
Performance Characterization of Streaming Video over TCP Variants

Gaku Watanabe, Kazumi Kumazoe, Dirceu Cavendish, Daiki Nobayashi, Takeshi Ikenaga, Yuji Oie
Department of Computer Science and Electronics

Kyushu Institute of Technology
Fukuoka, Japan

e-mail: {i108132g@tobata.isc, kuma@ndrc, cavendish@ndrc, nova@ecs, ike@ecs, oie@ndrc}.kyutech.ac.jp

Abstract—Video streaming has become the major source of
Internet traffic. In addition, content delivery network pro viders
have adopted Video over HTTP/TCP as the preferred protocol
stack for video streaming. In this paper, we characterize the per-
formance of various TCP variants when transporting video traffic
over various network scenarios. We utilize network performance
measurers, as well as video quality metrics, to characterize the
performance and interaction between network and application
layers of video streams for various network scenarios. We show
that no widely deployed TCP variant is able to deliver best
performance across all scenarios evaluated.

Keywords—Video streaming; high speed networks; TCP conges-
tion control; Packet retransmissions; Packet loss.

I. I NTRODUCTION

Transmission control protocol (TCP) is the dominant trans-
port protocol of the Internet, providing reliable data transmis-
sion for the large majority of applications. User experience
depends heavily on TCP performance. TCP protocol interacts
with video application in non trivial ways. Widely used
video codecs, such as H-264, use compression algorithms
that result in variable bit rates along the playout time. In
addition, TCP has to cope with variable network bandwidth
along the transmission path. Network bandwidth variability
is particularly wide over paths with wireless access links of
today, where multiple transmission modes are used to maintain
steady packet error rate under varying interference conditions.
As these two bit rates are independent, it is the task of the
transport protocol to provide a timely delivery of video data
so as to support a smooth playout experience.

In the last decade, many TCP variants have been pro-
posed, mainly motivated by performance reasons. As TCP
performance depends on network characteristics, and the In-
ternet keeps evolving, TCP variants are likely to continue
to be proposed. Most of the proposals deal with congestion
window size adjustment mechanism, which is called con-
gestion avoidance phase of TCP, since congestion window
size controls the amount of data injected into the network
at a given time. In prior work, we have introduced a delay
based TCP window flow control mechanism that uses path
capacity and storage estimation [6], [7]. The idea is to estimate
bottleneck capacity and path storage space, and regulate the
congestion window size using a control theoretical approach.
Two versions of this mechanism were proposed: one using
a proportional controlling equation [6], and another usinga
proportional plus derivative controller [7]. In this work,we
study TCP performance of most popular TCP variants - Reno
[2], Cubic (Linux) [11], Compound (Windows) [12] - as well

as our most recently proposed TCP variants: Capacity and
Congestion Probing (CCP) [6], and Capacity Congestion Plus
Derivative (CCPD) [7], in transmitting video streaming data
over wireless path conditions. The motivation for including our
proposed TCP variants is that CCP and CCPD utilize delay
based congestion control mechanism, and hence are resistant
to random packet losses experienced in wireless links.

Our contributions are as follows. We show that most used
TCP variants of today affect video quality differently overvar-
ious network scenarios. Our results show that there is no single
TCP variant that is able to best deliver video streams under
all network scenarios. The material is organized as follows.
Related work discussion is provided on Section II. Section
III describes video streaming over TCP system. Section IV
introduces the TCP variants addressed in this paper, their
features and differences. Section V addresses video delivery
performance evaluation for each TCP protocol. Section VI
addresses directions we are pursuing as follow up to this work.

II. RELATED WORK

Research studies of TCP performance on wireless network
environments abound. Many of these studies [4], [9], [13]
focus on the issue of loss based TCP not being able to
differentiate between random packet loss and buffer overflow
packet loss [3]. In [4], throughput performance of TCP variants
for various Packet Error Rates (PERs) on a mobile network
is studied via simulations. In [9], TCP variants performance
under various PERs is also studied, including investigation of
the impact of routing protocols on TCP performance. Wireless
network scenarios typically involve a low speed bottlenecklink
capacity, which limits the size of the congestion window to
small values, masking the buffer overflow problem on routers.
In our work, we study the impact of network random losses
on video streaming.

