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Abstract— In the field of pattern classification, we often 
encounter problems that class-to-class misclassification costs 
are not the same. For example, in the medical domain, 
misclassifying a patient as normal is often much more costly 
than misclassifying a normal as patient. Our aim in this paper 
is to propose a method of designing fuzzy rule-based 
classification systems to tackle this problem.  We use rule-
weight as a simple mechanism to tune the rule-base. Assuming 
that class-to-class misclassification costs are known, we 
propose a learning algorithm that attempts to minimize the 
total cost of the classifier on train data (i.e., instead of 
minimizing the error-rate). Using a number of UCI datasets we 
show that the method is quite effective in reducing the average 
cost of the classifier on test data. 

Keywords- Fuzzy Classification Systems; Cost Sensitive 
Classification; Rule Weight; Data Mining  

I.  INTRODUCTION  

A Fuzzy Rule-Based Classification System (FRBCS) is a 
special case of fuzzy modeling where the output of the 
system is crisp and discrete. Basically, the design of a 
FRBCS consists of finding a compact set of fuzzy if-then 
classification rules to be able to model the input-output 
behavior of the system. The information available about the 
behavior of the system is assumed to be a set of input-output 
example pairs (i.e., a number of pre-labeled classification 
examples). 

The most challenging problem in designing FRBCSs is 
the construction of rule-base for a specific problem. Many 
approaches have been proposed to construct the rule-base 
from numerical data. These include heuristic approaches [1, 
2], neuro-fuzzy techniques [3-5], clustering methods [6-8], 
genetic algorithms [9-12] and data mining techniques [13-
15]. 

One main advantage of fuzzy rule-based systems in 
classification problems is their interpretability. Using 
linguistic labels in the antecedent of the fuzzy rules makes 
them very understandable, which is the main characteristic of 
this type of classifier.  

There are many classification problems where class-to-
class misclassification costs are different. For example, in 
medical diagnosis of cancer, diagnosing malignant tumors as 
benign and hence treating a cancer patient as healthy could 
be much more costly than interpreting benign tumors as 
malignant. 

Cost-sensitive learning first introduced by Elkan [16] has 
shown to be an effective technique for incorporating the 

different misclassification costs into the classification 
process [17-21].  

A pattern classification problem can be easily 
reformulated as a cost minimization problem. In [22], the 
concept of instance weight is introduced for each training 
pattern in order to handle the cost-sensitive problems. The 
weight of an input pattern represents the average cost of 
misclassifying that pattern. Fuzzy if–then rules are generated 
by considering the weights as well as the compatibility of 
training patterns. A rule-weight learning method based on 
Reward and Punishment is also proposed to tune the weight 
of the rules.  

In this paper, we assume that for the problem in hand a 
cost matrix C giving class-to-class misclassification costs is 
available. We assume that the cost of misclassifying an 
instance depends on its actual and predicted classes. Each 
element cij of this matrix gives the cost of classifying a 
pattern from class i in class j (cij=0 if i=j). This is slightly 
different from the scheme that assumes that the 
misclassification cost of an instance depends only on its 
actual class [16, 20]. The design of the classifier is then 
viewed as a cost minimization problem.  

For a specific cost-sensitive problem, an initial rule-base 
is constructed using one of the methods proposed in the 
literature [22]. The initial rule-base is then tuned to the 
problem in hand by assigning a weight to each fuzzy rule in 
the constructed rule-base. The novelty of our method is in 
the rule-weight learning algorithm that we propose. The 
proposed algorithm uses the cost matrix to directly minimize 
the total misclassification cost of the classifier on training 
data. In this process, the size of the rule-base is reduced by 
assigning zero weight to redundant rules, which improves the 
interpretability of the final rule-base. Using a number of 
datasets from UCI ML repository, we show that the scheme 
is quite effective in constructing a compact rule-base for 
cost-sensitive problems. 

The rest of this paper is organized as follows. In Section 
II, the structure of a fuzzy classification system is 
introduced. In Section III, a method of constructing the rule-
base for conventional (i.e., not cost sensitive) problems is 
discussed. In Section IV, a method of constructing rule-base 
for cost-sensitive problems is presented. In Section V, the 
proposed method of rule-weight learning is presented. In 
Section VI, the simulation results are presented. Section VII 
concludes this paper. 
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II. FUZZY RULE-BASED CLASSIFICATION SYSTEMS 

A fuzzy rule-based classification system is composed of 
three main conceptual components: database, rule-base, and 
reasoning method. The database describes the semantic of 
fuzzy sets associated to linguistic labels. Each rule in the 
rule-base specifies a subspace of pattern space using the 
fuzzy sets in the antecedent part of the rule. The reasoning 
method provides a mechanism to classify a pattern using the 
information from the rule-base and database.  

