “implementation
specific” mining algorithms. We focus hereafter on (i) Fault
detection and quality improvement, which examine what
happened in the past to better predict and to improve
the future system’s performance; and (ii) Decision support
systems, which determine links between control parameters
and product quality in the form of rules. We moreover
concentrate on a particular area, semiconductor wafer man-
ufacturing, where yield is the ratio of non-defective chips in
a finished wafer to the number of input products.

In semiconductor manufacturing facilities, the volume and
the complexity of the collected data are generally much more

consequent than in other manufacturing fields: Fabrication
processes include several hundred steps with regard to the
produced chip. Each step uses various chemico-physical
recipes, grouped into four phase units (photolithography,
etch, implant and CMP).

Two techniques are used to improve the yield: Real-
time and post hoc. The first approach monitors on-line
measurements of process steps, and undertakes corrective
action to ensure that the measures remain within desired
limits. The post hoc approach compares the end result of
the whole process with the desired specifications, analyzing
the root causes of low yield for adjusting the process
parameters to ensure future quality. Advanced Process
Control (APC) considers both, by highlighting correlations
between production parameters in order to rectify possible
drifts of the associated process(es). This can be done for
specific equipment and process steps in real-time: FDC
(Fault Detection and Classification) tools and R2R (Run
To Run) regulation loops are the most representative APC
techniques. Correlations can also be discovered post hoc:
This is the framework of our paper.

Both approaches first try to identify, which parameters
are the root causes of a particular yield excursion. However,
conventional methods such as SPC are here inaccurate,
because they fail to extract underlying features from complex
data. This is why data mining techniques become useful in
semiconductor fabs. Associated models can be categorized
into four types [2]: Classification, Clustering, Prediction and
Association Rules. The most widely used is classification.
At the contrary, association rules are not often used. Let us
mention [3], where the authors present a modified Apriori
algorithm used in LCD panel manufacturing in order to
locate machines with low yield after process completion.

B. Our approach

We present a whole KDD model based on specific rules.
Within this framework, and in collaboration with STMi-
croelectronics and ATMEL, our work is focused on the
detection of the main control parameters impacting the yield.
The goal is to propose indicators to which special attention
should be paid in order to construct, in a second step, yield
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enhancement models used in further production cycles. Let
us emphasize that this second non-trivial problematic is
excluded from the scope of our paper.

The realized post hoc analysis is based on CSV files
of real valued measurements associated with production
lots, extracted from large databases and covering the four
fabrication units mentioned above. The main characteristic
of these files is the huge number of columns (nature of
the measurements) with regard to the number of rows
(measures). We want to highlight correlations between the
values of some columns and those of a target column:
The yield. To detect these correlations, we use Decision
Correlation Rules [4] but, before, we undertake important
data preparation tasks to enhance the efficiency of the
mining input database: This is the scope of our paper.

The paper is organized as follows: In Section II, the bases
of Decision Correlation Rules and our mining algorithm are
first recalled. In Section III, we expose the data preparation
functions of the MineCor software. Experiments are
detailed in Section IV. As a conclusion, we summarize our
contributions and outline some research perspectives.

II. RELATED WORK:THE MINECOR MINING MODEL

In this section, we first recall the definitions of correlation
rules and lectic order. Then we introduce the LS Algorithm,
which allows to browse the search space according to the
lectic order, before presenting the LHS-CHI2 algorithm.
Some points developed hereafter have soon been presented
in [4]. But the given overview clarifies the approach.

A. Decision correlation rules and lectic order

Basic concepts
An association rule [5] is an approximate implication

X → Y between two sets of items. Two measures are
used to extract significant rules: Support and confidence.
Because the underlying semantics of an association rule are
fairly poor, Wu et al. [6] introduce literalsets and compute
positive and/or negative association rules such as ¬X → Y .
To generate the rules, the authors use the same platform by
redefining the support of a literal: The number of transac-
tions of the binary relation including X and containing no
1-item of Y . Another approach is proposed by Brin et al.
[7]: The extraction of correlation rules. The new platform
is based on the Chi-Squared statistical measure, written χ2.
We assume hereafter that the definitions of literalsets so as
of the χ2 statistic are known.

When computing correlation rules, the memory usage
required by levelwise algorithms is crucial. This is why
Brin et al. compute only correlations between two values.
Different criteria to evaluate whether a correlation rule is
semantically correct have been proposed. The main is the
Cochran criterion, and can be relaxed as follows: MinPerc

of the literalsets of a contingency table must have a support
larger than MinSup, where MinPerc (minimal percent)
and MinSup (minimal support) are thresholds.