Recently, the impact of wide variability of TCP throughput
caused by network packet losses on video streaming has been
addressed [5], [10]. In [10], variable rate video encoders
are considered, where video source adjusts its encoding rate
according with network available bandwidth in the streaming
path. In [5], a TCP Reno delay model is used by the video
encoder to change encoding mode according with network
conditions. Both approaches require a tight coupling between
application and transport protocol. In contrast, our client video
source and client are “loosely” coupled with TCP stack.

Another distinct aspect of our current work is that we
analyze performance of widely used TCP variants, as well as
our proposed delay based TCPs, CCP and CCPD, on real client

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-285-1

INTERNET 2013 : The Fifth International Conference on Evolving Internet

and server network stacks that are widely deployed for video
streaming, via VLC open source video client, and standard
HTTP server. As TCP variants have different dynamics when
facing random losses, we seek to understand whether there
are better TCP variants for video streaming, without havingto
tightly couple transport layer with video server/client.

III. A NATOMY OF V IDEO STREAMING OVER TCP

Video streaming over HTTP/TCP involves an HTTP server
side, where video files are made available for streaming
upon HTTP requests, and a video client, which places HTTP
requests to the server over the Internet, for video streaming.
Fig. 1 illustrates video streaming components.

cwndrwnd

playout buffer

video
rendering

Client Server

awnd TCP

Application

video file

Internet

packetization

Fig. 1: Video Streaming over TCP

An HTTP server stores encoded video files, available upon
HTTP request. Once a request is placed, a TCP sender is
instantiated to transmit packetized data to the client machine.
At TCP transport layer, a congestion window is used for flow
controlling the amount of data injected into the network. The
size of the congestion window,cwnd, is adjusted dynamically,
according to the level of congestion in the network, as well
as the space available for data storage,awnd at the TCP
client receiver buffer. Congestion window space is freed only
when data packets are acknowledged by the receiver, so that
lost packets are retransmitted by the TCP layer. At the client
side, in addition to acknowledging arriving packets, TCP
receiver sends back its current available spaceawnd, so that
cwnd ≤ awnd at all times. At the client application layer,
a video player extracts data from TCP receiver buffer into a
playout buffer, used to smooth out variable data arrival rate.

A. Interaction between Video streaming and TCP

At the server side, HTTP server retrieves data into the TCP
sender buffer according with thecwnd size. Hence, in case of
HTTP server, the injection of video data into the TCP buffer is
unrelated to the video variable encoding rate. In addition,TCP
throughput performance is affected by the round trip time of
the TCP session. This is a direct consequence of the congestion
window mechanism of TCP, where only up to acwnd worth
of bytes can be delivered without acknowledgements. Hence,
for a fixedcwnd size, from the sending of the first packet until
the first acknowledgement arrives, a TCP session throughput
is capped atcwnd/rtt. For each TCP variant, to be described
shortly, the size of the congestion window is computed by a
specific algorithm at time of packet acknowledgement recep-
tion by the TCP source. However, for all TCP variants, the

size of the congestion window is capped by the available TCP
receiver spaceawnd sent back from the TCP client.

At the client side, the video data is pulled by the video
player into a playout buffer, and delivered to the video ren-
derer. Playout buffer may underflow, if TCP receiver window
empties out. On the other hand, playout buffer overflow does
not occur, since the player will not pull more data into the
playout buffer than it can handle.

In summary, video data packets are injected into the network
only if space is available at the TCP congestion window.
Arriving packets at the client are stored at the TCP receiver
buffer, and extracted by the video playout client at the video
nominal playout rate.