Different rule types have been used for pattern 
classification problems [23]. We use fuzzy rules of the 
following type for an n-dimensional problem: 

Rule Rj:  If x1 is Aj1 and … and xn is Ajn then       
class h with CFj,   j=1, 2, …, N    (1)

where X=[x1, x2, …, xn] is the input feature vector, h {C1, 
C2 …, CM} is the label of the consequent class, Ajk is the 
fuzzy set associated to xk , CFj is the certainty grade (i.e., rule 
weight) of rule Rj and N is the number of fuzzy rules in the 
rule-base. 

In order to classify an input query pattern Xt = [xt1, xt2, …, 
xtn], the degree of compatibility of the pattern with each rule 
is calculated (i.e., using a T-norm to model the “and” 
connectives in the rule antecedent). In case of using product 
as T-norm, the compatibility grade of rule Rj with the input 
pattern Xt can be calculated as:  

( ) ( )
1

n
X xAtj tii ji

  


    (2)

Using single winner reasoning method, an input query 
pattern Xt is classified according to the consequent class of 
the winner rule Rw. With the rules of form (1), the winner 
rule Rw is identified as: 

1

arg max{ ( ). }j t j
j N

w X CF
 

     (3)

III. RULE-BASE CONSTRUCTION 

For an M-class problem in an n-dimensional feature 
space, assume that m labeled patterns of the form Xp=[xp1, 
xp2, …, xpn], p=1, 2, …, m are given. A simple approach for 
generating fuzzy rules is to partition the domain interval of 
each input attribute using a pre-specified number of fuzzy 
sets (i.e., grid partitioning). Some examples of this 
partitioning (using triangular membership functions) are 
shown in Fig. 1. 

Given a partitioning of pattern space, one approach is to 
consider all possible combination of the antecedents to 
generate the fuzzy rules. The selection of the consequent 
class for an antecedent combination (i.e., a fuzzy rule) can be 
easily expressed in terms of confidence of an association rule 
from the field of data mining [24]. A fuzzy classification rule 
can be viewed as an association rule of the 
form  j jA class C  where, Aj is a multi-dimensional fuzzy 

set representing the antecedent conditions and Cj is a class 
label. Confidence of a fuzzy association rule Rj is defined as 
[15]: 

 

1
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p j
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X class C

j j m

j p
p

X

C A class C
X









 



 

   (4)

where µj(Xp) is the compatibility grade of pattern Xp with the 
antecedent of the rule Rj, m is the number of training 
patterns, and Cj is a class label. 
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Figure 1.  Different partitioning of each feature axis. 

A common approach for identifying the consequent class Cq 
of an antecedent combination Aj is to specify the class with 
maximum confidence as the consequent class. This can be 
expressed as: 

 
1

arg max ( )j h
h M

q C A Class C
 

      (5)

The problem with grid partitioning is that an appropriate 
partitioning of each attribute is not usually known. One 
solution for this is to simultaneously consider different 
partitioning of an attribute (see Fig. 1). That is, for each 
attribute, a pre-specified number of fuzzy sets (for example 
14, as shown in Fig. 1) can be used when generating a fuzzy 
rule. The problem is that for an n-dimensional problem, 14n 
antecedent combinations should be considered. It is 
impractical to consider such a huge number of antecedent 
combinations when dealing with high dimensional problems. 

One solution for the above problem is presented in [15] 
by adding the fuzzy set “don’t care” to each attribute. The 
membership function of this fuzzy set is defined as µdon’t 

care(x) =1 for all values of x. The trick is not to consider all 
antecedent combinations (which is now 15n) and only short 
fuzzy rules having a limited number of antecedent conditions 
(excluding don’t care) are generated as candidate rules. 

