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Abstract— Annotating a large set of images, especially with
bounding boxes, is a tedious task. In this paper, we propose an
intuitive image annotation tool. This tool not only allows (non-
expert) users to annotate images with novel concepts, but is
also able to achieve acceptable performance with a smaller
number of annotated images. The tool also proposes detections
on unannotated images, to provide faster annotation and
insight in the performance of the system. The tool is based on a
Single Shot Multi-box Detector (SSD) neural network with
active learning, by showing the images with high-confidence
detections first, to have a fast verification and re-training. An
experiment on simulated data shows that this active learning
method can achieve higher performance in a shorter expected
annotation time with a small number of images (less than 500).
A small experiment on user annotated data shows that the
annotation tool allows faster annotation compared to the case
without the annotation tool.

Keywords-image annotation; concept localization; deep
learning; active learning.

I. INTRODUCTION

Concept detection is relevant to automatically detect and
localize concepts in images and facilitate user query by
keywords to find relevant images. Some generic concepts
are publicly available (e.g., in YOLO9000 [1] or SSD [2]),
but this is not sufficient for many applications in the
security domain. For example, when looking for
radicalization in online videos or when looking for products
on illegal market places, specific concept detectors are
required. For law-enforcement agencies, it is important to
adapt a concept detector for their own specific concepts.
Therefore, it is important to have an annotation tool that
assists users to flexibly train novel concepts with minimal
annotation effort.

Our main contribution is that we demonstrate an
annotation tool that can use different active-learning
strategies to train novel concepts with minimal effort. High-
confidence detection has the advantage that minimal
adjustments are needed [3]. Uncertain detections have the
advantage that they are close to the decision boundary and
that only a minimal amount of detections is needed [4]. In
our experiments on the Nexar Challenge dataset [42], we
show that the high-confidence detections minimize the
annotation time and that both approaches perform better
than random selection of the data. In our experiment on

traffic images, we show that working with the annotation
tool and active learning is faster compared to the case
without the annotation tool.

The outline of this paper is as follows. Section 2 gives an
overview of related work, Section 3 describes the annotation
tool, Section 4 describes the experiments with the different
annotation techniques, Section 5 shows the results and
Section 6 summarizes conclusions.

II. RELATED WORK

In active learning, the results that are most informative
for the system are displayed to a user to annotate and
quickly learn a better model. We focus on active learning in
which a large pool of unlabeled data is present and where
the user may examine and select items from (pool-based
sampling), as opposed to active learning based on streaming
data (selective sampling) or synthesized data (query
synthesis) [5][6]. Methods to measure informativeness
include uncertainty sampling [7], query-by-committee,
expected gradient length, Fisher information and
information density [6]. Methods in uncertainty sampling
include using the posterior probability or the entropy to
measure the uncertainty and use the most uncertain items to
learn from. Query-by-committee involves the Kullback-
Leibler divergence [44] and voting of multiple classifiers to
include items the classifiers disagree on. Expected gradient
length uses the item that would create the largest change in
the model if the label was known (largest expected
gradient). Using the Fisher information [45], the item that
minimizes the model variance is chosen. Information
density weights the informativeness with the average
similarity to all other items. While the other methods might
favor outliers to select as most informative, this method
does not.

In the computer-vision domain, active learning is
typically used to train (or improve) concepts [8]. Active
learning is distinguished from relevance feedback. In
relevance feedback, the goal is to create a better model for a
certain query by using positive and negative results, but not
necessarily the most informative results. Typically in
computer vision, the uncertainty sampling technique is used
in which the items closest to the current boundary between
the positive and negative items are perceived as the most
uncertain items [9]-[13]. Zhao and Ding [14] use uncertainty
sampling and use the top list as uncertain samples and the
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bottom list as fake negatives. Goh et al. [15] propose
different sampling strategies for different semantic concepts
based on scarcity, isolation and diversity, and Luan et al.
[16] propose to start with items far from the boundary and
move toward the items close to the boundary. Gavves et al.
[17] propose to use zero-shot classifiers with priors to
initialize and use a maximum conflict-label equality
condition to select the most informative items. Holub et al.
[18] and Kovashka et al. [19] use the entropy to determine
the most informative items. Vondrick and Ramanan [20] use
the Expected Gradient Length method. Dasgupta and Hsu
[21] use hierarchical sampling and Zhu et al. [22] use a
neighborhood graph on the unlabeled data.

