
An XDI-Based Approach to Represent and Exchange Data Between
Federated Clouds

Antonio Celesti, Francesco Tusa, Massimo Villari and Antonio Puliafito
Dept. of Mathematics, Faculty of Engineering, University of Messina

Contrada di Dio, S. Agata, 98166 Messina, Italy.
e-mail: {acelesti, ftusa, mvillari, apuliafito}@unime.it

Abstract—Cloud providers need to manage and control their
assets identifying, retrieving, and exchanging data about their
virtual resources in different operating contexts. These tasks
are not trivial at all and this leads cloud providers to design
proprietary solutions for the management of their virtual
resources and services. In this paper, considering IaaS clouds,
we discuss an approach based on XDI for the representation of
data associated to Virtual Machines (VMs). More specifically,
we focus on a scenario including federated clouds renting VMs
to other ones, where an exchange of related data is required.

Keywords-Cloud Computing, Federation, Naming System,
XDI, Higgings.

I. INTRODUCTION

Nowadays, cloud providers supply many kinds of In-
frastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS) to their users, e.g.,
common desktop clients, companies, governments, organi-
zations, and other clouds. Such services can be arranged
composing and orchestrating several Virtual Environments
(VEs) or Virtual Machines (VMs) through hypervisors.

The overwhelming innovation of cloud computing is that
cloud platforms can react to events internally rearranging the
VMs composing their services pushing down management
costs, and the interesting thing is that cloud users are not
aware of changes, continuing to use their services without
interruptions according to a priori Service Level Agreements
(SLAs). For example, when a physical server hosting an
hypervisor runs out of resources or is damaged, the cloud can
decide to move or “migrate” one or more VMs into another
server of the same cloud’s datacenter acting as virtualization
infrastructure. Further migrations can be triggered for many
other reasons including power saving, service optimization,
business strategy, SLA violation, security, etc. In addition, if
we consider the perspective of cloud federation where clouds
cooperate sharing computational and storage resources, a
VM can migrate also into a server of another cloud’s
virtualization infrastructure. Another business model which
can take place in federated scenarios might be the rent of
VEs from a cloud to another.

Such a dynamic and continuously changing scenario in-
volves not only cloud services and VMs, but also other
cloud entities such as physical appliances and cloud users.
All these entities need to be named and represented both

in human-readable and in machine-readable way. Moreover,
they need also to be resolved with appropriate data according
to a given execution context. For example, as a VM needs
to be identified by a name, it may happen that different
entities (e.g., the cloud middleware itself, other federated
clouds, cloud administrators, cloud users, etc) may be inter-
ested to resolve that name retrieving either data concerning
general information on the VM (e.g., CPU, memory, kernel,
operating system, virtualization format version, IP address,
etc), data regarding processes running inside the VM,or data
regarding the performance of the VM (e.g., used CPU and
memory usage). In addition, the scenario becomes more
complex if we consider the fact that these entities might
hold one or more names and identifiers also with different
levels of abstraction.

In order to discourage a possible evolving scenario where
each cloud based on open source architectures might develop
its own proprietary information management system with
compatibility problems in the interaction among different
cloud name spaces, in our previous work [1], we proposed
a standard XRI-based approach for the designing of a
seamless cloud naming system able to manage and integrate
independent cloud name spaces, extending the OpenXRI
libraries [2].

XRI, considered alone, does not support any data inter-
change mechanism between entities which want to exchange
data each other according to their policies. In order to
overcome this issue, the OASIS XDI Technical Committee
developed the XRI Data Interchange (XDI) [3] technology.In
this paper, we discuss how to apply XDI technology, using
the Higgings framework [4], for the development of a
federated IaaS cloud scenario, where each cloud needs to
exchange data with other ones about rented VMs. More
specifically, considering several clouds, each one managing
its own VMs by means of XRI graphs, we will focus on an
use case where a cloud lends VMs to another cloud, thence
exchanging the related data (e.g., IP address, how to access
the VM, features, performance, etc) in a secure way.

The paper is organized as follows: Section II provides a
brief description of cloud name spaces. Section III describes
the state of the art of naming systems and the most widely
adopted solutions in distributed systems and in ubiquitous
computing environments. In Section IV, we provide an

1

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

overview of the XDI technology motivating how it suits
the management of cloud name spaces and data interchange
between federated clouds. In Section V, we describe how to
design an XDI-based data management system for a cloud
federation scenario using the Higgings framework. In the
end, in Section VI, we focus on how to represent resources
and users in a cloud using XRI RDF graphs. Conclusions
and remarks are summarized in Section VII.

II. CLOUD NAME SPACE ISSUES

In this Section, we briefly summarize the main cloud
name space issues which have already been analyzed in [5].
Despite the internal cloud structure, we think cloud entities
have many logical representations in various contexts. In
addition, there are many abstract, structured entities (e.g., a
distributed cloud-service built using other services, each one
deployed in a different VE). These entities are characterized
by a high-level of dynamism: allocations, changes and
deallocations of VEs may occur frequently. Moreover, these
entities may have one or more logical representations in
one or more contexts. But which are the entities involved
in cloud computing? In order to describe such entities, we
introduce the generalized concept of Cloud Named Entity
(CNE). A CNE is a generic entity indicated by a name
or an identifier which may refer both to real/abstract and
simple/structured entity. As depicted in Figure 1, examples
of CNE may be a cloud itself, a cloud federation, a vir-
tualization infrastructure, a server running an hypervisor, a
VE, a cloud service, or cloud users including companies,
governments, universities, cloud technicians, and desktop
clients.

