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Abstract—The availability of robust data security
technologies to provide end-to-end, verifiable provenance of
information is increasingly important. This study explores the
new Intelligent Cipher Transfer Object (ICTO) technology as a
novel approach to comprehensively securing digital data. The
technology is assessed in terms of its performance and
robustness relative to current security and data transport
paradigms. Machine Learning algorithms are used to identify
residual artifacts that may be exploited, and potential security
threats associated with ICTO are described.
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I. INTRODUCTION

This paper compares and contrasts key performance
characteristics of technologies which are commonly used
for securing information, both at rest and in transit, with
emerging Intelligent Cipher Transfer Object (ICTO)
technology. In previous work, we compared the
performance of ICTO with well-known network transport
technologies such as MQTT and conventional TCP [1]. The
present work is an extension of the previous evaluation to a
broader set of technologies and performance metrics,
including the use of Machine Learning to evaluate  the
properties and potential weaknesses of a commercially
available ICTO implementation. We conclude that ICTO
may offer comprehensive data security independent of data
location or transport even though aspects of data leakage
may prove complex to resolve.

The current state-of-the-art in data security focuses on
securing data when it is traveling (in transit) between
network endpoints. Several complex operations, including
payload encryption, may be performed on the data so that it
cannot be accessed or modified during transit. However,
when data is not in transit (at rest), it may be in possession
of users, applications or systems where it may not be
protected. Generally, multiple techniques or mechanisms
are required in modern commercial or public data exchange
settings (e.g., any client-server based interchange or web
service) to securely transfer a piece of information from one
point to another. These mechanisms have to be tightly
integrated with one another to prevent any data-related
leakage or other accidental disclosure of private
information. The novel ICTO technology addresses the
issue of robust integration of complex security techniques

by creating a secure “intelligent”, “self-aware”, and “self-
governing” object that can allow, deny, track, lock, or
destroy itself based on the entity that is trying to access it,
regardless of the security posture of the public (transitory)
communication channel, or private (resting) environment.
However, such a holistic approach to secure information
may be costly in terms of computational or network
performance.

After brief introductions to the specifics of blockchain
and ICTO in Section II, comparative performance analyses
are provided in Sections III-VI which contrast ICTO with
several conventional approaches to information security.
Section III describes the general experimental setup and
important parameters. Section IV presents system-level
performance measures which were collected and analyzed.
Section V compares blockchain and ICTO in terms of
computational performance and storage requirements,
considering identical payloads. Section VI analyzes an
ICTO implementation using cryptanalysis and unsupervised
machine learning (ML). Section VII summarizes the
experimental results and provides useful conclusions for the
various technologies and implementations. Section VIII
summarizes potential future work with these technologies.

II. BACKGROUND

Data or information security is the science of using and
developing tools and techniques to prevent unwanted access
to information. The fundamental elements of data security
include:

Confidentiality, which protects information from
unauthorized access,
Integrity, which guarantees accuracy and completeness
of data providing assurance that it has not be tampered
with,
Availability, which makes information available to
authorized parties whenever necessary,
Authentication which provides a means of verifying
the identity of users,
Authorization, which grants access to specific
resources to a user’s identity, and
Non-repudiation, which takes away false denial of
possession or origination of information.

These key elements are necessary to provide individuals
and organizations with assurance that their privacy is
maintained and information they are using is trustworthy
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and invulnerable to threats, regardless of how such data may
have been generated.

Cybersecurity systems are designed and implemented
using some combination of hardware and software so that
these fundamental characteristics are in place. In an
interconnected computing framework, data resides either
inside memory within server systems or an end-client
computer – considered to be “at rest”, or in a network
channel traveling from one endpoint to another – considered
to be “in transit.” Organizations may use public cloud
infrastructures or private computing infrastructures to
manage and store data [2].

Cloud computing technology is an internet based,
decentralized, distributed, and virtualized computing
paradigm in which operations on data as well as data
transportation is carried out, often through web-based
services [3]. This technology offers scalability, ease of
deployment, and cost- effectiveness among other benefits
[4]. However, from the perspective of cybersecurity, there
are some issues and challenges that require extra preventive
measures by both the cloud service provider as well as the
cloud service user [5-6]. Although a typical cloud security
stack includes fundamental services like authentication,
access control, and encryption, data loss may still be
encountered due to a plethora of issues, including server or
application misconfiguration, malicious attacks, insecure
data-flow pipelines, vulnerable Application Programming
Interfaces (API), and mislocated data [7].

Legacy systems, which typically use privately
owned/leased, on-premises systems to process digital data
may seem to provide better security as data resides within
relatively secure boundaries. However, complex logistical
factors provide motivation to migrate toward cloud
platforms, including high setup and operating cost, reduced
flexibility, complicated integration, deployment, and
maintenance procedures [8].

Considering the various modalities for data generation,
transfer, and storage, employing the convenient perspectives
of “application security”, and “network security” is
warranted [9]. For instance, encryption is a mechanism that
is designed to prevent access to data travelling in a network.
So, encryption can be regarded as a “network security”
technique. However, authentication mechanisms – more
broadly – those similar to Role Based Access Control
(RBAC) are used to allow data access to known users, and
so is an “application security” mechanism. Conventional
Authentication, Authorization, and Accounting (AAA)
security frameworks that enforce access controls to data and
network resources and maintain accountability of network
resources are prime examples of network security that is
widely accepted and implemented. A robust cybersecurity
framework should provide both “application security” and
“network security” components to ensure protection. The
Internet of Things (IoT) is an example of an important and
complex domain where data security concepts may need to
be viewed using multiple perspectives.

A. Security Frameworks

To gain a better idea of security of data in transit
(network security) and at rest (application-level security) in
modern frameworks, we use the well-known “Alice and
Bob” scenario where users are communicating over the
internet using a messaging website. Alice wants to say
“hello” to Bob, so she uses her browser to access the
messaging website. To establish a secure link, Alice’s
computer and the website server use public-key
cryptographic schemes to first authenticate each other, and
then set up a symmetric session key to encrypt outgoing
messages from Alice’s browser. The use of encryption
along with the established session key secure the channel
between the website’s server and Alice. Several complex
algorithms including Rivest Shamir Adleman (RSA), Diffie-
Hellman, Secure Hash Algorithm (SHA), digital signatures,
digital certificates, and Advanced Encryption Standard
(AES) are used just to get to this point [10]. As soon as
Alice’s data reaches the server, it gets decrypted and thus is
no longer obscured. Since the messaging website would
most likely be hosted by an enterprise that handles user
data, it uses IAM mechanisms to make sure that such data
cannot be accessed by unauthorized or unintended entities
(applications or individuals) within the enterprise. This can
be seen as protecting data at rest [11]. A similar procedure
is followed between the server and Bob as he receives
Alice’s message.