With the current advances in Deep Learning, active
learning has also been used. The activation of the softmax
can be interpreted as the distance from the decision
boundary [23]. Wang et al. [24] use the softmax response
and pseudo-labelling of ‘confident’ samples in active
learning with neural networks, and Zhou et al. [25] use the
softmax response from Restricted Boltzmann machines.
Stark et al. [26] use the highest output and divide this by the
second highest to obtain an uncertainty. Geifman and El-
Yaniv [23] and Sener and Savarese [27] propose to use
coresets of the unlabeled data based on the activations in the
neural network. Gal et al. [28] compare different
informativeness measures, including maximum entropy,
mutual information method named BALD by Houlsby et al.
[29], and variation ratios, for Bayesian Neural Networks.
Ducoffe et al. [30] use the query-by-committee strategy.
They use a committee of partial Convolutional Neural
Networks (CNNs) and batchwise dropout. The
informativeness of an item is measured by the quantity of
disagreement about the prediction of the label among the
partial CNNs.

In concept localization, the goal is not only to correctly
detect a concept, but to also localize this concept. There are
several ways to handle concept localization [3] including
drawing bounding boxes, segmentation, using point-click
methods, using eye-tracking, using interactive annotation,
using weakly-supervised object localization techniques and
using active learning. In the weakly-supervised object
localization techniques, Kolesnikov and Lampert [31]
propose an annotation technique to improve object
localization. This technique is based on the insight that
objects and distractors form different clusters in the
representation of a deep neural network. Cinbis et al. [32]
use multi-fold multiple instance learning for the weakly
supervised object localization. Konyushkova et al. [3]
compare concept localization and annotation techniques
such as weak and strong detectors, the difference between
Drawing and Verification of the boxes, horizontal (re-
training the whole detector) and vertical re-training (using a
fixed detector and re-train with only the new part). The
results show that horizontal training is better than vertical
re-training. They used an annotation set of almost 5,000
images. Kao et al. [33] propose different evaluation metrics

for localization: localization tightness (by estimating how
tight the bounding box might enclose the true bounding
box) and localization stability (by adding Gaussian noise) to
select the items for active learning.

III. ANNOTATION TOOL

We developed an annotation tool where the user can
annotate given concepts and train a deep neural network to
detect and localize these concepts in an image. The user can
select the concepts using a rectangle selection tool, as
depicted in Figure 1. The user can upload images with the
Graphical User Interface (GUI) to annotate or detect
concepts. The user can also upload reference images for
each concept. This will determine the concepts the tool is
able to detect.

A. Deep Learning Network

The network we use for detecting the concepts is the
Single Shot multi-box Detector (SSD) network [2]. We use
the SSD300 network, which takes an image of 300 by 300
pixels as input and outputs the locations of detected
concepts with a confidence score between 0 and 1. This
confidence can be used to threshold the resulting detections.
The number of output concepts is set to the number of
concepts defined in the GUI. The network is pretrained on
PASCAL VOC [34], MS-COCO [35], and ILSVRC [36].

B. (Re)Training for Concept Detection

After annotating a number of images, a neural network
can be trained to detect the annotated concepts. We take all
images that have a detection as an input to the training of
the network. The images are converted to images of 300 by
300 pixels and the detections are converted using detection
priors for input of the network. We freeze the first 3 layers
to decrease the chance of overtraining on the current dataset.
We train for 20 epochs and store the weights for each epoch.
We use horizontal flipping and saturation variance for
image augmentation. The batch size is set to 4 images. The
weight file with the smallest loss is chosen as the weights to
detect the concepts. Each time the network is trained the
weights are reset to the pretrained weights on PASCAL
VOC, MS-COCO, and ILSVRC. After the network is
trained, the tool can run the network on an image and show
the concepts the network detected. The slider controls the
threshold of which detections are visible in the GUI, as
shown in Figure 2.

The resulting detections can now be corrected by moving
or resizing them or they can be accepted as they are. This
process can be repeated multiple times resulting in
increasing performance of the model.