IV. T RANSMISSION CONTROL PROTOCOL VARIANTS

TCP protocols fall into two categories, delay and loss
based. Advanced loss based TCP protocols use packet loss
as primary congestion indication signal, performing window
regulation ascwndk = f(cwndk−1), being ack reception
paced. Mostf functions follow an Additive Increase Multi-
plicative Decrease strategy, with various increase and decrease
parameters. TCP NewReno and Cubic are examples of AIMD
strategies. Delay based TCP protocols, on the other hand, use
queue delay information as the congestion indication signal,
increasing/decreasing the window if the delay is small/large,
respectively. Vegas, CCP and CCPD are examples of delay
based protocols. We have not included Vegas on our study
because Vegas performance is not competitive against well
established TCP variants [6].

Most TCP variants follow TCP Reno phase framework: slow
start, congestion avoidance, fast retransmit, and fast recovery.

• Slow Start(SS) : This is the initial phase of a TCP
session, where no information about the session path
is assumed. In this phase, for each acknowledgement
received, two more packets are allowed into the network.
Hence, congestion windowcwnd is roughly doubled at
each round trip time. Notice that thecwnd size can only
increase in this phase. In this paper, all TCP variants make
use of the same slow start except Cubic [11].

• Congestion Avoidance(CA) :This phase is entered when
the TCP sender detects a packet loss, or thecwnd size
reaches a target upper size calledssthresh (slow start
threshold). The sender controls thecwnd size to avoid
path congestion. Each TCP variant has a different method
of cwnd size adjustment.

• Fast Retransmit and fast recovery(FR) :The purpose
of this phase is to freeze allcwnd size adjustments in
order to take care of retransmissions of lost packets.

Figure 2 illustrates various phases of a TCP session. A
comprehensive tutorial of TCP features can be found in [1].
A. Reno TCP

Reno is a loss based TCP, and may be considered the
oldest implementation of TCP to achieve widespread usage.
Its congestion avoidance scheme relies on increasing the cwnd
by 1/cwnd increments, and cutting its current size in half on
packet loss detection, as per equation 1.

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-285-1

INTERNET 2013 : The Fifth International Conference on Evolving Internet

pkt loss pkt loss pkt loss

SS FR CA CA

λhigh

λmed

λlow

time

cw
nd

/r
tt

Fig. 2: TCP Congestion Window Dynamics vs Video Playout

AckRec : cwndk+1 = cwndk +
1

cwndk

PktLoss : cwndk+1 =
cwndk

2
(1)

Notice that for large cwnd values, the increment becomes
small. So, for large bandwidth delay product paths, Reno cwnd
ramps up very slowly. A new version of Reno, TCP NewReno
introduces an optimization of the Fast Recovery mechanism,
but its congestion avoidance scheme remains the same.

B. Cubic TCP

TCP Cubic is a loss based TCP that has achieved
widespread usage as the default TCP of the Linux operating
system. Its congestion window adjustment scheme is:

AckRec : cwndk+1 = C(t−K)3 +Wmax

K = (Wmax
β

C
)1/3 (2)

PktLoss : cwndk+1 = βcwndk

Wmax = cwndk

where C is a scaling factor, Wmax is the cwnd value at time
of packet loss detection, and t is the elapsed time since the
last packet loss detection (cwnd reduction). The rational for
these equations is simple. Cubic remembers the cwnd value
at time of packet loss detection - Wmax, when a sharp cwnd
reduction is enacted, tuned by parameterβ. After that, cwnd
is increased according to a cubic function, whose speed of
increase is dictated by two factors: i) how long it has been
since the previous packet loss detection, the longer the faster
ramp up; ii) how large the cwnd size was at time of packet
loss detection, the smaller the faster ramp up. The shape of
Cubic cwnd dynamics is typically distinctive, clearly showing
its cubic nature. Notice that upon random loss, Cubic strives to
return cwnd to the value it had prior to loss detection quickly,
for small cwnd sizes.

