
Dynamic Access Control Using Virtual Multicore Firewalls 

Vladimir Zaborovsky, Alexey Lukashin 

Department of Telematics 

Saint-Petersburg State Polytechnical University 

Saint-Petersburg, Russia 

vlad@neva.ru lukash@neva.ru  

 

 
Abstract—The problems of Internet services security are 

becoming particularly important due to intricacy structure 

and dynamic nature of distributed environment, especially in a 

cloud and virtualized systems. The complexity of distributed 

platforms demands more functionality to be provided by 

security devices. Among these required functions is the ability 

to configure these devices online in accordance with the 

current state of the network environment through which users 

can gain an access to information services. The performance of 

security services is a major issue. This paper proposes a 

firewall-based solution for implementing access control using 

multiple cores in virtualized and pure hardware environments, 

and describes dynamic access control based on virtual 

connections management with the mechanism of traffic 

filtering in a transparent (also called "stealth") mode. In this 

mode, the firewall is not visible to other participants 

(components) of network interactions, and, thus, it allows 

implementing the access policy, but remains invulnerable for 

cyber crooks. 
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I.  INTRODUCTION 

Information security solutions like firewalls are very 
sensitive to the level of performance. Modern information 
channels support huge bandwidth, 10Gbit/s is almost 
everywhere. In 10Gbit/s Ethernet networks firewall has to 
make a decision in less than 1ms for a packet. During this 
time it should check protocol validness and pass all filtering 
rules to different network layers – from the channel to 
applied protocols. The current work proposes to achieve this 
goal by using multicore capabilities of modern computing 
platforms. The traffic processing should be made in parallel. 
Concurrent programming is quite complicated, so it is 
necessary to provide some generic approach which allows 
implementing parallel data processing for different cases. 
The paper describes another major issue – virtualization. 
Today, businesses of various sizes widely use virtualization. 
Small companies use cloud providers like Amazon or 
Rackspace, medium and big businesses have its own 
computing infrastructure based on virtualization. The main 
problem is that virtual systems are hidden from hardware 
security devices, like hardware firewalls; thus, the necessary 
“virtual” communication is usually not controlled. It is very 
important for cloud systems to find a solution for this 
problem; especially, for private cloud solutions such as 
Eucalyptus [1], OpenStack [2], OpenNebula [3] and others. 

Security is a very actual problem in the cloud [5, 6]. Modern 
government departments build their infrastructure using 
cloud systems and, of course, these systems should control 
all information resources. So, another requirement for 
modern firewall is the ability to be virtual as well as high 
performance. Firewall virtualization gives another 
opportunity that allows scaling firewall resources depending 
of the current situation by changing number of cores or 
memory in runtime. Firewall performance scalability is very 
useful for cloud systems. The nature of cloud environments 
is very dynamic; the resources, which can be presented in the 
cloud, are extremely different. The cloud firewall should also 
be dynamic and flexible, by having the possibility to 
reconfigure itself in runtime according to the current cloud 
state. In this paper, we propose a solution with parallel traffic 
processing models and describe architecture of cloud 
environment secured by virtual firewalls inside hypervisors. 
Our firewalls manage network traffic in stealth mode; the 
firewall interfaces haven’t any physical addresses and 
invisible for other network components. It increases security 
and allows installing these firewalls transparently to 
hypervisor or physical network.  

The main contribution of this paper is a graph virtual 
connection control model, which is implemented by using 
Netgraph [4] network subsystem. We also present a 
prototype of such stealth firewall which works as a separate 
hardware solution and as a virtual machine in hypervisor and 
manages virtual traffic. 

The paper is organized in six sections. Section 1 is an 
introduction; the second one describes virtual connections 
and traffic filtering as computation graph. Section 3 
describes virtual connection processing models using 
Netgraph network subsystem. Section 4 contains description 
of experiments and measurements. Section 5 proposes 
architecture of secure cloud with stealth multicore firewalls 
and Section 6 is the conclusions. 