Decision correlation rules
We want the computed correlation rules to include specific

items, e.g. belonging to a target attribute. Let r be a binary
relation (a transaction database) over a set of items R =
I ∪ T . I represents the values (the items) of the binary
relation used as analysis criteria, and T is a target attribute,
which items may be null.

Definition 1 (Decision Correlation Rules): Let X ⊆ R
be a pattern, and MinCorr a given threshold (≥ 0). X
represents a valid Decision Correlation Rule if and only if:
(i) X contains a value of the target attribute T ; and (ii)
χ2(X) ≥MinCorr.

Table I
RELATION EXAMPLE r.

Tid ItemSet Target

1 BCF t1
2 BCE t1
3 BCF t2
4 BC -
5 BD t1
6 B -
7 ACF t1
8 AC -
9 AE t1

10 F t2

Example 1: With the relation Example r given in Table
I, Table II shows the contingency table of pattern BC.

Table II
CONTINGENCY TABLE OF PATTERN BC .

B B
∑

row

C 4 2 6
C 2 2 4∑

column 6 4 10

Continuing the example, χ2(BC) ' 0.28. which
corresponds to a correlation rate of about 45%. If
MinCorr = 0.25, the correlation rule materialized by the
BC pattern is valid, but the correlation rule represented by
the Bt1 pattern is not (χ2(Bt1) ' 0.1).

Lectic order and Lectic subset algorithm
The lectic order [8], noted <lec, permits to enumerate all

the subsets of an itemset I.
Definition 2 (Lectic Order): Let I be a set of items to-

tally ordered and therefore comparable two by two via an
order denoted by �. If X and Y ⊆ I, then we have:
X <lec Y ⇔ max�(X\(X ∩ Y )) � max�(Y \(X ∩ Y )).

The Lectic Subset Algorithm, noted LS [9], is one of its
possible implementations.
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B. The LHS-Chi2 Algorithm

Equivalence classes
In [4], we adapted the concept of equivalence classes over

literal patterns to our context:
Definition 3 (Equivalence Class associated with a literal):

Let Y Z be a literal, and [Y Z] its associated equivalence
class. This class contains the set of transaction identifiers
of the relation including Y and containing no value of Z.

Example 2: With our relation Example (see Table 1), we
have [BC] = {5, 6}.

Contingency vectors
The contingency vectors are another representation of the

contingency tables:
Definition 4 (Contingency Vector): Let P(X) be the

powerset lattice of X , and X ⊆ R a pattern. The con-
tingency vector of X , denoted CV (X), groups the set of
the literalset equivalence classes belonging to P(X) ordered
according to the lectic order.

Example 3: With our sample relation (see Table
1), we obtain CV (BC) = {[BC], [BC], [CB], [BC]}
= {{9, 10}, {5, 6}, {7, 8}, {1, 2, 3, 4}}.

Proposition 1 is the main result presented in [4]. It shows
how to compute the CV of the X ∪A pattern given the CV
of X and a set of identifiers of the relation containing A.

Proposition 1: Let X ⊆ R be a pattern and A ∈ R\X
a 1-item. The CV of the X ∪ A pattern can be computed
given the CVs of X and A as follows:

CV (X ∪A) = (CV (X) ∩ [A]) ∪ (CV (X) ∩ [A])

Example 4: With the relation Example (see Table 1),
we have CV (B) = {{7, 8, 9, 10}, {1, 2, 3, 4, 5, 6}} and
CV (C) = {{5, 6, 9, 10}, {1, 2, 3, 4, 7, 8}}. By applying
Proposition 1 and ordering, we retrieve the result of Example
3: CV (BC) = {{9, 10}, {5, 6}, {7, 8}, {1, 2, 3, 4}}.

The LHS-CHI2 Algorithm
The Lectic Hybrid Subset-Chi2 Algorithm, or LHS-CHI2,

adapts the LS Algorithm to our context, in the way that it
includes contingency vectors so as five constraints in order
to prune the search space [4]. The predicate CtPerc expresses
the satisfiability of the Cochran criterion. The pseudo-code
of the procedure CREATE CV can be found in [4]. By con-
vention, we consider that we have CV (∅) = {Tid(R), ∅}.
The positive border (BD+) is initialized with {∅}. The
pseudo code of LHS-CHI2 is provided in Algorithm 1.
The first call to LHS-CHI2 is carried out with X = ∅ and
Y = R.

Example 5: The Decision Correlation Rules computed by
LHS-CHI2 on the Example of Table 1 and satisfying the
minimal threshold constraints MinSup = 0.2, MinPerc =
0.25 and MinCorr = 0.25 are shown in Table III.