The number of candidate rules generated with the above 
scheme can still be quite large for many problems. A 
compact rule-base can be constructed in the following 
manner. The generated candidate rules are divided into M 
groups according to their consequent classes. The candidate 
rules in each group are sorted in descending order of an 
evaluation criterion. A rule-base is constructed by choosing 
Q fuzzy rules from each class (i.e., M×Q fuzzy rules in total). 
Among many heuristic rule evaluation measures presented in 
the literature [25], we use the measure presented in [10]. The 
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evaluation of rule Rj (i.e.,  j jA class C ) with this measure 

can be expressed as: 

( ) ( ) ( )
p j p j

j j p j p
X Class C X ClassC

e R X X 
 

    
   (6)

IV. COST-SENSITIVE FUZZY CLASSIFICATION SYSTEMS 

For an M-class problem, assume that an M×M cost 
matrix C giving class-to-class misclassification costs is 
given. In this section, we extend the rule-base construction 
method of the previous section for the case of cost-sensitive 
problems. For this purpose, we assign a weight to each 
training example. The weight assigned to each training 
example is the average cost of classifying that example. The 
cost matrix C can be used to calculate the weight wp a 
training example Xp (from class i) as: 

,

1

1 M

p i j

j

w c
M 

      (7)

where, ci,j denotes the cost of classifying an instance of class 
i in class j. The weight assigned to a training example can be 
viewed as the importance of that pattern in the classification 
process. Using the weights of the training examples, the 
confidence of an association rule (4) can be easily modified 
to: 

 

1

. ( )

(  )
. ( )

p j

p j p
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j j m

p j p
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w X
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   (8)

The rule evaluation metric (6) is modified to 
accommodate the weights assigned to training examples: 

( ) . ( ) . ( )
p j p j

j p j p p j p
X ClassC X ClassC

e R w X w X 
 

    
   (9)

It must be noted that equations (8) and (9) cover the 
special case of cost-insensitive problems (i.e., wp=1, 
p=1,2,..,m). In short, the rule generation process discussed in 
Section III can be used to construct a rule-base for a cost-
sensitive problem. For this purpose, equations (4) and (6) are 
replaced by (8) and (9), respectively. 

V. RULE-WEIGHT LEARNING ALGORITHM 

For the problem in hand, assume that a rule-base 
consisting of N fuzzy classification rules {Rj, j=1, 2, ..., N} is 
constructed using the method discussed in the previous 
section. Our aim in this section is to propose a rule-weight 
learning algorithm that attempts to minimize the total cost 
misclassification cost of the rule-base on train data. For this 
purpose, we make use of the rule-weight learning algorithm 
that was proposed in [26], which attempts to minimize the 
error-rate of the classifier on training data. In this section, we 

propose an extended version of this algorithm to cover case-
sensitive problems. The proposed algorithm attempts to 
minimize the total misclassification cost of the constructed 
rule-base on the training data. 

In its basic form, the proposed algorithm is a hill-
climbing search method. The algorithm starts with an initial 
solution to the problem (i.e., {CFk = 1, k =1, 2, …, N}) and 
attempts to improve the solution by adjusting the weight of 
each rule in turn (to reduce the total cost on train data). The 
basic component of the learning scheme is an algorithm 
(denoted as best-weight) that provides the answer to the 
following question: “What is the optimal weight of a rule 
(i.e., Rk) assuming that the weights of all other rules are 
given and fixed?” 

The weight found by best-weight is optimal in the sense 
that it results in minimum total misclassification cost on 
training data. In this way, the overall learning algorithm 
consists of visiting each rule in turn to adjust its weight. It 
must be noted that the weight specified for a rule is optimal 
if the weights of other rules in the rule-base remain fixed. 
That is why the second pass and subsequent passes over the 
rules can reduce the cost on train data. In experiments, as a 
mechanism to prevent overfitting, we stop the search after a 
fixed number of passes over all rules [26]. 

To illustrate how the best-weight algorithm finds the 
optimal weight of a rule, consider rule Rk for optimization. 

Rule Rk:  If x1 is Ak1 and … and xn is Akn then      
class T with CFk 

   (10)

To calculate the optimal weight of rule Rk (i.e., CFk), the 
rule is first removed from the rule-base by setting its weight 
to zero (CFk=0). In the next step, the predicted class of all the 
training patterns will be found and stored (without rule Rk in 
the rule-base). Then, the score S of each training data Xt in 
covering subspace of rule Rk (i.e., ( ) 0k tX  ) is calculated 

using the following definition of score: 

1
max{ . ( ) | }

( )
( )

j j t j k
j N

t
k t

CF X R R
S X

X




 


     (11)

where, µk(Xt) denotes the compatibility grade of pattern Xt 
with rule Rk . For a pattern Xt having score S(Xt)=a, if we 
choose CFk > a, the pattern Xt will be classified by rule Rk 
(i.e., as class T) since rule Rk will be the winner rule ( having 
maximum weighted compatibility with pattern Xt). In case 
we choose CFk < a, the pattern will be classified as if we 
don’t have rule Rk in the rule-base (we have already stored 
the predicted class in previous step). 

