
Congestion Avoidance TCP Improvements for Video Streaming

Dirceu Cavendish, Kazumi Kumazoe, Gaku Watanabe, Daiki Nobayashi, Takeshi Ikenaga, Yuji Oie
Department of Computer Science and Electronics

Kyushu Institute of Technology
Fukuoka, Japan

e-mail: {cavendish@ndrc, kuma@ndrc, i108132g@tobata.isc, nova@ecs, ike@ecs, oie@ndrc}.kyutech.ac.jp

Abstract—Video streaming has become the major source of
Internet traffic nowadays. Considering that content delivery
network providers have adopted Video over Hypertext Trans-
fer Protocol/Transmission Control Protocol (HTTP/TCP) as the
preferred protocol stack for video streaming, understanding
TCP performance in transporting video streams has become
paramount. In our previous work, we have shown how Slow
Start of TCP variants play a definite role in the quality of
video experience. In this paper, we research mechanisms within
congestion avoidance phase of TCP to enhance video streaming
experience. We utilize network performance measurers, as well
as video quality metrics, to characterize the performance and
interaction between network and application layers of video
streams for various network scenarios. We show that video
transport performance can be enhanced when playout buffer
space is used within TCP congestion avoidance phase.

Keywords—Video streaming; high speed networks; TCP conges-
tion control; Packet retransmissions; Packet loss.

I. I NTRODUCTION

Transmission control protocol (TCP) is the dominant trans-
port protocol of the Internet, providing reliable data transmis-
sion for the large majority of applications. For data applica-
tions, the perceived quality of experience is the total transport
time of a given file. For real time (streaming) applications,
the perceived quality of experience involves not only the total
transport time, but also the amount of data discarded at the
client due to excessive transport delays, as well as rendering
stalls due to the lack of timely data. Transport delays and data
starvation depend on how TCP handles flow control and packet
retransmissions. Therefore, video streaming user experience
depends heavily on TCP performance.

TCP protocol interacts with video application in non trivial
ways. Widely used video codecs, such as H-264, use compres-
sion algorithms that result in variable bit rates along the play-
out time. In addition, TCP has to cope with variable network
bandwidth along the transmission path. Network bandwidth
variability is particularly wide over paths with wireless access
links of today, where multiple transmission modes are used to
maintain steady packet error rate under varying interference
conditions. As the video playout rate and network bandwidth
are independent, it is the task of the transport protocol to
provide a timely delivery of video data so as to support a
smooth playout experience.

In the last decade, many TCP variants have been proposed,
mainly motivated by data transfer performance reasons. As
TCP performance depends on network characteristics, and the
Internet keeps evolving, TCP variants are likely to continue
to be proposed. Most of the proposals deal with congestion

window size adjustment mechanism, which is called con-
gestion avoidance phase of TCP, since congestion window
size controls the amount of data injected into the network
at a given time. In prior work, we have introduced a delay
based TCP window flow control mechanism that uses path
capacity and storage estimation [3] [4]. The idea is to estimate
bottleneck capacity and path storage space, and regulate the
congestion window size using a control theoretical approach.
Two versions of this mechanism were proposed: one using
a proportional controlling equation [3], and another usinga
proportional plus derivative controller [4]. More recently, we
have studied TCP performance of most popular TCP variants -
Reno [2], Cubic (Linux) [12], Compound (Windows) [13] - as
well as our proposed TCP variants: Capacity and Congestion
Probing (CCP) [3], and Capacity Congestion Plus Derivative
(CCPD) [4], in transmitting video streaming data over wireless
path conditions. Our proposed CCP and CCPD TCP variants
utilize delay based congestion control mechanism, and hence
are resistant to random packet losses experienced in wireless
links.

In a previous work, we have proposed enhancements on
Slow Start phase of TCP to improve video streaming per-
formance [7]. In this paper, we show that it is possible to
also alter Congestion Avoidance phase of TCP to improve
video streaming over Internet paths with wireless access links.
More specifically, we demonstrate that: i) Ensuring minimum
throughput above video rendering rate may hurt streaming
performance rather than help it; ii) Considering playout buffer
size in the congestion avoidance as extra space for TCP packet
storage results in consistent performance improvement across
various network path scenarios. The material is organized
as follows. Related work discussion is provided on Section
II. Section III describes video streaming over TCP system.
Section IV introduces the TCP variants addressed in this
paper, as well as additional congestion avoidance schemes
to enhance video streaming experience. Section VI addresses
video delivery performance evaluation for each TCP variant
and attempted enhancements. Section VII addresses directions
we are pursuing as follow up to this work.