C. Compound TCP

Compound TCP is the TCP of choice for most Wintel
machines. It implements a hybrid loss/delay based congestion
avoidance scheme, by adding a delay congestion window dwnd
to the congestion window of NewReno [12]. Compound TCP
cwnd adjustment is as per Equation 3:

AckRec : cwndk+1 = cwndk +
1

cwndk + dwndk
(3)

PktLoss : cwndk+1 = cwndk +
1

cwndk
where the delay component is computed as:

AckRec : dwndk+1=dwndk+ αdwndKk − 1, if diff < γ

dwndk − ηdiff, if diff ≥ γ

PktLoss : dwndk+1 =dwndk(1 − β)−
cwndk

2
(4)

whereα, β, η and K parameters are chosen as a tradeoff
between responsiveness, smoothness, and scalability.

D. Capacity and Congestion Probing TCP

TCP CCP is our first attempt to design a delay based
congestion avoidance scheme based on solid control theo-
retical approach. The cwnd size is adjusted according to
a proportional controller control law. The cwnd adjustment
scheme is called at every acknowledgement reception, and
may result in either window increase and decrease. In addition,
packet loss does not trigger any special cwnd adjustment. CCP
cwnd adjustment scheme is as per Equation 5:

cwndk =
[Kp(B − xk)− in flight segsk]

2
0 ≤ Kp (5)

whereKp is a proportional gain,B is an estimated storage
capacity of the TCP session path, or virtual buffer size,xk is
the level of occupancy of the virtual buffer, or estimated packet
backlog, andin flight segs is the number of segments
in flight (unacknowledged). Typically, CCP cwnd dynamics
exhibit a dampened oscillation towards a given cwnd size,
upon cross traffic activity. Notice thatcwndk does not depend
on previous cwnd sizes, as with the other TCP variants.

E. Capacity and Congestion Plus Derivative TCP

TCP CCPD is our second attempt to design a delay based
congestion avoidance scheme based on solid control theo-
retical approach, being a variant of CCP. The scheme cwnd
adjustment follows the same strategy of CCP. The difference
is that it uses a proportional plus derivative controller asits
control equation. CCPD cwnd adjustment scheme is as per
Equation 6:

cwndk = Kp[B − xk − in flight segsk] + (6)
Kd

tk − tk−1

[xk−1 + in flight segsk−1 +

−xk − in flight segsk] (7)

whereKp is a proportional gain,Kd is a derivative gain,
and the other parameters are defined as per CCP congestion
avoidance scheme. Typically, CCPD cwnd dynamics present
similar dampened oscillatory behavior as CCP, with a much
faster period, due to its reaction to the derivative or variation
of the number of packets backlogged.

Let λ be the video average bit rate across its entire playout
time. That is,λ = V ideoSize/TotalP layoutT ime. Fig. 2
illustrates three video playout rate cases:λhigh, λmed, λlow:

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-285-1

INTERNET 2013 : The Fifth International Conference on Evolving Internet

λhigh The average playout rate is higher than the transmission
rate. In this case, playout buffer is likely to empty out,
causing buffer underflow condition.

λmed The average playout rate is close to the average transmis-
sion rate. In this case, buffer underflow is not likely to
occur, affording a smooth video rendering at the client.

λlow The average playout rate is lower than the transmission
rate. In this case, playout buffer may overflow, causing
picture discards due to overflow condition. In practice,
this case does not happen if video client pulls data from
the TCP socket, as it is commonly the case. In addition,
TCP receiver buffer will not overflow either, because
cwnd at the sender side is capped by the available TCP
receiver buffer spaceawnd reported by the receiver.

V. V IDEO STREAMING PERFORMANCE

CHARACTERIZATION OVER TCP VARIANTS

Figure 3 describes the network testbed used for emulating
a network path with wireless access link. An HTTP video
server and a VLC client machine are connected to two access
switches, which are connected to a link emulator, used to
adjust path delay and inject controlled random packet loss.
All links are 1Gbps, ensuring plenty of network capacity for
many video streams between client and server. No cross traffic
is considered, as this would make it difficult to isolate the
impact of TCP variants on video streaming performance. An
extended version of this paper is planned to include multiple
video stream experiments.

