
International Journal on Advances in Networks and Services, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/networks_and_services/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2

TCP Congestion Control Algorithm Estimation by Deep Recurrent Neural Network

and Its Application to Web Servers on Internet

Takuya Sawada, Ryo Yamamoto, Satoshi Ohzahata, and Toshihiko Kato

Graduate School of Informatics and Engineering

University of Electro-Communications

Tokyo, Japan

e-mail: sawada@net.lab.uec.ac.jp, ryo-yamamoto@uec.ac.jp, ohzahata@uec.ac.jp, kato@net.lab.uec.ac.jp

Abstract — Recently, as various types of networks are

introduced, a number of Transmission Control Protocol (TCP)

congestion control algorithms have been adopted. Since the

TCP congestion control algorithms affect traffic characteristics

in the Internet, it is important for network operators to analyze

which algorithms are used widely in their backbone networks.

In such an analysis, a lot of TCP flows need to be handled and

so the automatic processing is indispensable. This paper

proposes a machine learning based method for estimating TCP

congestion control algorithms. The proposed method uses a

passively collected packet traces including both data and ACK

segments, and calculates a time sequence of congestion window

size for individual TCP flows contained in the traces. We use a

classifier based on deep recurrent neural network in the

congestion control algorithm estimation. As the results of

applying the proposed classifier to ten congestion control

algorithms, we obtained high accuracy of classification

compared with our previous work using recurrent neural

network with one hidden layer. This paper also describes the

results of applying the classifier to popular web servers for

checking the distribution of congestion control algorithms in the

real world.

Keywords — TCP; Congestion Control; Deep Recurrent

Neural Network.

I. INTRODUCTION

This paper is an extension of our previous paper [1], which
was presented at the IARIA conference EMERGING 2022.

Along with the introduction of various types of networks,
such as a long-haul high speed network and a wireless mobile
network, a number of TCP congestion control algorithms have
been designed, implemented, and widely spread [2]. Since the
congestion control was introduced [3], a few algorithms, such
as TCP Tahoe [4], TCP Reno [4], and NewReno [5], have
been used commonly for some decades. Recently, new
algorithms have been introduced and deployed. For example,
HighSpeed TCP [6], Scalable TCP [7], BIC TCP [8], CUBIC
TCP [9], and Hamilton TCP [10] are designed for high speed
and long delay networks. TCP Westwood+ [11] is designed
for lossy wireless links. While those algorithms are based on
packet losses, TCP Vegas [12] triggers congestion control
against an increase of Round-Trip Time (RTT). TCP Veno
[13] combines loss based and delay based approaches in such
a way that congestion control is triggered by packet losses but
the delay determines how to grow the congestion window
(cwnd). In 2016, Google proposed a new algorithm called
TCP BBR (Bottleneck Bandwidth and Round-trip

propagation time) [14] to solve problems mentioned by
conventional algorithms.

Since TCP traffic is a majority in the Internet traffic and
the TCP congestion control algorithms characterize the
behaviors of individual flows, the estimation of congestion
control algorithms for TCP traffic is important for network
operators. It can be used in various purposes such as the traffic
trend estimation, the planning of Internet backbone networks,
and the detection of malicious flows violating congestion
control algorithms.

The approaches for congestion control algorithm
estimation are categorized into the passive approach and the
active approach. The former estimates algorithms from
packet traces passively collected in the middle of networks.
In the latter approach, a test system communicates with a
target system with a specially designed test sequence.
Although the active approach is capable to identify various
congestion control algorithms proposed so far, it does not fit
the algorithm estimation of real TCP flows. On the other hand,
generally speaking, the detecting capability of passive
approaches is relatively low comparing with the active
approach.

Previously, we proposed a passive method that can
estimate a number of congestion control algorithms [15][16].
In this proposal, we focused on the relationship between the
estimated congestion window size and its increment. Their
relationship is indicated as a graph and the congestion control
algorithm is estimated based on the shape of the graph. Our
proposal succeeded to identify eight congestion control
algorithms implemented in the Linux operating system,
including recently introduced ones.

However, the identification is performed manually by
human inspectors, and so it is difficult to deal with a large
number of TCP flows. So, we proposed a machine learning
based classifier estimating the TCP congestion control
algorithms using TCP packet traces in two steps [17][1]. In
our first trial [17], we used a conventional Recurrent Neural
Network (RNN) with one hidden layer. From a packet trace,
we estimate the relationship of cwnd values and their
increment with congestion control algorithm labels, and apply
the results to a RNN classifier for training. Using the RNN
classifier, we estimate the algorithms for other packet traces.
We obtained a relatively good estimation result from the RNN
classifier, but we could not classify similar algorithms, such
as TCP Reno and Vegas. In our second trial [1], we proposed
a revised version of machine learning classifier for automatic
estimation of congestion control algorithms. Here, we

International Journal on Advances in Networks and Services, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/networks_and_services/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2

adopted a Deep Recurrent Neural Network (DRNN) with
multiple hidden layers. We also applied a hyper parameter
tuning for the classifier. We picked up ten congestion control
algorithms mentioned above and showed that our new
approach can estimate those algorithms better than our first
trial.

