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Abstract — Recently, as various types of networks are 

introduced, a number of Transmission Control Protocol (TCP) 

congestion control algorithms have been adopted.  Since the 

TCP congestion control algorithms affect traffic characteristics 

in the Internet, it is important for network operators to analyze 

which algorithms are used widely in their backbone networks.  

In such an analysis, a lot of TCP flows need to be handled and 

so the automatic processing is indispensable.  This paper 

proposes a machine learning based method for estimating TCP 

congestion control algorithms.  The proposed method uses a 

passively collected packet traces including both data and ACK 

segments, and calculates a time sequence of congestion window 

size for individual TCP flows contained in the traces.  We use a 

classifier based on deep recurrent neural network in the 

congestion control algorithm estimation.  As the results of 

applying the proposed classifier to ten congestion control 

algorithms, we obtained high accuracy of classification 

compared with our previous work using recurrent neural 

network with one hidden layer.  This paper also describes the 

results of applying the classifier to popular web servers for 

checking the distribution of congestion control algorithms in the 

real world.   

Keywords — TCP; Congestion Control; Deep Recurrent 

Neural Network. 

I. INTRODUCTION 

This paper is an extension of our previous paper [1], which 
was presented at the IARIA conference EMERGING 2022.   

Along with the introduction of various types of networks, 
such as a long-haul high speed network and a wireless mobile 
network, a number of TCP congestion control algorithms have 
been designed, implemented, and widely spread [2].  Since the 
congestion control was introduced [3], a few algorithms, such 
as TCP Tahoe [4], TCP Reno [4], and NewReno [5], have 
been used commonly for some decades.  Recently, new 
algorithms have been introduced and deployed.  For example, 
HighSpeed TCP [6], Scalable TCP [7], BIC TCP [8], CUBIC 
TCP [9], and Hamilton TCP [10] are designed for high speed 
and long delay networks.  TCP Westwood+ [11] is designed 
for lossy wireless links.  While those algorithms are based on 
packet losses, TCP Vegas [12] triggers congestion control 
against an increase of Round-Trip Time (RTT).  TCP Veno 
[13] combines loss based and delay based approaches in such 
a way that congestion control is triggered by packet losses but 
the delay determines how to grow the congestion window 
(cwnd).  In 2016, Google proposed a new algorithm called 
TCP BBR (Bottleneck Bandwidth and Round-trip 

propagation time) [14] to solve problems mentioned by 
conventional algorithms.   

Since TCP traffic is a majority in the Internet traffic and 
the TCP congestion control algorithms characterize the 
behaviors of individual flows, the estimation of congestion 
control algorithms for TCP traffic is important for network 
operators.  It can be used in various purposes such as the traffic 
trend estimation, the planning of Internet backbone networks, 
and the detection of malicious flows violating congestion 
control algorithms.   

The approaches for congestion control algorithm 
estimation are categorized into the passive approach and the 
active approach.  The former estimates algorithms from 
packet traces passively collected in the middle of networks.  
In the latter approach, a test system communicates with a 
target system with a specially designed test sequence.  
Although the active approach is capable to identify various 
congestion control algorithms proposed so far, it does not fit 
the algorithm estimation of real TCP flows.  On the other hand, 
generally speaking, the detecting capability of passive 
approaches is relatively low comparing with the active 
approach.   

Previously, we proposed a passive method that can 
estimate a number of congestion control algorithms [15][16].  
In this proposal, we focused on the relationship between the 
estimated congestion window size and its increment.  Their 
relationship is indicated as a graph and the congestion control 
algorithm is estimated based on the shape of the graph.  Our 
proposal succeeded to identify eight congestion control 
algorithms implemented in the Linux operating system, 
including recently introduced ones.   

However, the identification is performed manually by 
human inspectors, and so it is difficult to deal with a large 
number of TCP flows.  So, we proposed a machine learning 
based classifier estimating the TCP congestion control 
algorithms using TCP packet traces in two steps [17][1].  In 
our first trial [17], we used a conventional Recurrent Neural 
Network (RNN) with one hidden layer.  From a packet trace, 
we estimate the relationship of cwnd values and their 
increment with congestion control algorithm labels, and apply 
the results to a RNN classifier for training.  Using the RNN 
classifier, we estimate the algorithms for other packet traces.  
We obtained a relatively good estimation result from the RNN 
classifier, but we could not classify similar algorithms, such 
as TCP Reno and Vegas.  In our second trial [1], we proposed 
a revised version of machine learning classifier for automatic 
estimation of congestion control algorithms.  Here, we 
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adopted a Deep Recurrent Neural Network (DRNN) with 
multiple hidden layers.  We also applied a hyper parameter 
tuning for the classifier.  We picked up ten congestion control 
algorithms mentioned above and showed that our new 
approach can estimate those algorithms better than our first 
trial.   