Figure 1. Examples of generic CNEs.

In our abstraction, we assume that a CNE is associated
to one or more identifiers. As a CNE is subject to frequent
changes holding different representations in various Cloud
Contexts (CCNTXs), the user-centric identity model [6]
seems to be the most convenient approach. We define a

CCNTX as an execution environment where a CNE is repre-
sented by one or more identifiers and has to be processed. In
this work, we assume a CNE is represented by one or more
CCNTX Resolver Server(s), which are servers returning data
or services associated to a CNE in a given CCNTX. Figure
2 depicts an example of CNE associated with six identities
within four CCNTXs. The target CNE holds identity 1, 2

Figure 2. Examples of a generic CNE associated to several CCNTXs.

inside CCNTX A, identity 3 inside CCNTX B, identity
4 inside CCNTX C, and identity 5, 6 inside CCNTX D.
We define a Cloud Naming System (CNS) as a system that
maps one or more identifiers to a CNE. A CNS consists
of a set of CNEs, an independent cloud name space, and a
mapping between them. A cloud name space is a definition
of cloud domain names. Instead, a name or identifier is a
label used to identify a CNE. A client resolver which needs
to identify a CNE in a given CCNTX performs a resolution
task. Resolution is the function of referencing an identifier
to a set of data or services describing the CNE in several
CCNTXs.

III. RELATED WORK AND BACKGROUND

Cloud computing is generally considered as one of the
more challenging research field in the ICT world. It mixes
aspects of Utility Computing, Grid Computing, Internet
Computing, Autonomic computing and Green computing
[7], [8]. Many authors are trying to describe what it exactly
means, in terms of Utility Computing (as the Electricity
Model, see [9]), its Economics and Benefits, and what are
its Obstacles and Opportunities as the TOP 10 list reports
in [10], [11]. Cloud, combined with statistical multiplexing,
should increase resources utilization compared to traditional
data centers, offering services below the costs of medium-
sized datacenters and still making good profits (see [12]).
In such new emerging environments, even though naming
and resource location raise several issues, there have not
been many related works in literature yet regarding naming

2

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

systems managing cloud name spaces, and DNS is still
erroneously considered the “panacea for all ills”. In fact,
DNS presents some problems: it is host centric, unsuitable
for complex data and services location, and it is not suited to
heterogeneous environments. Possible improvements might
come from the naming system works in high-dynamic,
heterogeneous and ubiquitous environments. An alternative
to DNS is presented in [13]. The authors propose a Uniform
Resource Name System (URNS), a decentralized solution
providing a dynamic and fast resource location system for
the resolution of miscellaneous services. Nevertheless, the
work lacks of an exhaustive resource description mechanism.
With regard to naming system in ubiquitous computing, in
[14] the authors propose a naming system framework for
smart space environments. The framework aims to integrate
P2P independent cloud naming systems with the DNS,
but appears unfitted to be exported in other environments.
In addition it aims to localize and identify an entity that
moves from a smart space to another using as description
mechanism the little exhaustive DNS resource records. A
hybrid naming system that combines DNS and Distributed
Hash Table (DHT) is presented in [15]. The authors adopt a
set of gateways executing a dynamic DNS name delegation
between DNS resolver and DHT node.

An interesting survey among different technologies for
the Resource Discovery in Grid Environments has been
done in [16]. The authors presented a valuable comparison
among the P2P protocols ranging from Napster, Gnutella,
CAN to Chord. It is interesting to notice the punctual
evaluation (even taking into account the complexity of each
one) of these protocol and their applicability in Grids. They
mentioned that one of the main constrains in Grid is the
scalability. Some of the protocols reported above are not
really fully decentralized. (i.e., Napster) whereas others do
not guarantee the operating in heterogeneous Grid environ-
ments. Other evaluations were conducted in [17] and [18].
Their assessments are about the possibility to use in Grid
consolidated protocols for the Resource Discovery (RD)
tasks. However many solutions adopted in Grid ([19]) along
with the advanced DHT usage (see [20]), are not suitable in
clouds at all. We can affirm that the level of heterogeneity in
Clouds is higher of any Grid infrastructure. For that reason
we cannot consider solutions embraced in Grid, but we
have to look solutions widely used in distributed system as
Internet (i.e., DNS approach). In our point of view concepts
of systems heterogeneity and federation mechanisms need
to be taken into account. Whether we consider the recent
convergence of Web SSO systems in the Internet, in the
last years we assisted to a wide use of OpenID [21]. It is
considered as one of the widely digital identity protocol used
for making Federation among web services. Providers that
adopted such a technique range from AOL, BBC,Google,
IBM, MySpace, Orange, PayPal, VeriSign, LiveJournal, to
Yahoo [22]. The new version of OpenID, 2.0 was released to

overcome some big issues [23]. The way for improving it, is
to implement several clausals existing in the XRI Standard
Specification [24], [25].