This evaluation of our approach was performed in a simple
in-lab test network environment. Applying our approach to
servers in the Internet will be effective to show its
effectiveness and to investigate the trends of TCP congestion
control algorithms in the real world. We estimated the
congestion control algorithms of 20,000 web servers listed in
Alexa Top Sites 1,000,000 offered by Alexa Traffic Rank [18].
This paper also shows the results of this estimation.

The rest of this paper is organized as follows. Section II
gives some background information including the
conventional studies on the congestion control estimation and
the machine learning applied for the network areas. Section
III describes the proposed method and Section IV gives the
performance evaluation results. Section V discusses the
results of the estimation of Internet web servers by the
proposed method. In the end, Section VI concludes this paper.

II. BACKGROUNDS

A. Studies on TCP Congestion Control Algorithm

Estimation

The proposals on the passive approach in the early stage
[19-21] estimate the internal state and variables, such as cwnd
and ssthresh (slow start threshold), in a TCP sender from
bidirectional packet traces. They emulate the TCP sender’s
behavior from the estimated state/variables according to the
predefined TCP state machine. But, they considered only
TCP Tahoe, Reno and New Reno and did not handle any of
recently introduced algorithms. Oshio et al. [22] proposed a
method to discriminate one out of two different TCP
congestion control algorithms randomly selected from
fourteen algorithms implemented in the Linux operating
system. This method keeps track of changes of cwnd from a
packet trace and to extract several characteristics, such as the
ratio of cwnd being incremented by one packet. Although this
method targets all of the modern congestion control
algorithms, they assumed that the discriminator knows two
algorithms contained in the packet trace.

The active approaches, on the other hand, are able to
identify more TCP congestion control algorithms including
those introduced recently. Yang et al. [23] proposed a tool
called CAAI (TCP Congestion Avoidance Algorithm
Identification), which could identify recent TCP congestion
control algorithms at first. It makes a web server send 512
data segments under the controlled network environment, and
observes the number of data segments contiguously
transmitted. From those results, it estimates the window
growth function and the decrease parameter to determine the
congestion control algorithm. Mishra et al. [24] proposed
another active approach based tool called Gordon. It makes a
web server send several data segments and causes a packet
loss intentionally. By analyzing the retransmission and the
following congestion avoidance sequence, it obtains cwnd

values. It then estimates congestion control algorithms based
on the shape of cwnd time sequence graph, the increase of
cwnd, and the back-off at packet loss. It could estimate the
recent congestion control algorithms and was applied to the
20,000 web servers listed in the Alexa Top Sites.

Our previous proposals [15][16] estimated cwnd in RTT
intervals from bidirectional packet traces, in the similar way
with the other methods. Different from other methods, we
focused on the incrementing situation of estimated cwnd
values. From the definition of individual congestion control
algorithms, the graph of cwnd increments vs. cwnd has their
characteristic forms. For example, in the case of TCP Reno,
the cwnd increment is always one segment. In the case of

CUBIC TCP, the graph of cwnd increment follows a √𝑐𝑤𝑛𝑑23

curve. In this way, we proposed a way to discriminate eight
congestion control algorithms in the Linux operating system.

B. Studies on Application of Machine Learning to TCP

Recently, several papers focus on applying the machine
learning to TCP analysis. Edalat et al. [25] proposed a method
to estimate RTT using the fixed-share approach from
measured RTT samples. Mirza et al. [26] estimated the future
throughput of TCP flow using the support vector regression
from measured available bandwidth, queueing delay, and
packet loss rate. Chung et al. [27] proposed a machine
learning based multipath TCP scheduler based on the radio
strength in wireless LAN level, wireless LAN data rate, TCP
throughput, and RTT with access point, by the random
decision forests.

III. PROPOSED METHOD

A. Estimation of cwnd values at RTT interval

In the passive approach, packet traces are collected at
some monitoring point inside a network. So, the time
associated with a packet is not the exact time when the node
focused sends/receives the packet. Our scheme adopts the
following approach to estimate cwnd values at RTT intervals
using the TCP time stamp option.

 Pick up an ACK segment in a packet trace. Denote
this ACK segment by ACK1.