This evaluation of our approach was performed in a simple 
in-lab test network environment.  Applying our approach to 
servers in the Internet will be effective to show its 
effectiveness and to investigate the trends of TCP congestion 
control algorithms in the real world.  We estimated the 
congestion control algorithms of 20,000 web servers listed in 
Alexa Top Sites 1,000,000 offered by Alexa Traffic Rank [18].  
This paper also shows the results of this estimation.   

The rest of this paper is organized as follows.  Section II 
gives some background information including the 
conventional studies on the congestion control estimation and 
the machine learning applied for the network areas.  Section 
III describes the proposed method and Section IV gives the 
performance evaluation results.  Section V discusses the 
results of the estimation of Internet web servers by the 
proposed method.  In the end, Section VI concludes this paper.   

II. BACKGROUNDS 

A. Studies on TCP Congestion Control Algorithm 

Estimation 

The proposals on the passive approach in the early stage 
[19-21] estimate the internal state and variables, such as cwnd 
and ssthresh (slow start threshold), in a TCP sender from 
bidirectional packet traces.  They emulate the TCP sender’s 
behavior from the estimated state/variables according to the 
predefined TCP state machine.  But, they considered only 
TCP Tahoe, Reno and New Reno and did not handle any of 
recently introduced algorithms.  Oshio et al. [22] proposed a 
method to discriminate one out of two different TCP 
congestion control algorithms randomly selected from 
fourteen algorithms implemented in the Linux operating 
system.  This method keeps track of changes of cwnd from a 
packet trace and to extract several characteristics, such as the 
ratio of cwnd being incremented by one packet.  Although this 
method targets all of the modern congestion control 
algorithms, they assumed that the discriminator knows two 
algorithms contained in the packet trace.   

The active approaches, on the other hand, are able to 
identify more TCP congestion control algorithms including 
those introduced recently.  Yang et al. [23] proposed a tool 
called CAAI (TCP Congestion Avoidance Algorithm 
Identification), which could identify recent TCP congestion 
control algorithms at first.  It makes a web server send 512 
data segments under the controlled network environment, and 
observes the number of data segments contiguously 
transmitted.  From those results, it estimates the window 
growth function and the decrease parameter to determine the 
congestion control algorithm.  Mishra et al. [24] proposed 
another active approach based tool called Gordon.  It makes a 
web server send several data segments and causes a packet 
loss intentionally.  By analyzing the retransmission and the 
following congestion avoidance sequence, it obtains cwnd 

values.  It then estimates congestion control algorithms based 
on the shape of cwnd time sequence graph, the increase of 
cwnd, and the back-off at packet loss.  It could estimate the 
recent congestion control algorithms and was applied to the 
20,000 web servers listed in the Alexa Top Sites.   

Our previous proposals [15][16] estimated cwnd in RTT 
intervals from bidirectional packet traces, in the similar way 
with the other methods.  Different from other methods, we 
focused on the incrementing situation of estimated cwnd 
values.  From the definition of individual congestion control 
algorithms, the graph of cwnd increments vs. cwnd has their 
characteristic forms.  For example, in the case of TCP Reno, 
the cwnd increment is always one segment.  In the case of 

CUBIC TCP, the graph of cwnd increment follows a √𝑐𝑤𝑛𝑑23
 

curve.   In this way, we proposed a way to discriminate eight 
congestion control algorithms in the Linux operating system.   

B. Studies on Application of Machine Learning to TCP 

Recently, several papers focus on applying the machine 
learning to TCP analysis.  Edalat et al. [25] proposed a method 
to estimate RTT using the fixed-share approach from 
measured RTT samples.  Mirza et al. [26] estimated the future 
throughput of TCP flow using the support vector regression 
from measured available bandwidth, queueing delay, and 
packet loss rate.  Chung et al. [27] proposed a machine 
learning based multipath TCP scheduler based on the radio 
strength in wireless LAN level, wireless LAN data rate, TCP 
throughput, and RTT with access point, by the random 
decision forests.   

III. PROPOSED METHOD 

A. Estimation of cwnd values at RTT interval 

In the passive approach, packet traces are collected at 
some monitoring point inside a network.  So, the time 
associated with a packet is not the exact time when the node 
focused sends/receives the packet.  Our scheme adopts the 
following approach to estimate cwnd values at RTT intervals 
using the TCP time stamp option.   

 Pick up an ACK segment in a packet trace.  Denote 
this ACK segment by ACK1. 

 Search for the data segment whose TSecr (time stamp 
echo reply) is equal to TSval (time stamp value) of 
ACK1.  Denote this data segment by Data1.   