Algorithm 1: LHS-CHI2 Algorithm.
input : X and Y two patterns
output: { Z ⊆ X such that χ2(Z) ≥MinCorr}

1 if Y = ∅ and ∃t ∈ T : t ∈ X and |X| ≥ 2 and
χ2(X) ≥MinCorr then

2 Output X, χ2(X)
3 end
4 A := max(Y ) ;
5 Y := Y \{A} ;
6 LHS-CHI2(X,Y) ;
7 Z := X ∪ {A} ;
8 if ∀z ∈ Z,∃W ∈ BD+ : {Z\z} ⊆W then
9 CV(Z) := CREATE CV(VC(X),Tid(A)) ;

10 if |Z| ≤MaxCard and
CtPerc(CV (Z),MinPerc,MinSup) then

11 BD+ := max⊆(BD
+ ∪ Z) ;

12 LHS-CHI2(Z,Y) ;
13 end
14 end

Table III
RESULTS OF THE LHS-CHI2 ALGORITHM OVER TABLEI

Decision Correlation Rule χ2 Value

At1 0.48
BCt1 0.28
BFt1 0.28

Performance issues
We show in [4] that levelwise algorithms require to store

CTs 2.5 GB of memory at the 3rd level, and 1.3 TB at the
4th level. When our algorithm requires, in the worst case,
2|r| ∗ (MaxCard + n + 1) Bytes in memory, where n is
the number of 1-items in the relation r. Which is much
less than the mentioned volumes above. This is because we
need only to keep the CVs stored in each branch of the
search tree, the computation of a CV at each level using
the CVs memorized at the upper levels. When a branch has
been pruned, all the stored CVs in that branch are released.
Moreover, computing a CV is faster than computing a CT .

III. DATA PREPARATION WITHIN MineCor

We developed a global KDD model including the LHS-
Chi2 algorithm. The software, called MineCor (Miner for
Correlations), is developed in C language. To carry out
preprocessing and transformation in the form of a transaction
database of the input files, we first performed column
elimination and discretization stages [2], [10]. Description of
these steps are our main contribution: seldom discussed nor
presented in an industrial context, they have a huge impact
on final results, and are summarized in Sections III-A and
III-B. The output of the two steps is the source for the data
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mining phase. Which is followed by an interpretation of the
results, resumed in Section III-C.

A. Preprocessing stage

The first step of data cleaning is the preprocessing
stage. Preprocessing consists in the reduction of the data
structure [11] by eliminating columns and rows of low
significance. This is for two reasons: (i) If each value of
each column is considered as a single item, there will
be a combinatorial explosion of the search space, and
thus very large reponse times; (ii) We cannot expect
this task to be performed by an expert, because manual
cleaning of data is time consuming and subject to many
errors. The defined order of following functions is important.

Elimination of Concentrated Data and Outliers
We eliminate first columns having small standard

deviation (threshold MinStd): Since the values are almost
the same, we consider that they do not have a significant
impact on the result; but their presence pollutes the search
space and reduces the response times. In the same way,
we introduced the MinDV threshold, which imposes
a Minimal number of Distinct Values in each column.
Attention is finally paid to inconsistent values, such as
“outliers” in noisy columns. Detection is performed through
another convenient threshold (fStd, a factor of MinStd),
and elimination consists to force the detected values to null.

Other Column Elimination
The dysfunction of sensors, or the occurrence of a

maintenance step may imply that some sensors can not
transmit their values to the database. As a consequence,
the associated columns contain many null/default values,
and are thus deleted from the input file. Such cases are
here detected using the MaxNV (Maximum Null Values)
threshold. Moreover, sometimes, several sensors measure
the same information, resulting in identical columns in the
source file. In this case, we keep only a single column.
Finally, columns with no item having the support (MinSup
threshold) are also removed.

Normalization
Let S be the set of values to be discretized (the input

column values as a numeric vector), and MinS and MaxS
be the smallest and the largest value of S. Finally, and in
order to manage the different values associated with each
set S in the same way, we normalize the values to keep
them between 0 (kZero) and 1 (kOne). This is performed
by replacing each value v ∈ S by v−MinS

MaxS−MinS
.