II. RELATED WORK

Modifications of TCP protocol to enhance video streaming
have been recently proposed. Pu et al. [10] have proposed a
proxy TCP architecture for higher performance on paths with
last hop wireless links. The proxy TCP node implements a
variation of TCP congestion avoidance for which congestion
window cwnd adjustment is disabled, being replaced with

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

a fair scheduler at the entrance of the wireless link. The
approach, however, does not touch TCP sender at the video
server side, which limits overall video streaming performance
as characterized in [6]. Lu et al. [11] have proposed a receiver
based scheme to avoid TCP congestion control in case of
lost packets on a wireless link. Our CCP and CCPD variants
already differentiate between packet losses due to congestion
from wireless link layer losses, their main motivation.

Park et. al. [9] seeks to improve video streaming perfor-
mance by streaming over multiple paths, as well as adapting
video transmission rates to the network bandwidth available.
Such approach, best suited to distributed content delivery
systems, requires coordination between multiple distribution
sites. In contrast, we seek to improve each network transport
session carrying a video session by adapting TCP source
behavior, independently of the video encoder.

An analytical framework to the dimensioning of playout
buffer has been developed by [14]. The goal is to mitigate
buffer underflow as well as packet retransmissions along the
path. Our work does not try to dimension the playout buffer,
but rather take advantage of its size to improve video streaming
performance.

In [8], a relationship between network, application (stream-
ing), and user key performance indicators is studied. They
conclude that “rebuffering frequency” impacts the most in user
perceived video quality, which is one of our video performance
measurers (underflow events).

A distinct aspect of our current work is that we propose
improvements on congestion avoidance phase of TCP, and
evaluate them on real client and server network stacks that
are widely deployed for video streaming, via VLC open source
video client, and standard HTTP server.

III. V IDEO STREAMING OVER TCP

Video streaming over HTTP/TCP involves an HTTP server
side, where video files are made available for streaming
upon HTTP requests, and a video client, which places HTTP
requests to the server over the Internet, for video streaming.
Figure 1 illustrates video streaming components.

cwndrwnd

playout buffer

video
rendering

Client Server

awnd TCP

Application

video file

Internet

packetization

Fig. 1: Video Streaming over TCP

An HTTP server stores encoded video files, available upon
HTTP requests. Once a request is placed, a TCP sender is
instantiated to transmit packetized data to the client machine.
At TCP transport layer, a congestion window is used for flow
controlling the amount of data injected into the network. The
size of the congestion window,cwnd, is adjusted dynamically,
according to the level of congestion in the network, as well

as the space available for data storage,awnd, at the TCP
client receiver buffer. Congestion window space is freed only
when data packets are acknowledged by the receiver, so that
lost packets are retransmitted by the TCP layer. At the client
side, in addition to acknowledging arriving packets, TCP
receiver sends back its current available spaceawnd, so that
at the sender side,cwnd ≤ awnd at all times. At the client
application layer, a video player extracts data from a playout
buffer, filled with packets delivered by TCP receiver from its
buffer. The playout buffer is used to smooth out variable data
arrival rate.

A. Interaction between Video streaming and TCP

At the server side, HTTP server retrieves data into the TCP
sender buffer according withcwnd size. Hence, the injection
rate of video data into the TCP buffer is different than the
video variable encoding rate. In addition, TCP throughput
performance is affected by the round trip time of the TCP
session. This is a direct consequence of the congestion window
mechanism of TCP, where only up to acwnd worth of bytes
can be delivered without acknowledgements. Hence, for a fixed
cwnd size, from the sending of the first packet until the first
acknowledgement arrives, a TCP session throughput is capped
at cwnd/rtt. For each TCP congestion avoidance scheme,
the size of the congestion window is computed by a specific
algorithm at time of packet acknowledgement reception by
the TCP source. However, for all schemes, the size of the
congestion window is capped by the available TCP receiver
spaceawnd sent back from the TCP client.