This example provides a simplified but useful
perspective on modern security frameworks which employ
channel security and site security for data in transit and at
rest. It is important to note how the several complex
cryptographic operations and access-control systems are
necessary to ensure end-to-end data protection. Successful
attacks on such systems are commonplace. An example of
an in-transit data breach includes the 2009 attack on the
A5/1 encryption algorithm used in 2nd generation Global
System for Mobile Communication (GSM) network [12].
An example of an at-rest data breach includes a leak of the
personal data of 100 million Capital One customers due to
misconfiguration of a web application firewall in the
company’s cloud infrastructure [13]. Such attacks (among
many, many others) show that complex integrations are
prone to misconfigurations or mismanagement that can lead
to catastrophic results.

Security frameworks in IoT networks use similar
integrations. However, authentication and encryption of IoT
sensor data is usually performed by a network gateway or
other intermediate system instead of by an end-device. This
architecture allows for exploitation of potentially vulnerable
or unprotected links between the sensors, end-devices, and
gateway or intermediate system.

Many alternative concepts have been developed to
address issues in current security frameworks, including
secured data self-moderating access and authorization,
inserting encryption/decryption algorithm as metadata into
data files, and specifying access and authorization criteria
into the data objects [14-15].

91

International Journal on Advances in Networks and Services, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/networks_and_services/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



 

B. Blockchain

A notable technology gaining traction for IoT-related
applications is Blockchain. Blockchain is an eponymous,
immutable ledger that stores transactions in blocks of data
which are linked together like a chain. Blockchain can also
be defined as a decentralized, shared, immutable database
that makes it easier to track assets and record transactions in
a network [16], enabling transparent information sharing.

The blocks in a blockchain are linked together by a hash
function. Every block has a timestamp, transaction, and the
hash of the previous block. The first block in the blockchain
is referred to as the “Genesis block”. The embedded hash
validates the integrity and non-repudiation property of the
data that is stored inside the block [8]. Every participating
node in the blockchain network is updated regularly with
the copy of the original. On a blockchain network used as a
distributed ledger, practically anything of value (e.g.
cryptocurrency) may be recorded and traded, lowering the
risks involved for all parties [16].

Unfortunately, sophisticated security techniques such as
blockchain require greater processing resources and power.
As a result, blockchains have been modified to address the
resource constraints in various domains. IoT devices
typically do not have powerful processors and large
memory. Instead, they possess just enough computational
resources to periodically perform a limited number of tasks.
Since these devices are battery operated, relatively
inexpensive, and designed for highly specific purposes, they
are not usually equipped with substantial data protection
mechanisms. Techniques designed for general purpose,
commercial, or enterprise systems therefore may not be well
suited for application in the IoT space.

Often, the term “blockchain” is understood in casual
usage to mean “cryptocurrency” due to the recent popularity
of digital currency exchanges. Blockchain is the core
technology behind cryptocurrency, but the application of
blockchain is not limited to cryptocurrency. The distributed
ledger is the major technology that introduced the concept
of a Peer-to-Peer Electronic Cash System called Bitcoin in
2009 [17]. Distributed ledgers do not rely on centralized
governance and exist virtually or digitally. This legitimate
use of distributed ledgers, and the cryptography for securing
transactions has made it a reliable alternative to traditional
banking systems. The crypto architecture leverages
computational power to solve complex mathematical
puzzles, a process commonly known as “mining” [18].
Mining yields cryptocurrency units such as Bitcoin or
Ethereum. While the influence of blockchain on IoT may
seem obvious, a debate of “where to host the blockchain”
remains [19]. Several implementations of blockchain
technology exist to suit different applications.

Distributed ledgers address the “single point of failure”
issue. Consensus mechanisms such as Proof of Work
(PoW), Proof of Authority (PoA), Proof of Stake (PoS),
Delegated Proof of Stake (DPoS), and Practical Byzantine
Fault Tolerance (PBFT) provide a trustworthy distributed
system [20]. The most common consensus mechanism is
PoW which relies on computational work to validate new
blocks and add them to the distributed chain. In contrast,

systems implementing a centralized architecture [21] may
be less reliable as sensitive data is consolidated, making it a
prime target for cyberattacks [21]. The risk of tampering
and counterfeiting is addressed in blockchain by the
distributed nature of the ledger. Multiple sources confirm
the transactions before recording. This provides high levels
of reliability and security. Some applications manipulate a
tremendous volume of data, and it isn’t practical to store all
the data in the blockchain itself. In such cases, decentralized
storage or off-chain storage can be used.

Regardless of architecture or application, distributed
ledgers and Blockchain can be effective in certain
application domains and can provide a practical framework
for distributed data storage as well as protection [22].

C. Intelligent Cipher Transport Object (ICTO)

Protecting information is difficult when all design
parameters are considered, especially for IoT. Even if the
channel is assumed to be secure, securing endpoints is still a
challenge. A new technology capable of securely
encapsulating data and embedding it with thorough access
control policies may be a promising approach to address
security issues in modern systems, irrespective of user,
device, network, or operating system. This research aims to
explore the usefulness of one such specific technology in
terms of security and efficiency - Intelligent Cipher Transfer
Object (ICTO) [23].

ICTO is a security technology that includes mechanisms
for participant authentication and authorization for access of
data which is protected by cloaking patterns. A portable
dynamic rule set, which includes executable code for
managing access to the protected set of participants and the
protected data, is included within the ICTO. For a given
user, the ICTO may provide access to some participants
while preventing access to other participants based on this
set of constraints [23]. The ICTO concept extends the idea
of conventional AAA and RBAC concepts by cloaking data
at the point of generation with specific user-defined rule
sets. The owner of the data has substantial control over how
or when protected data can be accessed by another party,
regardless of the storage, transport, or operational
environment.

ICTO is a form of encapsulation which achieves data
security by embedding security techniques into the data
itself. This provides a form of self-defense, user
authentication, and governance and tracking ability which is
independent of network or system security [23]. The key
feature of this concept is that it allows data to be protected
at the point of origin, eliminating a dependence on the
security of the communications channel. In addition, access
control policies and authentication parameters can be set by
the data owner during object creation and therefore
eliminate the need for third-party digital certificate
providers. Fig. 1 shows the components/modules that are
embedded with user data to create an ICTO object, also
called “digital mixture” or “self-governing data” [23].
Implicit in the use of ICTO is a common execution platform
or trusted set of libraries implemented on systems which
manipulate ICTO objects.
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Figure 1. ICTO Creation Process.