Switch A Switch B
Network

Emulator

192 .168 .10 .3 /24

(e th 0)

Server 1 Client 1

192 .168 .10 .6 /24

(e th 0)

LA N P ort:13

LA N P ort:1

LA N P ort:11

LA N P ort:1

1

1 G bps 1 G bps

1 G bps 1 G bps

Wi-fi

Fig. 3: Video Streaming Emulation Network

Video and network settings are as follows: video file
size:409Mbytes; Playback time:10min24sec; Average play-
back rate: 5.24Mbps; Encoding: MPEG-4; video codec:
H.264/AVC; frame rate: 30fps; audio codec: MPEG-4 AAC;
playout buffer size:656Kbytes. TCP sender and receiver
maximum buffer size:256Mbytes.

Performance measurers adopted, in order of priority, are:
• Picture discards: number of frames discarded by the

video decoder. This measurer defines the number of
frames skipped by the video rendered at the client side.

• Buffer underflow: number of buffer underflow events
at video client buffer. This measurer defines the number
of “catch up” events, where the video freezes and then
resumes at a faster rate until all late frames have been
played out.

• Packet retransmissions:number of packets retransmit-
ted by TCP. This is a measure of how efficient the TCP
variant is in transporting the video stream data. It is
likely to impact video quality in large round trip time

path conditions, where a retransmission doubles network
latency of packet data from an application perspective.

In the TCP variant performance comparison study that
follows, no attempt was made to tune TCP parameters to
best video streaming performance. In particular, for CCP(x),
wherex is Kp parameter of Eq. 5, and CCPD(x,y), wherex
and y are Kp andKd parameters of Eq. 6, the parameters
used were derived from [8], tuned to provide best file transfer
performance, not video streaming, for a fair comparison with
the other TCP variants.

We organize our test cases into the following categories:
• Network bandwidth smaller than video playout rate
• Network bandwidth larger than video playout rate
• Network bandwidth much larger than video playout rate
• Wifi access link scenario
For each of these categories, we have run ten trial experi-

ments for each TCP variant with and without random packet
losses, and various round trip times. Results are reported as
average and standard deviation bars.

A. Network bandwidth smaller than video playout rate

Fig. 4 summarizes performance measurers when the net-
work emulator is set to throttle network bandwidth to a value
slightly lower than video nominal playout rate, when the
video server and client are far apart (100msec rtt). In this
case, Cubic is the TCP variant with least picture discards
and playout buffer underflow events, event though it presents
the largest number of packet retransmits. The high number
of packet retransmits attests the aggressive behavior of Cubic
in ramping up its congestion window, as illustrated in Fig.
5. A side effect of this aggressiveness is a lower number of
playout buffer underflow events. Reno and Compound present
the largest number of picture discards, which can be traced
to their lack of aggressiveness, attested by their low number
of packet retransmissions. Reno is the least aggressive TCP
variant in ramping upcwnd size, as illustrated in Fig. 5. The
trade-off is the number of playout buffer underflow events,
higher than Cubic.

Comparingcwnd dynamics in Fig. 5 (X-axis in units of
100msec), one can see how slower to react to network packet
loss Reno and Compound TCP variants are. Cubic reacts
faster, but not as fast as CCP(1). CCPD(1,4000) has the highest
range of variation; notice how steady CCPD(1,2000)cwnd
dynamic is, even in the presence of dropped packets due to
network congestion. A largecwnd size range makes more
difficult to achieve a smooth video rendering experience.

We have also run the same scenario, but injecting a0.01%
packet loss. Comparative results are similar to the ones just
presented, and are omitted for sake of space.