B. Discretization stage

Discrete values deal with intervals of values, which are
more concise to represent knowledge, so that they are
easier to use and comprehend than continuous values. Many

discretization algorithms have been proposed over the years
in order to classify data into intervals, also called bins.
Discretization can thus be performed [12]:
• In a supervised or unsupervised manner, depending on

whether class information is at one’s disposal;
• In a dynamic or static way: With a static approach,

discretization is done before the classification task;
• Using splitting or merging techniques: In the latter case,

the search space is examined bottom-up.
We represent continuous real valued columns by

associating to each of their values an interval code (the one
to which the value belongs). The intervals are created using
either equal-width, equal-frequency and embedded means
discretization, which are non supervised, static and splitting
methods. In each approach, NIC is an input parameter
specifying the number of bins to create per column.

Equal Width Discretization (EWD)
Each interval has a length of l = MaxS−MinS

NIC . The
computed classes are c1 : [MinS ,MinS + l[, c2 :
[MinS + l,MinS +2l[, .... The method is easy to compute
and to interpret, but is not efficient in the case of asymmetric
or discontinuous distributions.

Equal Frequency Discretization (EFD)
The goal is to obtain classes having, if possible, the same
number of values. Because this configuration seldom ap-
pears, the problem becomes how to group close values
into classes while respecting the above constraint. The
Jenks’ natural breaks classification schema gets the best
class arrangement, after having generated each possible class
combination [13]. It minimizes the in-class difference and
maximizes the between-class difference using the Goodness
of Variance Fit (GVF):

GV F = 1−
∑NIC

j=1

∑|[Si,Sj ]|
i=1 (Si − [Si,Sj ])2∑|[S]|
i=1 (Si − S)2

,

where |[Si,Sj ]| is the cardinality of the interval [Si,Sj ],
and S is the mean of the sorted set S .

The main drawbacks of the method are, on one hand,
that stability is not assumed when NIC varies and, on the
other hand, the high computational complexity of the class
generation, which is CNIC−1

d−1 , where d is the number of
distinct values in the set S. The associated computational
cost becoming redhibitory, we use instead the Fisher’s
method of exact optimization [14] proposed for grouping
|[S]| elements (distinct or not) into NIC mutually exclusive
and exhaustive subsets having maximum homogeneity, i.e.,
minimizing the within-groups sum of squares. The obtained
partition is guaranteed to be optimal, but not unique. Which
is not important while the obtained gain of time is.
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Embedded Means Discretization (EMD)
EMD is a divisive hierarchical clustering method, which
starts with a single class/bin that contains all the initial
values of the column to discretize (S). The average divides
the set into two groups used to construct two new classes.
The averages of these 2 groups permit the splitting into 4
classes, and so on. This approach matches every kind of
distribution, but the number of classes NIC is here always
a power of two, which may be an inconvenient.

Algorithm 2: REM Algorithm.
input : V ec : initial vector, Min,Max 2 borders,

ind : current index, nbi : number of bins
output: MV ec : average vector

1 Avg := ComputeAvg(Min,Max, V ec) ;
2 MV ec[Ind] := Avg ;
3 if NIC > 1 then
4 REM (V ec,Min,Avg, ind− nbi/2, nbi/2) ;
5 REM (V ec,Avg,Max, ind+ nbi/2, nbi/2) ;
6 end

We compute the class borders (MV ec) using the
Recursive Embedded Means (REM) discretization
algorithm, which pseudo code is provided in Algorithm
2. The first recursive call to REM is carried out with
V ec = S, Min = kZero, Max = kOne, ind = NIC/2
and nbi = NIC/2. The ComputeAvg function returns the
average of the V ec values bordered by Min and Max.

String Valued Columns Discretization
Because string valued columns often appear as parameter

measures, we take them equally into account by applying
them a rough discretization function presented in Algorithm
3. Associated Compute String Intervals (CSI) discretization
method keeps the NIC or NIC − 1 most present string
literals of input string vector S as discretization ”values”. If
the bOth boolean is enabled, OutV ec[NIC − 1] represents
any other value of S not equal to any of the first NIC − 1
values of OutV ec. The column is removed for the mining
step if it contains strictly less than NIC values.

C. Interpretation stage
Interpretation essentially consists in decoding the dis-

cretization stage with regard to the results, and to produce
an intelligible output for the end-user. MineCor produces
outputs in HTML and text formats.

Example 6: BCt1 is a valid Decision Correlation Rule
(cf Table III). Associated text output looks like [1.4, 2];
[2.8, 4.6]; [2.7, 7.4], where [bmin, bmax] are real values
representing items B,C, t1 respectively.

