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Abstract—The rapid evolution of industrial automation has rev-
olutionised industries over the past few decades, with technology
replacing manual labour through the integration of industrial
robots. This paper delves into the pivotal role of industrial
automation in bolstering productivity, curtailing labour costs,
and elevating product quality, paramount pursuits for businesses
striving for competitiveness. Situated within a “Digitisation of
Human Skills” project, this research focuses on automating
tasks in the automotive industry, specifically automotive painting
quality inspection. The proposed approach combines a Shadow
Dexterous Hand and a UR5 robotic arm, controlled through tele-
operation with the BioIK kinematic retargeting algorithm. Two
methods, OpenPose and MediaPipe, were assessed for acquiring
human hand data for teleoperation. The study demonstrates
the successful replication of human movements for automotive
painting quality inspection utilising BioIK and MediaPipe, un-
derscoring the potential of automation in this critical industrial
domain.

Keywords—Shadow Dexterous Hand; UR5; MediaPipe; BioIK;
teleoperation.

I. INTRODUCTION

The automation of industrial processes has undergone sig-
nificant evolution in recent decades, fundamentally transform-
ing the operational landscape of the industries. Beginning in
the 1960s, advancements in technology have led to the gradual
replacement of manual labour with industrial robots, as noted
in [1].

In fact, industrial automation has become imperative for
companies striving to maintain competitiveness in the con-
temporary marketplace, owing to its inherent advantages [2].
Chief among these advantages is the substantial increase in
productivity [3], attributable to the rapidity of robots compared
to human operators, facilitating uninterrupted processes. Ad-
ditionally, reduced reliance on human labour translates into
decreased labour costs and fewer human errors, ultimately
enhancing product quality.

As elucidated, this expansive domain of industrial automa-
tion holds immense potential and is poised to play a pivotal
role in the future of various industries. Consequently, opti-
mising the level of industrial automation should be a primary
focus for companies.

This paper is situated within the context of the project
“Digitalização da Arte Humana” (Cibertoque), translated as
“Digitisation of Human Skills”, which aims to develop a
robotic system capable of replicating human movements for

the purpose of automating certain tasks within the automotive
industry, specifically at Stellantis company. The paper’s par-
ticular focus lies in the realm of automotive painting quality
inspection. The research presented constitutes the initial phase
of a study whose ultimate goal is to fully automate this task
by ideally replacing human operators with robotic systems.

For the accomplishment of the aforementioned task, the
proposed approach involves controlling a Shadow Dexterous
Hand [4] coupled with a UR5 [5], a collaborative robotic arm.
The Shadow Hand consists of an anthropomorphic robotic
hand that provides high flexibility of movements due to its
24 joints, specifically engineered to replicate, with the utmost
fidelity, the kinematics and precision of the human hand.
The control of this robotic set will be executed based on
teleoperation, leveraging the kinematic retargeting algorithm
BioIK. In order to acquire the human hand data for the
teleoperation process, two methods will be explored, namely
OpenPose and MediaPipe.

The paper is structured as follows: Section II presents a
comprehensive literature review encompassing relevant topics;
Section III elucidates the detailed implementation process of
the algorithms employed; Section IV showcases the results
achieved through the application of the methods discussed in
Section III; and lastly, Section V offers conclusions drawn
from the work developed in this study and the future work.

II. LITERATURE REVIEW

In this section, pertinent subjects will be addressed within
the context of this paper. For each of the topics, the respective
literature review will be presented.

In order to execute the teleoperation of an anthropomorphic
robotic hand, various methods have been explored. Some
studies have proposed approaches for human hand motion
acquisition involving the use of data gloves, as demonstrated
in [6] [7] [8], or gloves equipped with passive markers, as doc-
umented in [9] [10]. In addition, certain research endeavours
have focused on methods for non-anthropomorphic robotic
grippers, exemplified by [11] [12].

However, the present study is dedicated to implementing a
teleoperation method tailored for an anthropomorphic robotic
hand and leveraging vision-based techniques to capture human
hand motion, offering distinct advantages in terms of flexibility
and freedom. Notably, it eliminates the necessity of wearing
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restrictive gloves. This choice was motivated by the alignment
of these techniques with the specif ic requirements of auto-
motive painting inspection and their cost-effectiveness when
compared to the utilisation of data gloves.