We can assume the XRI standard as a step over of the
DNS protocol. All enterprises may continue in using their
internal systems for cataloging resources and services, as
LDAP, Active Directory (AD), owned database, etc; all
these protocols are based on DNS. Our idea is to have an
alternative to DNS, a kind of advanced DNS protocol, that is
XRI, compliant with URI/URL approach able to overcome
DNS limitations, also in terms of its representativeness. We
can state that XRI might represent an useful abstraction
of what already exists in the Internet. In particular we
remind the XRI syntax and resolution infrastructure was
designed explicitly for Internet-scale digital identity, and
we are adopting it for enriching exchanged information in
much more complex cloud scenarios maintaing its basic
philosophy indispensable for the Federated Digital Identity
management.

Regarding naming, name resolution, and service location
in federated cloud environments, in our previous work [26],
we highlighted the involved issues both debating a cloud
name space analysis and proposing a generic theoretical
cloud naming framework for the management of cloud name
spaces. The cloud federation is a scenario where clouds
establish a relationship in order to benefit new business
advantages [27], for example renting single VM or whole
cloud services to other clouds, for example when a cloud
run out its computational and storage capabilities or when
a cloud needs a service which is not able to allocate.
In [28], considering such a cloud naming framework and
several use-cases of the European Reservoir Project [29], we
performed an analysis of the problems that such use-cases
raise regarding the management of cloud name spaces, also
debating how the aforementioned cloud naming framework
could be adopted to manage naming and service resolution.
As possible representation of the cloud naming framework
we chose XRI [24] and the eXtensible Resource Descriptor
Sequence (XRDS) [25] technologies. The major open source
implementation of XRI is OpenXRI [2], which provides a
basic Authority Resolution server along with java libraries
for the development of XRI-based applications. Another
interesting initiative is the Higgings Personal Data Service
[4] framework developed by the Eclipse community. Hig-
gings implements the XRI Data Interchange (XDI) [30],
i.e., a generalized, extensible service for sharing, linking,
and synchronizing structured data over the Internet using
XRI-addressable RDF graphs. As well as XRI, XDI is under
development by the OASIS [31] Technical Committee.

IV. XDI AND CLOUD COMPUTING

In this Section, after a brief description the XDI tech-
nology, we motivate how it can help the cloud name space
management and data interchange between federated clouds.

3

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. XDI Overview

XDI (XRI Data Interchange) is a generalized, extensible
service for sharing, linking, and synchronizing structured
data over the Internet and other data networks using XRI-
addressable RDF graphs. XDI is under development by
the OASIS XDI Technical Committee. The main features
of XDI are: the ability to link and nest RDF graphs to
provide context; full addressability of all nodes in the graph
at any level of context; representation of XDI operations
as graph statements so authorization can be built into the
graph (i.e., a feature called XDI link contracts); standard
serialization formats including JSON and XML; and a sim-
ple ontology language for defining shared semantics using
XDI dictionary services. The XDI protocol can be bound
to multiple transport protocols. The XDI TC is defining
bindings to HTTP and HTTPS, however it is also explor-
ing bindings to XMPP and potentially directly to TCP/IP.
XDI provides a standardized portable authorization format
called XDI link contracts. Link contracts are themselves
XDI documents (which may be contained in other XDI
documents) that enable control over the authority, security,
privacy, and rights of shared data to be expressed in a
standard machine-readable format and understood by any
XDI endpoint. XDI enable to achieve a secure interchange
of data between different software entities by means of
secure communication channels. These channels can be
secured through different techniques, including the Security
Assertion Markup Language (SAML), based on the Identity
Provider/Service Provider (IdP/SP) model.

RDF graphs are created using XRI, i.e., a standard syntax
for identifying entities, regardless any particular concrete
representation. The XRI system is similar to DNS, including
a set of hierarchical XRI authorities but more powerful.
The protocol is built on URI (Uniform Resource Identifiers)
and IRI (Internationalized Resource Identifiers) extending
their syntactic elements and providing parsing mechanisms.
Particular types of URI are URN and URL. Since an URL
is also an URI, the protocol provides a parsing mechanism
from XRI to URL. Therefore XRI is also compatible with
any URN domain. XRI supports persistent and reassignable
identifiers by means of i-numbers (Canonical ID) and i-
names (Local ID). It also provides four types of synonyms
(LocalID, EquivID, CanonicalID, and CanonicalEquivID) to
provide robust support for mapping XRIs, IRIs, or URIs to
other XRIs, IRIs, or URIs that identify the same target entity.
This is particularly useful for discovering and mapping
to persistent identifiers as often required by trust infras-
tructures. XRI enable organization to logically organize
entities building XRI RDF graphs. According to the XRI
terminology, each entity in the graph is named authority.
The protocol provides two additional options for identifying
an authority: Global Context Symbols (GCS) and cross-
references. Common GCS are “=” for people, “@” for

organization, and “+” for generic concepts. For example the
xri://@XYZ*marketing indicates the marketing branch of an
organization named XYZ, where the “*” marks a delegation.