B. Network bandwidth larger than video playout rate

In this experiment, network available bandwidth is set to a
value slightly larger than the average video playout rate, and
video server and client are far apart (100msec rtt). Performance
results are shown in Fig. 6. In this case, the number of picture
discards and playout buffer underflow events is negligible

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-285-1

INTERNET 2013 : The Fifth International Conference on Evolving Internet

a) VLC performance b) TCP packets retransmitted

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k)

P
kt

s
R

et
ra

ns
m

itt
ed

Pkts Retransmitted

 0

 10

 20

 30

 40

 50

 60

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k) 0

 10

 20

 30

 40

 50

 60
di

sc
ar

de
d

pi
ct

ur
es

un
de

rf
lo

w
 e

ve
nt

s

discarded pictures
underflow events

Fig. 4: Perf: AvgVR>NetBW; NoRanLoss; rtt=100msec

a) Cubic b) Reno

c) Compound d) CCP(1)

e) CCPD(1,2000) f) CCPD(1,4000)

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 1000 2000 3000 4000 5000 6000 7000

cw
nd

[b
yt

e]

Time[100ms]

trial 1
trial 2
trial 3

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 1000 2000 3000 4000 5000 6000 7000

cw
nd

[b
yt

e]

Time[100ms]

trial 1
trial 2
trial 3

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 0 1000 2000 3000 4000 5000 6000 7000

cw
nd

[b
yt

e]

Time[100ms]

trial 1
trial 2
trial 3

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 0 1000 2000 3000 4000 5000 6000 7000

cw
nd

[b
yt

e]

Time[100ms]

trial 1
trial 2
trial 3

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 1000 2000 3000 4000 5000 6000 7000

cw
nd

[b
yt

e]

Time[100ms]

trial 1
trial 2
trial 3

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 0 1000 2000 3000 4000 5000 6000 7000

cw
nd

[b
yt

e]

Time[100ms]

trial 1
trial 2
trial 3

Fig. 5: Cwnd: AvgVR>NetBW; NoRanLoss; rtt=100msec

across all TCP variants. However, the least number of packet
retransmits is presented by Reno and Compound, the least
aggressive TCP variants. Cubic presents the largest numberof
packet retransmits. In contrast, in a similar lossless scenario,
but with server and client close to each other (10msec rtt), is
presented in Fig. 7. In this case, picture discards are againnot
significant for all TCP variants, even though packet retransmits
are about the same for most variants, except Cubic. In general,
the longer the path between video source and client, the more
picture discards the streaming session will experience. This is
because the client needs to render 30 frames/sec, which means
a frame being rendered every 33msecs. If network latency is
large and the buffer playout is not deep enough, retransmitted
packets with additional rtt delay will likely arrive too late for
the frame to be rendered.

When we introduce a0.01% packet loss in the long
(100msec rtt) path (Fig. 8), Reno and Compound performance

a) VLC performance b) TCP packets retransmitted

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k)

P
kt

s
R

et
ra

ns
m

itt
ed

Pkts Retransmitted

 0

 10

 20

 30

 40

 50

 60

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k) 0

 10

 20

 30

 40

 50

 60

di
sc

ar
de

d
pi

ct
ur

es

un
de

rf
lo

w
 e

ve
nt

s

discarded pictures
underflow events

Fig. 6: Perf: AvgVR<NetBW; NoRanLoss; rtt=100msec

a) VLC performance b) TCP packets retransmitted

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k)

P
kt

s
R

et
ra

ns
m

itt
ed

Pkts Retransmitted

 0

 10

 20

 30

 40

 50

 60

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k) 0

 10

 20

 30

 40

 50

 60

di
sc

ar
de

d
pi

ct
ur

es

un
de

rf
lo

w
 e

ve
nt

s

discarded pictures
underflow events

Fig. 7: Perf: AvgVR<NetBW; NoRanLoss; rtt=10msec

present the largest number of picture discards and playout
buffer underflow events. Cubic, CCP and CCPD variants
present negligible number of picture discards and playout
buffer underflows, albeit with larger number of packet retrans-
mits. Overall, random losses drag Reno and Compound TCP
variants to a lower throughput, which in this case is below the
average video playout rate, increasing playout buffer underflow
events. One may conclude that responsive TCP variants deliver
better streaming performance in the presence of random packet
losses.

a) VLC performance b) TCP packets retransmitted

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k)