II. APPROACHES FOR VIRTUAL CONNECTIONS CONTROL 

Packet flow is described as a set of virtual connections 
between users and services [7]. Virtual connection (VC) is a 
logically ordered exchange of messages between the network 
nodes. Virtual connections are classified as technological 
virtual connections (TVC) and informational virtual 
connections (IVC). A technological virtual connection is 
described by network protocols, e.g., TCP session between 
user and database. Information virtual connection is 
described by applied protocols, e.g., HTTP session with a 
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web service. IVC might use multiple TVC, e.g., ftp session 
uses 2 TCP connections; one for data and another for control 
messages. And vice versa, TVC might belong to multiple 
IVCs, e.g., persistent connections in HTTP, as described in 
RFC 2616 client can reuse existing TCP connections for 
multiple requests, of course, resource URI might be also 
different. 

For flexible access control and traffic management 
dividing TVCs into three groups was proposed: 

1) Permitted important connections without additional 
control; 

2) Prohibited connections; 
3) Other connections which are not prohibited yet but 

need additional control. 
The first group is the priority connections and the third 

group is background connections. All packets of virtual 
connections in the second group are dropped by firewall and 
not taken into account. 

We propose the preemptive priority queuing system with 
two types of packets [8]. First type has priority over the 
second one. The packets arrive into the buffer according to 
the Poisson process. The service time has the exponential 
distribution. The buffer has a finite size m and it is shared by 
both types of packets. The preemptive priority in service is 
given to the packets of the first type. Considered system is 
supplied by the randomized push-out mechanism that helps 
precisely and accurate to manage packets of both types. If 
the buffer is full, a new coming packet of type 1 can push out 
a packet of type 2 with the probability from the buffer.  

As it is shown in [8], it is possible to change the time 
which packets spend in the firewall buffer by choosing α 
parameter. That allows to limit access possibilities of 
background traffic and even to block a connection if it’s 
classified as being prohibited during the data transmission. 
The proposed mechanism also allows controlling TVC 
throughput and increasing time for the access decision 
without interrupting the established connection. 

Technical virtual connection exists in parallel to and 
independently from other virtual connections. Virtual 
connections do not share any resources. It allows parallel 
processing of virtual connections. The suggested approach to 
the network traffic filtering is based on the concept of virtual 
connection and allows extracting the connection context. The 
connection context can be described as a vector Yi, which 
contains a set of parameters, for example, source and 
destination addresses, port, connection status (for TCP 
protocol), etc. Virtual connection control is a computation of 
the indicator function F, which requires resources, such as 
computing processors and operating memory. 

 ,*}0,1{)( =iYF  (1) 

The indicator function F takes the following values: 1- if 
VC is allowed; 0- if VC is forbidden; *, if at the current 
moment it is impossible to clearly determine whether 
connection is prohibited or not, the decision is postponed and 
VC is temporarily allowed. 

Calculation of the indicator function F can be 
decomposed into multiple computing processes; {Fi}, 
i={1..n}, where n is a number of independent calculation 
processes, e.g., evaluation of virtual connection might 
consist of filtering rules check, protocol validness check, 
intensity check, content check, etc. In this case, the problem 
of VC control can be described by using the graph G(Q,X), 
which is called the VC control information graph. Q is a set 
of nodes; X is a set of edges between the nodes. The VC 
control information graph consists of the set of nodes; each 
of these nodes is attributed with the operation Fi. If two 
nodes qi and qi+1 are connected with an arc, then the result of 
the operation Fi is the input for the operation Fi+1. Each node 
has an arc, which corresponds to the case when Fi = 0. Then 
VC is considered as being prohibited and no further analysis 
is performed. 

Figure 1.  Virtual connection computation graph 

The multiprocessor computing system which performs 
network traffic analyses might be described as a full mesh 
computation system graph with MIMD computers as its 
nodes. This graph is a full mesh, because the 
communications between CPUs are provided by hardware 
and operating system, and there is no predefined path 
between the cores; the data can pass directly from one node 
to another. Usually, the computation system graph and the 
control information graph do not match each other, because 
the amount of computing resources is limited and is less than 
the amount of computational processes. In this case, 
computation resources are used concurrently by information 
processes. It is possible to split the VC control graph in N 
non-crossing sub graphs and, thus, to build a VC operating 
pipeline. Because the virtual connections exist separately 
from each other, they can be processed in parallel. With the 
C compute nodes of MIMD type, the operating time of VC 
processing would be limited by (2). 