B. Why Does XDI suit Cloud Computing?

XDI meets the requirements of cloud name space man-
agement, data retrieval and data interchange especially in
federated cloud environments. With XDI a cloud can keep
different RDF graphs representing IaaS, PaaS, and SaaS. In
addition, such a technology can be used for both identify
and resolve VMs and whole *aaS by means of data retrieval
mechanisms. For example, the cloud service provider may
need to retrieve three types of information about a VM:
general data (e.g., CPU, memory, kernel, operating system);
real time performance data (e.g., amount of used CPU and
memory used); real time data regarding an internal running
process (e.g., the percentage of processed data). Moreover,
considering IaaS federated clouds, each provider needs to
exchange part of its data with other clouds. For example,
let us consider two clouds: A and B. Cloud A, logically
organize its own VMs by means of an XRI graph. As Cloud
B has run out of resources, it require three VMs to cloud
A. So that, cloud A instantiate the three VMs and update its
XRI graph. Then, in order to allow cloud B to access the
VMs, cloud A, after an authentication of cloud B, discloses
how to access the VMs and related data. Authentication
can be easily achieved using SAML Single Sign-On (SSO)
mechanisms.

In addition, XDI might be used to logically represent
instances of composed services. For example, let us consider
a service instance composed of several elementary services
each one running in a different VM. Thanks to XDI it is
possible to create in the graph of a cloud an entry repre-
senting the service instance, linking the entries representing
the VMs on which the service instance is made up. Other
possible applications of XDI can regard for example the
management of physical assets, clients, and so on.

V. HOW TO ACHIEVE XDI IN FEDERATED CLOUD USING
HIGGINGS

Starting from the considerations of the previous Section,
in the following we will point out a concrete scenario of
cloud federation, specifically aimed to the IaaS context. In
order to address either the problem of sharing information
among clouds and achieving their authentication process,
we rely on the XDI features. More specifically, our sce-
nario takes advantage of the employment of the Higgings
framework, that represents a Personal Data Service (PDS)
including the implementation of XDI features.

In the first part of the Section we will introduce and de-
scribe the Higgings Framework, whereas in the second part
we will present the reference scenario where our solution
aims to address the IaaS cloud federation problem.

4

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. The Higgings Framework

Higgins is an open source project that aims to provide to
individuals more control over their personal identity, profile
and social network data.

The project is organized into three main areas:
1) Active Clients. An active client integrates with a

browser and runs on a computer or mobile device.
• Higgins 1.X: the active client supports the OASIS

IMI protocol and performs the functions of an
Information Card selector.

• Higgins 2.0: the plan is to move beyond selector
functionality to add support for managing pass-
words, Higgins relationship cards, as well other
protocols such as OpenID. It also becomes a
client for the Personal Data Store (see below) and
thereby provides a kind of dashboard for personal
information and a place to manage “permission-
ing” deciding who gets access to what slice of the
user’s data.

2) Personal Data Store (PDS) is a new work area
under development for Higgins 2.0. A PDS stores
local personal data, controls access to remotely hosted
personal data, synchronizes personal data to other
devices and computers, accessed directly or via a PDS
client. It allows the user to share selected aspects of
their information with people and organizations that
they trust.

3) Identity Services - Code for (i) an IMI and SAML
compatible Identity Provider and (ii) enabling websites
to be IMI and OpenID compatible.

B. Reference Scenario

As we have already introduced, in this Section we con-
sider the IaaS cloud federation scenario. In particular, we
suppose to have a wide distributed infrastructure, composed
of different clouds, belonging to different administrative
domains. Each cloud is able to satisfy service requests (in the
case of IaaS we consider VMs as resources) coming from its
users. When, for some reason (e.g. a temporary load peak)
a given cloud is not able to satisfy users’ requests anymore,
instead of rejecting them, it could ask the additional needed
resources to external providers. These latter might be other
clouds able to join the federation.

Obviously, the achievement of this process may be dif-
ficult due to several issues that have to be addressed: first
of all, when a cloud has expired its resources and ask them
to external providers, these have to correctly identify the
entity that have generated the request, and accept it only
if it has been originated from a trusted source. This leads
to the need of managing the authentication process. The
simplest solution consists in the possibility of creating a set
of credentials for each cloud, on every other cloud aiming
to attend the federation. Even though this solution is the

straightforward one, its applicability is limited to a scenario
just formed by a small number of entities. If we consider the
hypotheses of a growing number of clouds, the creation of
credentials for each one may be a different task to manage.

In order to simplify the authentication in such scenarios,
the most common adoptable solution might be based on the
SSO. Instead of creating lots of credentials for authenticating
each cloud on the others, it could be employed a more flex-
ible solution relying on trusted third-parties. This approach
minimizes the number of expected credentials, since a given
cloud just need to have an account on one (or more) of these
third-party to be authenticated on all the entities (clouds) that
are trusted with them.

Once the authentication task has been solved, in order to
allow resources sharing among the cloud federation entities,
a way to organize clouds information is also needed. A
cloud service provider, in fact, may need different kinds
of information regarding VMs: associated resources, in-
stantaneous workload and internal application state. In a
federated environment, part of this information might be
shared among the entities taking part to the infrastructure.
As we have already pointed out previously, if each cloud
stores information by means of an RDF XRI graph, the
process of communicating requests for new resources, their
allocation on external providers and finally their exploiting
will be more flexible and simpler. Section VI will provide
more details and examples on RDF XRI graphs generated
in our testbed.