 Search for the data segment whose TSecr (time stamp
echo reply) is equal to TSval (time stamp value) of
ACK1. Denote this data segment by Data1.

 Search for the ACK segment that acknowledges
Data1 for the first time. Denote this ACK segment
by ACK2. Denote the ACK segment prior to ACK2
by ACK1’.

 Search for the data segment whose TSecr is equal to
TSval of ACK2. Denote this data segment by Data2.

From this result, we estimate a cwnd value at the timing
of receiving ACK1 as in (1).

𝑐𝑤𝑛𝑑 = ⌊
𝑠𝑒𝑞 𝑖𝑛 𝐷𝑎𝑡𝑎2−𝑎𝑐𝑘 𝑖𝑛 𝐴𝐶𝐾1′

𝑀𝑆𝑆
⌋ (segments) (1)

Here, seq means the sequence number, ack means the
acknowledgment number of TCP header, and MSS is the
maximum segment size (MSS). ⌊𝑎⌋ is the truncation of a.

Figure 1 shows an example of cwnd estimation. In this
figure, MSS is 1024 byte. Data segments are indicated by

International Journal on Advances in Networks and Services, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/networks_and_services/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2

solid lines with “sequence number : sequence number + MSS.”
ACK segments are indicated by dash lines with
acknowledgment number. When “ack 1” is picked up, data
segment “1:1024” is focused on as Data1 above. ACK
segment “ack 2049” responding the data segment
corresponds to ACK2. The ACK segment before this ACK
segment (ACK1’ above) is “ack 1” again. Data2 in this case
is “2049:3073.” So, the estimated cwnd is (2049 – 1)/1024 =
2. Similarly, for the following two RTT intervals, the
estimated RTT values are (5121 – 2049)/1024 = 3 and (10241
–5121) /1024= 5.

B. Selection and Normalization of Input Data to Classifier

When a packet is lost and retransmitted, cwnd is
decreased. In order to focus on the cwnd handling in the
congestion avoidance phase, we select a time sequence of
cwnd between packet losses. We look for a part of packet
trace where the sequence number in the TCP header keeps
increasing. We call this duration without any packet losses
non-loss duration. We use the time variation of estimated
cwnd values during one non-loss duration as an input to the
classifier. However, the length of non-loss duration differs
for each duration, and the range of cwnd values in a non-loss
duration also differs from one to another. So, we select and
normalize the time scale and the cwnd value scale for one
non-loss duration.

The algorithm for selecting and normalizing input to
classifier is given in Figure 2. In this algorithm, the input E
is as time sequence of cwnd values estimated from one packet
trace. The input InputLength is a number of samples in one
input to the classifier. In this paper, we used 128 as
InputLength. This is because we think that the cwnd vs time
curve can be drawn by 128 points. In the beginning, the time
sequence of cwnd is divided at packet losses, and the divided
sequences are stored in a two dimensional array S. Next, the

first sequence S[0] is removed, because we focus only on the
congestion avoidance phase. Then S is reordered according
to the length of cwnd sequence. Then the cwnd values for
one sequence S[t] are normalized between 0 and 1. The
normalization is performed in the following way.

Let 𝑤𝑚𝑎𝑥[𝑡] = max (𝑆[𝑡][𝑢])
for 𝑢 = 0 ⋯ Len(𝑆[𝑡]) − 1, and

𝑤𝑚𝑖𝑛[𝑡] = min (𝑆[𝑡][𝑢])
for 𝑢 = 0 ⋯ Len(𝑆[𝑡]) − 1.
Each cwnd value in S[t] is normalized by

𝑆[𝑡][𝑢] ←
𝑆[𝑡][𝑢]−𝑤𝑚𝑖𝑛[𝑡]

𝑤𝑚𝑎𝑥[𝑡]−𝑤𝑚𝑖𝑛[𝑡]
.

After that, the cwnd values are resampled into the number
of InputLength (128 in this paper). This is done by the loop

Figure 1. Example of cwnd estimation.

ACK1,
ACK1’

Data1

ACK2

Data2

Figure 2. Selection/normalization algorithm.

Algorithm 1

1. function Normalize (E, InputLength)
2. S <- DivideAtLoss(E)
3. Delete(S[0])
4. S <- SortBySequenceLength(S)
5. for t = 0 to Len(S) - 1 do
6. S <- MinMaxNormalization(S)
7. end for
8. I <- Array(Len(S))
9. for t = 0 to Len(S) - 1 do
10. I[t] <- Array(InputLength)
11. for u = 0 to InputLength - 1 do
12. SurjectiveMap <- InputLength/Len(S[t])
13. Index <- Trunc(u / SurjectiveMap)
14. I[t][u] <- S[Index]
15. end for
16. end for
17. return I
18. end function

(a) Estimated cwnd for TCP Reno

(b) Estimated cwnd for CUBIC TCP

Figure 3. Examples of cwnd estimation.