P
kt

s
R

et
ra

ns
m

itt
ed

Pkts Retransmitted

 0

 10

 20

 30

 40

 50

 60

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k) 0

 10

 20

 30

 40

 50

 60

di
sc

ar
de

d
pi

ct
ur

es

un
de

rf
lo

w
 e

ve
nt

s

discarded pictures
underflow events

Fig. 8: Perf: AvgVR<NetBW; 0.01 % RLoss; rtt=100msec

C. Network bandwidth much larger than video playout rate

In this experiment, network bandwidth is set to a typical
wireless link bandwidth, 20Mbps. Fig. 9 presents results
with no random packet losses. We first notice that, when
network bandwidth is plenty, there is negligible playout buffer
underflow events across all TCP variants. In addition, packet
retransmissions are much reduced in all TCP variants except
CCPD(1,4000). In contrast, when a random packet loss rate of
0.01% is injected (Fig.10), most TCP variants increase playout
buffer underflows, most notably Reno and CCPD(1,2000). All
TCP variants continue to present few packet retransmissions.

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-285-1

INTERNET 2013 : The Fifth International Conference on Evolving Internet

Overall, Cubic, Compound TCP and CCPD(1,4000) variants
present the least number of picture discards.

a) VLC performance b) TCP packets retransmitted

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k)

P
kt

s
R

et
ra

ns
m

itt
ed

Pkts Retransmitted

 0

 10

 20

 30

 40

 50

 60

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k) 0

 10

 20

 30

 40

 50

 60

di
sc

ar
de

d
pi

ct
ur

es

un
de

rf
lo

w
 e

ve
nt

s

discarded pictures
underflow events

Fig. 9: Perf: AvgVR<<NetBW; NoRanLoss;rtt=100msec

a) VLC performance b) TCP packets retransmitted

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k)

P
kt

s
R

et
ra

ns
m

itt
ed

Pkts Retransmitted

 0

 10

 20

 30

 40

 50

 60

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k) 0

 10

 20

 30

 40

 50

 60

di
sc

ar
de

d
pi

ct
ur

es

un
de

rf
lo

w
 e

ve
nt

s

discarded pictures
underflow events

Fig. 10: Perf:AvgVR<<NetBW; 0.01%RLoss;rtt=100msec

D. WiFi access link experiment

In this experiment, the VLC client is attached to the
network via a WiFi link. Before running the experiments, Iperf
was used to measure the available wireless link bandwidth:
31.9Mbps, which is higher than the average video playout rate.
Results are as per Fig. 11. We see that in case of plenty WiFi
bandwidth, Cubic, Reno, and Compound TCP variants present
the least number of discarded pictures and buffer playout
underflows, followed closely by CCP and CCPD variants. In
addition, CCP and CCPD protocols have the largest number
of packet discards, as compared with Cubic, Reno, and Com-
pound TCP variants. This attests to the aggressiveness of CCP
and CCPD variants in pushing packets through.

a) VLC performance b) TCP packets retransmitted

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k)

P
kt

s
R

et
ra

ns
m

itt
ed

Pkts Retransmitted

 0

 10

 20

 30

 40

 50

 60

 C
UBIC

RENO

 C
OMPD

 C
CP(1)

CCPD(1,2k)

CCPD(1,4k) 0

 10

 20

 30

 40

 50

 60

di
sc

ar
de

d
pi

ct
ur

es

un
de

rf
lo

w
 e

ve
nt

s

discarded pictures
underflow events

Fig. 11: Perf: AvgVR<WiFiBW; rtt=100msec

In our performance evaluation, we have not attempted to
tune VLC client to minimize frame discards, even though VLC
settings may be used to lower the number of frame discards.
In addition, as mentioned earlier, no tuning of TCP parameters
was performed to better video client performance for any of
the TCP variants studied. For our variants, we have simply
used parameter values from our previous study of CCP/CCPD
performance of file transfers [8].