At the client side, the video data is retrieved by the video
player into a playout buffer, and delivered to the video ren-
derer. Playout buffer may underflow, if TCP receiver window
empties out. On the other hand, playout buffer overflow does
not occur, since the player will not pull more data into the
playout buffer than it can handle.

In summary, video data packets are injected into the network
only if space is available at the TCP congestion window.
Arriving packets at the client are stored at the TCP receiver
buffer, and extracted by the video playout client at the video
nominal playout rate.

IV. A NATOMY OF TRANSMISSION CONTROL PROTOCOL

TCP protocols fall into two categories, delay and loss based.
Advanced loss based TCP protocols use packet loss as primary
congestion indication signal, performing window regulation as
cwndk = f(cwndk−1), being ack reception paced. Mostf
functions follow an Additive Increase Multiplicative Decrease
strategy, with various increase and decrease parameters. TCP
NewReno [2] and Cubic [12] are examples of additive increase
multiplicative decrease (AIMD) strategies. Delay based TCP
protocols, on the other hand, use queue delay information
as the congestion indication signal, increasing/decreasing the
window if the delay is small/large, respectively. Compound
[13], CCP [3] and CCPD [4] are examples of delay based
protocols.

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

Most TCP variants follow TCP Reno phase framework: slow
start, congestion avoidance, fast retransmit, and fast recovery.

• Slow Start(SS):This is the initial phase of a TCP session.
In this phase, for each acknowledgement received, two
more packets are allowed into the network. Hence, con-
gestion windowcwnd is roughly doubled at each round
trip time. Notice thatcwnd size can only increase in this
phase. So, there is no flow control of the traffic into the
network. This phase ends whencwnd size reaches a large
value, dictated byssthresh parameter, or when the first
packet loss is detected, whichever comes first. All widely
used TCP variants use slow start except Cubic [12].

• Congestion Avoidance(CA):This phase is entered when
the TCP sender detects a packet loss, or thecwnd
size reaches the target upper sizessthresh (slow start
threshold). The sender controls thecwnd size to avoid
path congestion. Each TCP variant has a different method
of cwnd size adjustment.

• Fast Retransmit and fast recovery(FR):The purpose
of this phase is to freeze allcwnd size adjustments in
order to take care of retransmissions of lost packets.

Figure 2 illustrates various phases of a TCP session. Our
interest is in the congestion avoidance phase of TCP, which
dictates how much traffic is allowed into the network during
periods of network congestion. A comprehensive tutorial of
TCP features can be found in [1].

pkt loss pkt loss pkt loss

SS FR CA CA

λhigh

λmed

λlow

time

cw
nd

/r
tt

Fig. 2: TCP Congestion Window Dynamics vs Video Playout

Let λ be the video average bit rate across its entire playout
time. That is,λ = V ideoSize/TotalP layoutT ime. Figure 2
illustrates three video playout rate cases:λhigh, λmed, λlow:

λhigh The average playout rate is higher than the transmission
rate. In this case, playout buffer is likely to empty out,
causing buffer underflow condition.

λmed The average playout rate is close to the average transmis-
sion rate. In this case, buffer underflow is not likely to
occur, affording a smooth video rendering at the client.

λlow The average playout rate is lower than the transmission
rate. In this case, playout buffer may overflow, causing
picture discards due to overflow condition. In practice,
this case does not happen if video client pulls data from
the TCP socket, as it is commonly the case. In addition,
TCP receiver buffer will not overflow either, because
cwnd at the sender side is capped by the available TCP
receiver buffer spaceawnd reported by the receiver.

For most TCP variants widely used today, congestion avoid-
ance phase is sharply different. As we present comparative

study of our proposal against Cubic and Compound TCP
variants, in what follows we briefly introduce these TCP
variants’ congestion avoidance phase.