C. Active Learning

As active learning technique, we choose the method by
Konyushkova et al. [13] (high-confidence). The items will
be sorted from highest to lowest, so the most confident
items will be shown to the user first.
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Figure 1. Overview of the GUI of the annotation tool; two concepts are annotated in this image.

Figure 2. Detected concepts by the network with a low threshold (0.4) on the left and a high threshold (0.6) on the right.

IV. EXPERIMENTS

In our experiments, we want to 1) verify our active
learning choice and 2) validate that the annotation tool with
active learning improves the annotation speed. In the first
experiment, we use a vehicle dataset and calculate the
anticipated performance and timing for each active learning
method. In the second experiment, we use a street view
dataset and ask the annotator to annotate the cars, bikes and
persons.

A. Simulation

1) Dataset
We use the NEXET data from the Nexar Challenge 2

[42]. This open dataset contains 50,000 diverse images from
the rear of vehicles from different locations. The bounding
box annotations are included. We use the 5,000 images
taken at daylight from New York City, with approximately
16,900 detections in total. All classes (car, vehicle, truck,
pickup_truck, van) are renamed to ‘vehicle’ to focus on just
one class. We randomly select 60% as train set (10,200

detections) and 40% as a held-out test set (6,700 detections).
As evaluation, we use the evaluation script provided with
the challenge, that calculates the mean Average Precision
(mAP) with an Intersection over Union (IoU) of 0.75.

2) Conditions
In our experiments, we compare three conditions: 1. our

chosen active learning technique based on Konyushkova et
al. [13] (high-confidence), 2. the baseline (random selection
of images) and 3. the uncertainty sampling technique
(uncertainty).

In the uncertainty condition, the items closest to the
current boundary between the positive and negative items
are perceived as the most uncertain items. In this
experiment, we select the items around the confidence value
of 0.4 as most uncertain (based on experience):

,
where is the confidence of item i and is the uncertainty
of item i.

Based on the uncertainty items, the images are sorted in
the order of lowest to highest, so the images with the most
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uncertain items will be shown to the user first. The images
are, thus, selected based on a single uncertain detection. All
detections of this image, including the possibly more certain
detection, are shown to the user. In the random selection,
random images are selected and in high-confidence the
values of will be sorted from highest to lowest, so the
most confident items will be shown to the user first.

3) Active Learning runs
For each of the three conditions explained in the previous

section, we start with a model that is trained on 125
randomly selected images. We then apply the trained model
on the trained images again to get the detections. We select
50 new images according to the condition and train a model
on the 125 + 50 images. We thus train three new models,
one based on each condition, with a different set of 175
images of which 50 are new. We apply this new model for
this specific condition on the train images again and select
75 new images according to the condition. We train a model
on the 125 + 50 + 75 images. We increase the number of
images added, because a larger trainset requires a larger
number of images being added to this set to make a
difference. We keep on adding images with increasing step
size until 2000 images.

4) Simulated Timing
In our experiments, we can automatically calculate the

performance using the different active learning techniques,
but we need an estimation of annotation time to simulate the
timing. In the literature, different annotation times are
mentioned [37]-[40], varying from 1.6 seconds to verify a
bounding box to 25 second to draw a bounding box. An
explanation for these differences in timing is the quality of
the bounding box. Based on the results from these papers,
we assume that it will take at least twice as long to draw a
bounding box compared to verifying a bounding box. If the
bounding box is, however, not correct, our tool allows users
to adjust the bounding box. In previous experiments [41],
we found that adjusting a bounding box takes on average
twice as long as drawing a new bounding box. We use these
proportions to indicate the timing.

Besides the timing to verify and modify a bounding box,
we need a definition of when a bounding box is correct. We
use the IoU for this purpose. If the IoU is higher than or
equal to 0.9, the bounding box is perceived correct. If the
IoU is between 0.5 and 0.9, the bounding box should be
modified. In the cases that the IoU is lower than 0.5, no
close enough match is found and a new bounding box
should be drawn. Based on literature and our own previous
experiment, we take the following annotation times (Table
I).