For addressing either authentication and information shar-
ing among clouds aiming to federate themselves, we propose
the employment of an XDI based framework whose imple-
mentation, in our case, relies on Higgings. In the following
we provide an overview of the operations involved in the
creation of a binding among two different clouds for sharing
resources: we will assume that the involved entities are
based on Higgings for implementing their features. Once
the authentication process is performed using the SSO, the
involved clouds will the able to share the needed information
using the XRI representation transmitting them over a secure
channel created among them.

Assuming the internal cloud organization as depicted in
Figure 3, we can consider a three layered stack where in
the top part lies the cloud manager layer (that manages all
the high-level operations such as authentication, resource
discovery etc.).

As the Figure shows, Cloud Manager includes the Re-
source Manager, which is able to manage resources allo-
cation on external providers if needed through the Cross-
cloud Federation Manager component. (for further details
see [27]). When a cloud (we call it Cloud A) has expired
its own resources and needs to gain them from the outside,
a Discovery process is started from the Resource Manager.
The result of this task will be a list of external clouds able
to satisfy the request. From the retrieved set, it will be

5

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Three layered organization of a Cloud

necessary to select the cloud resource provider best fitting
the request: such a task will be accomplished during the
Match-Making process. The result of this last operation will
consist in the URL of the cloud able to satisfy the resources
need of Cloud A (in our case we assume Cloud B as the
cloud selected from the Match-Making).

Figure 4 shows the steps involved in the authentication
and information sharing between two different clouds (Cloud
A and Cloud B): in step 1, the URL coming out from the
Match-Making process is used by the Authentication Agent
of Cloud A for contacting the destination cloud from which
gaining external resources (Cloud B). An HTTP post is
forwarded (step 2) with the username and session key (if
exists) to the Authentication Agent of Cloud B. The session
key is used by the AA of Cloud A as a token proving that
a login has been correctly performed on a given IdP and
identifies a communication session in a unique way. This
means that the key will exist only if the AA already has
performed the authentication with an IdP and a session has
been created.

During the step 3, the AA of Cloud A is redirected to the
IdP trusted with Cloud B for verifying its identity. In step 4,
the IdP receives from the AA of Cloud A information about
the username and the session key and verifies the existence
of a binding between that username and that session key
querying a local Database. If an entry exists within the
Database, a session for Cloud A has been already created
and IdP sends an answer with StatusCode 200, otherwise
the login process has to be started for proving the identity
of the cloud.

In the last case, in step 5, the AA of Cloud A send
its username and password to the IdP that verifies them
checking within the LDAP server: if a user exists with that
credentials, a new session key is saved within the local
Database associated to the username and is sent back to
the AA of the Cloud A.

Now that the login phase has been accomplished and the
AA of Cloud A holds a valid session key (also registered
within the Database), in step 6, it is redirected to the AA of

Cloud B where it is now authenticated and able to perform
operations: using its username and its session key, Cloud A
can now perform the operations needed for creating VMs
instances within Cloud B. In the example reported in Figure
4, the Add operation is performed for allocating 3 new VMs.

The AA of Cloud B receives the request and control
the associated username and session key: such information
are then forwarded to the component that is responsible of
managing the XRI graph, which performs the addition of
the needed nodes and associate them with the session key
associated to the username from which the VMs request is
coming. From now on, only the entity that holds that key will
be able to access those graph node for retrieving information
on the new instantiated VMs. An example of possible XRI
graphs of cloud A and B is analyzed in the next Section.

Figure 4. Authentication process and resource information sharing among
Cloud A and Cloud B

VI. XRI GRAPH REPRESENTATION OF VMS

In this Section, we show how can be possible to logically
organize and manage data associated to a cloud provider
by means of XDI and XRI-addressable RDF graphs. More
specifically, considering the scenario, we have already
pointed out, we discuss how to represent both VMs hosted
within the cloud data-center and VMs lent/borrowed to/from
other cloud providers. Moreover, for each XRI graphs, we
will show the corresponding XDI documents generated in
our testbed. XDI allows to represent RDF XRI graph by
means of three main elements:

• Subject, e.g., <xdi:s xri=”entry”> ... </xdi:s>. It can
be a real/abstract entity represented by means of an
XRI entry. Examples can be, the cloud iteself, an
administrative domain, a cluster, a server, a VM, a
cloud-based service instance, an user, etc.

• Reference, e.g., <xdi:ref xri=”entry”> ... </xdi:ref>.
It is a reference to a subject.

• Predicate, e.g., <xdi:p xri=”relation”> ... </xdi:p>. It
can be relation between two or more subjects.

At the beginning, how depicted in Figure 5, cloud A has
an administrative domain including cluster1 and cluster2.
Cluster 1 includes server1 which hosts VM1 and VM2,

6

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

instead cluster 2 includes server2 which hosts VM3. Cloud
A has also two users: user1 and user 2. User1 holds VM1
hosted in server1 of cluster1 and VM3 hosted in server 2 of
cluster 2. User 2 holds VM2 hosted in server1 of cluster1.