A. Cubic TCP Congestion Avoidance

TCP Cubic is a loss based TCP that has achieved
widespread usage as the default TCP of the Linux operating
system. During congestion avoidance, its congestion window
adjustment scheme is:

AckRec : cwndk+1 = C(t−K)3 +Wmax

K = (Wmax
β

C
)1/3 (1)

PktLoss : cwndk+1 = βcwndk

Wmax = cwndk

where C is a scaling factor, Wmax is the cwnd value at time
of packet loss detection, and t is the elapsed time since the
last packet loss detection (cwnd reduction). The rational for
these equations is simple. Cubic remembers the cwnd value
at time of packet loss detection - Wmax, when a sharp cwnd
reduction is enacted, tuned by parameterβ. After that, cwnd
is increased according to a cubic function, whose speed of
increase is dictated by two factors: i) how long it has been
since the previous packet loss detection, the longer the faster
ramp up; ii) how large the cwnd size was at time of packet
loss detection, the smaller the faster ramp up. The shape of
Cubic cwnd dynamics is typically distinctive, clearly showing
its cubic nature. Notice that upon random loss, Cubic strives to
return cwnd to the value it had prior to loss detection quickly,
for small cwnd sizes.

Cubic fast release fast recovery of bandwidth makes it one
of the most aggressive TCP variants. Being very responsive,
it quickly adapts to variations in network available bandwidth.
However, because it relies on packet loss detection forcwnd
adjustments, random packet losses in wireless links may still
impair Cubic’s performance.
B. Compound TCP Congestion Avoidance

Compound TCP is the TCP of choice for most deployed
Wintel machines. It implements a hybrid loss/delay based
congestion avoidance scheme, by adding a delay congestion
window dwnd to the congestion window of NewReno [13].
Compound TCP cwnd adjustment is as per 2:

AckRec : cwndk+1 = cwndk +
1

cwndk + dwndk
(2)

PktLoss : cwndk+1 = cwndk +
1

cwndk
where the delay component is computed as:

AckRec : dwndk+1=dwndk+ αdwndKk − 1, if diff < γ

dwndk − ηdiff, if diff ≥ γ

PktLoss : dwndk+1 =dwndk(1 − β)−
cwndk

2
(3)

whereα, β, η and K parameters are chosen as a tradeoff
between responsiveness, smoothness, and scalability.

Compound TCP dynamics is often dominated by its loss
based component. Hence, it presents a slow responsiveness
to network available bandwidth variations, which may cause
playout buffer underflows.

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

C. Capacity and Congestion Probing TCP

In this paper, we use CCP as a framework upon which
we design congestion avoidance variation schemes. TCP CCP
was our first proposal of a delay based congestion avoidance
scheme based on solid control theoretical approach. The
cwnd size is adjusted according to a proportional controller
control law. The cwnd adjustment scheme is called at every
acknowledgement reception, and may result in either window
increase or decrease. In addition, packet loss does not trigger
any special cwnd adjustment. CCP cwnd adjustment scheme
is as per 4:

cwndk =
[Kp(B − xk)− in flight segsk]

2
0 ≤ Kp (4)

whereKp is a proportional gain,B is an estimated storage
capacity of the TCP session path, or virtual buffer size,xk is
the level of occupancy of the virtual buffer, or estimated packet
backlog, andin flight segs is the number of segments
in flight (unacknowledged). Typically, CCP cwnd dynamics
exhibit a dampened oscillation towards a given cwnd size,
upon cross traffic activity. Notice thatcwndk does not depend
on previous cwnd sizes, as with the other TCP variants. This
fact guarantees a fast responsiveness to network bandwidth
variations.

V. TCP CONGESTIONAVOIDANCE IMPROVEMENTS FOR

V IDEO STREAMING

The original idea of congestion avoidance was to maintain
cwnd at large values without incurring in packet losses, so as
to incur in highest throughput possible. However, for video
applications, the ideal throughput should not deviate much
from the video rendering rate, or else playout buffer underflow
or frame discards may happen. For instance, there is no use in
aiming at too high throughput, as packets belonging to frames
whose playout time is in the future may clog the playout buffer.
We introduce a couple of changes in congestion avoidance of
our CCP TCP variant:

• LimitedCongestionAvoidance:In this scheme, our TCP
variant (CCPLCA) in congestion avoidance computes
its cwndccp as per Eq. 4. In addition, it computes the
minimum cwndvr value for which at current packet
rtt experienced results on a throughput matching the
video rendering rate (cwndvr = V R/rtt). The exer-
cised cwnd results to be the largest one, orcwnd =
MAX(cwndvr, cwndccp). The rational is to not allow
the regulated throughput to ever go below the video
rendering rate.