Subsequently, the methods used will be presented and stud-
ied, organised into two sections: data acquisition and kinematic
retargeting.

A. Data Acquisition

Within vision-based methods, there are two well-known
algorithms, namely OpenPose [13] and MediaPipe [14].

OpenPose, founded on a convolutional neural network,
stands out as the pioneering real-time, multi-person system de-
signed to collectively detect 135 human body, hand, facial, and
foot keypoints. Its selection is primarily attributed to its high
accuracy, even in challenging scenarios characterised by occlu-
sions and cluttered backgrounds. OpenPose’s prowess is sub-
stantiated by its superior performance on two datasets, namely
Max Planck Institute Informatik (MPII) Human Pose [15]
and Common Objects in Context (COCO) [16], where it
outperformed prior methods, thus attaining a state-of-the-art
status. Additionally, OpenPose’s real-time capabilities align
seamlessly with the requirements of robotic hand teleoperation
and it is an open-source method, meaning it is freely available
for research utilisation. Furthermore, in [17], an evaluation of
pose estimation accuracy was conducted utilising OpenPose in
conjunction with a single RGB-D camera, this study reported
a good performance by OpenPose, highlighting the standard
deviation of the detected keypoints below 3 millimetres, indi-
cating a high level of repeatability.

On the other hand, MediaPipe, developed by Google, also
offers a high-fidelity solution for hand and finger tracking,
leveraging machine learning algorithms to infer 21 hand
keypoints from a single image. Unlike other methods, such
as OpenPose, that rely primarily on powerful desktop environ-
ments, MediaPipe distinguishes itself by its low computational
footprint, making it possible to achieve real-time performance
even on a mobile phone and inclusively scaling to multiple
hands. This real-time performance was, in fact, tested in three
mobile devices, namely Google Pixel 3, Samsung S20 and
iPhone 11, achieving impressing processing times, such as
16.1, 11.1 and 5.3 milliseconds, respectively, utilising the
“Full” model [14]. The MediaPipe algorithm has demonstrated
its efficacy in various robotic applications, such as in [18],
where it effectively captured hand positions with good-quality
results. This capability has translated into successful robot con-
trol by hand gestures, showcasing the algorithm’s reliability
and practical utility in real-world scenarios.

B. Kinematic Retargeting

Transitioning to the control of the robotic hand, this sub-
section undertakes a comprehensive exploration of existing
literature on kinematic retargeting algorithms.

Notable among these is BioIK, first introduced in [19].
Then, a clean and high-performance C++ version of the same
algorithm was presented in [20].

BioIK is an open-source software package for Robot Op-
erating System (ROS) featuring a bio-inspired optimisation
algorithm adept at solving complex optimisation problems,
such as inverse kinematics. This algorithm is distinguished
by its user-defined weighted goals, offering a high degree
of flexibility and control encompassing 18 goal types. These
goals include the fundamentals, such as position, orientation,
and pose (position and orientation) goals, but also include
more complex goals, such as:

• Minimal Displacement Goal: tries to keep each joint
angle as close as possible to the previous one;

• Centre Joints Goal: tries to keep each joint centred at the
respective joint limits;

• Avoid Joint Limits: similar to Centre Joints Goal;
• Look At Goal: tries to align the orientation of a specified

link to a goal position;
• Maximum Distance Goal: tries to keep the position of

a specific link within a maximum range from a goal
position.

To elucidate the operational efficacy of BioIK, the authors
conducted a series of illustrative demonstrations, including
one involving the integration of the Shadow Hand with the
KUKA LWR 4+ robotic arm. This particular demonstration
focused on the application of BioIK to plan the robotic hand
and arm motions for turning a wheel button on an audio
mixer, as visually represented in Figure 1. For the execution
of this task, a tripod grasp configuration was employed, with
precise control exerted over the thumb, first finger, and middle
finger through the BioIK algorithm. The final trajectory was
achieved by combining a set of 200 solutions generated by
the BioIK algorithm. This approach resulted in the Shadow
Hand’s successful manipulation of the wheel button, achieving
the desired rotation without any incidence of slippage or
unintended disengagement.