 Search for the ACK segment that acknowledges 
Data1 for the first time.  Denote this ACK segment 
by ACK2.  Denote the ACK segment prior to ACK2 
by ACK1’.   

 Search for the data segment whose TSecr is equal to 
TSval of ACK2.  Denote this data segment by Data2.   

From this result, we estimate a cwnd value at the timing 
of receiving ACK1 as in (1).   

𝑐𝑤𝑛𝑑 =  ⌊
𝑠𝑒𝑞 𝑖𝑛 𝐷𝑎𝑡𝑎2−𝑎𝑐𝑘 𝑖𝑛 𝐴𝐶𝐾1′

𝑀𝑆𝑆
⌋  (segments)         (1) 

Here, seq means the sequence number, ack means the 
acknowledgment number of TCP header, and MSS is the 
maximum segment size (MSS).  ⌊𝑎⌋ is the truncation of a. 

Figure 1 shows an example of cwnd estimation.  In this 
figure, MSS is 1024 byte.  Data segments are indicated by 
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solid lines with “sequence number : sequence number + MSS.”  
ACK segments are indicated by dash lines with 
acknowledgment number.  When “ack 1” is picked up, data 
segment “1:1024” is focused on as Data1 above.  ACK 
segment “ack 2049” responding the data segment 
corresponds to ACK2.  The ACK segment before this ACK 
segment (ACK1’ above) is “ack 1” again.  Data2 in this case 
is “2049:3073.”  So, the estimated cwnd is (2049 – 1)/1024 = 
2.  Similarly, for the following two RTT intervals, the 
estimated RTT values are (5121 – 2049)/1024 = 3 and (10241 
–5121) /1024= 5.   

B. Selection and Normalization of Input Data to Classifier 

When a packet is lost and retransmitted, cwnd is 
decreased.  In order to focus on the cwnd handling in the 
congestion avoidance phase, we select a time sequence of 
cwnd between packet losses.  We look for a part of packet 
trace where the sequence number in the TCP header keeps 
increasing.  We call this duration without any packet losses 
non-loss duration.  We use the time variation of estimated 
cwnd values during one non-loss duration as an input to the 
classifier.  However, the length of non-loss duration differs 
for each duration, and the range of cwnd values in a non-loss 
duration also differs from one to another.  So, we select and 
normalize the time scale and the cwnd value scale for one 
non-loss duration.   

The algorithm for selecting and normalizing input to 
classifier is given in Figure 2.  In this algorithm, the input E 
is as time sequence of cwnd values estimated from one packet 
trace.  The input InputLength is a number of samples in one 
input to the classifier.  In this paper, we used 128 as 
InputLength.  This is because we think that the cwnd vs time 
curve can be drawn by 128 points.  In the beginning, the time 
sequence of cwnd is divided at packet losses, and the divided 
sequences are stored in a two dimensional array S.  Next, the 

first sequence S[0] is removed, because we focus only on the 
congestion avoidance phase.  Then S is reordered according 
to the length of cwnd sequence.  Then the cwnd values for 
one sequence S[t] are normalized between 0 and 1.  The 
normalization is performed in the following way.   

Let 𝑤𝑚𝑎𝑥[𝑡] = max (𝑆[𝑡][𝑢]) 
for 𝑢 = 0 ⋯ Len(𝑆[𝑡]) − 1, and 

𝑤𝑚𝑖𝑛[𝑡] = min (𝑆[𝑡][𝑢]) 
for 𝑢 = 0 ⋯ Len(𝑆[𝑡]) − 1. 
Each cwnd value in S[t] is normalized by 

𝑆[𝑡][𝑢] ←  
𝑆[𝑡][𝑢]−𝑤𝑚𝑖𝑛[𝑡]

𝑤𝑚𝑎𝑥[𝑡]−𝑤𝑚𝑖𝑛[𝑡]
. 

After that, the cwnd values are resampled into the number 
of InputLength (128 in this paper).  This is done by the loop 

 

Figure 1.  Example of cwnd estimation.   

ACK1,
ACK1’

Data1

ACK2

Data2

 

Figure 2.  Selection/normalization algorithm.   

Algorithm 1

1. function Normalize (E, InputLength)
2. S <- DivideAtLoss(E)
3. Delete(S[0])
4. S <- SortBySequenceLength(S)
5. for t = 0 to Len(S) - 1 do
6. S <- MinMaxNormalization(S)
7. end for
8. I <- Array(Len(S))
9. for t = 0 to Len(S) - 1 do
10. I[t] <- Array(InputLength)
11. for u = 0 to InputLength - 1 do
12. SurjectiveMap <- InputLength/Len(S[t])
13. Index <- Trunc(u / SurjectiveMap)
14. I[t][u] <- S[Index]
15. end for
16. end for
17. return I
18. end function

 
(a) Estimated cwnd for TCP Reno 

 
(b) Estimated cwnd for CUBIC TCP 

Figure 3.  Examples of cwnd estimation.   
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between step 11 and step 15.  As a result, a cwnd sequence in 
S[t] is converted to an array I[t] with 128 elements.  By this 
algorithm, all of the time sequences of cwnd values are the 
arrays with 128 elements whose value is between 0 and 1.   