 
C

fz
T ii

vc

)max(*))(max( τ
=  (2) 

Where z(fi) – number of CPU clocks, required for 
calculation of function fi ,τi – average time of CPU clock in fi 
calculation. 
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The given formula is an inequality because the decision 
on the VC classification (allowed/forbidden) can be made 
before passing all nodes of the graph.  

Due to heterogeneity and re-configurability of the 
computing environments, in some cases the configuration of 
the firewall can be adapted to the access control tasks being 
solved at the current moment of time. This can be achieved 
by using the graph models for network traffic processing and 
Netgraph technology [4]. This technology allows organizing 
the network traffic processing in the context of the operating 
system [9]. 

Figure 1 shows an example of the virtual connections 
information control graph with decomposition of the 
indicator control function into components. The presented 
approach, in the combination with using the virtualization 
resources technology, allows improving performance of the 
network traffic monitoring and using only those computing 
components which are required for resolving the current 
access control problems. 

Figure 2.  Information graph of the virtual connection management 

Virtual connections should be processed on multiple 
cores. Network packets are balanced between cores using 
accessory to particular virtual connection. So, the order of 
packet flow in virtual connection is not corrupted, that allows 
process traffic in parallel using Netgraph network subsystem 
(Figure 2.). 

III. VIRTUAL CONNECTIONS PROCCESING MODELS 

To implement the parallel traffic processing Netgraph 
network subsystem, the part of FreeBSD kernel was used. 
This solution allows handling network connections in kernel 
mode and doing it using multiple cores. But the kernel mode 
programming produces new level of implementation 
complexity and delivers new behavior models which should 
be evaluated and carefully implemented. The cost of 
software bug is quite high; kernel level errors causes full 
system crash and reboot the firewall. But, if software stable 
are tested and verified, this approach will provide great 
performance opportunities. Well known Cisco software [10] 
also works in kernel mode and does it quite well. The graphs 
nature of Netgraph allows splitting traffic management 
process in independent parts logically and defining the 
computation process as a set of independent modules. The 

firewall configuration can be changed in runtime by adding 
and removing nodes in graph topology. It allows to extend 
firewall functionality and to improve performance by parallel 
traffic processing in separate kernel threads. 

Netgraph has a complicated architecture and can operate 
differently, depending of the used nodes, the involved 
protocols and the implemented algorithms. When Netgraph 
starts, it creates a pool of kernel threads. The number of 
threads is equal to the number of available cores. These 
threads can be used for message processing. Network 
packets are presented as mbuf structures which are 
transferred between Netgraph nodes. In general, Netgraph 
can work in two modes – direct routine calls and queuing 
packets in nodes, and processing in multiple threads if 
possible. The operational mode depends on graph topology 
and node implementation. One of the reasons is function call 
depth. Recursive calls depth is limited by stack size. 
FreeBSD kernel stack is just 8K on i386 and 16K on amd64. 
It means that you can't pass more then 5-10 nodes without 
queuing (number of nodes depends on how much stack these 
nodes consume). There are two models which describe these 
Netgraph modes. 

A. Network driver based balancing and direct calls 

This solution fully depends on network interface kernel 
module implementation and used hardware. Not all network 
interfaces can handle traffic using multiple cores. Usually, it 
is implemented in high performance 10Gbit network 
interfaces. One of the possible technologies is MSI-X [11]. 
In this case, Netgraph uses direct calls to handle traffic. 
Traffic filtering works directly in network card – packet 
arrived event interrupts thread context. Netgraph uses the 
algorithm based on virtual connection attributes for 
balancing. For TCP connections it sends a packet of specific 
virtual connection to specific core. For UDP protocols it 
sends a packet to any available core. 