International Journal on Advances in Networks and Services, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/networks_and_services/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3

between step 11 and step 15. As a result, a cwnd sequence in
S[t] is converted to an array I[t] with 128 elements. By this
algorithm, all of the time sequences of cwnd values are the
arrays with 128 elements whose value is between 0 and 1.

Figure 3 shows some examples of cwnd estimation.
Figure 3 (a) and (b) show the estimated cwnd time sequences
for TCP Reno and CUBIC TCP, respectively. We focus on
the non-loss durations as described above. Reno 1, Reno 2,
CUBIC 1, and CUBIC 2 in the figure are examples. The size
of these sequences differ from each other, both for the time
scale and the scale of cwnd. Therefore, it is necessary to
normalize these sequences.

Figure 4 shows the results of the normalization for the
examples shown in Figure 3. Different scale of cwnd time
sequences are transformed into a canonical form with 128
samples in the range of 0 through 1.

C. DRNN Based Classifier for Congestion Control

Algotithm Estimation

We used DRNN for constructing the classifier, which has
three hidden layers and whose output layer defines the TCP
congestion control algorithms. Among the RNN
technologies, we pick up the long short-term memory
mechanism [28], which was proposed to handle a relatively
long time sequence of data. The input is a normalized time
sequence of cwnd as described above, with using labels of
congestion control algorithms represented by one-hot vector.

In our previous work, we selected the hyper parameters
given in Table I. In the work presented in this paper, we
select the hyper parameter ranges shown in Table II. The
input length is the same as that of the previous work. We use
three hidden layers and the number of neurons are as
specified in the table. As for the optimizer, the learning rate
and the weight decay, we propose the alternatives shown in
the table. We perform the hyper parameter tuning based on
the target area in this table.

In the training of the classifier, we use the mini-batch
method, which selects a specified number of inputs randomly

from the prepared training data. The mini-batch size will be
determined for individual training. The training will be
continued until the result of the loss function becomes smaller
than the learning rate.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

 Figure 5 shows the experimental configuration for
collecting time sequence of cwnd values. A data sender, a
data receiver, and a bridge are connected via 100 Mbps
Ethernet links. In the bridge, 50 msec delay for each direction
is inserted. As a result, the RTT value between the sender
and the receiver is 100 msec. In order to generate packet
losses that will invoke the congestion control algorithm,
packet losses are inserted randomly at the bridge. The
average packet loss ratio is 0.01%. The data transfer is
performed by use of iperf3 [29], executed in both the sender

Figure 4. Examples of normalization.

TABLE I. HYPER PARAMETERS OF CLASSIFIER IN OUR PREVIOS

WORK.

TABLE II. HYPER PARAMETER RANGES IN THIS WORK.

International Journal on Advances in Networks and Services, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/networks_and_services/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3

and the receiver. The packet traces are collected by use of
tcpdump at the sender’s Ethernet interface. We use the
Python 3 dpkt module [30] for the packet trace analysis. We
changed the congestion control algorithm at the sender by use
of the sysctl command provided by the Linux operating
system.

The targeted congestion control algorithms are TCP Reno,
HighSpeed TCP, BIC TCP, CUBIC TCP, Scalable TCP,
Hamilton TCP, TCP Westwood+, TCP Vegas, TCP Veno,
and BBR. We collected more than 1,500 samples for
individual algorithms, and prepared 1,000 samples as training
data, 250 samples as verifying data, and 250 samples as test
data.

B. Results of Congestion Control Algorithm Estimation

First, we re-evaluated the performance of our previous
approach. The result is shown in Figure 6. The total
accuracy for ten congestion control algorithms was 42.8%,
which is rather worse than the result described in our previous
paper [17]. This means that our previous classifier will
depend largely on the prepared training data.

So, we applied the same training data and verifying data
for a DRNN based classifier with three hidden layers and
selected optimal values for the hyper parameters mentioned
in Table II. We tried to look for optimal values 100 times by
the mini-batch method using 256 as the mini-batch size.

Table III shows the values of hyper parameters obtained by
this tuning.

Figure 7 shows the learning curve for ten congestion
control algorithms using the DRNN based classifier with the
selected hyper parameter values. The horizontal axis of this
figure indicates the epoch, which is the number of training
and verifying trials. The vertical axis indicates the accuracy
for the training process and the verifying process. The blue
line is the accuracy for the training process and the green line
is for the verification process. This result shows that the
classifier learns the model for estimating congestion control
algorithms. Figure 8 shows the confusion matrix for this
experiment. By comparing Figures 6 and 8, we can conclude
that the DRNN based classifier estimates the congestion
control algorithms much better than our previous classifier.