For a specific value of CFk, the predicted class of Xt (with 
S(Xt)=a) for the two interval of CFk < a and CFk > a are 
known. As we know the true class of Xt, we can easily 
calculate the cost of classifying Xt for  CFk < a and CFk > a. 
For a training pattern Xt, assume that L is the true class, P is 
the predicted class for CFk < a, and T is the predicted class 
for CFk > a. Then, the cost of classifying Xt  for CFk < a and 
CFk > a can be expressed as: 
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,

,

( )
T P k

t
T L k

C if CF a
Cost X

C if CF a

  
    (12)

where, CI,J is used to represent the cost of classifying an 
instance of class I in class J. 

Having the relation between a certain value of CFk and 
the corresponding total cost of training data, the best value of 
CFk can be easily found  by sorting the patterns in ascending 
order of their scores (i.e., S(X1)< S(X2)<….<S(Xn)). 
Considering any value of CFk between S(Xi) and S(Xi+1), the 
first i patterns will be classified as class T and the rest of the 
patterns will be classified as if rule Rk is not in  rule-base. In 
this way, n+1 different values of CFk should be examined to 
find its best value. The best-weight algorithm for calculating 
the best weight of a rule is given in Fig. 2. 

The algorithm starts by finding the predicted class of 
each pattern when the rule is removed from the rule-base. 
The patterns are then sorted in ascending order of their 
scores. For a rule having n training pattern in its covering 
space, the algorithm of Fig. 2 examines n+1 values to find 
the best weight (best-CF) for the rule. The first and last 
values are “zero” and “last+ε”, respectively (last is the score 
of last pattern in the ranked list and ε is a very small positive 
number). The rest are examined in the middle of two 
successive scores. 

VI. EXPERIMENTAL RESULTS 

In order to assess the performance of the proposed 
method, we used four data sets available from UCI ML 
repository. Some statistics of these datasets are shown in 
Table I.  

To construct an initial rule-base for a specific problem, 
we used the method of Section III to generate rules of 

length≤2. The candidate rules were the grouped based on 
their consequent classes. The rules in each group were then 
sorted according to the rule evaluation metric. An initial rule-
base was constructed by choosing a certain number of best 
rules from each group. The proposed rule-weight learning 
algorithm was used to optimize the rule-base by passing 4 
iterations over all rules. 

We used 10-times 10-fold cross validation technique to 
assess the generalization ability of the proposed method. In 
each fold, 90% of the data were use to construct the rule-
base. The proposed rule-weight learning algorithm was then 
used to specify the weights of all rules in the rule-base. The 
performance on test data was measured by calculating the 
average cost per example (CPE). 

For the purpose of experiments we assumed a cost matrix 
using the number of instances in each class (i.e., class 
proportionate cost). The misclassification cost of predicting 
an instance of class i in class j is assumed to be: 

(total no. of patterns of class j)

(total no. of patterns of class i)ijC      (13)

This cost matrix assumes that misclassification of the 
minority class (with a small number of training patterns) is 
more costly than majority class. In Tables II and III we give 
the cost matrix used for each dataset, which is based on 
equation (13). 

It must be noted that the misclassification costs in most 
medical problems depends strongly on the domain, and 
particularly the anticipated consequences of the 
misclassification. This is not directly related to the class 
proportions. These cost matrices are used as examples (i.e., 
they don’t represent the actual misclassification costs) to 
evaluate the proposed rule-weight learning algorithm. 

 
 

 
Figure 2.   Best-Weight Algorithm for finding the best weight of a rule 

Inputs: training patterns in the covering subspace of the rule and true class of each 
pattern {(Xt, true-class(Xt)), t=1,2,…,n} 
 
Output: the best weight for the rule (best-CF) assuming that the weights of all other 
rules are fixed 
 
CF = 0    (i.e. remove the rule from the rule-base) 
for each training pattern, Xi 

Calculate and memorize the predicted class of Xi 
Calculate and memorize S(Xi) using eq. 11 

rank the patterns in ascending order of their scores in a list 
 
#assume that Xk and Xk+1 are two successive patterns in the list 
#also assume that Xlast is the last pattern in the list and ε is a small positive #number 
 
for each value of CF (i.e. CF=0, CF=(Score(Xk)+Score(Xk+1))/2, CF=Score(X last)+ε)  

Calculate and memorize total misclassification cost corresponding to the specified 
value of CF 

 
best_CF = CF with minimum total misclassification cost 
 

return best-CF 
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In Table IV, we report the CPE for the initial rule-base 
(i.e., before rule-weighting) and after applying the rule-
weighting algorithm of Section IV. As seen, our rule-
weighting algorithm has significantly reduced the CPE on 
test data for all datasets used in our experiments.  