VI. CONCLUSION AND FUTURE WORK
In this paper, we have characterized TCP variants perfor-

mance when transporting video streaming applications over
wireless network type of paths via open source experiments.
For widely used TCP variants, Cubic, Reno, and Compound,
as well as our delay based variants, CCP and CCPD, the
following can be said: i) A number of picture discards is
commonplace in video streaming across all TCP variants,
especially when video source and client are far apart; ii) When
network bandwidth is scarce or in the presence of (wireless)
packet loss, aggressive TCP variants, such as Cubic, ensure
low number of picture discards; iii) Delay based TCP variants,
such as CCP and CCPD, are effective in combatting random
packet losses commonplace in wireless links.

Our next step is the design of a TCP variant tailored
specifically for video streams. The goal is to minimize picture
discards in all network conditions, as well as to avoid retrans-
missions of packets that are likely to be part of discarded
frames at the client. This current work may also serve as a
motivation for new video encoder/renderer and TCP coupling
approaches, such as dynamic playout buffer re-sizing accord-
ing to network bandwidth conditions.

ACKNOWLEDGMENT
Work supported in part by JSPS Grant-in-Aid for Scientific

Research (B) (No 23300028).
REFERENCES

[1] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-Host
Congestion Control for TCP, ” IEEE Communications Surveys &
Tutorials, Third Quarter 2010, Vol. 12, No. 3, pp. 304-342.

[2] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
IETF RFC 2581, April 1999.

[3] M. Alnuem, J. Mellor, and R. Fretwell, “New Algorithm to Control
TCP Behavior over Lossy Links, ” IEEE International Conference on
Advanced Computer Control, Jan 2009, pp. 236-240.

[4] A. Ahmed, S.M.H. Zaidi, and N. Ahmed, “Performance evaluation of
Transmission Control Protocol in mobile ad hoc networks, ” IEEE
International Networking and Communication Conference, June 2004,
pp. 13-18.

[5] A. Argyriou, “Using Rate-Distortion Metrics for Real-Time Internet
Video Streaming with TCP, ” IEEE ICME06, 2006, pp. 1517-1520.

[6] D. Cavendish, K. Kumazoe, M. Tsuru, Y. Oie, and M. Gerla, “Capacity
and Congestion Probing: TCP Congestion Avoidance via Path Capacity
and Storage Estimation,” IEEE Second International Conference on
Evolving Internet, best paper award, September 2010, pp. 42-48.

[7] D. Cavendish, Hiraku Kuwahara, K. Kumazoe, M. Tsuru, andY.
Oie, “TCP Congestion Avoidance using Proportional plus Derivative
Control,” IARIA Third International Conference on Evolving Internet,
best paper award, June 2011, pp. 20-25.

[8] D. Cavendish, K. Kumazoe, H. Ishizaki, T. Ikenaga, M. Tsuru, and
Y. Oie, “On Tuning TCP for Superior Performance on High Speed
Path Scenarios,” IARIA Fourth International Conference onEvolving
Internet, best paper award, June 2012, pp. 11-16.

[9] S. Henna,“A Throughput Analysis of TCP Variants in Mobile Wireless
Networks,” Third Int. Conference on Next Generation MobileApplica-
tions, Services and Technologies - NGMAST, Sept. 2009, pp.279-284.

[10] P. Papadimitriou, “An Integrated Smooth TransmissionControl and Tem-
poral Scaling Scheme for MPEG-4 Streaming Video,” In Proceedings
of IEEE ICME 08, 2008, pp. 33-36.

[11] I. Rhee, L. Xu, and S. Ha, “CUBIC for Fast Long-Distance Networks,”
Internet Draft, draft-rhee-tcpm-ctcp-02, August 2008.

[12] M. Sridharan, K. Tan, D. Bansal, and D. Thaler, “Compound TCP: A
New Congestion Control for High-Speed and Long Distance Networks,”
Internet Draft, draft-sridharan-tcpm-ctcp-02, November2008.

[13] S. Waghmare, A. Parab, P. Nikose, S.J. Bhosale, “Comparative analysis
of different TCP variants in a wireless environment,” IEEE 3rd Int.
Conference on Electronics Computer Technology, April 2011, Vol.4,
pp.158-162.

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-285-1

INTERNET 2013 : The Fifth International Conference on Evolving Internet