Figure 5. Experiment configuration.

Sender Receiver
100 Mbps
Ethernet

Bridge

inserting
100msec RTT

and 0.01%
packet error

100 Mbps
Ethernet

capturing
packets

Figure 8. Confusion matrix for this approach.

TABLE III. TUNED UP HYPER PARAMETER VALUES.

Figure 7. Learning curve for ten congestion control algorithms.

Figure 6. Confusion matrix for previous approach.

International Journal on Advances in Networks and Services, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/networks_and_services/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3

The total accuracy was 82.9%, which is higher than that of
our previous work. The only problem is that it still confuses
TCP Reno and TCP Vegas. Further studies are required.

 As the last analysis, we evaluated the generalization
accuracy for our previous work and this work using the 10-
fold cross-validation. We divided the training data into ten
folds, and selected one fold for the validation and used the
rest folds for the training. Figure 9 shows the result. The
vertical axis is the validation accuracy. In our previous
classifier, the validation accuracy sometimes drops to 40%,
although it goes up 70%. On the other hand, our new
classifier provides 70% through 80% accuracy stably.

V. CONGESTION CONTROL ALGORITHM ESTIMATION OF

WEB SERVERS ON INTERNET

A. Steps

The next work is to apply our DRNN based classifier for
estimating congestion control algorithms used by web servers
on the Internet. Basically, we will use the classifier described
in the previous sections. That is, the classifier is trained in
the in-lab test network and applied to the estimation using
data obtained from outside web servers.

For this purpose, we decided to take the following steps.
The first step is to redesign our classifier to fit the estimation
for real servers. Again, it should be mentioned that the
training and testing of the redesigned classifier are performed
using the in-lab network. This is because we do not know the
congestion control algorithms of web servers on the Internet.
The second step is to estimate the algorithms used by real web
servers using our redesigned classifier.

B. Redesign of Classifier

As mentioned in Section II, Mishra et al. tried to estimate
congestion control algorithms used by popular web servers
given in the Alexa Top Site list based on an active approach.
The measurements were made between July and October in
2019. This measurement found that thirteen algorithms are
adopted by the target web servers. They include TCP Hybra
[31], YeAH TCP [32], and TCP Illinois [33] besides ten
algorithms mentioned in the previous section. It should be
mentioned that CTCP (Compound TCP) [34], which was said
to be adopted in Windows OS, is handled as TCP Illinois. So,

we needed to extend our classifier so as to include the added
three congestion control mechanisms.

Another redesign point is RTT. The experiment shown in
the previous section used 100 msec RTT inserted at the bridge.
However, the real web server accesses take various values of
RTT. So, for training our classifier in various RTT situations,
we adopted 100 msec, 200 msec, and 500 msec as RTT values.
Specifically, the delay of the half of individual RTT values are
inserted for each direction at the bridge. The average packet
loss rate inserted at the bridge is 0.01% for all cases. It should
be mentioned that these values are constant ones throughout
one experiment run.

Figure 10 shows some examples of estimated cwnd values.
The blue, orange, and green lines indicate cwnd values for 100
msec, 200 msec, and 500 msec, respectively. By introducing
different RTT values, we could obtain different behaviors of
cwnd. Especially, this helped to discriminate NewReno,
Vegas, Veno, Westwood, and HighSpeed, for which the
classifier in the previous section was suffered from erroneous
estimation.

We collected more than 2,400 samples for individual
congestion control algorithms. We prepared 2,000 samples
as training data and 400 samples as test data. Table IV shows
the selected hyper parameter values for the redesigned
classifier. LAMB (Layer-wise Adaptive Moments optimizer
for Bach training) [35], adopted as the optimizer, is a training
method for deep neural networks with large batch size.

Figure 11 shows the learning curve of the redesigned
DRNN classifier for thirteen congestion control algorithms.
The horizontal axis is the epoch and the vertical axis is the
accuracy, similarly to Figure 7. This result shows that the
redesigned classifier also learns the model for estimating the

Figure 9. Generalization accuracy of previous work and this work.

 (a) NewReno (b) Vegas

 (c) Veno (d) Wedgewood

 (e) HighSpeed (f) Scalable

Figure 10. Estimated cwnd vs. time for different RTT values.

International Journal on Advances in Networks and Services, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/networks_and_services/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3

targeted algorithms. More specifically, the accuracies for
training and validation become different from 80 epochs, and
so the trained model will keep the status around that area.