In order to assess the performance of our method in 
comparison with other methods proposed in the literature, in 
Table V, we report the results of the method proposed in [22] 
to handle cost sensitive problems. The cost matrixes used to 
produce the results of this Table is the same as Table IV (i.e., 
class proportionate cost matrix (13)).  

Comparing the results of Tables IV and V, we observe 
that our proposed rule-weighting algorithm outperforms the 
method proposed in [22] by achieving lower value of CPE 
on test data for all datasets used in experiments, which was 
the primary goal of the algorithm.  

 

TABLE I.  SOME STATISTICS OF THE DATASETS USED IN 
EXPERIMENTS. 

Dataset 
No. Of 

features 

No. of 

instances 

No. of 

classes 

No. of 

instances 

per class  

Thyroid 5 215 3 35, 30, 150  

Pima 8 768 2 500, 268 

Bupa 6 345 2 145, 200 

Breast 

cancer 
30 569 2 357, 212 

TABLE II.  CLASS-PROPORTIONAL COST MATRIX FOR THYROID 
DATASET. 

 hyper- 
thyroidism 

hypo-
thyroidism normal 

hyperthyroidism 0 0.86 4.28 

hypothyroidism 1.17 0 5 

normal 0.23 0.2 0 

TABLE III.  CLASS-PROPORTIONAL COST MATRICES. 

Pima tested_negative tested_positive 

tested_negative 0 0.536 

tested_positive 1.87 0 

Bupa drinks<5 drinks>5 

drinks<5 0 1.38 

drinks>5 0.73 0 

Breast cancer Benign malignant 

benign 0 0.594 

malignant 1.68 0 

 

 

TABLE IV.  THE CPE ON TRAIN AND TEST DATA FOR VARIOUS 
DATASETS USING OUR PROPOSED METHOD. 

Dataset 

Train data Test data 

Before 
rule-

weighting 

After 
rule-

weighting 

Before 
rule-

weighting 

After 
rule-

weighting 

Thyroid 1.24 0.03 1.31 0.12 

Pima 1.42 0.42 1.43 0.54 

Bupa 0.58 0.26 0.59 0.36 

Breast 
cancer

0.12 0.03 0.13 0.06 

 

TABLE V.  THE CPE ON TRAIN AND TEST DATA FOR VARIOUS 
DATASETS USING  THE METHOD PROPOSED IN [22]. 

Dataset 

Train data Test data 

Before 
rule-

weighting 

After 
rule-

weighting 

Before 
rule-

weighting 

After 
rule-

weighting 

Thyroid 0.25 0.15 0.25 0.2 

Pima 0.96 0.79 0.97 0.8 

Bupa 0.57 0.4 0.58 0.42 

Breast 
cancer

0.52 0.24 0.55 0.24 

 
In Table VI, we report on average number of rules in the 

final rule-base using our method. As seen, the number of 
rules in the final rule-base is much smaller than initial rule-
base. This is due to the fact that our algorithm removes the 
redundant rules by setting their weights to zero. This is 
important since the interpretability and efficiency of the rule-
base is improved. 

TABLE VI.  AVERAGE NUMBER OF RULES IN THE FINAL RULE-BASE 
USING THE PROPOSED METHOD. 

Dataset 
Before rule-
weighting 

After rule-
weighting 

Thyroid 99 4.53 

Pima 66 10.5 

Bupa 66 11.9667 

Breast cancer 50 6.2 

 

VII. CONCLUSIONS 

In this paper, a cost-sensitive learning algorithm was 
proposed to tune a fuzzy classification system by specifying 
the weights of fuzzy rules. The learning algorithm makes use 
of the cost matrix giving class-to-class misclassification 
costs to minimize the total cost on train data. 
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Using a number of real-life datasets, we showed that the 
scheme is quite effective in reducing the average cost of the 
classifier on test data. Another advantage of the proposed 
method is that redundant rules are removed during the 
learning process. This feature is very useful since the final 
rule-base is better in terms of interpretability and 
classification speed. 

Since the proposed learning method attempts to minimize 
the classification cost of the classifier on training data, 
obviously, this can cause the classifier to overfit the training 
data. The main cause for this is that the learning algorithm 
does not have a mechanism to cope with noisy training 
examples (i.e., those in contradiction with the rest of training 
patterns). A mechanism is needed to deal with this issue. 
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