Figure 3.  Load balancing in network interface driver 

Figure 3 shows the structure of traffic processing in the 
FreeBSD kernel. A Packet arrives to network interface, then 
it gets processed by Netgraph Ethernet node ng_eth and 
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passes packet to the next module using direct routine call. 
Each next node evaluates the packet according to the 
filtering rules, the network protocol state model, the packet 
content and if the packet which belongs to some virtual 
connection is considered as allowed then the packet is sent to 
outgoing interface. If the virtual connection is prohibited, 
then the packet is dropped and the virtual connection is 
marked as prohibited. In this case, the traffic is routed 
through the Netgraph nodes, but it is processed in one thread. 
This behavior can could be presented as one process P which 
can be described as the process graph with the set of the 
states {s} and the set of the actions act(P): 

 U },,{}..1,{ waittrashallowednisS i ==  (3) 

 },!,!?,!.{)( badppPact =  (4) 

where act(p) is the alphabet of actions, p? is incoming 
packet object, p! is outgoing packet object, d! is outgoing 
drop action (connection is prohibited), a! is outgoing allowed 
action – connection is allowed, no further analyses needed, b 
is packet processed action, system goes to accept the next 
packet. The process graph is shown on Figure 4. 

Figure 4.  Connection control process graph 

Process is awaiting for incoming event, when packet is 
scheduled to a specific thread it is evaluated by chain of 
Netgraph nodes, node accepts packet object, evaluates it and 
might generate three actions – decision is not made (to 
process packet on next node), connection is allowed, 
connection is prohibited (to move packet to trash). 

B. Queuing packets in nodes 

The second approach is to put packets in queues and 
process packets in Netgraph nodes in different kernel threads 

(Figure 5). In the described situation each Netgraph node is a 
separate process Pi, which can accept action messages with 
network packet object and produce the same messages as 
shown on Figure 4. But, the whole connection control 
process P is a parallel composition of Netgraph nodes 
processes: 

 )|...||( 21 nPPPP =  (5) 

This solution allows to implement the parallel traffic 
processing using conveyers of nodes, which processes data 
in separate threads. The strong side of this solution is lack of 
hardware and network. 

Figure 5.  Netgraph nodes with queues 

Figure 5 describes Netgraph behavior. Each node is 
processed on CPU or core in separate thread. When packet is 
arrived to node it put to FIFO queue. 

 

IV. PERFORMANCE MEASUREMENT FOR NETGRAPH 

FIREWALL 

We performed the experiments with firewall traffic 
control performance using Netgraph network subsystem. The 
first test is a scalability check. The virtualization technology 
was used in order to perform the experiment. The firewall 
was running as a virtual machine in Xen Cloud Platform 
hypervisor. The virtual firewall had two interfaces, which 
were connected to physical network using bridges in 
hypervisor service console. Figure 6 is the experiment 
schema. 
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Figure 6.  Scalability test experiment 

We manually slowed down traffic filtering process in 
order to see how it scaled with the cores number growth. For 
performance measurement iperf tool was used in different 
configurations. Netgraph packet filter with packet queuing 
direct calls was used. Several TCP connections were created 
using iperf and this experiment was performed for one, two, 
and four cores configuration. Firewall performance is scaled 
almost linearly. The results are shown in Table 1. 