Figure 1. Shadow Hand experiment performed in Gazebo simulation and in
reality [20]

In [21], Shuang Li et al. introduced a novel approach
to address the complex challenge of kinematic retargeting,
leveraging neural network techniques.

In this paper, the authors presented TeachNet, a novel
end-to-end neural network architecture. This architecture’s
primary objective is the estimation of joint angles requisite
for replicating the configuration of the human hand within the
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robotic domain, specifically with the utilisation of a Shadow
Dexterous Hand.

The task of directly solving joint regression problems from
human hand images is known to be a particularly challenging
one. This difficulty primarily stems from the inherent distinc-
tion between the domains occupied by the robot hand and
the human hand. In light of this, TeachNet comprises two
distinctive branches: the robot hand branch, which assumes
the role of a teacher, and the human hand branch, serving as
the student. Both branches operate with depth images as input
and jointly output the required joint angles. Between these
two branches, there is a consistency loss strategically designed
to align the corresponding features. To better understand the
network architecture, it is illustrated in Figure 2.

Figure 2. TeachNet architecture [21]

In order to train the developed network, the authors created
a new dataset utilising the existing dataset BigHand2.2M [22]
and the aforementioned BioIK solver. The process involved
the extraction of depth images from the BigHand2.2M dataset
and subsequently mapping the corresponding hand keypoints
into the corresponding joint angles of the Shadow Hand with
BioIK. The solver was set with the following goals: mapping
of fingertip positions with a weight of 1, mapping of proximal
interphalangeal joint positions with a weight of 0.2, and lastly,
mapping proximal and distal phalanges with a weight of 0.2.

Figure 3. Successful teleoperation results [21]

Finally, to evaluate the efficacy of the proposed method, a
series of hand gestures were executed by five novice teleop-
erators and replicated by Shadow Hand. This test resulted in
a success rate of 78.26%, being some of the successful poses
presented in Figure 3. Furthermore, manipulation experiments
were also performed and compared regarding the necessary
time to accomplish a specific task with the DeepPrior++ [23]
method. The outcomes underscored the notable efficiency
gains achieved through the application of TeachNet, with an
average task execution time reduction of 57% compared to the
utilisation of DeepPrior++.

III. IMPLEMENTATION

This section delves into the implementation of the algo-
rithms previously mentioned in Section II.

A. Data Acquisition

Regarding the data acquisition phase, first, OpenPose was
employed together with Microsoft Kinect v2, similarly as in
[17]. The Kinect integrates a FullHD (1920 x 1080 pixels)
RGB camera and a 512 x 424 pixels resolution depth camera.
In addition, it utilises time-of-flight (ToF) technology to cap-
ture depth. This method measures distances based on, as the
name implies, time-of-flight, i.e., the round trip time of a light
signal emitted and then received by the device.

In the case of OpenPose, the Kinect had two primary pur-
poses. Firstly, capturing 2D images of the human hand, these
frames were processed by OpenPose to detect the correspond-
ing 2D hand keypoints. Subsequently, the depth information
associated with the detected keypoints was extracted also from
Kinect, resorting to its depth sensor.

Afterwards, and resulting from the poor results achieved
with OpenPose, detailed in Section IV, MediaPipe was tested
in conjunction with a stereo-vision ZED camera. The ZED is
a stereo camera developed by StereoLabs that captures high-
definition images with depth in real-time. The camera utilises
two sensors with a baseline of 12 centimetres to mimic the
human stereoscopic vision, enabling it to generate a depth
map for, ideally, each pixel in the image. The camera has
a resolution of up to 2K (2208 x 1242 pixels) and a field of
view of 110 degrees horizontally and 60 degrees vertically.

In this specific case, the ZED camera was utilised solely
for capturing 2D raw images from both cameras, functioning
as two independent cameras. However, the fixed and known
baseline, i.e., the distance between the two cameras, pro-
vided an advantageous condition for applying stereo-vision
techniques. The approach for 3D detection of human hand
keypoints involved the independent 2D detection of keypoints
for each camera with MediaPipe, followed by the conversion
of these 2D positions from both cameras into depth values
utilising stereo-vision techniques, following the formula:

Depth =
f ·B
d

(1)
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where f corresponds to the focal length, B to baseline and d to
disparity, this is, the distance in pixels between corresponding
keypoints in the left and right images.