The ICTO comprises a set of participants including a
portable dynamic rule set (PDRS) which is responsible for
enforcing/evaluating the rules and policies in order to
allow/deny access to an entity attempting to access data.
Fig. 2 and Fig. 3 illustrate simplified use cases where users
can protect their data and can define specific conditions to
allow or deny access depending on policies/rules set during
ICTO object creation.

Figure 2. ICTO use case. ICTO object created by User 1 for partial data
access by User 2 can be transported over an insecure network [23].

Figure 3. Access control policies in an ICTO object. Example of multiple
access control policies configured within an ICTO object created by user M

for multiple users X, Y, and Z [23].

Through software and tools, cipher objects containing
cloaked data along with other modules are created that can
only be utilized/deciphered by using compatible software.

The necessary software and tools used for this study was
provided by Sertainty Corporation. Sertainty’s UXP is an
implementation of the ICTO concept that focuses on
protection at the data layer, targeting any kind of
unstructured/structured data format. UXP objects are

essentially a secure, portable filesystem that hides data and
access policies within a single file. For simplicity, the terms
UXP objects, UXP files, ICTO, or ICTO objects are used
interchangeably in this paper.

  To create a UXP object, an XML file specifying user
identification and definitions, access control and
authorization policies, and other information is required.
This XML file is used to generate a protected ID file that is
then used during creation of the UXP object.  The ID file is
a digital object containing access control and authorization
policy information, user definitions, authentications
parameters etc. in a secure format. The ID object and user
data are combined to create the UXP object (“.UXP”
filename extension). Fig. 4 summarizes the process of
combining the XML file containing data policies, the
resulting ID object (“.iic”), and the provided user data to
create a UXP object, which is an instance of an ICTO.

Figure 4. ICTO object creation process.

III. EXPERIMENTAL SETUP

The ICTO implementation considered in this research is
proprietary, and the property of Sertainty Corporation. The
Sertainty UXP technology is chosen for evaluation as a
compelling instantiation of the ICTO concept.The purpose
of the outcomes in this paper summarize our understanding
of the security features and performance of this promising
technology in comparison with other similar  competing or
enabling technologies. Most experimental results are
phrased in the context of an IoT-related application, and the
technologies are compared or contrasted from this
perspective.

A. System Performance Measurement

The computational cost of using an ICTO to secure user
data is a concern, particularly for resource-limited systems.
Thus, this work investigated parameters associated with
ICTO creation by gathering system resource usage/overhead
and network overhead data related to creation of UXP
objects.

To gather performance data, a computer running a Linux
operating system was used. The computer system was
equipped with an Intel i5 processor having an average clock
speed of 2.4 GHz, 5 MB cache, and 8 GB RAM. Linux shell
and Python programming languages were used for running
various experiments and for data processing.

To gather data related to network performance, secure
and unsecure user data in plain text format was transported
via both secure and unsecure channels to another machine
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with similar specifications in a private network (LAN)
setting.

Statistical evaluation of conventional system burden
including clock cycles, memory usage, and elapsed time
provided a baseline for system performance analysis
whereas metrics including total transmit time, transmission
overhead, and related network parameters provided a
baseline for network performance analysis.

All experiments were repeated at least 200 times for
each independent variable (user payload size) to obtain
statistically meaningful interpretation of the resulting data.
Mean and 95% confidence intervals were calculated for the
statistical study, and maximum/minimum values were
noted.

For experimental data related to memory utilization, the
following memory metrics were monitored:

Data resident set size (DRSS) – The amount of main
memory occupied by the data segment of a running
process, excluding code/instruction memory.
Proportional share size (PSS) – The portion of main
memory occupied by a process, composed by the
private memory of that process plus the proportion of
shared memory with one or more other processes.
Resident set size (RSS) – Represents the total amount
physical memory (RAM) currently occupied by a
process, including memory for both executable
instructions and data.
Virtual set size (VSZ) – A measure of all memory that
a process can access, including memory that is
swapped out, unused allocated memory, and memory
used by shared libraries.
Number of bytes which a task causes to be read from
storage.
Text resident set size (TRS) – The amount of memory
devoted to executable code.

These memory metrics cannot be used as a reliable
estimate for system memory utilization when used
individually. However, coherent results can be gathered if
all of these metrics are considered.

B. Network Performance Measurement

Network performance is typically measured by looking
at parameters including total transmit time, control plane
overhead, round trip time of packets, and similar. For
analyzing the network performance of the ICTO technology,
two important metrics of total transmit time and control
plane overhead were recorded and statistically analyzed.

The experimental setup involved two client and server
computers with similar specifications. The client created
user data that is protected via the UXP implementation of
ICTO [23], and performance of the client system during
UXP creation and transport was recorded. For comparison,
system performance was measured in three configurations:

1.Unprotected user data sent via “plain” TCP.
2.User data protected using UXP and sent via TCP.
3.User data sent via TLS over TCP.
Since TLS v1.2 and TLS v1.3 are the most common

protocol for secure communication over the Internet, TLS

v1.3 was selected for the experiments [24]. In addition to
comparative performance measurements, experiments were
also performed to observe how compressible and
incompressible data types are handled during UXP
encapsulation. Plain text containing ASCII characters and
digits, as well as image files of the same fixed sizes
comprised the user payloads for UXP objects.

Linux utility ‘forkstat’ [25] was used to capture process
IDs (PIDs) of processes for Python-based programs on the
client system and supplied to the ‘perf’ utility [26] for CPU
monitoring as well as to the ‘ps’ utility for memory
monitoring. The remaining test configurations were
identical to those used for system performance assessment
discussed in Section III.A.

C. Blockchain Comparison

Blockchain implementations are often customized based
on use cases where the objective is to solve some critical
issue. This research uses a version of blockchain with a
centralized cloud architecture optimized for lightweight
endpoints. This implementation addresses complexity and
scalability issues related to the traditional distributed ledger.
However, this model doesn’t address the “single point of
failure” that is solved by distributed ledger.

For experimentation purposes, an alternative version of
blockchain was also designed as an implementation of a
distributed ledger. This implementation incorporated the
PoW consensus mechanism with four difficulty levels. PoW
is a popular blockchain consensus mechanism widely used
in distributed ledger technology. Thus, the blockchain
architecture incorporating the PoW consensus mechanism is
referred to here as the “ledger.” The experimental setup
involved running the blockchain and ledger on a Linux
system with 8 GB RAM and 4 CPUs operating at 2.4GHz.