Figure 3 shows some examples of cwnd estimation.  
Figure 3 (a) and (b) show the estimated cwnd time sequences 
for TCP Reno and CUBIC TCP, respectively.  We focus on 
the non-loss durations as described above.  Reno 1, Reno 2, 
CUBIC 1, and CUBIC 2 in the figure are examples.  The size 
of these sequences differ from each other, both for the time 
scale and the scale of cwnd.  Therefore, it is necessary to 
normalize these sequences.   

Figure 4 shows the results of the normalization for the 
examples shown in Figure 3.  Different scale of cwnd time 
sequences are transformed into a canonical form with 128 
samples in the range of 0 through 1.   

C. DRNN Based Classifier for Congestion Control 

Algotithm Estimation 

We used DRNN for constructing the classifier, which has 
three hidden layers and whose output layer defines the TCP 
congestion control algorithms.  Among the RNN 
technologies, we pick up the long short-term memory 
mechanism [28], which was proposed to handle a relatively 
long time sequence of data.  The input is a normalized time 
sequence of cwnd as described above, with using labels of 
congestion control algorithms represented by one-hot vector.   

In our previous work, we selected the hyper parameters 
given in Table I.  In the work presented in this paper, we 
select the hyper parameter ranges shown in Table II.  The 
input length is the same as that of the previous work.  We use 
three hidden layers and the number of neurons are as 
specified in the table.  As for the optimizer, the learning rate 
and the weight decay, we propose the alternatives shown in 
the table.  We perform the hyper parameter tuning based on 
the target area in this table.   

In the training of the classifier, we use the mini-batch 
method, which selects a specified number of inputs randomly 

from the prepared training data.   The mini-batch size will be 
determined for individual training.  The training will be 
continued until the result of the loss function becomes smaller 
than the learning rate.   

IV. EXPERIMENTAL RESULTS 

A. Experimental Setup 

 Figure 5 shows the experimental configuration for 
collecting time sequence of cwnd values.  A data sender, a 
data receiver, and a bridge are connected via 100 Mbps 
Ethernet links.  In the bridge, 50 msec delay for each direction 
is inserted.  As a result, the RTT value between the sender 
and the receiver is 100 msec.  In order to generate packet 
losses that will invoke the congestion control algorithm, 
packet losses are inserted randomly at the bridge.  The 
average packet loss ratio is 0.01%.  The data transfer is 
performed by use of iperf3 [29], executed in both the sender 

 

Figure 4.  Examples of normalization.   

TABLE I.  HYPER PARAMETERS OF CLASSIFIER IN OUR PREVIOS 

WORK.   

 

TABLE II.  HYPER PARAMETER RANGES IN THIS WORK.   
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and the receiver.   The packet traces are collected by use of 
tcpdump at the sender’s Ethernet interface.  We use the 
Python 3 dpkt module [30] for the packet trace analysis.  We 
changed the congestion control algorithm at the sender by use 
of the sysctl command provided by the Linux operating 
system.   

The targeted congestion control algorithms are TCP Reno, 
HighSpeed TCP, BIC TCP, CUBIC TCP, Scalable TCP, 
Hamilton TCP, TCP Westwood+, TCP Vegas, TCP Veno, 
and BBR.  We collected more than 1,500 samples for 
individual algorithms, and prepared 1,000 samples as training 
data, 250 samples as verifying data, and 250 samples as test 
data.   

B. Results of Congestion Control Algorithm Estimation 

First, we re-evaluated the performance of our previous 
approach.  The result is shown in Figure 6.   The total 
accuracy for ten congestion control algorithms was 42.8%, 
which is rather worse than the result described in our previous 
paper [17].  This means that our previous classifier will 
depend largely on the prepared training data.   

So, we applied the same training data and verifying data 
for a DRNN based classifier with three hidden layers and 
selected optimal values for the hyper parameters mentioned 
in Table II.  We tried to look for optimal values 100 times by 
the mini-batch method using 256 as the mini-batch size.  

Table III shows the values of hyper parameters obtained by 
this tuning.   