Figure 12 shows the confusion matrix of the redesigned
classifier. The total accuracy is 73.2 %, which is a little lower
than the result of Figure 8, but it will be high enough to
estimate a server’s congestion control algorithm from a
passively collected packet trace. The misestimation between
Reno and Vegas decreased compared with the result of Figure
8. This is a result of introducing different RTT values. The
confusion among Scalable, Illinois, and YeAH, the latter two
are of which introduced newly, is one reason of decreasing
the total accuracy. We used this classifier to categorize the
congestion control algorithms used by actual web servers
over the Internet.

C. Results of Estimation for Real Web Servers

We applied our redesigned classifier to the web servers
listed in the Alexa Top Site list. We examined the list in
December 2020, and it should be noted that this service was
terminated at May 2022. We selected 20,000 popular web
servers in the list, and communicated with each server for 30
seconds through three minutes to obtain cwnd time sequences.
Then, we applied the results to our classifier to estimate the
congestion control algorithm of the individual server.

Figure 13 shows the distribution of estimated congestion
control algorithms for 20,000 servers. TCP BBR and CUBIC
TCP are popular algorithms, which occupy 29.9 % and
40.7 %, respectively. TCP Illinois and YeAH TCP follow
them. As described above, it is possible that Illinois includes
CTCP. On the other hand, NewReno, which used to be
dominant, is not used any more.

Figure 14 shows the distribution of estimated algorithms
for top 100 servers. In this case, TCP BBR occupies 41.0 %
in the first place. CUBIC TCP is in the second place and
occupies 26.0 %. The third is TCP Illinois. The reason that
BBR and CUBIC change the place in top 100 servers will be
that a lot of video distribution sites and Google related sites
are included in top 100 servers. This means that the large
portion of Internet TCP traffic will include BRR and CUBIC.

Several studies conducted the TCP congestion control
algorithm classification in the past. Padhye et al. [36]
proposed an active method called TBIT (TCP Behavior
Inference Tool), in which a client test tool communicates
with a web server with dropping data segments intentionally.
It was applied to several web servers during 2000 and 2001.
Medina et al. [37] measured the TCP variants by use of TBIT
in 2004. Yang et al. applied their tool, CAAI, to several web
servers to determine their TCP variants in 2011 [23]. Most
recently, Mishra et al. applied their tool, Gordon, to the Alexa
Top 20,000 servers as mentioned above [24].

TABLE IV. TUNED UP HYPER PARAMETER VALUES OF

REDSIGNED CLASSIFIER.

Figure 11. Learning curve for thirteen congestion control algorithms.

Parameter

Optimizer
Learning Rate
Weight Decay

Value

LAMB
0.01866181607680214

3.094144144895362×10-7

Figure 13. Distribution of estimated congestion control algorithms for

AlexaTop-20000.

Figure 12. Confusion matrix for thirteen congestion control algorithms.

International Journal on Advances in Networks and Services, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/networks_and_services/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3

Table V shows the results of classifying TCP variants by
the previous studies and by us. This table is a modified
version of the table given in [24] and our results are added to
the modified one. Each entry contains a TCP variant and its
rate/number. Variants are categorized into loss-based, delay-
based, and rate-based ones. “Unknown etc.” indicates the
case that the method could not estimate the algorithm.

In the time frame of 2000s, only Reno-like TCP variations
are identified. In the beginning of 2000s, NewReno was
more popular than Reno and Tahoe [36]. In the middle of

2000s, the variants other than Reno types were increasing,
that is, the unknown variants occupied 67% [37].

At the beginning of 2010s, a variety of TCP congestion
control algorithms were introduced [23]. The Reno-type
(AIMD) variants decreased, and instead, CUBIC was the
most popular variant, and BIC, HighSpeed, and CTCP were
adopted by some servers.

At the end of 2010s, CUBIC and BBR were top two
variants [24]. Besides them, a few web servers were using
Illinois including CTCP, YeAH, Hamilton, and Vegas/Veno.
Our experiment used the measurement results performed in
December 2020, and so the used web servers may be different
from those used in the Gordon measurement, and the same
server may change its algorithm. So, the results of ours and
the Gordon’s are a little different from each other. However,
the trends of both results are similar. The most popular
algorithms are CUBIC and BBR, and Illinois and YeAH
follow. A certain amount of servers keep using the delay-
based algorithms such as Vegas and Veno.

VI. CONCLUSIONS

This paper is an extended version of our conference paper
[1] presented in IARIA EMERGING 2022. This paper
provides two contributions.