TABLE I.  TABLE 1. TRAFFIC CONTROL SCALABILITY TEST 

Direct calls model Packet queuing model  

1 TCP 
stream 

2 TCP 
streams 

4 TCP 
streams 

1 TCP 
stream 

2 TCP 
streams 

4 TCP 
streams 

1 core 1.43Mb
it/s 

1.43Mb
it/s 

1.43 
Mbit/s 

1.42 
Mbit/s 

1.44 
Mbit/s 

1.43 
Mbit/s 

2 
cores 

2.44 
Mbit/s 

2.45 
Mbit/s 

2.43 
Mbit/s 

1.52 
Mbit/s 

3.17 
Mbit/s 

3.14 
Mbit/s 

4 
cores 

2.44 
Mbit/s 

2.45 
Mbit/s 

2.44 
Mbit/s 

1.51 
Mbit/s 

3.18 
Mbit/s 

6.26 
Mbit/s 

Figure 7.  Performance test experiment 

The second test in high performance environment was 
performed. Multicore system with two 10Gbit Ethernet 
adapters has been prepared. Firewall software has been 
installed on bare metal without virtualization. One gigabit 
Computer network with 20 hosts was separated into two 
segments with different VLANs and these segments were 
connected by stealth Netgraph firewall. Experiment schema 
is shown on Figure 7. Network hosts were configured to run 
iperf tests and generated the sufficient amount of network 
traffic. For this test Netgraph configuration with direct calls 
was selected, because hardware had 10Gbit network cards 
with MSI-X technology, so, traffic management was 
paralleled by network driver. We compared the kernel mode 
Netgraph firewall with the user space stealth implementation 
which uses Berkley Packet Filter (BPF) for traffic 
processing. The filtering algorithm is the same for both 
firewalls. The Experiment results are shown in Table 2. 

TABLE II.  TRAFFIC CONTROL ON MULTIPLE CORES 

 Netgraph firewall BPF firewall 

Throughput, 
Gbit/s 

8.3 1.2 

 

V. VIRTUAL FIREWALL APPLIANCE IN THE CLOUD 

COMPUTING ENVIRONMENT 

Information security in the cloud is a hot topic today [5]. 
There are no standards implemented in this area, but a lot of 
ideas were proposed. One of the major issues in virtualized 
systems security is an access control between virtual 
machines. Virtual machines communicate using network 
bridges in host system. Network bridge is implemented in 
Linux kernel and supports 802.1d standard. It can also be 
replaced by open vSwitch which supports more features like 
open flow, vlans, QoS, or proprietary bridge drivers, such as 
VMware vSwitch or Nexus 1000V. The paper proposes a 
solution which allows controlling traffic between virtual 
machines and having central management system. A typical 
distributed computing environment (cloud system) consists 
of the following software and hardware components: 

• Virtualization nodes; 

• Storage of virtual machines and user data; 

• Cluster controller;  

• Cloud controller. 
Cloud computing systems might be used for the wide 

area of problems- from web services hosting government 
infrastructure and scientific computing. In Saint-Petersburg 
State Polytechnical University scientific cloud system based 
on OpenStack and Xen hypervisor was implemented. The 
distributed computing environment intended for solving 
scientific and engineering problems is a set of various 
computing resources such as virtual machines, and it has the 
following features [12]: 

• The environment is used by a wide range of users, 
who are solving the problems of different classes; 

• Virtual machines of different user groups can 
operate within one hypervisor; 
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• A wide range of software components (CAD/CAE 
applications, development tools) and operating 
systems (Linux, Windows, FreeBSD) are used; 

• Different hardware configurations are used. 
There is a difference in information security aspects 

between classic computing infrastructure, such as networks 
with hardware servers and user stations and virtual cloud 
environment where all resources are placed in the cloud, the 
hardware resources are shared between different users 
(possibly with different access rights): 

• Information processing takes place on the virtual 
machines under full hypervisor’s control; the 
hypervisor has access to all data processed by its 
virtual machines; 

• Cloud software controls the resource planning and 
provision; it is a new entity in the information 
environment which has to be protected from the 
information security threats; 

• Traditional information security components, such 
as hardware firewalls cannot control the internal 
virtual traffic between virtual machines in one 
hypervisor; 

• In virtualized environments, files serve as virtual 
storage devices; these files are located in the network 
storages and are more exposed to threats than to hard 
disks; 

• Transfer of instance memory occurs when virtual 
machines migrate between hypervisors; this memory 
may contain confidential information. 

These features lead to the specific issues of security 
policy and access control in cloud systems. The environment 
becomes more dynamic. When the new resource (e.g. virtual 
machine) started in the cloud the security policy can be 
changed in the particular hypervisor or in the whole cloud 
system. For example, new virtual machine from security 
group “Engineering Department” was started. It changed the 
set of security groups in the particular hypervisor. So, the set 
of security policy rules was changed as well. That means, it 
is necessary to change the filtering rules for firewall 
dynamically. It controls network traffic between virtual 
machines, public network and other cloud components. 
Cloud computing system consists of virtualization nodes and 
cloud management services. Virtualization node is the 
hypervisor software which running on powerful multicore 
computing node. The domain level 0 (dom0 in terms of 
hypervisor XEN or service console in terms of other 
hypervisors) and virtual computing machines (domain level 
U, domU) operate in virtualization. 