B. Kinematic Retargeting

Moving to the kinematic retargeting algorithm, based on
the analysis of the algorithm realised in Section II, the BioIK
algorithm was selected for mapping human movements to the
robotic system composed of the robotic arm and hand. BioIK
was favoured due to its ability to simultaneously control the
robotic arm and hand.

Prior to running the solver itself, some processing was
applied to the keypoints; namely, the acquired human hand
keypoints were transformed in a way that the links (distance
between two keypoints, equivalent to bones distance) had the
same size as the respective ones in the Shadow Hand. For
this, an iterative process was performed, starting from the
wrist and ending at each fingertip. This process consisted of
maintaining the direction of each link and changing its size
according to the respective link in the robotic hand. Being
K a hand keypoint and dlink the Shadow Hand corresponding
link distance between two keypoints, the mentioned iterative
process can be described by:

Ki+1 = Ki + dlink ·
−−−−−→
Ki Ki+1

||
−−−−−→
Ki Ki+1||

(2)

The final objective of applying this technique was to get better
results since the BioIK solver is based on inverse kinematics.
The result of the application of this technique is shown in
Figure 4. Being Shadow Hand designed to be the same size
as a human hand, the difference between keypoints is not
substantial, except for the little finger since all the robotic
hand primary fingers have the same size, but in reality, the
little finger is smaller than the other primary fingers.

Figure 4. Keypoints before (in blue) and after (in white) the application of
robotic hand mapping

Considering the implementation of BioIK itself, a total of
6 different goal types were utilised. The respective goals and
their weights are detailed below:

• Position goals for fingertips mapping with weights of 1.0;
• Position goals for knuckles mapping with weights of 0.2;
• Position goals for wrist mapping with a weight of 0.25;
• Direction goals for proximal phalanges of the primary

fingers with weights of 0.1;

• Direction goals for intermediate and distal phalanges of
the thumb with weights of 0.1;

• Joint function goals for dealing with the coupled joints
with a weight of 1.0;

• Centre joints goal with a weight of 0.1;
• Minimal displacement goal with a weight of 0.15;
• Joint function goal to ensure a maximum wrist extension

with a weight of 0.5;
• Joint function goal to ensure a workspace above the base

plane of UR5 with a weight of 0.15.
It should be noted that the penultimate goal mentioned

aims to prevent collisions between the robotic hand’s forearm
and the bonnet where the paint quality inspection took place.
Considering the physical properties of the Shadow Hand, if
the hand and respective forearm were horizontally aligned,
i.e., with null flexion of the wrist, the forearm would collide
with the bonnet.

In summary, the procedure for performing this task involved
capturing the keypoints of the human hand and subsequently
providing them to the BioIK algorithm, which aims to de-
termine the positions of each joint in the robotic arm and
hand, thereby replicating the previously recorded movement,
including the intrinsic hand movements and its spatial position.
Lastly, these joints’ positions were sent to Shadow Hand and
UR5, resorting to SrRobotCommander, a high-level interface
to control the robotic set.

The algorithms were implemented on a computer with the
following specifications:

• Central Processing Unit (CPU): AMD Ryzen™ 9
7950X3D

• Random Access Memory (RAM): 32.0 GB
• Graphics Processing Unit (GPU): NVIDIA GeForce RTX

4090 24GB

IV. RESULTS

This section presents and discusses the outcomes obtained
with the deployment of the algorithm described in Section III.

Commencing with the data acquisition, MediaPipe has
shown a notable superior performance relative to OpenPose.

During testing with OpenPose algorithm, it was observed
that specific keypoints, in particular the fingertips, were fre-
quently detected incorrectly, leading to significant deviations
from their actual positions. After further examination, it was
found that these deviations were due to the integration with
Microsoft Kinect. A slight difference between the actual
fingertip and its detection by OpenPose was enough for the
depth value extracted from the Kinect to deviate from the
fingertip and correspond, for example, to the background,
thus inevitably resulting in a keypoint position measurement
quite dissimilar to the actual one. To minimise the impact
of this issue, a median filter was applied to the acquired
keypoints position. This filter was chosen due to the low
influence of outliers on the filtered result. Figure 5 illustrates
the effectiveness of the median filter in removing outliers, such
as the wrongly detected index fingertip by OpenPose.
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Figure 5. Hand keypoints before (in blue) and after (in white) the application
of the median filter

In addition to this initial problem, OpenPose proved to be
highly unstable. Frequently, this software incorrectly detected
some of the fingers, as can be seen in Figure 6 by the change
in the characteristic detection colour of each finger.