Figure 7 shows the learning curve for ten congestion 
control algorithms using the DRNN based classifier with the 
selected hyper parameter values.  The horizontal axis of this 
figure indicates the epoch, which is the number of training 
and verifying trials.  The vertical axis indicates the accuracy 
for the training process and the verifying process.  The blue 
line is the accuracy for the training process and the green line 
is for the verification process.  This result shows that the 
classifier learns the model for estimating congestion control 
algorithms.  Figure 8 shows the confusion matrix for this 
experiment.  By comparing Figures 6 and 8, we can conclude 
that the DRNN based classifier estimates the congestion 
control algorithms much better than our previous classifier.  

 

Figure 5.  Experiment configuration.   

Sender Receiver
100 Mbps 
Ethernet

Bridge

inserting 
100msec RTT 

and 0.01% 
packet error

100 Mbps 
Ethernet

capturing 
packets

 

Figure 8.  Confusion matrix for this approach.   

TABLE III.  TUNED UP HYPER PARAMETER VALUES.   

 

 

Figure 7.  Learning curve for ten congestion control algorithms.   

 

Figure 6.  Confusion matrix for previous approach.   
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The total accuracy was 82.9%, which is higher than that of 
our previous work.  The only problem is that it still confuses 
TCP Reno and TCP Vegas.  Further studies are required.   

 As the last analysis, we evaluated the generalization 
accuracy for our previous work and this work using the 10-
fold cross-validation.  We divided the training data into ten 
folds, and selected one fold for the validation and used the 
rest folds for the training.  Figure 9 shows the result.  The 
vertical axis is the validation accuracy.  In our previous 
classifier, the validation accuracy sometimes drops to 40%, 
although it goes up 70%.  On the other hand, our new 
classifier provides 70% through 80% accuracy stably.   

V. CONGESTION CONTROL ALGORITHM ESTIMATION OF 

WEB SERVERS ON INTERNET 

A. Steps 

The next work is to apply our DRNN based classifier for 
estimating congestion control algorithms used by web servers 
on the Internet.  Basically, we will use the classifier described 
in the previous sections.  That is, the classifier is trained in 
the in-lab test network and applied to the estimation using 
data obtained from outside web servers.   

For this purpose, we decided to take the following steps.   
The first step is to redesign our classifier to fit the estimation 
for real servers.  Again, it should be mentioned that the 
training and testing of the redesigned classifier are performed 
using the in-lab network.  This is because we do not know the 
congestion control algorithms of web servers on the Internet.  
The second step is to estimate the algorithms used by real web 
servers using our redesigned classifier.   

B. Redesign of Classifier 

As mentioned in Section II, Mishra et al. tried to estimate 
congestion control algorithms used by popular web servers 
given in the Alexa Top Site list based on an active approach.  
The measurements were made between July and October in 
2019.  This measurement found that thirteen algorithms are 
adopted by the target web servers.  They include TCP Hybra 
[31], YeAH TCP [32], and TCP Illinois [33] besides ten 
algorithms mentioned in the previous section.  It should be 
mentioned that CTCP (Compound TCP) [34], which was said 
to be adopted in Windows OS, is handled as TCP Illinois.  So, 

we needed to extend our classifier so as to include the added 
three congestion control mechanisms.   

Another redesign point is RTT.  The experiment shown in 
the previous section used 100 msec RTT inserted at the bridge.  
However, the real web server accesses take various values of 
RTT.  So, for training our classifier in various RTT situations, 
we adopted 100 msec, 200 msec, and 500 msec as RTT values.  
Specifically, the delay of the half of individual RTT values are 
inserted for each direction at the bridge.  The average packet 
loss rate inserted at the bridge is 0.01% for all cases.  It should 
be mentioned that these values are constant ones throughout 
one experiment run.    

Figure 10 shows some examples of estimated cwnd values.  
The blue, orange, and green lines indicate cwnd values for 100 
msec, 200 msec, and 500 msec, respectively.  By introducing 
different RTT values, we could obtain different behaviors of 
cwnd.  Especially, this helped to discriminate NewReno, 
Vegas, Veno, Westwood, and HighSpeed, for which the 
classifier in the previous section was suffered from erroneous 
estimation.   

We collected more than 2,400 samples for individual 
congestion control algorithms.  We prepared 2,000 samples 
as training data and 400 samples as test data.  Table IV shows 
the selected hyper parameter values for the redesigned 
classifier.  LAMB (Layer-wise Adaptive Moments optimizer 
for Bach training) [35], adopted as the optimizer, is a training 
method for deep neural networks with large batch size.   

Figure 11 shows the learning curve of the redesigned 
DRNN classifier for thirteen congestion control algorithms.  
The horizontal axis is the epoch and the vertical axis is the 
accuracy, similarly to Figure 7.  This result shows that the 
redesigned classifier also learns the model for estimating the 

 

Figure 9.  Generalization accuracy of previous work and this work.   