• LargeBuffer: In this scheme, TCP variant (CCPLB) uses
the playout buffer length as part of itscwnd computation,
as follows:

cwndk =
[Kp(B − xk)− in flight segsk]

2
+

POB

POBRate
0 ≤ Kp (5)

wherePOB is the playout buffer size, andPOBRate
represents a percentage of the playout buffer size used
in the TCP congestion avoidance phase. The rational is
to use the extra space of the playout buffer to increase
throughput, reducing buffer underflow events, as well as
decrease throughput when playout buffer is close to be
full, avoiding frame discards.

VI. V IDEO STREAMING PERFORMANCE OFCONGESTION

AVOIDANCE SCHEMES

Figure 3 describes the network testbed used for emulating
a network path with wireless access link. An HTTP video
server and a VLC client machine are connected to two access
switches, which are connected to a link emulator, used to
adjust path delay and inject controlled random packet loss.All
links are 1Gbps, ensuring plenty of network capacity for many
video streams between client and server. No cross traffic is
considered, as this would make it difficult to isolate the impact
of TCP congestion avoidance schemes on video streaming
performance.

Fig. 3: Video Streaming Emulation Network

TCP variants used are: Cubic, Compound, CCP, CCPLBA,
and CCPLB. Performance is evaluated for various round trip
time path scenarios, as per Table I.

TABLE I: EXPERIMENTAL NETWORK SETTINGS
Video Size 409Mbytes

Playout time 10.24 secs
Encoding MPEG-4

Video Codec H.264/AVC
Audio Codec MPEG-4 AAC4

Video Playout Buffer Size 448, 897, 1345 pkts
Network Delay (RTT) 3, 100, 200 msecs

TCP variants Cubic, Compound, CCP, CCPLCA, CCPLB

The VLC client is attached to the network via a WiFi link.
Iperf is used to measure the available wireless link bandwidth,
to make sure it is higher than the average video playout rate.
Packet loss is hence induced only by the wireless link, and is
reflected in the number of TCP packet retransmissions.

Performance measurers adopted, in order of priority, are:

• Picture discards: number of frames discarded by the
video decoder. This measurer defines the number of
frames skipped by the video rendered at the client side.

• Buffer underflow: number of buffer underflow events
at video client buffer. This measurer defines the number
of “catch up” events, where the video freezes and then
resumes at a faster rate until all late frames have been
played out.

• Packet retransmissions:number of packets retransmit-
ted by TCP. This is a measure of how efficient the TCP
variant is in transporting the video stream data. It is likely
to impact video quality in large round trip time path con-
ditions, where a single retransmission doubles network
latency of packet data from an application perspective.

15Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

We organize our experimental results into the following:
i)TCP variants performance comparison; ii)CCPLB sensitivity
analysis. Each data point in charts represents five trials. Results
are reported as average and min/max deviation bars.

A. TCP Variants Performance Comparison

Figure 4 reports on video streaming and TCP performance
under short propagation delay of 3msec. In this case, legacy
TCP variants Cubic and Compound deliver best video stream-
ing performance with no discarded frames and very small
number of playout buffer underflow events. CCP(1), our pre-
vious TCP variant, presents significantly more frame discards,
as well as buffer underflow events. Even though CCP uses
path storage capacity to regulate its input traffic, CCP ignores
playout buffer depth. CCPLCA presents worst performance,
which shows that simply being liberal in sizingcwnd to
large values may end up hurting video streaming performance,
rather than helping. One needs to sizecwnd to large values
only when the playout buffer is able to accommodate the
traffic, and quickly use the extra packets to render frames on
a timely manner. Finally, our new CCPLB(1) TCP variant (1
means full size of the playout buffer is used) delivers as good
a performance as Cubic and Compound legacy TCPs, even
though it retransmits more packets than all other TCP variants.

