
A New Property Coding in Text Steganography of Microsoft Word Documents

Ivan Stojanov, Aleksandra Mileva, Igor Stojanović

University of Goce Delčev
Štip, Macedonia

Email: {ivan.stojanov, aleksandra.mileva, igor.stojanovik}@ugd.edu.mk

Abstract—Electronic documents, similarly as printed documents,
need to be secured by adding some specific features that allow
efficient copyright protection, authentication, document tracking
or investigation of counterfeiting and forgeries. Microsoft Word
is one of the most popular word processors, and several methods
exist for embedding data specially in documents produced by
it. We present a new type of methods for hiding data in
Microsoft Word documents, named as Property coding, which
deploys properties of different document objects (e.g., characters,
paragraphs, and sentences) for embedding data. We give four
different ways of Property coding, which are resistant to save
actions, introduce very small overhead on the document size
(about 1%), can embed up to 8 bits per character, and of course,
are unnoticed by readers. Property coding belongs to format
based methods of text steganography.

Keywords–Data Hiding; Microsoft Word.

I. INTRODUCTION
Steganography is the art of undetectably altering some

seemingly innocent carrier to embed or hide secret messages.
Modern digital steganography utilizes computers and new in-
formation technologies, and one can use an image, text, video,
audio, file, protocol header or payload, or similar, as a carrier.
Watermarking, on the other hand, is the art of imperceptibly
altering some carrier, to embed a message about that carrier.
Each steganographic and watermarking system consist of an
embedder and a detector, the carrier is called cover work,
and the result of embedding is called stego (watermarked)
work [1]. Information hiding (or data hiding) is a general term
encompassing a more wide range of problems, and it includes
steganography and watermarking also.

Text steganography refers to the hiding of information
within text (see surveys [2][3]). Text is one of the oldest media
used for hiding data, and before the time of digital steganog-
raphy, letters, books, and telegrams were used to hide secret
messages within their texts. Also, text documents are the most
present digital media today, which can be found in the form
of newspapers, books, web pages, source codes, contracts,
advertisements, etc. So, development of text steganography
and steganalysis is very important. From one side, data hiding
methods in text documents are big threats to cybersecurity and
new communication tools for terrorists and other criminals.
On the other side, these methods can have legal application
in document tracking, copyright protection, authentication,
investigation of counterfeiting and forgeries, etc. [4][5][6].

Microsoft Word is one of the most popular document
and word processing software, which comes as a part of the
Microsoft Office package. It is attractive for average users
because of the easiness of text editing and richness of text
formatting features.

In this paper, we present four new methods for hiding
data in MS-Word documents. We use properties of different

document objects, like characters, paragraphs, and sentences,
for data hiding. Additionally, these techniques can be adjust
for using in the documents produced by other word processors,
like Apache OpenOffice, Corel WordPerfect, etc. Section II
is devoted to different techniques used in text steganography
and Section III gives several existing methods and techniques
specially designed for MS-Word documents. Our four new
methods are presented in Section IV, and experimental results
and discussion are given in Section V.

II. TEXT STEGANOGRAPHY
There are three main categories of text steganography:

format based methods, random and statistical generation, and
linguistic methods [7].

A. Format based methods
Format based methods generally format and modify ex-

isting text to conceal the data. There are several different
techniques for hiding data in text documents presented bellow.
Some of them like line shift coding or inserting of spacial
characters can pass unnoticed by readers, but can be detected
by computer; and other like font resizing, can pass undetected
by computer, but human can detect it. Hidden information
usually can be destroyed for example by character recognition
programs.

1) Line Shift Coding: In line shift coding, each even line
is shifted by a small predetermined amount (e.g., 1/300 inch
and less) either up or down, representing binary one or zero,
respectfully [8][9][10]. The odd lines are used as control lines
for detection of shifting of the even lines, and their position
is static. In this way, the original document is not needed for
decoding.

2) Word Shift Coding: Similarly to line shifting coding, in
word shifting coding, each even word is shifted by a small
predetermined amount (e.g., 1/150 inch and less) left or right,
representing binary one or zero, respectfully [9][10]. Again,
each odd word serves as a control word, which is used for
measuring and comparing distances between words. Since the
word spacing in the original document is not uniform, the
original document is needed for decoding. Low, Maxemchuk,
Brassil, and O‘Gorman [8] use combination of line and word
shifting, and each even line additionally is divided in three
blocks of words and only middle block is shifted left or right.
In [11], line is divided in segments of consecutive words,
and neighbouring segments share one word. By shifting only
middle words of the segment, 1 or 2 bits can be coded per one
segment.