The first, which is the contribution provided by the
conference paper, is that we showed a result of TCP
congestion control algorithm estimation using a Deep
Recurrent Neural Network (DRNN) based classifier. From
packet traces including both data segments and ACK
segments, we derived a time sequence of cwnd values at RTT
intervals without any packet retransmissions. By ordering
the time sequences and normalizing in the time dimension
and the cwnd value dimension, we obtained the input for the

TABLE V. CLASSIFICATIONS OF TCP VARIANTS IN SEVERAL STUDIES

note: BBR G1.1 indicates the Google dialect of BBR, and Akamai CC is a rate-based congestion control used by the Akamai content delivery network.

Figure 14. Distribution of estimated congestion control algorithms for

AlexaTop-100.

International Journal on Advances in Networks and Services, vol 16 no 1 & 2, year 2023, http://www.iariajournals.org/networks_and_services/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3

DRNN classifier. As the results of applying the proposed
classifier for ten congestion control algorithms implemented
in the Linux operating system, we showed that the DRNN
based classifier can estimate ten algorithms effectively, with
a problem that TCP Reno and TCP Vegas are difficult to
discriminate. This result is much better than our previous
classifier that used a simple recurrent neural network.

The second is an original contribution newly provided in
this paper. We applied our DRNN based classifier to the
estimation of congestion control algorithms used by 20,000
frequently accessed web servers identified by the Alexa Top
Sites list. For this purpose, we redesigned our classifier so as
to handle TCP Hybra, YeAH TCP, and TCP Illinois variants,
and to include the situations with different RTT values. We
confirmed that the redesigned classifier estimates thirteen
variants with the accuracy of 73.2 %. Then we applied our
classifier to 20,000 web servers listed in Alexa Top Sites.
The results were that the top two variants were CUBIC and
BBR, and that Illinois (including CTCP) and YeAH followed
them. The results have the similar trends with the study
conducted by Mishra et al. in 2019 [24], and this indicates
that our estimation will be reasonable.

REFERENCES

[1] T. Sawada, R. Yamamoto, S. Ohzahata, and T. Kato, “Estimation of
TCP Congestion Control Algorithms by Deep Recurrent Neural
Network,” Proc. IARIA EMERGING 2022, pp. 19-24, 2022.

[2] A. Afanasyev, N. Tilley, P. Reiher, and L. Kleinrock, “Host-to-Host
Congestion Control for TCP,” IEEE Commun. Surveys & Tutorials,
vol. 12, no. 3, pp. 304-342, 2010.

[3] V. Jacobson, “Congestion Avoidance and Control,” ACM SIGCOMM
Comp. Commun. Review, vol. 18, no. 4, pp. 314-329, 1988.

[4] W. R. Stevens, “TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algotithms,” IETF RFC 2001, 1997.

[5] S. Floyd, T. Henderson, and A. Gurtov, “The NewReno Modification
to TCP’s Fast Recovery Algorithm,” IETF RFC 3728, 2004.

[6] S. Floyd, “HighSpeed TCP for Large Congestion Windows,” IETF
RFC 3649, 2003

[7] T. Kelly, “Scalable TCP: Improving Performance in High-speed Wide
Area Networks,” ACM SIGCOMM Comp. Commun. Review, vol. 33,
no. 2, pp. 83-91, 2003.

[8] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” Proc. IEEE INFOCOM 2004,
vol. 4, pp. 2514-2524, 2004.

[9] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” ACM SIGOPS Operating Systems Review, vol. 42, no.
5, pp. 64-74, 2008.

[10] D. Leith and R. Shorten, “H-TCP: TCP for high-speed and long
distance networks,” Proc. Int. Workshop on PFLDnet, pp. 1-16, 2004.

[11] L. Grieco and S. Mascolo, “Performance evaluation and comparison of
Westwood+, New Reno, and Vegas TCP congestion control,” ACM
Computer Communication Review, vol. 34, no. 2, pp. 25-38, 2004.

[12] L. Brakmo and L. Perterson, “TCP Vegas: End to End Congestion
Avoidance on a Global Internet,” IEEE J. Selected Areas in Commun.,
vol. 13, no. 8, pp. 1465-1480, 1995.

[13] C. Fu and S. Liew, “TCP Veno: TCP Enhancement for Transmission
Over Wireless Access Networks,” IEEE J. Sel. Areas in Commun., vol.
21, no. 2, pp. 216-228, 2003.

[14] N. Cardwell, Y. Cheng, C. S. Gumm, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control,” ACM Queue vol. 14
no. 5, pp. 20-53, 2016.

[15] T. Kato, A. Oda, S. Ayukawa, C. Wu, and S. Ohzahata, “Inferring TCP
Congestion Control Algorithms by Correlating Congestion Window
Sizes and their Differences,” Proc. IARIA ICSNC 2014, pp.42-47,
2014.