a) VLC performance b) TCP packets retransmitted

 0
 10
 20
 30
 40
 50
 60
 70

Cubic
Compound

CCP(1)

CCPLCA

CCPLB(1)
 0
 10
 20
 30
 40
 50
 60
 70

d
is

c
a

rd
e

d
 p

ic
tu

re
s

u
n

d
e

rf
lo

w
 e

v
e

n
ts

discarded pictures
underflow events

min/max bar

 0

 50000

 100000

 150000

 200000

 250000

 300000

Cubic
Compound

CCP(1)

CCPLCA

CCPLB(1)

P
kt

s
R

et
ra

ns
m

itt
ed

Pkts Retransmitted
min/max bar

Fig. 4: Video Performance vs TCP performance; rtt=3msec

Figure 5 reports on video streaming and TCP performance
under a typical propagation delay of 100msec. In this case,
legacy TCP variants Cubic and Compound deliver worst
video streaming performance among all TCP variants studied.
CCP(1), our previous TCP variant, presents significantly less
frame discards than the legacy ones, as well as buffer un-
derflow events. Among all variants, CCPLB(1) performs best
by maintaining a very low number of playout buffer underflow
events, as well as no frame discards. CCPLB(1) is able to keep
low number of underflow events and frame discards by taking
into account the size of the playout buffer when regulating
cwnd window, even though it does not know the instantaneous
filling level (number of packets) of the playout buffer. Notice
also that the number of retransmitted packets of CCP and
CCPLB are roughly the same, even though CCPLB delivers
better video performance.

Figure 6 reports on video streaming and TCP performance
under a large propagation delay of 200msec. Delays such as
that may be experienced in paths with cellular network access
links, where additional delays result from wireless access

a) VLC performance b) TCP packets retransmitted

 0
 10
 20
 30
 40
 50
 60
 70

Cubic
Compound

CCP(1)

CCPLCA

CCPLB(1)
 0
 10
 20
 30
 40
 50
 60
 70

d
is

c
a

rd
e

d
 p

ic
tu

re
s

u
n

d
e

rf
lo

w
 e

v
e

n
ts

discarded pictures
underflow events

min/max bar

 0

 50000

 100000

 150000

 200000

 250000

 300000

Cubic
Compound

CCP(1)

CCPLCA

CCPLB(1)

P
kt

s
R

et
ra

ns
m

itt
ed

Pkts Retransmitted
min/max bar

Fig. 5: Video Performance vs TCP performance; rtt=100msec

link level retransmissions. In this case, legacy TCP variants
Cubic and Compound still deliver worst video streaming
performance among all TCP variants. CCP(1) continues to
present significantly less frame discards than the legacy ones,
as well as buffer underflow events. In addition, CCPLB(1)
performs best by maintaining a very low number of playout
buffer underflow events, as well as no frame discards, even in
the face of a very large round trip delay.

In conclusion, CCPLB is able to consistently deliver best
video streaming performance across a wide range of round
trip delay paths.

a) VLC performance b) TCP packets retransmitted

 0
 10
 20
 30
 40
 50
 60
 70

Cubic
Compound

CCP(1)

CCPLCA

CCPLB(1)
 0
 10
 20
 30
 40
 50
 60
 70

d
is

c
a

rd
e

d
 p

ic
tu

re
s

u
n

d
e

rf
lo

w
 e

v
e

n
ts

discarded pictures
underflow events

min/max bar

 0

 50000

 100000

 150000

 200000

 250000

 300000

Cubic
Compound

CCP(1)

CCPLCA

CCPLB(1)
P

kt
s

R
et

ra
ns

m
itt

ed

Pkts Retransmitted
min/max bar

Fig. 6: Video Performance vs TCP performance; rtt=200msec

B. Playout Buffer Size Sensitivity Analysis

So far we have presented CCPLB results using the whole
playout buffer size. Next we address performance sensitivity
to two issues: playout buffer size itself, and the percentage of
the playout buffer size used by CCPLB.