3) Feature Coding: In feature coding (or character coding),
the feature of some characters in the text are changed [9][10].
For example, change to an individual character‘s height or its
position relative to other characters; extending or shortening

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

of the horizontal line in the letter t; increasing or decreasing
the size of the dot in letters i and j, etc. The last technique
can be applied for 14 letters in Arabic alphabet [12]. Another
feature coding methods for Arabic alphabet [13][14] use the
redundancy in diacritics to hide information.

4) Open method: In this group of techniques, some special
characters are inserted in the cover text. For example, spaces
can be inserted at the end of each sentence, at the end of each
line, between words [15], or at the end of each paragraph [16].
A text processor can change the number of spaces and destroy
the hidden message. There are several software tools, which
implement some variants of the open method, like SNOW [17],
WhiteSteg [18], UniSpaCh [19] which uses Unicode space
characters, etc.

Other techniques [20][21], which can be put in this group,
use widening, shrinking or unchanging an inter-word space to
encode the text format.

5) Luminance Modulation Coding: This coding uses char-
acter luminance modulation for hiding data. Borges and Mayer
[22] embed data by individually altering the luminance of each
character from black to any value in the real-valued discrete
alphabet of cardinality S, so that each symbol represents log2S
bits. One previous method [23], instead of whole character,
modulates the luminance of particular pixels from the char-
acters in scanned text document for hiding bits. Similarly in
[24], quantization of the color intensity of each character is
used, in such a way the HVS cannot make the difference
between original and quantized characters, but it is possible
for a specialized reader. This technique works well on printed
documents, too.

B. Random and Statistical Generation
In methods of random and statistical generation, a new

text is generated, which tries to simulate some property of
normal text, usually by approximating some arbitrary statistical
distribution found in real text [7].

C. Linguistic Methods
Linguistic methods manipulate with lexical, syntactic, or

semantic properties of texts for hiding data, while their mean-
ings are preserved as much as possible. Known linguistic
methods are syntactic and semantic methods.

With syntactic methods, data can be hidden within the
syntactic structure itself. They sometimes include changing
the diction and structure of text without significantly altering
meaning or tone. Some of them use punctuation, because there
are many circumstances where punctuation is ambiguous or
when mispunctuation has low impact on the meaning of the
text. For example, one can hide one or zero by putting or
not, a comma before ”and” [15]. One disadvantage is that
inconsistent use of punctuation is noticeable to the readers.
In Arabic language, there is one special extension character,
which is used with pointed letters, without effect on the
content. The authors of [25] suggest to use pointed letters with
extension as binary one and pointed letters without extension
as binary zero. Wayner [26] proposed Context-Free Grammars
(CFGs) to be used as a basis for generation of syntactically
correct stego texts. Another method [27] manipulates with
sentences by shifting the location of the noun and verb to
hide data.

Semantic methods change the words themselves. One
method uses the synonym substitution of words for hiding
information in the text [15]. Two different synonyms can be

used as binary one and zero. Similar is use of paraphrasing of
text for hiding messages [28], for example ”can” for binary 0,
and ”be able to” for binary 1. Another method [29] changes
word spelling, and in order to code zero or one, the US and
UK spellings of words are used. One example is the word
”color”, which has different spelling in UK (colour) and US
(color). Other semantic methods are given in [5][30]. Semantic
methods sometimes can alter the meaning of the sentence.

Different miscellaneous techniques that use typographical
errors, using of abbreviations and acronyms, free form format-
ting, transliterations, use of emoticons for annotating text with
feelings, mixed use of languages, and similar ones are given
in [31].

III. EXISTING METHODS SPECIALLY DESIGNED FOR
MS-WORD DOCUMENTS

Besides the previous more general text steganographic
methods that can be applied, there are several methods for data
hiding, specially designed for Microsoft Word documents. The
most closest technique to ours, is usage of invisible characters,
suggested by Khairullah [32]. This technique sets foreground
color on invisible characters such as the space, the tab or the
carriage return characters, obtaining 24 bits per character.