The payloads for blockchain and ledger experiments
were compressed (for losslessly compressible payloads)
using the LZ77 algorithm with Huffman coding.
Compressible and incompressible payloads were also
encrypted using Elliptical Curve Cryptography (ECC)
hybrid encryption with Advanced Encryption Standard
(AES). Python’s ‘tinyec’ library was used to generate an
ECC key pair [27].

IV. SYSTEM LEVEL PERFORMANCE MEASUREMENTS

This section presents experimental results pertaining to
system related as well as network related parameters such as
CPU time, main memory, elapsed user time, and total
transport time. The results are compared with other settings
for a more comprehensive assessment.

A. System Performance

System performance measurement includes two primary
phases of experiments. In the first phase, system statistics
are recorded during UXP object creation. The second phase
compares to the size of the payload data with the size of the
resultant UXP objects.

To measure first-phase system performance, UXP
objects were created with varying payload (user data) sizes
of 1 byte, 1 kilobyte (kB), 20 kB, 100 kB, 500 kB, 1
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megabyte (MB), 2 MB, and 3 MB. Performance metrics
including number of CPU cycles, memory allocated, and
total elapsed time for creating UXP objects are presented in
Fig. 5 and Fig. 6 along with 95% confidence intervals,
computed using the t-distribution for data with unknown
variance.

Figure 5. Plots showing number of clock cycles necessary to create UXP
objects. User data size (X-axis) represents the size of user data (payload)
that is protected by the UXP object. The lower set of plots accentuate the

95% confidence intervals, and indicate consistent, limited variability in the
UXP creation process.

Fig. 5 shows that as the size of the UXP payload
increases beyond 100 kB, the number of CPU cycles also
increases, which is logical. For the smallest payload (1
byte), around 0.8 billion cycles are required for the
minimum number of clock cycles to create a UXP object.
As payload size increases, the number of CPU cycles
increases steadily. The number of cycles required for the
maximum payload size is twice the number of cycles
required for the minimum payload size.

Figure 6. 95% confidence interval plot of memory utilized/time spent
during UXP creation vs. size of user data protected. System memory

(RAM) used is shown in the left side Y-axis and time spent is shown in the
right-side Y-axis.

Fig. 6 contains two sets of data: allocated memory and
elapsed time. The first set of data plotted in Fig. 6 shows
that for payloads of 1 B to 100 kB, elapsed time remains
relatively constant. Thus, a minimum time-to-create Fig. 6
of roughly 1 second may be observed which will vary based
on system characteristics.

The second set of data plotted in Fig. 6 suggests that the
total memory allocated/utilized during UXP creation

remains fairly constant at under 48.3 MB regardless of
payload size.

Thus, on average a minimum of 1 second and 800k
cycles are necessary to create a useable, secure UXP object,
based on an allocated memory of just under 48.3MB. These
performance figures increase essentially linearly with
payload size beyond 100kB (elapsed time) and beyond
20kB (cycles). As a result, a payload of 4MB would be
expected to require approximately 1.9 billion cycles, would
consume roughly 48.3MB, and would complete in under 1.8
seconds on a system comparable to those used for testing.

UXP object creation produces different results for
different types of user payloads. Fig. 7 shows the size of
UXP files after protecting image and text files of varying
sizes. For text data, the resulting UXP object is smaller than
the data for payloads larger than about 2500 kB.

Figure 7. UXP object size for varying sizes of text and image payloads.

When the user payload is comprised of text data, the
difference in resultant UXP file and original data file is
negative for payloads around 264 kB. This difference
increases with payload size suggesting that a lossless
compression mechanism is employed during UXP object
creation. However, with incompressible payloads, an almost
constant positive difference is present regardless of payload.

B. Network Performance

After measuring system performance for UXP object
creation, the objects were transported via a controlled
network and network performance was observed. Network
related performance was analyzed using system metrics
such as RAM and CPU usage as well as transmission
metrics such as control plane overhead and transmit time.

1) System Performance During Transport: To evaluate
system performance, the number of CPU cycles and total
memory allocated when unprotected user data is transported
using “plain” TCP and using a TLS protected TCP channel
is presented. These results are contrasted with similar results
from the transport of UXP objects using “plain” TCP.
Processing and memory requirements during transport of
payloads of multiple sizes, across multiple settings are
summarized in Fig. 8 and Fig. 9 using mean values with
95% confidence intervals.

95

International Journal on Advances in Networks and Services, vol 16 no 3 & 4, year 2023, http://www.iariajournals.org/networks_and_services/

2023, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



  

Figure 8. 95% confidence interval plot of number of CPU cycles for
various payload sizes during transport.

The upper portion of Fig. 8 shows the number of CPU
cycles vs. user payload with a 95% confidence interval
when user data is transported via TCP protected with TLS.
The lower portion of Fig. 8 shows the same data for plain
TCP (user data unprotected), and for plain TCP with user
data protected via UXP. From the plots, it is clear that using
TLS for security is about 1.6 times more computationally
expensive than using UXP objects as the security medium
over a plain TCP channel.

As expected, CPU cycles increase steadily as the user
data size increases. Surprisingly, the number of CPU cycles
required to transport UXP objects via TCP gradually
decreases as payload increases as compared to transport of
unprotected data over TCP. This may be explained using
Fig. 8, which suggests that UXP object creation includes
lossless compression of user data.

Regardless, this observation suggests that protecting
user data using ICTO technology provides improved
performance for data larger than 500 kB.

Thus, UXP is substantially more efficient than TLS in
channel and CPU utilization as well as transmit time,
particularly for large payloads, and provides benefits for
data at-rest as well as in-transit.

Figure 9. 95% confidence interval plot of amount of memory allocated
during transport vs. user data size.

Fig. 9 shows allocated memory vs. user data sizes during
transport of user data over plain TCP, over TLS secured
TCP, and UXP-secured user data over TCP. All plots
employ 95% CI.

As shown in Fig. 9, transporting user data over TLS is
the most expensive in terms of allocated/required memory
as well as compared to the other two modes of transport.

TLS secured data transport is observed to generally require
an additional 20 MB of memory compared to unprotected
data transport or ICTO protected data transport.

Further, the memory required seems to be lower when
UXP objects protecting user data larger than 100 kB are
transported over TCP. Contrary to intuitive expectation,
UXP protected data transport over TCP is observed to be
more memory efficient than transport of raw unprotected
data over TCP.