For information security and access control (AC) 
between the virtual machines that operate under a single 
hypervisor, the internal (“virtual”) traffic and the external 
traffic (incoming from other hypervisors and from public 
networks) must be controlled. The solution of the access 
control problem could be achieved through the integration of 
a virtual firewall into the hypervisor; this firewall would 
function under the hypervisor, but separately from the user 
virtual machines. The virtual firewall domain can be defined 
as “security domain” (domS). Invisible traffic filtering is an 

important aspect of the network monitoring; the firewall 
must not change the topology of the hypervisor network 
subsystem. This can be achieved by using “Stealth” 
technology [13]; a packet traffic control is invisible to other 
network components. Virtual nature of firewall allows 
making hardware configuration dynamic. If security policy 
provides a lot of filtering rules, the number of the involved 
cores and memory amount can be dynamically increased. 
And vice versa, if the virtual firewall is not overloaded, it is 
possible to decrease allocated resources. 

Figure 8 shows the common architecture of a distributed 
cloud system with integrated AC components. 
Abbreviations: VM – virtual machine; domS – security 
domain, virtual firewall; CSMS – the central security 
management system. The CSMS central management system 
generates and distributes the access control policies to all 
firewalls in the system. The security domain isolates virtual 
machines from the hypervisor, which prevents the possibility 
of attack against the hypervisor inside the cloud.  

Figure 8.  Secure cloud architectrure 

Multicore stealth firewall based on Netgraph to 
implement traffic control between virtual machines was 
used. Virtual firewall has three network interfaces: two- for 
filtering and one- for management. Filtering interfaces are 
connected to open vSwitch bridge. Using OpenFlow 
technology channel level, the traffic routes were changed 
from the standard commutation tables – all outgoing virtual 
traffic routed to the incoming firewall interfaces. The 
firewall evaluates traffic in the stealth mode and passes it to 
outgoing network interface if it is allowed. From outgoing 
filter the interface traffic routed in a normal way by using 
commutation tables. 

VI. CONCLUSION AND FUTURE WORK 

The paper proposed the parallel traffic control model for 
high performance firewalls and describes firewall prototype 
implementation based on Netgraph network subsystem. The 
presented multicore firewall prototype shows good 
performance, up to 8.3 Gbit/s in 10Gbit networks. We also 
evaluated that solution based on graph model has good 
scalability. The firewall works in stealth mode and has not 
physical addresses and might be integrated to existing 
network topology without any changes. The firewall 
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software was tested in bare metal and virtualized 
environments. 

The traffic management model with network card 
balancing requires hardware and software support side (at 
least, MSI-X technology), so it cannot be used in all systems. 
The second model (Netgraph nodes with queues) should 
work in all systems and we propose it as preferable. But 
implementation process of this model is more complicated 
and should be evaluated very carefully. The model with 
queues provides more control of traffic management. It 
allows performing load balancing by protocol types 
including nested protocols, e.g. MSI-X technology cannot 
perform load balancing for PPP protocol – all PPP 
connections are processed in single thread because it is 
treated as one virtual connection. Node queues also allow to 
override the existing Netgraph queue algorithm and to 
implement priority queuing as described. 

Stealth mode allows implementing the information 
protection system for cloud computing environment in the 
form of a dedicated security domain (domS). The security 
domain can be quickly adapted to the current situation in the 
network and scaled if necessary because of firewall’s virtual 
nature.  

Described above architecture of secure cloud can be 
merged easily with low level methods of network control, for 
example, with flow-based traffic measurement or packet 
priority queuing management. The prototype of the 
described secure cloud environment based on OpenStack and 
adopted for CAD/CAE computation tasks, was created and 
currently in testing at the Telematics Department of the 
Saint-Petersburg Polytechnical University. 

The future plan is to extend current virtual firewall 
prototype functionality. The prototype has to be adapted for 
work in different virtual environments such as VMware 
ESXi, Xen, Xen Cloud Platform, and KVM. The process 
models should be extended according to communicating 
sequential processes (CSP) theory and carefully checked 
because of potentially dangerous kernel operational mode. 
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