Another technique, called Similar English Font Types
(SEFT) [33], use similar English fonts for hiding data. First,
three different similar fonts are chosen (e.g., Century751 BT,
CenturyOldStyle, CenturyExpdBT), and then, 26 letters and
space character are represented by triple of capital letters, each
in one of the chosen fonts.

Liu and Tsai [34] use Change Tracking technique for
hiding data in MS-Word documents. First, a cover document
is degenerated with different misspellings and other mistakes
usual for users, and then, corrections with Change Tracking
are added, so it seems like the document is the product of a
collaborative writing effort. The secret message is embedded
in the choices of degenerations using Huffman coding.

From MS-Office 2007, Microsoft has adopted a new format
of its files, and introduced the Office Open XML (OOXML)
format. In order to guarantee higher level of privacy and
security, it has also presented the feature Document Inspector,
which is used for quickly identifying and removing of any
sensitive, hidden and personal information. Castiglione et al.
present in [35] four new methods for hiding data in MS-Word
documents, which resist the Document Inspector analysis. Two
of them (with different compression algorithms or revision
identifier values) exploit particular features of the OOXML
standard, have null overhead, but do not resist to save actions.
Other two (with zero dimension image or macro), resist to save
actions, but they have an overhead.

IV. PROPERTY CODING
We present four new format based methods for hiding data

in MS-Word documents, that use some text formattings that
are invisible for human eye. They use different choices for
some text properties, and because of that, we can name them
as Property Codings. Methods presented in [32] and [33] can
be also classified as Property codings, because they use font
color and font type properties of a given character, respectfully.
The novelty of our methods is twofold. First, we introduce
other character properties that can be used for hiding data,
and second, we show that properties of document objects other
than characters (e.g., paragraphs and sentences), can be used
for hiding data.

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

A. Method 1 - Character Scale
When we work in MS-Word, by default text character scale

is set to 100%. Increasing the character scale will make your
letters larger and scale further apart with more white space
between each character. Decreasing the scale will shrink and
squish letters closer together. Big differences in character scale
are noticeable for human reader. But, if some of the characters
are with scale 99% and others with 101%, human eye can not
make the differences.

So, in the first method, we use scale of 99% to represent
binary one, and scale of 101% to represent binary zero. Scale
of 100% can be used for non-encoded characters. In this
way, in the cover document, we can hide maximum the same
number of bits as the number of characters in the document.

Variants of this method are also possible. For example,
instead of using two very close scale values, one can uses
four very close scale values (e.g., 97%, 98%, 99% and 101%),
and every value will represents two binary digits. In this way,
we duplicate the hiding capacity of the same document, and
still normal reader won’t notice it. Another variant is to change
scale on every word, not on every character.

B. Method 2 - Character Underline
One common feature of MS-Word is character underlining.

There are 16 different underline styles, with potential of
carrying 4 bits, and 224 different underline colors. Because
we need underlining to go unnoticed by the user, we use 16
variants of white color, with potential of carrying 4 bits.

In this way, we can hide 8 bits per character. Some
characters, as g, j, p, q, and y, have noticeable changes in
the look when we use every type of underlining. Because of
that, we excluded this group of 5 characters from hiding data.

C. Method 3 - Paragraph Borders
In MS-Word, one can add border to the paragraph, sen-

tence, picture, table, individual page, etc. Border can be
left, right, top, bottom, etc. There are 24 different border
styles, and only two of them (wdLineStyleEmboss3D and
wdLineStyleEngrave3D) are noticeable to human reader. We
can use 16 out of the rest 22, with potential of carrying 4 bits.

In this method, we use left and right borders on paragraph
for hiding data. Again, we use 16 variants of white color for
borders. Each paragraph in the cover document can hide 16
bits, in the following way - 4 bits from left border style, 4 bits
from left border color, 4 bits from right border style, and 4 bits
from right border color. This is done in our implementation.