   
 (a) NewReno (b) Vegas 

   
 (c) Veno (d) Wedgewood 

   
 (e) HighSpeed (f) Scalable 

Figure 10.  Estimated cwnd vs. time for different RTT values.   
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targeted algorithms.  More specifically, the accuracies for 
training and validation become different from 80 epochs, and 
so the trained model will keep the status around that area.   

Figure 12 shows the confusion matrix of the redesigned 
classifier.  The total accuracy is 73.2 %, which is a little lower 
than the result of Figure 8, but it will be high enough to 
estimate a server’s congestion control algorithm from a 
passively collected packet trace.  The misestimation between 
Reno and Vegas decreased compared with the result of Figure 
8.  This is a result of introducing different RTT values.  The 
confusion among Scalable, Illinois, and YeAH, the latter two 
are of which introduced newly, is one reason of decreasing 
the total accuracy.  We used this classifier to categorize the 
congestion control algorithms used by actual web servers 
over the Internet.   

C. Results of Estimation for Real Web Servers 

We applied our redesigned classifier to the web servers 
listed in the Alexa Top Site list.  We examined the list in 
December 2020, and it should be noted that this service was 
terminated at May 2022.  We selected 20,000 popular web 
servers in the list, and communicated with each server for 30 
seconds through three minutes to obtain cwnd time sequences.  
Then, we applied the results to our classifier to estimate the 
congestion control algorithm of the individual server.   

Figure 13 shows the distribution of estimated congestion 
control algorithms for 20,000 servers.  TCP BBR and CUBIC 
TCP are popular algorithms, which occupy 29.9 % and 
40.7 %, respectively.  TCP Illinois and YeAH TCP follow 
them.  As described above, it is possible that Illinois includes 
CTCP.  On the other hand, NewReno, which used to be 
dominant, is not used any more.   

Figure 14 shows the distribution of estimated algorithms 
for top 100 servers.  In this case, TCP BBR occupies 41.0 % 
in the first place.  CUBIC TCP is in the second place and 
occupies 26.0 %.  The third is TCP Illinois.  The reason that 
BBR and CUBIC change the place in top 100 servers will be 
that a lot of video distribution sites and Google related sites 
are included in top 100 servers.  This means that the large 
portion of Internet TCP traffic will include BRR and CUBIC.   

Several studies conducted the TCP congestion control 
algorithm classification in the past.  Padhye et al. [36] 
proposed an active method called TBIT (TCP Behavior 
Inference Tool), in which a client test tool communicates 
with a web server with dropping data segments intentionally.  
It was applied to several web servers during 2000 and 2001.  
Medina et al. [37] measured the TCP variants by use of TBIT 
in 2004.  Yang et al. applied their tool, CAAI, to several web 
servers to determine their TCP variants in 2011 [23].  Most 
recently, Mishra et al. applied their tool, Gordon, to the Alexa 
Top 20,000 servers as mentioned above [24].   

TABLE IV.  TUNED UP HYPER PARAMETER VALUES OF 

REDSIGNED CLASSIFIER.   

 

 

Figure 11.  Learning curve for thirteen congestion control algorithms.   

Parameter

Optimizer
Learning Rate
Weight Decay

Value

LAMB
0.01866181607680214

3.094144144895362×10-7

 

Figure 13.  Distribution of estimated congestion control algorithms for 

AlexaTop-20000.   

 

Figure 12.  Confusion matrix for thirteen congestion control algorithms.   
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Table V shows the results of classifying TCP variants by 
the previous studies and by us.  This table is a modified 
version of the table given in [24] and our results are added to 
the modified one.  Each entry contains a TCP variant and its 
rate/number.  Variants are categorized into loss-based, delay-
based, and rate-based ones.  “Unknown etc.” indicates the 
case that the method could not estimate the algorithm.   

In the time frame of 2000s, only Reno-like TCP variations 
are identified.  In the beginning of 2000s, NewReno was 
more popular than Reno and Tahoe [36].  In the middle of 

2000s, the variants other than Reno types were increasing, 
that is, the unknown variants occupied 67% [37].   

At the beginning of 2010s, a variety of TCP congestion 
control algorithms were introduced [23].  The Reno-type 
(AIMD) variants decreased, and instead, CUBIC was the 
most popular variant, and BIC, HighSpeed, and CTCP were 
adopted by some servers.   

At the end of 2010s, CUBIC and BBR were top two 
variants [24].  Besides them, a few web servers were using 
Illinois including CTCP, YeAH, Hamilton, and Vegas/Veno.  
Our experiment used the measurement results performed in 
December 2020, and so the used web servers may be different 
from those used in the Gordon measurement, and the same 
server may change its algorithm.  So, the results of ours and 
the Gordon’s are a little different from each other.  However, 
the trends of both results are similar.  The most popular 
algorithms are CUBIC and BBR, and Illinois and YeAH 
follow.  A certain amount of servers keep using the delay-
based algorithms such as Vegas and Veno.   