2) Network Performance During Transport: For
analyzing the network performance of the UXP technology,
two important metrics – total transmit time, and control
plane overhead were recorded and statistically analyzed.

Figure 10. 95% C.I. plots showing control plane overhead vs. user data
size. Overhead measurements are from the transport layer and above.

Mean and 95% confidence interval figures of total
control plane overhead size for transmission as well as total
transmit time for various payload sizes in multiple settings
are presented in Fig. 10 and Fig. 11.Fig. 10 indicates that
using UXP objects as a means of transporting user data
seems to be most efficient in terms of overhead because it
has the least amount of control plane overhead during
transmission. Using TLS over TCP for secure data transport
has at least 50% larger overhead as compared to secure
transport of user data using UXP objects. On average, about
1950 bytes of overhead is introduced by TLS over TCP for
transporting a single byte of data whereas UXP object and
raw data transport over plain TCP introduce only 862 and
184 bytes of overhead respectively, which increases with
payload size.

Hence, for transporting a single byte of data, using UXP
objects as a means of securing the payload introduces only
50% of the overhead of TLS. For the maximum payload
size (3 MB), TLS over TCP requires overhead of about 78
kB whereas using UXP objects over TCP requires 52 kB.
Thus, for transporting 3 MB of user data, TLS introduces
1.5 times more network overhead. Further, compressible
payloads reduce the size of UXP objects, so that required
network overhead is less than 50% as compared with plain
TCP. Thus, UXP is substantially more efficient than TLS in
channel utilization, particularly for large payloads, and
provides benefits for data at-rest as well as in-transit.
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Figure 11. 95% C.I. plots of transmit time vs. payload size. Transmit times
are calculated for transporting user data over TCP, user data protected with

UXP objects over TCP, and via secure channel using TLS over TCP.

Fig. 11 shows the average transmit times for varying
payload sizes for transport of user data in different
configurations. As shown in the Fig. 11, the total time for
transmission remains below 100 milliseconds for payload
sizes up to 100 kB. Time required to transmit 1 byte to 100
kB payloads are highest when transporting UXP objects
over TCP and the lowest when transporting raw user data
over TCP. However, for payloads larger than 500 kB, UXP
protected user data requires less time to transport than other
configurations. The plot shows that for higher user payload
sizes, transmission time is significantly lower for UXP
object transmission over TCP than for that for TLS over
TCP. Thus, UXP is substantially more efficient than TLS in
transmit time, particularly for large payloads, and provides
benefits for data at-rest as well as in-transit.

Although the transmit-time data presented in Fig. 11
were recorded in a controlled network environment, some
incoherency is still evident. This may be explained by
irregular handling of traffic by the network access point that
connects the client and server machines. In addition, the
interfaces at the communicating machines (client and
server) may also have irregular scheduling/process priority
for certain network related processes, affected by
services/applications running in the background.
Nonetheless, somewhat distinct trends are still observable
and are enough to draw meaningful conclusions.

V. BLOCKCHAIN VS ICTO

The results of experiments and data gathering consists of
experiments performed on a general-purpose computer
running the Linux operating system. The experiments were
further categorized into two parts: compressible data, which
encompasses experiments conducted with lossless
compression techniques on payloads, and incompressible
data, which comprises of payloads that could not be
compressed using lossless compression techniques.

A. Storage Comparisons

Memory storage is important irrespective of the context
of data security applications, and in UXP as well as
blockchain implementations. In this section, a general
comparison between blockchain technology and UXP is
presented, considering that both versions of the blockchain

i.e., core blockchain and ledger have the same memory
requirements for the experiments.

Figure 12. Fitted line for blockchain and UXP storing compressible
payload with training and testing datasets.

Figure 13. Fitted line for blockchain and UXP storing incompressible
payload with training and testing datasets.

Fig. 12 and Fig. 13 summarize experimental analysis
regarding the memory storage used by blockchain and UXP
for compressible and incompressible payloads. The
experimental dataset was used to perform linear curve
fitting and generate equations that serve as an
approximation for determining the block size and UXP size
for various payloads. The relationship between the size of
the payload and size of the protected payload was found to
be linear.

Payload sizes within specific range of 1Byte to 1MB
was used as the training dataset for fitting the linear
equations. To assess the accuracy and performance of the
equations, a separate testing dataset was prepared. The
testing dataset included payload sizes of 25kB, 400kB,
700kB and 900kB for both experiments. It is evident from
Fig. 12 and Fig. 13 that the testing datapoints, represented
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by red dots for blockchain and blue dots for UXP, align
closely with the straight line approximated by the training
dataset. The confidence interval had a significantly low
range, which made it infeasible to illustrate in Fig. 12.

Figure 14. Difference in UXP Size vs Block Size.

Fig. 14 displays the disparity in size between a block
and UXP encapsulating compressible and incompressible
payloads of the same size. Storing the same size payload in
a UXP object vs. a blockchain block requires a mean of
25.20 kB for a compressible payload and 25.15 kB for an
incompressible payload.

B. Execution Time

Measuring the time required to store or encapsulate data
is crucial for understanding performance of the system
especially in applications consisting of endpoints with
limited resources. Regarding this context, an experiment
was conducted to compare the time required to store
payload in blockchain, time required to store data in the
ledger, and the time required to encapsulate payload using
UXP technology. Fig. 15 shows the time required to store
incompressible and compressible payloads in blockchain,
encapsulated via UXP, and stored in the ledger respectively.

Figure 15. Blockchain vs UXP vs ledger in terms of time required to store
payload.

As noted, the time to encapsulate data using UXP is
more than 7 times greater than the time it takes to store data

in the blockchain. Similarly, the time taken by UXP
technology is more than 3 times greater than the time it
takes to store data in the ledger. This disparity in execution
time between the blockchain and ledger can be attributed to
the computational requirements of PoW, which requires
calculating a hash with specific difficulty level. This task
poses a challenge for devices with limited resources and
computing power.

Interestingly, the time difference between storing 1 Byte
of payload and 1 MB of payload in the blockchain, on
average, was just 7.15ms and 13.25ms. This indicates that
the time required to store data in the blockchain is relatively
independent of payload size.

Fig. 15 also highlights the narrowness of confidence
intervals for time measurements of blockchain, indicating
extremely low standard deviation and consistent time
requirements regardless of payload size. Conversely, time
measurements for UXP experiments have larger standard
deviation, reflecting greater variability in the dataset. This
could possibly stem from the different encryption and
cloaking mechanisms used in UXP encapsulation. To depict
this variability and randomness in the experiments,
confidence intervals are included in the figures.