TABLE I. TIMING ESTIMATES

Definition Time (seconds)

ValidateCorrectBBox IoU => 0.9 0.5

ModifyBBox 0.5 <= IoU < 0.9 2.0

CreateBBox IoU < 0.5 1.0

B. User Experiment

We use the vehicle dataset from the H2020 InDeV (“In-
Depth understanding of accident causation for Vulnerable
road users”) project [43]. The dataset consists of 269 images
and in total 1424 annotated vehicle bounding boxes. Of this
dataset, 2%, 10% or 50% is used for training and 66 images
(25%) are used for performance estimation. Four volunteers
each annotated the same 66 images from this dataset four
times. The first experiment is a manual mode and the other
experiments are in assisted mode. The second experiment is
based on a detector that is trained on a random selection of
2% of the data. In the third experiment, the detector is
trained twice. The detector is first trained on 2% of the data,
then the uncertainty-based active-learning approach is used
to select the next 8% of data and the detector is trained
again on the total 10%. In the fourth experiment, the
detector is trained three times: first on random 2%, then on
10% and 50%, to allow reordering with active learning. To
compensate for a learning effect, we use a Latin square.

The dataset is fully annotated. Therefore, it was possible
to prepare all the data and perform training offline. So, the
users only had to annotate the 66 images during the
experiment.

V. RESULTS

A. Simulation

1) mAP Performance
Figure 3 shows the mAP performance for different

conditions (average over 10 runs). The plot shows that high-
confidence stably increases with an increasing number of
images. At 350 images, high-confidence reaches a mAP that
is 22% higher than the mAP for random. However, this
technique flattens out at the end. This is in agreement with
the expectations, because high-confidence detections are
becoming less and less informative. Uncertainty is closer to
random with a smaller number of images, but improves with
more images compared to high-confidence. At 2000 images,
uncertainty reaches a mAP that is 3% higher than the mAP
of high-confidence. This is also in agreement with the
expectations, because initially the low-confidence detections
can be confusing, but in the end the uncertain detections
appear most informative.

2) Simulated Timing
Figure 4 shows the timing for the different performances

(average over 10 runs). Random_baseline is without using
the detections and Random is with using the detections.

Random_baseline is slower than random (including
detections) with a smaller number of images. High-
confidence is the techniqu that achieves a high performance
in the least time. The high-confidence approach reaches an
mAP of 0.2 70% faster than random. Because this technique
uses the detections with the highest confidence, detections
were more often validated as correct (with minimal
annotation time) without necessity to modify the detections.
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Uncertainty is not faster compared to random. The results
are summarized in Table II. The table shows that high-
confidence sampling reaches higher mAP in less time than
the alternative methods.

Figure 3. mAP performance for different number of train images,
for all three conditions.

Figure 4. Estimated timing in seconds with respect to the mAP
performance.

TABLE II. SUMMARY SIMULATION RESULTS

mAP (%)
at 250 im.

Time (min)
at mAP=20%

Random sampling 17 13
Uncertainty sampling 16 16
High-confidence sampling 21 7

B. User Experiment

Tables III and IV show the results for the user
experiment. Manual mode is significantly slower than
assisted mode, and the 50% active learning approach is
significantly faster than random 2%. Table IV shows that
there is a learning effect: the first experiment is 25% slower

than the average annotation time. This is expected, because
the same 66 images are annotated in each condition. If we
compensate for the learning effect by dividing the time by
the effect (i.e. for first experiment divide by 1.25), the
conclusion on manual vs. assisted is strengthened and the
difference between random 2% and active 50% is also
strengthened.

TABLE III. SUMMARY OF USER RESULTS

Manual Assisted
Random

2%

Assisted
Active
10%

Assisted
Active
50%

Average
Timing
(sec)

1078 ±
182

634 ±
207

562 ±
246

443 ±
87

TABLE IV. TIMING PER EXPERIMENT (ORDER)

Exp 1 Exp 2 Exp 3 Exp 4
Average Timing (sec) 807 637 646 629

VI. CONCLUSION

In this paper, we explained our annotation tool and
compared active learning techniques in an experiment with
a baseline of random image selection. The results of this
experiment on a vehicle detection and localization dataset
show that the High-confidence technique is faster than the
uncertainty and random technique and performs better with
a smaller number of images (<500).

In our second experiment, we tested our annotation tool
with four annotators and we can conclude that the
annotation tool in assisted mode with active learning is
faster than an annotation tool in manual mode.
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