Figure 5. Cloud A graph before federation.

The corresponding XDI code is shown in the following.
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<x d i : x d i xmlns : x d i =” h t t p : / / x d i . o a s i s−open . o rg”>

<x d i : s x r i =”= u s e r 1”>
<x d i : p x r i =” hasa”>

<x d i : r e f x r i =”+VM1”/>
<x d i : r e f x r i =”+VM3”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”= u s e r 2”>

<x d i : p x r i =” hasa”>
<x d i : r e f x r i =”+VM2”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ e x t e r n ”/>
<x d i : s x r i =”+ admin”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+ c l u s t e r 1 ”/>
<x d i : r e f x r i =”+ c l u s t e r 2 ”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ admin+ c l u s t e r 1 ”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+ s e r v e r 1 ”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ admin+ c l u s t e r 2 ”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+ s e r v e r 2 ”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ admin+ c l u s t e r 1 + s e r v e r 1”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+VM1”/>
<x d i : r e f x r i =”+VM2”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ admin+ c l u s t e r 2 + s e r v e r 2”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+VM3”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM2”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>

<x d i : s x r i =”+VM3”>
<x d i : p x r i =”DATA”>

<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>
</ x d i : p>

</ x d i : s>
<x d i : s x r i =”+VM1”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ admin+ c l u s t e r 1 + s e r v e r 1 +VM1”/>
<x d i : s x r i =”+ admin+ c l u s t e r 1 + s e r v e r 1 +VM2”/>
<x d i : s x r i =”+ admin+ c l u s t e r 2 + s e r v e r 2 +VM3”/>

</ x d i : xdi>

At the same time (see Figure 6), cloud B includes cluster1
with server1 and server2. Server1 hosts VM1 and VM2,
instead server2 hosts VM3. For simplicity, let us suppose
that all VMs are reserved.

Figure 6. Cloud B graph before federation.

The corresponding XDI code is shown in the following.
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<x d i : x d i xmlns : x d i =” h t t p : / / x d i . o a s i s−open . o rg”>

<x d i : s x r i =”+ e x t e r n ”/>
<x d i : s x r i =”= admin”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+ c l u s t e r 1 ”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”= admin+ c l u s t e r 1 ”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+ s e r v e r 1 ”/>
<x d i : r e f x r i =”+ s e r v e r 2 ”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”= admin+ c l u s t e r 1 + s e r v e r 1”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+VM1”/>
<x d i : r e f x r i =”+VM2”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”= admin+ c l u s t e r 1 + s e r v e r 2”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+VM3”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM2”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM3”>

7

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM1”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”= admin+ c l u s t e r 1 + s e r v e r 1 +VM1”/>
<x d i : s x r i =”= admin+ c l u s t e r 1 + s e r v e r 1 +VM2”/>
<x d i : s x r i =”= admin+ c l u s t e r 1 + s e r v e r 2 +VM3”/>

</ x d i : xdi>

Then, let us suppose that user2 of cloudA requires three
additional VMs. As cloud A realizes that it does not have
enough resources for instantiate further VMs, it establishes a
federation with cloud B, as already described in the previous
Section. After authentication, cloudA sends a request for the
instantiation of three VMs. So that, cloud B instantiates three
VMs in its own datacenter, i.e., VM4 in server1 and VM5
and VM6 in server2. The corresponding updated graph is
depicted in Figure 7. Moreover, an user entry for cloud A
is created linking the three new instantiated VMs with a
reference to them.

Figure 7. Cloud B graph after federation.

The corresponding XDI code is shown in the following.
<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<x d i : x d i xmlns : x d i =” h t t p : / / x d i . o a s i s−open . o rg”>

<x d i : s x r i =”+ e x t e r n ”/>
<x d i : s x r i =”= admin”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+ c l u s t e r 1 ”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”= admin+ c l u s t e r 1 ”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+ s e r v e r 1 ”/>
<x d i : r e f x r i =”+ s e r v e r 2 ”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”= admin+ c l u s t e r 1 + s e r v e r 1”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+VM1”/>
<x d i : r e f x r i =”+VM2”/>
<x d i : r e f x r i =”+VM4”/>

</ x d i : p>
</ x d i : s>

<x d i : s x r i =”= admin+ c l u s t e r 1 + s e r v e r 2”>
<x d i : p x r i =” $has”>

<x d i : r e f x r i =”+VM3”/>
<x d i : r e f x r i =”+VM6”/>
<x d i : r e f x r i =”+VM5”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM2”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM3”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM1”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”= admin+ c l u s t e r 1 + s e r v e r 1 +VM1”/>
<x d i : s x r i =”= admin+ c l u s t e r 1 + s e r v e r 1 +VM2”/>
<x d i : s x r i =”= admin+ c l u s t e r 1 + s e r v e r 2 +VM3”/>
<x d i : s x r i =”+VM6”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>

<x d i : s x r i =”+ cloudA”>
<x d i : p x r i =” hasa”>

<x d i : r e f x r i =”+VM6”/>
<x d i : r e f x r i =”+VM5”/>
<x d i : r e f x r i =”+VM4”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM5”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM4”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>

</ x d i : xdi>

Finally, cloud B sends the data related to the three instan-
tiated VMs (e.g., how to access the VM, IP address, CPU,
RAM, storage, operating system, etc) to cloud A which
update its XRI graph. For simplicity in the XDI document,
we indicated such information with the string “DATA”. As
depicted in Figure 8, cloud A, under the “extern” entry,
creates an entry for cloud B, linking nodes representing the
three extern VMs. More specifically, +Ext-VM1, +Ext-VM2,
+Ext-VM3 are aliases of the three VMs instantiated in cloud
B.