C. CPU Clock Cycles

CPU clock cycles directly influence the power
consumption, heat dissipation, and resource allocation, in an
embedded computing system, making it a crucial parameter
to understand.

Figure 16. Comparison of CPU clock cycles for blockchain, ICTO, and
ledger.

Fig. 16 compares CPU clock cycles for blockchain,
UXP, and ledger technologies storing compressible and
incompressible payload of various sizes.

As indicated in the Fig. 16, the CPU clock cycles
required for UXP encapsulation were 2 times greater than
storing data in blockchain. Interestingly, the CPU clock
cycles required for UXP, and ledger were nearly equal for
compressible and incompressible payloads.

D. Random Access Memory (RAM)

When choosing data protection technology, the balance
of security, resource efficiency, and performance is
important. The Resident Set Size (RSS), which measures the
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amount of physical RAM consumed by a process [25, 26] is
a useful indicator of memory utilization for blockchain,
ledger, and UXP creation on an individual computer.

Fig. 17 shows the average RSS values for compressible
and incompressible payloads encapsulated via UXP or
stored via blockchain or ledger. This data clearly illustrates
that, for the same payloads, RSS required for blockchain,
and ledger is 50% greater than RSS required for UXP
encapsulation, regardless of payload type.

Figure 17. RSS memory comparison for blockchain, ledger, and ICTO.

E. Network Analysis

Network performance for blockchain and ICTO
transferred via TCP was evaluated using identical client and
server systems via data gathered on the client side.
Blockchain payloads were compressed using the LZ77
algorithm and encrypted with ECC encryption prior to
transmission. UXP objects were created using compressible
payloads.

Figure 18. Cumulative Header Size vs Payload Size.

Figure 19. Network Latency vs Payload Size.

The overhead for plain TCP connections (denoted
“naked payload” in the figures) and UXP/TCP was found to
be similar for larger payloads as seen in Fig. 18. The
overhead for blockchain was found to be significantly
higher than for plain TCP and UXP/TCP for large payloads.
This can be attributed to the relatively larger blockchain
blocks vs. plain TCP and UXP/TCP. The encryption
overhead of the blockchain blocks also increases with
payload. However, the overhead of UXP/TCP is constant
with mean value of 25.20 kB.

Fig. 19 illustrates that the total time required to transport
UXP/TCP was surprisingly efficient as compared with
blockchain, as block transport required as much as 500% of
the time required for UXP/TCP.

F. Memory Footprint

The memory footprint of UXP encapsulation compared
with encrypting blocks of blockchain with Ascon is also
important for IoT applications. The Ascon encryption
algorithm is designed for lightweight usage and easy
implementation with minimal overhead [29]. “Ascon-128”
with key size of 16 bytes was used in this research to
encrypt individual blocks of the blockchain. The memory
footprint of the resulting block was compared with UXP
objects for the same payload.

Figure 20. Memory footprint comparison for compressible payloads.
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Figure 21. Memory footprint comparison for incompressible payloads.

Fig. 20 and Fig. 21 comparison memory requirements of
UXP encapsulation and blocks of blockchain or ledger
encrypted by ECC and Ascon algorithms for compressible
and incompressible payloads respectively.

From the figures, it is clear that the memory
requirements of UXP and Ascon encrypted blocks were
almost identical for larger payloads. However, this
requirement for blocks encrypted by ECC increased with
payload size. Ascon is specifically designed for constrained
implementation and low memory footprint. The fact that
UXP memory requirements are similar to Ascon is
surprising, particularly considering that UXP encapsulation
includes multiple layers of encryption.

VI. SECURITY ANALYSIS

A major part of this research is concerned with the
investigation of strengths and weaknesses of ICTO
technology as a data security measure. Assessment of the
security provided by the technology through conventional
cryptanalytic techniques as well as modern approaches such
as machine learning is a particularly important aspect of the
investigation.

Cryptanalysis is the study and practice of analyzing data
and cryptosystems for weaknesses and vulnerabilities that
may be used to extract useful information [30, 31]. Two
main categories of cryptanalysis are symmetric
cryptanalysis for symmetric ciphers, and asymmetric/public
key cryptanalysis for asymmetric ciphers. Some common
symmetric cryptanalytic techniques include brute force
attacks, differential cryptanalysis, and algebraic attacks [31-
34]. Common techniques for public-key cryptanalysis
include factoring attacks and discrete logarithm problem
solving [35-37]. Cryptanalysis also relies on the availability
of related information, such as the cryptographic algorithm
applied, the plaintext used to generate ciphertext, and the
ciphertext itself.

Unlike cryptanalysis of symmetric or asymmetric
encryption algorithms, where a string of plaintext of a given
length results a ciphertext of comparable length, ICTO
objects typically have a minimum size of 25 kilobytes
regardless of payload size. This makes it difficult to
determine where the payload is located within the object.
UXP objects were therefore analyzed with the assumption

that the plaintext is not available. This approach mimics the
role of an attacker who can observe UXP objects in flight or
at rest.

As a preliminary measure, a large number of UXP
objects created using the same XML policy file and user
data were hashed and the resulting hashes were compared
with the aim of finding a collision/repetition. None of the
resulting hashes matched, which suggests that every UXP
object is unique regardless of embedded user data or policy.

A. Frequency Analysis

In classical cryptanalysis, frequency analysis (letter
counting) is the study of frequency of occurrences of letters
or group of letters in ciphertexts [30-32]. It is one of the
most basic and common methods to analyze ciphertexts and
has been used for breaking many classical ciphers.

Frequency analysis was performed for a large number of
UXP objects (n=500) protecting user payload. Characters
were read at each index/offset/position in the UXP file, and
the number of occurrences were tabulated. This analysis
was performed individually for each object file to obtain a
scatter plot, and then repeated for the entire set of files to
obtain an average character-frequency plot.

Figure 22. Plots showing byte value of characters vs. frequency of
occurrence. The points plotted in black represent character frequency for
individual files. The line surrounded by red band represents 95% C.I. plot

of average frequency of characters in all 500 object files.

Fig. 22 shows the result of frequency analysis through a
scatter plot and a line plot. Each black mark in the scatter
plot represents the frequency of corresponding character
(expressed in base 10) for a single UXP object. Each
character is represented with an 8-bits byte and thus the
character pool has 256 possible values. The composite
scatter plot contains data for 500 UXP objects.

The red line in Fig. 22 displays the 95% confidence
interval for each character value and location. Notably, the
scatterplot indicates that regardless of character position, the
distribution of values is distinctly non-uniform. This is an
unexpected and potentially problematic outcome.