IV. EXPERIMENTAL ANALYSIS

Some representative results of the LHS-CHI2 algorithm
are presented below. As emphasized in Section I-B, the

Algorithm 3: CSI Algorithm.
input : nbi : number of bins , InV ec : input string

vector, bOth : “others” boolean, Minsup :
threshold

output: OutV ec : output string vector

1 OutV ec := ∅ ;
2 nbDisV als := SortByPopularity(InV ec,OutV ec);
3 if nbDisV als ≥ NIC and bOth and
Sup(OutV ec[nbi− 1]) ≤MinSup then

4 OutV ec[nbi− 1] := kOthers ;
5 end

experiments were done on different CSV files of (essen-
tially) real value measures supplied by STMicroelectronics
(STM) and ATMEL (ATM). The files have one or more
target columns, resulting from the concatenation of several
measurement files. The characteristics of the datasets used
can be found in Table 4. STM File1 and ATM File are
representative of our post hoc approach (cf. Section I-A).
STM File2 is more typical of a real-time approach (few
parameters, large number of measures).

Table IV
DATASET EXAMPLES

Name Number of Columns Number of Rows

STM File1 1 281 297
STM File2 8 726
ATM File 749 213

All experiments were conducted on an HP Workstation
(1.8 GHz processor with a 4 Gb RAM). Results are pre-
sented on Figures 1 through 7(b).

In [4], we compare the execution times of a classical
Levelwise algorithm and LHS-CHI2. The experiments use
the only EWD method. The response times of our method
are between 30% and 70% better than Levelwise.

A. Impact of the Preprocessing Stage

Figures 1 and 2 show respectively the number of items
used in the mining stage and the number of decision correla-
tion rules discovered after that stage for STM File2 (target1)
when MinSup (0.2), MinCorr (0.24) and MinPerc (1.2)
are constant, while the number of bins (NIC) varies. We
compare the three discretization methods.

EMD (and EFD) are better methods than EWD when the
NIC parameter remains low. With greater values of NIC
and also because of the large number of rows in the analyzed
file, EWD returns more rules (even if not necessary all of
interest). As it appears also on the following experiments,
EWD is the best method the larger the thresholds, because
of the more important number of columns kept and thus of
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Figure 1. Number of items used vs. number of bins.
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Figure 2. Number of generated rules vs. number of bins.
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items produced after preprocessing, even if the execution
times are more important.

Figures 3 and 4 show the number of extracted rules after
mining when MinPerc (0.34) and MinSup (0.25 in Figure
3 and 0.27 in Figure 4) are fixed. The difference between
the two experiments is that the MinDV , MaxNV and
MinStd thresholds are smaller in Figure 4 than in Figure
3. What harmonizes the results, and shows also that the
MinCorr threshold has only few effect on mining. What
means also that the preprocessing parameters impact the
numbers of obtained items and thus of computed rules.

Figure 3. Number of generated rules with MinDV = 58, MaxNV =
48, MinStd = 1.68 (STM File1 - target1).
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B. Impact of the Discretization Stage

Figures 5(a) and 6(a) show the number of items kept after
the discretization stage, which only depends on the MinSup

Figure 4. Number of generated rules with MinDV = 80, MaxNV =
50, MinStd = 1.28 (STM File1 - target1).
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threshold, while the number of bins is constant. They
illustrate that the smaller the threshold MinSup, the larger
the number of items kept for the mining stage, whatever
the discretization method. Figures 5(b) and 6(b) show the
number of rules that are generated in both cases. While the
number of partitions generated by the EFD method is larger
than the one generated by the EWD method, the number of
rules is smaller. Moreover, the execution time is shorter by a
factor up to 2.5 (cf. Figure 5(c)). On the other hand, the EMD
method provides better results when working on STM File2,
which is a perticular case. These results outline that MineCor
tries to provide the end-user with “best” quality rules: (i)
Low in number, (ii) Significant, and (iii) Computed quickly.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented the MineCor software. Pa-
rameter measurement files given by semiconductor manu-
facturers are used, and produce values of parameters with
most influence on the yield. To achieve this objective, we
built a complete KDD model, based on Decision Correlation
Rules. We show that the various thresholds used in our
preprocessing stage have an impact on the number of kept
columns of the input file, and thus, on the number of
items used in further steps. Moreover, we implemented three
methods at the discretization stage: (i) Equal Width, (ii)
Equal Frequency, and (iii) Embedded Means. Experiments
point out that, in most cases, the EFD method produces
Decision Correlation Rules faster and of better quality.

Some new issues to our work are: (i) To compare our
approach with classification methods; (ii) To optimize the
processing stages upstream of the algorithm (aggregation of
attributes, merging of intervals) while safeguarding the con-
text in order to obtain a larger number of rules and/or more
significant results; and (iii) To allow automatic threshold
and parameter fixing depending on each input file column.
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