The corresponding XDI code is shown in the following.

<?xml v e r s i o n = ” 1 . 0 ” e n c o d i n g =”UTF−8”?>
<x d i : x d i xmlns : x d i =” h t t p : / / x d i . o a s i s−open . o rg”>

<x d i : s x r i =”= u s e r 1”>
<x d i : p x r i =” hasa”>

<x d i : r e f x r i =”+VM1”/>
<x d i : r e f x r i =”+VM3”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”= u s e r 2”>

<x d i : p x r i =” hasa”>
<x d i : r e f x r i =”+VM2”/>
<x d i : r e f x r i =”+EXT+VM1”/>
<x d i : r e f x r i =”+EXT+VM3”/>
<x d i : r e f x r i =”+EXT+VM2”/>

8

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Cloud A graph after federation.

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ e x t e r n”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+ cloudB ”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ admin”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+ c l u s t e r 1 ”/>
<x d i : r e f x r i =”+ c l u s t e r 2 ”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ admin+ c l u s t e r 1 ”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+ s e r v e r 1 ”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ admin+ c l u s t e r 2 ”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+ s e r v e r 2 ”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ admin+ c l u s t e r 1 + s e r v e r 1”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+VM1”/>
<x d i : r e f x r i =”+VM2”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ admin+ c l u s t e r 2 + s e r v e r 2”>

<x d i : p x r i =” $has”>
<x d i : r e f x r i =”+VM3”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM2”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM3”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+VM1”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ admin+ c l u s t e r 1 + s e r v e r 1 +VM1”/>
<x d i : s x r i =”+ admin+ c l u s t e r 1 + s e r v e r 1 +VM2”/>
<x d i : s x r i =”+ admin+ c l u s t e r 2 + s e r v e r 2 +VM3”/>
<x d i : s x r i =”+ e x t e r n +cloudB”>

<x d i : p x r i =” $has”>

<x d i : r e f x r i =”+EXT+VM1”/>
<x d i : r e f x r i =”+EXT+VM2”/>
<x d i : r e f x r i =”+EXT+VM3”/>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+EXT+VM2”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+EXT+VM3”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+EXT+VM1”>

<x d i : p x r i =”DATA”>
<x d i : da t a ><![CDATA[DATA]]></ x d i : da t a>

</ x d i : p>
</ x d i : s>
<x d i : s x r i =”+ e x t e r n +cloudB+EXT+VM1”/>
<x d i : s x r i =”+ e x t e r n +cloudB+EXT+VM2”/>
<x d i : s x r i =”+ e x t e r n +cloudB+EXT+VM3”/>

</ x d i : xdi>

In the end, references to entries +Ext-VM1, +Ext-VM2,
+Ext-VM3 are linked to user2 who is able to access the
three VMs. The interesting thing is that both cloud A and
user2 are not aware of the details of where the three VMs
are hosted: they can only know the information related to
the three VMs. Further information related to cloud B are
hidden.

VII. CONCLUSIONS AND REMARKS

In this paper, we focused on how to apply XDI to a
federated cloud scenario to represent and exchange data
related to cloud-based services. As pointed out, XDI can be
used to design several high-level management mechanisms
in a cloud system, supporting both data models and security.
More specifically, we discuss how can be possible to design
XDI-based mechanisms in a cloud system using the Hig-
gings framework focusing on a scenario of federated IaaS
clouds lending/borrowing VMs each other. In the end, an
use case has been described and implemented, showing the
XRI graphs representing VMs and the corresponding XDI
documents before and after a federation between two clouds.
XDI is a generalized, extensible service for sharing, linking,
and synchronizing structured data over the Internet originally
thought for web-based systems. In this paper, we hope to
success stimulating your interest toward the designing and
development of XDI-based mechanisms for cloud computing
system. In future works we plan to evaluate the performance
of the system also considering the overhead due to the
security.

REFERENCES

[1] M. V. A. P. Antonio Celesti, Francesco Tusa, “Evaluating an
open source extensible resource identifier naming system for
cloud computing environments,” in The Third International
IARIA Conference on Evolving Internet (INTERNET 2011),
pp. 26–31, June 2011.

[2] OpenXRI Project, XRI applications and libraries,
http://www.openxri.org/.

9

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] D. Reed, G. Strongin, XDI (XRI Data Interchange), A White
Paper for the OASIS XDI Technical Committee v2, OASIS,
2004.

[4] “Higgings personal data service,
http://www.eclipse.org/higgins/.”

[5] A. Celesti, M. Villari, and A. Puliafito, “Ecosystem of cloud
naming systems: An approach for the management and inte-
gration of independent cloud name spaces,” (Los Alamitos,
CA, USA), pp. 68–75, IEEE Computer Society, 2010.