Characters with base-10 values greater than 63 and less
than 127 are observed to have higher frequency of
occurrence. Also, slightly higher frequency of occurrence
near 105 is observed for characters 0 to 63 compared to
characters 127 and above which have an average frequency
of about 103. This observation counters the intuitive notion
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that character values in the UXP objects would be uniformly
distributed regardless of position.

B. Positional Analysis

As a measure of finding a structure or similarity that
may be common in UXP files, coincidence counting – a
technique of putting two or more texts side-by-side and
recording the number of times and position where identical
characters repeat was performed for several UXP objects. It
was observed that sets of characters at positions 492 to 494
(3 characters) and at positions 503 to 512 (10 characters)
repeat for any UXP object. This observation along with the
evidence of non-uniformly distributed character sets led to
the analysis of characters based on their position/index in
UXP objects.

A scatter plot of character position vs. value using 150
UXP object files all protecting 1 byte of user data is
presented in Fig. 23. For simplicity, only the first 700
positions of each UXP file are considered in the plot. It can
be observed from the plot that the characters within a range
of positions always have a value within a fixed range. This
outcome is concerning and non-intuitive for a collection of
encrypted/cloaked segments of data.

Figure 23. Scatter plot of character position vs. character value for 150
UXP files. The first 700 positions are considered for each object file.

Characters having base-10 values in range of 0-225, 64-
127, and 1-126 are observed to be occurring in fixed ranges
of positions. This pattern was observed throughout the
entirety of UXP files. However, such patterns occur more
frequently within the first 650 positions. Although it is not
ideal for ciphertexts to contain a fixed set of characters
occurring at a given range of positions, UXP objects are
observed to have a clearly defined pattern/structure. These
patterns were found to be distributed throughout the entirety
of every UXP files regardless of variations in policy
parameters set in the XML file.

Through careful analysis, it was found that some of the
positions in the UXP files always contain a fixed set of
characters. This is seen specifically for position 491 which
contain only 14 possible characters. Positions 492 to 494
always contain a character with base-10 value of 4.
Similarly, positions 503 to 512 always contain the same
character. This data validates observations and inferences
from frequency analysis because these characters evidently
have a higher frequency of occurrence and are always
present in several fixed positions of UXP objects. Such a

composition of characters observed in UXP objects were
found to remain unaffected even when the original XML
file (containing policy specification) or payload was
modified. This outcome is concerning and counter-intuitive
for a collection of data which is encrypted or cloaked.

C. Entropy Analysis

Different levels of “surprise,” “uncertainty,” or
“information” can be expressed in the information theory
metric of entropy [31]. Entropy is the expected value or
mean of the “information function” of the probability
distribution for a set of characters. It indicates the
“uncertainty” of a subsequent realization from a random
source with a certain probability distribution. For UXP
objects, the entropy for each position in the object yields an
estimate of the number of bits required to store or transmit
the information contained. Alternately, the positional
entropy can measure the uncertainty related to a particular
character in each position in the UXP object.

To calculate the positional entropy, character
occurrences for each position in 500 UXP objects protecting
1 byte of user data were recorded. Kernel density estimation
(KDE) [37-40] was employed to approximate the
probability density of sample data recorded for each
position and used to calculate the positional entropy for the
first 700 bytes of each UXP object.

Fig. 24 presents entropy vs. unit index plot for the first
700 bytes of 500 UXP files. The X-axis contains 700 units
and 350 units in the bottom and top axes to represent 1-byte
units and 2-byte units respectively. Note that each 1-byte
unit contains 8-bit characters (256 possible values), and
each 2-byte unit contains 16-bit characters (65,536 possible
values).

Figure 24. Line plot of entropy vs. unit index. Entropy of 1-byte units (red)
and 2-byte units (blue) are shown. The vertical axis is presented using the

base-2 entropy values for each unit offset.

The plots in Fig. 24 show large variations in entropies
with respect to unit offsets/indices. Dips in entropy values
are observed in indices where a fixed subset of characters
were found to occur in Fig. 23. Note that the maximum
value of base-2 entropy for an 8-bit index is 8 and for a 16-
bit index is 16. This indicates the number of bits required
for lossless transmission of information carried by a single
unit. Most positional entropy values are maximized, but the
regularity of “dips” in entropy are concerning.
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Dips in entropy are observed in unit indexes where
character groups appeared to “cluster” in Fig. 23. For
instance, in the 1-bye unit vs. entropy plot, dips in entropy
values are seen in the positions/offsets 25 to 36, 227 to 242,
and so on. The trends observed in Fig. 24 correlated
specifically with the constrained character occurrences
observed in Fig. 23.

Lower entropy values indicate that the possible
outcomes of a random variable or data source (characters
occurring at given positions in this case) have a non-
uniform probability distribution. In other words, the
probability distribution may be skewed/warped heavily
towards a single outcome. This result indicates that UXP
objects are “leaking” information at well-defined locations.

In contrast, the positional entropy of ciphertexts
generated from random data samples using AES and 32-bit
keys is presented in Fig. 25.

Figure 25. Line plot of entropy vs. unit index. 1-byte and 2-byte units were
taken to obtain line plots in red and blue colors respectively.

Unlike the “dips” in positional entropy for UXP objects,
AES-encrypted data produces consistent positional entropy
of around 7.9 and 11 for 1 byte and 2-byte units
respectively, regardless of character position. Thus,
characters at each index of the ciphertexts are uniformly
distributed and hence do not exhibit any kind of structure, or
potential data leakage.

D. Cryptanalysis Using Unsupervised Machine Learning

To analyze patterns in UXP objects using different
unsupervised ML techniques, a dataset containing relevant
features was created using a large number of objects. The
base-10 character values in each position from each object
was recorded, and features of each array were extracted.
Five characteristics including largest value, smallest value,
mean, difference of largest and smallest values, and entropy
were recorded or calculated. For simplicity, only the first
700 positions of the objects were considered. As a result,
700 records each with 5 features are present in the final
dataset to be submitted to ML algorithms. The accuracy of
the features depends upon the number of objects used for
calculating each feature value.

Two popular unsupervised ML algorithms, k-means and
agglomerative clustering were used to discover clusters of
similar orientations in the set of UXP objects.

Figure 26. Clusters visible with k-means clustering.