[16] T. Kato, A. Oda, C. Wu, and S. Ohzahata, “Comparing TCP
Congestion Control Algorithms Based on Passively Collected Packet
Traces,” Proc. IARIA ICSNC 2015, pp. 145-151, 2015.

[17] N. Ohzeki, R. Yamamoto, S. Ohzahata, and T. Kato, “Estimating TCP
Congestion Control Algorithms from Passively Collected Packet
Traces using Recurrent Neural Network,” Proc. ICETE DCNET 2019,
pp. 33-42, 2019.

[18] “Alexa Top Sites 1M,” http://s3.amazonaws.com/alexa-static/top-
1m.csv.zip. (Accessed on 12/03/2020).

[19] V. Paxson, “Automated Packet Trace Analysis of TCP
Implementations,” ACM Comp. Commun. Review, vol. 27, no. 4,
pp.167-179, 1997.

[20] T. Kato, T. Ogishi, A. Idoue, and K. Suzuki, “Design of Protocol
Monitor Emulating Behaviors of TCP/IP Protocols,” Proc. IWTCS ’97,
pp. 416-431, 1997.

[21] S. Jaiswel, G. Iannaccone, C. Diot, J. Kurose, and D. Towsley,
“Inferring TCP Connection Characteristics Through Passive
Measurements,” Proc. INFOCOM 2004, pp. 1582-1592, 2004.

[22] J. Oshio, S. Ata, and I. Oka, “Identification of Different TCP Versions
Based on Cluster Analysis,” Proc. ICCCN 2009, pp. 1-6, 2009.

[23] P. Yang, W. Luo, L. Xu, J. Deogun, and Y. Lu, “TCP Congestion
Avoidance Algorithm Identification,” In Proc. ICDCS ’11, pp. 310-321,
2011.

[24] A. Mishra, et al., “The Great Internet TCP Congestion Control Census,”
Proc. ACM Meas. Anal. Comput. Syst., vol. 3, no. 3, article 45, pp. 1-
24, 2019.

[25] Y. Edalat, J. Ahn, and K. Obraczka, “Smart Experts for Network State
Estimation,” IEEE Trans. Network and Service Management, vol. 13,
no. 3, pp. 622-635, 2016.

[26] M. Mirza, J. Sommers, P. Barford, and X. Zhu, “A Machine Learning
Approach to TCP Throughput Prediction,” IEEE/ATM Trans.
Networking, vol. 18, no. 4, pp. 1026-1039, 2010.

[27] J. Chung, D. Han, J. Kim, and C. Kim, “Machine Learning based Path
Management for Mobile Devices over MPTCP,” Proc. 2017 IEEE
International Conference on Big Data and Smart Computing (BigComp
2017), pp. 206-209, 2017.

[28] S. Hochreiter and J. Schimidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[29] iPerf3, “iPerf - The ultimate speed test tool for TCP, UDP and SCTP,”
https://iperf.fr/.

[30] dpkt, “dpkt,” https://pkt.readthedocs.io/en/latest/.

[31] C. Caini and R. Firrincieli, “TCP Hybla: a TCP enhancement for
heterogeneous networks,” Int. J. Satell. Commun. Network., vol. 22,
no. 5, pp. 547–566, 2004.

[32] A. Baiocchi, A.P. Castellani, and F. Vacirca, “YeAH-TCP: Yet
Another Highspeed TCP,” Proc. PFLDnet, vol.7, pp. 37–42, 2007.

[33] S. Liu, T. Basar, and R. Srikant, “TCP-Illinois: A loss-and delay-based
congestion control algorithm for high-speed networks,” Performance
Evaluation, vol. 65, no. 6-7, pp. 417-440, 2008.

[34] K. Tan, J. Song, Q. Zhang, and M. Sridharen, “A Compound TCP
Approach for High-speed and Long Distance Networks,” Proc. IEEE
INFOCOM 2006, pp. 1-12, 2006.

[35] Y. You, et al., “Large Batch Optimization for Deep Learning: Training
BERT in 76 minutes,” Proc. ICLR 2020, pp. 1-37, 2020.

[36] J. Padhye and S. Floyd, “On Inferring TCP Behavior,” SIGCOMM
Comput. Commun. Rev., vol. 31, no. 4, pp. 287-298, 2001.

[37] A. Medina, M. Allman, and S. Floyd, “Measuring the Evolution of
Transport Protocols in the Internet,” SIGCOMM Comput. Commun.
Rev., vol. 35, no. 2, pp. 37-52, 2005.