Figure 7 reports on video streaming and CCPLB perfor-
mance under a typical propagation delay of 100msec and
playout buffer size of 448 max size IP packets of 1600
bytes for various amounts of buffering. First notice the small
amounts of picture discards, as well as underflow buffer events
across all variants. CCPLB(2) uses half the buffer size of the
playout buffer in its congestion avoidancecwnd regulation,
whereas CCPLB(0.5) uses twice as much buffer as the size of
the playout buffer. The later case represents an overbooking
of playout buffering, as CCPLB uses more buffering than it is
really available at the client. We can see that overbooking hurts
performance, whereas underbooking, using less buffering than
the total playout buffer size, does not affect video streaming
performance significantly. All variants present a reasonable
amount of retransmitted packets at the TCP layer.

16Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

a) VLC performance b) TCP packets retransmitted

 0

 5

 10

 15

 20

CCPLB(3)

CCPLB(2)

CCPLB(1)

CCPLB(0.5) 0

 10

 20

 30

 40

d
is

c
a
rd

e
d
 p

ic
tu

re
s

u
n
d
e
rf

lo
w

 e
v
e
n
ts

discarded pictures
underflow events

min/max bar

 0

 50000

 100000

 150000

 200000

 250000

 300000

CCPLB(3)

CCPLB(2)

CCPLB(1)

CCPLB(0.5)

P
kt

s
R

et
ra

ns
m

itt
ed Pkts Retransmitted

min/max bar

Fig. 7: Video Performance vs TCP performance; POB=448pkts

Figure 8 reports on video streaming and CCPLB perfor-
mance under a typical propagation delay of 100msec and
playout buffer size of 897 max size IP packets of 1600 bytes
for various amounts of buffering. Comparing CCPLB VLC
performance with previous case, there is much less variation
in discarded frames as well as underflow events, with half
the playout buffer. There is also roughly the same level of
packet retransmissions at the TCP level performance from the
previous case.

a) VLC performance b) TCP packets retransmitted

 0

 5

 10

 15

 20

CCPLB(3)

CCPLB(2)

CCPLB(1)

CCPLB(0.5) 0

 10

 20

 30

 40

d
is

c
a
rd

e
d
 p

ic
tu

re
s

u
n
d
e
rf

lo
w

 e
v
e
n
ts

discarded pictures
underflow events

min/max bar

 0

 50000

 100000

 150000

 200000

 250000

 300000

CCPLB(3)

CCPLB(2)

CCPLB(1)

CCPLB(0.5)

P
kt

s
R

et
ra

ns
m

itt
ed Pkts Retransmitted

min/max bar

Fig. 8: Video Performance vs TCP performance; POB=897pkt

Finally, Figure 9 reports on video streaming and CCPLB
performance under a typical propagation delay of 100msec
and a large playout buffer size of 1345 max size IP packets
of 1600 bytes for various amounts of buffering. Comparing
CCPLB VLC performance with previous results, there is no
significant improvement in VLC performance. This shows that
beyond a certain size, there is no appreciable gain in increasing
playout buffer size.

a) VLC performance b) TCP packets retransmitted

 0

 5

 10

 15

 20

CCPLB(3)

CCPLB(2)

CCPLB(1)

CCPLB(0.5) 0

 10

 20

 30

 40

d
is

c
a
rd

e
d
 p

ic
tu

re
s

u
n
d
e
rf

lo
w

 e
v
e
n
ts

discarded pictures
underflow events

min/max bar

 0

 50000

 100000

 150000

 200000

 250000

 300000

CCPLB(3)

CCPLB(2)

CCPLB(1)

CCPLB(0.5)

P
kt

s
R

et
ra

ns
m

itt
ed Pkts Retransmitted

min/max bar

Fig. 9: Video Performance vs TCP performance; POB=1345pkt

In our performance evaluation, we have not attempted to
tune VLC client to minimize frame discards, even though VLC
settings may be used to lower the number of frame discards. In
addition, no tuning of TCP parameters was performed to better

video client performance. We have simply used parameter
values from our previous study of CCP performance of file
transfers [5]. Finally, changes to the congestion avoidance
phase of CCP can be equally applied to CCPD TCP variant.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we have introduced and evaluated a couple
of variations of the congestion avoidance phase of our TCP
protocol variant CCP to improve TCP transport performance of
video streams. We have characterized CCP performance with
these schemes when transporting video streaming applications
over wireless network paths via open source experiments. Our
experimental results show that taking into account playout
buffer size in the regulation of congestion windowcwnd
results in better video streaming experience, with fewer frame
discards as well as less video rendering stalls, across a wide
range of path round trip times. As future work, we are cur-
rently exploring how playout buffer size may be estimated by
the video server. We are also researching how video streaming
over multiple paths may affect video rendering experience.