Fig. 26 indicates that 5 distinct clusters with high degree
of separation are present in UXP objects. These clusters
indicate that distinct patterns or structures are present in
every UXP object. The frequency of such patterns/structures
in the objects correspond to the number of data points in
each cluster. Information of this nature could be relevant for
attackers because patterns in data can potentially expose or
leak information and may act as the weakest points of
attack.

Figure 27. Silhouette plot of resulting k-means clusters.

Fig. 27 shows the silhouette plot obtained using data
points from each cluster, which graphically depicts how
well data points fit into the clusters to which they have been
assigned, as well as the quality of separation. Silhouette
values signify good or bad clustering with a range of [-1, 1].
The mean silhouette value in Fig. 27 is roughly 0.9 which is
near the maximum value of 1.

Combining observations from Fig. 26 and Fig. 27, it is
clear that UXP object have at least 4 distinct patterns of data
within them. These inferences also align well with prior
observations. As a result, it seems clear that more
sophisticated or in-depth machine learning processes may
reveal additional information about the UXP objects, or the
data payloads contained within them.
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Figure 28. Clusters obtained using agglomerative clustering.

The presence of distinct clusters or groups of data inside
UXP objects is further supported by Fig. 28, obtained by
using agglomerative clustering. Similar to the results shown
in Fig. 26, at least 5 different clusters are observed using
this ML method.

Both approaches suggest that UXP objects consist of
distinct patterns or structures which are evident when
observed with respect to the position or index of characters.
This characteristic of UXP objects exposes potential
vulnerabilities that may be determined or exploited using
more sophisticated ML approaches.

VII. CONCLUSION

This research explores the potential of the ICTO concept
as a data security technology for IoT and general-purpose
computing. Comparative performance with popular
solutions or technologies is presented, including evaluations
with TLS for network transmission and blockchain for
storage and security. Based on the outcomes of this study,
the ICTO concept could be an alternative to conventional
security techniques, especially for IoT. Protecting data at
the point of origin or the source itself with access and
authorization policies embedded to the data itself seems to
be the prime advantage of the ICTO concept. Most security
frameworks rely on separate mechanisms to protect
information when it is at-rest or in-flight, and these
mechanisms have to be tightly coupled to provide
comprehensive, end-to-end security. Such integrations are
not only complex and costly but also introduce
vulnerabilities that can exploited. The ICTO concept is a
bold approach that may address many issues associated with
data security.

A. Performance

System performance results in Section IV show that it
takes at least 1 second of user time and around 47 MB of
memory for UXP object creation. Transport of UXP objects
over TCP is observed to require higher CPU and memory
resources than plain TCP for small payloads. However, for
larger payloads, transport of UXP objects was found to
require fewer system resources compared to transport of

raw user data over plain TCP. System resources used for
transporting data via TLS over TCP were significantly
greater than UXP object transport, requiring 50% more CPU
cycles and 20 MB more memory. Automatic lossless
compression of text payloads resulted in objects with total
size smaller than the original payload.

The transport of user data via TLS/TCP required
significantly greater transmit time and control plane
overhead than the other two approaches, regardless of the
payload size. In comparison, UXP/TCP required slightly
more time and overhead for small payloads but
outperformed other methods for large payloads.

B. Blockchain vs ICTO

Scalability is a key consideration in data security
applications, and technologies such as blockchain have clear
scalability issues because of the cumulative nature of the
chain. In contrast, ICTO (as realized as UXP) creates an
independent object for a given payload with overlapping
layers of security and relatively constant overhead.

In terms of memory and storage utilization and clock
cycle requirements, ICTO provides a substantial, relatively
deterministic outcome. This result is in stark contrast with
an implementation of blockchain in a modified distributed
ledger with proof-of-work. This suggests that ICTO has the
potential to replace the complex distributed ledger
technologies employed in various applications.

Table 1 summarizes critical system performance criteria
including literature survey discussion and experimental
results using a modified Likert Scale [40] or Mean Opinion
Score (MOS) [41] to quantify and rank certain qualitative
results.

TABLE 1. Comparison of blockchain, ledger, and UXP

C. Security of ICTO

Basic cryptanalysis techniques including frequency
analysis, index-of-coincidence and positional entropy
revealed potential patterns or structures within UXP objects.
Frequency analysis of UXP objects indicates that some
characters occur more frequently than others and are not
uniformly distributed for every position in UXP objects.
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Some of the positions were found to always contain
characters from a fixed subset of possible characters, and
positional entropy analysis revealed that UXP objects
follow a fixed structure or pattern to store information
within them. The presence of consistent structures
throughout UXP objects indicates that they are leaking
information that may serve as a starting point for a more
sophisticated attack.

Unsupervised ML approaches confirmed and reiterated
the fact that patterns are present in the UXP objects. ML
algorithms were successful in finding distinct clusters with
high degree of separation. The clusters indicate that at least
4 different patterns or structures can be found in the first
700 bytes of every UXP object.

D. Summary

UXP as an implementation or realization of ICTO
technology is a complete package that focuses on data
security with enhanced protection schemes. The UXP
instantiation of ICTO is a proprietary implementation. As
such, specific implementation details are not available for
evaluation. However, as an instance of a new class of data
security techniques, the contrasts and comparisons with
similar and enabling technologies is valuable. Additional
research through cryptanalysis is necessary to comprehend
the extent of data security actually provided by the UXP
implementation of ICTO. But what’s clear is that it is a
ready-to-use approach to data security which intrinsically
supports lossless compression for implementation
efficiency. It is extremely useful in cases where security and
scalability are vital. Based on the results and inferences
drawn from this work, the ICTO concept indeed has a
potential to be a useful technology for securing data in IoT
as well as general purpose computing.

Even though the UXP implementation of ICTO which
was leveraged in this research may not be fully optimized,
the performance statistics are compelling, especially when
evaluated in context with conventional in-transit data
protection schemes. For use cases in IoT, while the findings
indicate the overhead of UXP or ICTO is not optimal, the
constant overhead even for larger payloads does show
potential. The promising trajectory of ICTO with its unique
data security approach, and scalability model, justifies
further exploration in IoT domain. Further research to
optimize ICTO could prove beneficial especially for IoT
where securing data right from the source is often difficult.

VIII. FUTURE WORK

Clearly, a wider range of ML techniques and exploration
of deep learning methodologies could prove to be fruitful in
the analysis of ICTO. This work has shown that basic ML
methods can detect multiple structures within the secure
objects, but the importance of these structures in data
leakage is unclear.

Experimental analysis of the ICTO implementation
suggests that it is also worth considering an open-source
implementation, which could provide notable advantages
including transparency, auditability, and interoperability in
applications where data security is a critical requirement.
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