VI. CONCLUSIONS 

This paper is an extended version of our conference paper 
[1] presented in IARIA EMERGING 2022.  This paper 
provides two contributions.   

The first, which is the contribution provided by the 
conference paper, is that we showed a result of TCP 
congestion control algorithm estimation using a Deep 
Recurrent Neural Network (DRNN) based classifier.  From 
packet traces including both data segments and ACK 
segments, we derived a time sequence of cwnd values at RTT 
intervals without any packet retransmissions.  By ordering 
the time sequences and normalizing in the time dimension 
and the cwnd value dimension, we obtained the input for the 

TABLE V.  CLASSIFICATIONS OF TCP VARIANTS IN SEVERAL STUDIES 

 
note: BBR G1.1 indicates the Google dialect of BBR, and Akamai CC is a rate-based congestion control used by the Akamai content delivery network.   

 

Figure 14.  Distribution of estimated congestion control algorithms for 

AlexaTop-100.   
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DRNN classifier.  As the results of applying the proposed 
classifier for ten congestion control algorithms implemented 
in the Linux operating system, we showed that the DRNN 
based classifier can estimate ten algorithms effectively, with 
a problem that TCP Reno and TCP Vegas are difficult to 
discriminate.  This result is much better than our previous 
classifier that used a simple recurrent neural network.   

The second is an original contribution newly provided in 
this paper.  We applied our DRNN based classifier to the 
estimation of congestion control algorithms used by 20,000 
frequently accessed web servers identified by the Alexa Top 
Sites list.  For this purpose, we redesigned our classifier so as 
to handle TCP Hybra, YeAH TCP, and TCP Illinois variants, 
and to include the situations with different RTT values.  We 
confirmed that the redesigned classifier estimates thirteen 
variants with the accuracy of 73.2 %.  Then we applied our 
classifier to 20,000 web servers listed in Alexa Top Sites.  
The results were that the top two variants were CUBIC and 
BBR, and that Illinois (including CTCP) and YeAH followed 
them.  The results have the similar trends with the study 
conducted by Mishra et al. in 2019 [24], and this indicates 
that our estimation will be reasonable.   

REFERENCES 

[1] T. Sawada, R. Yamamoto, S. Ohzahata, and T. Kato, “Estimation of 
TCP Congestion Control Algorithms by Deep Recurrent Neural 
Network,” Proc. IARIA EMERGING 2022, pp. 19-24, 2022.   

[2] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-Host 
Congestion Control for TCP,” IEEE Commun. Surveys & Tutorials, 
vol. 12, no. 3, pp. 304-342, 2010.   

[3] V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM 
Comp. Commun. Review, vol. 18, no. 4, pp. 314-329, 1988.   

[4] W. R. Stevens, “TCP Slow Start, Congestion Avoidance, Fast 
Retransmit, and Fast Recovery Algotithms,” IETF RFC 2001, 1997. 

[5] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification 
to TCP’s Fast Recovery Algorithm,” IETF RFC 3728, 2004.   

[6] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” IETF 
RFC 3649, 2003   

[7] T. Kelly, “Scalable TCP: Improving Performance in High-speed Wide 
Area Networks,” ACM SIGCOMM Comp. Commun. Review, vol. 33, 
no. 2, pp. 83-91, 2003. 

[8] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control 
(BIC) for fast long-distance networks,” Proc. IEEE INFOCOM 2004, 
vol. 4, pp. 2514-2524, 2004.   

[9] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed 
TCP Variant,” ACM SIGOPS Operating Systems Review, vol. 42, no. 
5, pp. 64-74, 2008.   

[10] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long 
distance networks,” Proc. Int. Workshop on PFLDnet, pp. 1-16, 2004. 

[11] L. Grieco and S. Mascolo, “Performance evaluation and comparison of 
Westwood+, New Reno, and Vegas TCP congestion control,” ACM 
Computer Communication Review, vol. 34, no. 2, pp. 25-38, 2004.   

[12] L. Brakmo and L. Perterson, “TCP Vegas: End to End Congestion 
Avoidance on a Global Internet,” IEEE J. Selected Areas in Commun., 
vol. 13, no. 8, pp. 1465-1480, 1995.   

[13] C. Fu and S. Liew, “TCP Veno: TCP Enhancement for Transmission 
Over Wireless Access Networks,” IEEE J. Sel. Areas in Commun., vol. 
21, no. 2, pp. 216-228, 2003.   

[14] N. Cardwell, Y. Cheng, C. S. Gumm, S. H. Yeganeh, and V. Jacobson, 
“BBR: Congestion-Based Congestion Control,” ACM Queue vol. 14 
no. 5, pp. 20-53, 2016.   