REFERENCES
[1] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-Host

Congestion Control for TCP, ” IEEE Communications Surveys &
Tutorials, Third Quarter 2010, Vol. 12, No. 3, pp. 304-342.

[2] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control,”
IETF RFC 2581, April 1999.

[3] D. Cavendish, K. Kumazoe, M. Tsuru, Y. Oie, and M. Gerla, “Capacity
and Congestion Probing: TCP Congestion Avoidance via Path Capacity
and Storage Estimation,” IEEE Second International Conference on
Evolving Internet, best paper award, September 2010, pp. 42-48.

[4] D. Cavendish, H. Kuwahara, K. Kumazoe, M. Tsuru, and Y. Oie, “TCP
Congestion Avoidance using Proportional plus Derivative Control,”
IARIA Third International Conference on Evolving Internet, best paper
award, June 2011, pp. 20-25.

[5] H. Ishizaki, K. Kumazoe, T. Ikenaga, D. Cavendish, T. Masato, Y. Oie,
“On Tuning TCP for Superior Performance on High Speed Path Sce-
narios,” IARIA Fourth International Conference on Evolving Internet,
best paper award, June 2012, pp. 11-16.

[6] G. Watanabe, K. Kumazoe, D. Cavendish, D. Nobayashi, T. Ikenaga, and
Y. Oie, “Performance Characterization of Streaming Video over TCP
Variants,” IARIA Fifth International Conference on Evolving Internet,
best paper award, June 2013, pp. 16-21.

[7] G. Watanabe, K. Kumazoe, D. Cavendish, D. Nobayashi, T. Ikenaga,
and Y. Oie, “Slow Start TCP Improvements for Video StreamingAppli-
cations,” IARIA Sixth International Conference on Evolving Internet,
best paper award, June 2014, pp. 22-27.

[8] R. K. P. Mok, E. W. W. Chan, and R. K. C. Chang, “Measuring the
Quality of Experience of HTTP Video Streaming,” Proceedings of IEEE
International Symposium on Integrated Network Management, Dublin,
Ireland, May 2011, pp. 485-492.

[9] J-W. Park, R. P. Karrer, and J. Kim,, “TCP-Rome: A Transport-
Layer Parallel Streaming Protocol for Real-Time Online Multimedia
Environments,” In Journal of Communications and Networks,Vol.13,
No. 3, June 2011, pp. 277-285.

[10] W. Pu, Z. Zou, and C. W. Chen, “New TCP Video Streaming Proxy
Design for Last-Hop Wireless Networks,” In Proceedings of IEEE ICIP
11, 2011, pp. 2225-2228.

[11] Z. Lu, V. S. Somayazulu, and H. Moustafa, “Context Adaptive Cross-
Layer TCP Optimization for Internet Video Streaming,” In Proceedings
of IEEE ICC 14, 2014, pp. 1723-1728.

[12] I. Rhee, L. Xu, and S. Ha, “CUBIC for Fast Long-Distance Networks,”
Internet Draft, draft-rhee-tcpm-ctcp-02, August 2008.

[13] M. Sridharan, K. Tan, D. Bansal, and D. Thaler, “Compound TCP: A
New Congestion Control for High-Speed and Long Distance Networks,”
Internet Draft, draft-sridharan-tcpm-ctcp-02, November2008.

[14] J. Yan, W. Muhlbauer, and B. Plattner, “Analytical Framework for
Improving the Quality of Streaming Over TCP,” IEEE Transactions on
Multimedia, Vol.14, No.6, December 2012, pp. 1579-1590.

17Copyright (c) IARIA, 2015. ISBN: 978-1-61208-435-0

INTERNET 2015 : The Seventh International Conference on Evolving Internet