Figure 6. OpenPose misdetections (left image for reference)

Considering these results, in addiction to the fact that
OpenPose is extremely computationally heavy compared with
MediaPipe, this last method was chosen.

Moving on to the BioIK kinematic retargeting algorithm,
its execution time has been experimentally verified as 200
milliseconds, with an end-to-end time delay of about 1 second.
When practically applied, it was possible to infer that it
behaved as initially expected, replicating with a fair degree
of precision the movements made by the human hand.

Once both the acquisition method and kinematic retargeting
algorithm were well defined, experimental tests were con-
ducted to evaluate the developed algorithm.

Figure 7. Automotive painting quality inspection algorithm diagram

The complete algorithm sequence, presented in Figure 7,
for the accomplishment of the automotive painting quality
inspection, includes the following steps:

1) Capture human hand images with a ZED camera;
2) Acquire 3D hand keypoints positions, utilising Me-

diaPipe and stereo-vision techniques, according to a
referential frame positioned on the car bonnet;

3) Change the referential frame from the car bonnet to the
robot frame;

4) Calculate the robotic set joints’ angles utilising BioIK;
5) Lastly, send the calculated joints to the robotic set.
Throughout the various iterations of tests carried out, slight

differences (mostly less than a centimetre) were observed in
the depth component, normal to the surface, of the acquired
points. Consequently, in some instances, the robotic hand
exhibited slight deviations from the surface.

Figure 8. Automotive painting quality inspection process

Nonetheless, despite these minor discrepancies, the algo-
rithm proved effective in replicating human movements, as
evidenced by the series of frames presented in Figure 8,
extracted from a demonstration video [24] showcasing the
algorithm’s execution.

V. CONCLUSION AND FUTURE WORK

The research undertaken in this study focused on advancing
the automation of quality inspection in automotive painting,
specifically by replicating human movements through the
integration of an anthropomorphic robotic hand, Shadow Dex-
terous Hand, and a UR5 robotic arm. Through the exploration
of kinematic retargeting techniques, BioIK emerged as the
preferred algorithm due to its efficient control over both the
robotic arm and hand.

In the process, the integration of OpenPose and Medi-
aPipe for data acquisition revealed notable insights. Despite
initial considerations, OpenPose faced challenges related to
precision and stability, leading to its exclusion from the final
methodology. These challenges served as valuable lessons in
the selection of appropriate technologies and highlighted the
importance of robust data acquisition methods in achieving
accurate task replication.

The exclusion of OpenPose prompted a reevaluation of
alternative options for data acquisition. MediaPipe, with its
more stable performance, was successfully integrated.

Regarding the automotive painting quality inspection task,
thanks to the utilisation of the BioIK together with MediaPipe
and stereo-vision techniques, successful replication of move-
ments resembling those performed by a human operator during
the paint quality inspection task was achieved.
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As future work, it would be very interesting to integrate
more sophisticated and especially more suitable tactile sensors
into the robotic hand, particularly at the fingertips, capable
of providing detailed and nuanced feedback. This integration
would elevate the precision and effectiveness of the automated
automotive painting quality inspection system.

ACKNOWLEDGEMENT

This work was financially supported by PPS 10: Neural
Networks - Robotic Systems for Industry 4.0 from Agenda
GreenAuto: Green Innovation for the Automotive Industry,
no. C644867037-00000013, investment project no. 54, from
the Incentive System to Mobilising Agendas for Business
Innovation, funded by the Recovery and Resilience Plan and
by European Funds NextGeneration EU. The authors are mem-
bers of the ARISE Associated Laboratory (LA/P/0112/2020)
and R&D Unit SYSTEC-Base (UIDB/00147/2020) and Pro-
grammatic (UIDP/00147/2020).

REFERENCES

[1] Y. Zhao, “Current status and industrialization development of
industrial robot technology,” vol. 81, 2021, pp. 804–808, doi:
10.1007/978-3-030-79197-1 117.
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