[6] G.-J. Ahn, M. Ko, and M. Shehab, “Privacy-enhanced user-
centric identity management,” in IEEE International Confer-
ence on Communications, ICC ’09, pp. 14–18, June 2009.

[7] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and
grid computing 360-degree compared,” in Grid Computing
Environments Workshop, 2008. GCE ’08, pp. 1–10, 2008.

[8] R. L. Grossman, “The case for cloud computing,” in IT
Professional, vol. 11, pp. 23–27, March 2009.

[9] E. Brynjolfsson, P. Hofmann, and J. Jordan, “Cloud comput-
ing and electricity: beyond the utility model,” Commun. ACM,
vol. 53, pp. 32–34, May 2010.

[10] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia, “A view of cloud computing,” Commun. ACM,
vol. 53, pp. 50–58, April 2010.

[11] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A berkeley view of
cloud computing,” Tech. Rep. UCB/EECS-2009-28, EECS
Department, University of California, Berkeley, Feb 2009.

[12] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging it platforms: Vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Computer Systems, vol. 25, no. 6, pp. 599 – 616,
2009.

[13] D. Yang, Y. Qin, H. Zhang, H. Zhou, and B. Wang, “Urns: A
new name service for uniform network resource location,”
in Wireless, Mobile and Multimedia Networks, 2006 IET
International Conference, pp. 1–4, 2006.

[14] Y. Doi, S. Wakayama, M. Ishiyama, S. Ozaki, T. Ishihara,
and Y. Uo, “Ecosystem of naming systems: discussions on a
framework to induce smart space naming systems develop-
ment,” in ARES, p. 7, April 2006.

[15] Y. Doi, “Dns meets dht: treating massive id resolution using
dns over dht,” in Applications and the Internet International
Symposium, pp. 9–15, January 2005.

[16] S. Chaisiri and P. Uthayopas, “Survey of resource discovery
in grid environments,” tech. rep., High Performance Com-
puting and Networking Center, Department of Computer
Engineering, Faculty of Engineering, Kasetsart University,
50 Phaholyothin Rd., Chatuchak, Bangkok 10900, Thailand,
April 2008.

[17] A. Sharma and S. Bawa, “Comparative analysis of resource
discovery approaches in grid computing.,” JCP, vol. 3, no. 5,
pp. 60–64, 2008.

[18] A. Hameurlain, D. Cokuslu, and K. Erciyes, “Resource
discovery in grid systems: a survey,” Int. J. Metadata
Semant. Ontologies, vol. 5, pp. 251–263, July 2010.

[19] H. Sun, J. Huai, Y. Liu, and R. Buyya, “RCT: A distributed
tree for supporting efficient range and multi-attribute queries
in grid computing,” Future Gener. Comput. Syst., vol. 24,
no. 7, pp. 631–643, 2008.

[20] Y. Mei, X. Dong, W. Wu, S. Guan, and J. Li, “Sdrd: A novel
approach to resource discovery in grid environments,” in
Advanced Parallel Processing Technologies (M. Xu, Y. Zhan,
J. Cao, and Y. Liu, eds.), vol. 4847 of Lecture Notes in
Computer Science, pp. 301–312, Springer Berlin / Heidelberg,
2007. 10.1007/978-3-540-76837-1 34.

[21] Wikipedia OpenID,
http://en.wikipedia.org/wiki/OpenID, July 2011.

[22] OpenID World Wide Usage,
http://www.ariadne.ac.uk/issue51/powell-recordon/, June
2007.

[23] The Security Vulnerability of Reassignable Identifiers,
http://dev.inames.net/wiki/XRI and OpenID, July 2011.

[24] Extensible Resource Identifier (XRI) Syntax V2.0, Committee
Specification, OASIS, 2005.

[25] Extensible Resource Identifier (XRI) Resolution V2.0, Com-
mittee Draft 03, OASIS, 2008.

[26] A. Celesti, M. Villari, and A. Puliafito, “Ecosystem of cloud
naming systems: An approach for the management and in-
tegration of independent cloud name spaces,” IEEE Interna-
tional Symposium on Network Computing and Applications
(IEEE NCA10), vol. 0, pp. 68–75, 2010.

[27] A. Celesti, F. Tusa, M. Villari, and A. Puliafito, “How to
enhance cloud architectures to enable cross-federation,” in
2010 IEEE 3rd International Conference on Cloud Comput-
ing, pp. 337–345, IEEE, July 2010.

[28] A. Celesti, M. Villari, and A. Puliafito, “A Naming System
Applied to a Reservoir Cloud,” in 2010 Sixth International
Conference on Information Assurance and Security (IAS),
pp. 247–252, IEEE, August 2010.

[29] Resources and Services Virtualization without Barriers
(Reservoir) European Project,
http://www.reservoir-fp7.eu/.

[30] “Xri data interchange, oasis, http://wiki.oasis-
open.org/xdi/xdigraphmodel.”

[31] Organization for the Advancement of Structured Information
Standards (OASIS), http://www.oasis-open.org.

10

International Journal on Advances in Internet Technology, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/internet_technology/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