[15] T. Kato, A. Oda, S. Ayukawa, C. Wu, and S. Ohzahata, “Inferring TCP 
Congestion Control Algorithms by Correlating Congestion Window 
Sizes and their Differences,” Proc. IARIA ICSNC 2014, pp.42-47, 
2014.   

[16] T. Kato, A. Oda, C. Wu, and S. Ohzahata, “Comparing TCP 
Congestion Control Algorithms Based on Passively Collected Packet 
Traces,” Proc. IARIA ICSNC 2015, pp. 145-151, 2015.   

[17] N. Ohzeki, R. Yamamoto, S. Ohzahata, and T. Kato, “Estimating TCP 
Congestion Control Algorithms from Passively Collected Packet 
Traces using Recurrent Neural Network,” Proc. ICETE DCNET 2019, 
pp. 33-42, 2019.   

[18] “Alexa Top Sites 1M,” http://s3.amazonaws.com/alexa-static/top-
1m.csv.zip. (Accessed on 12/03/2020). 

[19] V. Paxson, “Automated Packet Trace Analysis of TCP 
Implementations,” ACM Comp. Commun. Review, vol. 27, no. 4, 
pp.167-179, 1997.   

[20] T. Kato, T. Ogishi, A. Idoue, and K. Suzuki, “Design of Protocol 
Monitor Emulating Behaviors of TCP/IP Protocols,” Proc. IWTCS ’97, 
pp. 416-431, 1997.   

[21] S. Jaiswel, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley, 
“Inferring TCP Connection Characteristics Through Passive 
Measurements,” Proc. INFOCOM 2004, pp. 1582-1592, 2004.   

[22] J. Oshio, S. Ata, and I. Oka, “Identification of Different TCP Versions 
Based on Cluster Analysis,” Proc. ICCCN 2009, pp. 1-6, 2009.   

[23] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP Congestion 
Avoidance Algorithm Identification,” In Proc. ICDCS ’11, pp. 310-321, 
2011.   

[24] A. Mishra, et al., “The Great Internet TCP Congestion Control Census,” 
Proc. ACM Meas. Anal. Comput. Syst., vol. 3, no. 3, article 45, pp. 1-
24, 2019.   

[25] Y. Edalat, J. Ahn, and K. Obraczka, “Smart Experts for Network State 
Estimation,” IEEE Trans. Network and Service Management, vol. 13, 
no. 3, pp. 622-635, 2016.   

[26] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A Machine Learning 
Approach to TCP Throughput Prediction,” IEEE/ATM Trans. 
Networking, vol. 18, no. 4, pp. 1026-1039, 2010.   

[27] J. Chung, D. Han, J. Kim, and C. Kim, “Machine Learning based Path 
Management for Mobile Devices over MPTCP,” Proc. 2017 IEEE 
International Conference on Big Data and Smart Computing (BigComp 
2017), pp. 206-209, 2017.   

[28] S. Hochreiter and J. Schimidhuber, “Long short-term memory,” Neural 
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.   

[29] iPerf3, “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,”  
https://iperf.fr/.  

[30] dpkt, “dpkt,” https://pkt.readthedocs.io/en/latest/.  

[31] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement for 
heterogeneous networks,” Int. J. Satell. Commun. Network., vol. 22, 
no. 5, pp. 547–566, 2004.   

[32] A. Baiocchi, A.P. Castellani, and F. Vacirca, “YeAH-TCP: Yet 
Another Highspeed TCP,” Proc. PFLDnet, vol.7, pp. 37–42, 2007. 

[33] S. Liu, T. Basar, and R. Srikant, “TCP-Illinois: A loss-and delay-based 
congestion control algorithm for high-speed networks,” Performance 
Evaluation, vol. 65, no. 6-7, pp. 417-440, 2008.   

[34] K. Tan, J. Song, Q. Zhang, and M. Sridharen, “A Compound TCP 
Approach for High-speed and Long Distance Networks,” Proc. IEEE 
INFOCOM 2006, pp. 1-12, 2006.   

[35] Y. You, et al., “Large Batch Optimization for Deep Learning: Training 
BERT in 76 minutes,” Proc. ICLR 2020, pp. 1-37, 2020.   

[36] J. Padhye and S. Floyd, “On Inferring TCP Behavior,” SIGCOMM 
Comput. Commun. Rev., vol. 31, no. 4, pp. 287-298, 2001. 

[37] A. Medina, M. Allman, and S. Floyd, “Measuring the Evolution of 
Transport Protocols in the Internet,” SIGCOMM Comput. Commun. 
Rev., vol. 35, no. 2, pp. 37-52, 2005. 

 