We can increase hiding capacity of this method, by using
different border width also. There are 13 border styles with
9 different border widths, two border styles with 6 different
border widths, three border styles with 5 different border
widths, one border style with 8 different border widths, one
border style with 2 different border widths, and two border
styles with 1 border width, or summary 155 possibilities.
Potentially, we have 7 bits per combination border style/width.
With experiments, we obtained that RGB colours represented
with (R,G,B) components, where R,G,B > 249 can not be
distinguished from the white color (255, 255, 255). There are
216 different possibilities for colour, which can be used for
representing 7 bits. Combining these two techniques, we can
hide 28 bits, in the following way - 7 bits from left border
style, 7 bits from left border color, 7 bits from right border
style, and 7 bits from right border color.

TABLE I. CHARACTERISTICS OF THREE COVER DOCUMENTS

Document 1 Document 2 Document 3

Pages 1 11 110

Words 340 2381 30907

Characters 2252 15493 190833

Paragraphs 13 82 802

Lines 42 328 3445

Sentences 21 134 2028

Original size (B) 31122 923090 4589312

TABLE II. COMPARISON OF MAXIMAL NUMBER OF EMBEDDED
BITS/CHARACTERS IN OUR METHODS AND METHODS PRESENTED IN [32]

AND [33]

Document 1 Document 2 Document 3

Characters without q, j,
p, q, y

2154 14823 182470

Invisible Characters 364 2515 31422

Percent of Invisible
Characters

16,2 16,2 16,5

Capital Letters 40 286 4704

Max No. of embedded
bits in Method 1

2252 15493 190833

Max No. of embedded
bits in Method 2

17232 118584 1459760

Max No. of embedded
bits in Method 3

364 2296 22456

Max No. of embedded
bits in Method 4

147 938 14196

Max No. of embedded
bits in [32]

8736 60360 754128

Max No. of embedded
characters in [33]

13 95 1568

Max No. of embedded
bits in [33]

104 760 12544

D. Method 4 - Sentence Borders
The final method uses sentence outside border for hiding

data. We use only 8 border style out of 16, because other 8
can be noticed by human reader, and only the smallest border
width of 0.25pt. Used border styles are wdLineStyleDash-
Dot, wdLineStyleDashDotDot, wdLineStyleDashLargeGap,
wdLineStyleDashSmallGap, wdLineStyleDot, wdLineStyleIn-
set, wdLineStyleOutset and wdLineStyleSingle. Each sentence
in the cover document can hide 7 bits, with 3 bits from outside
border style, and 4 bits from outside border color.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
Each new presented method has implementation in C♯

using the Microsoft.Office.Interop.Word namespace. Our im-
plementation of these four methods, use 8 bits to represent an
extended ASCII character for all methods, except for the last,
were we use 7 bits to represent an ASCII character. For our
experiments, we use three types of MS-Word documents as
cover documents - short, medium and large documents, with
properties given in Table I.

For each cover document, we hide 10, 50, 100, 500, 1000,
and 5000 characters (if it is possible), and we measure the
size of the obtained stego document. Normally, the new size
is bigger than original size, and it is given in bytes and in
percent of increase of original size.

From the results in Tables III, IV and V, one can see that
all techniques have small impact of document size, less then

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

TABLE III. EXPERIMENTAL RESULTS FOR DOCUMENT 1 WITH ORIGINAL SIZE OF 31122B

10 characters 50 characters 100 characters 500 characters 1000 characters 5000 characters

Size % Size % Size % Size % Size % Size %

Method 1 31448 1.01047 32347 1.03936 33390 1.04074 / / / / / /

Method 2 31249 1.00408 31530 1.01310 31986 1.02776 34482 1.10796 37517 1.20548 / /

Method 3 31295 1.00555 / / / / / / / / / /

Method 4 31356 1.00751 / / / / / / / / / /

TABLE IV. EXPERIMENTAL RESULTS FOR DOCUMENT 2 WITH ORIGINAL SIZE OF 923090B

10 characters 50 characters 100 characters 500 characters 1000 characters 5000 characters

Size % Size % Size % Size % Size % Size %

Method 1 923609 1.00056 924750 1.00179 925472 1.00258 934834 1.01272 946697 1.02557 / /

Method 2 924243 1.00124 924605 1.00164 925180 1.00226 926341 1.00352 928582 1.00624 953474 1.03291

Method 3 923455 1.00039 924398 1.00141 924547 1.00157 / / / / / /

Method 4 923587 1.00053 924013 1.00099 925290 1.00238 / / / / / /

TABLE V. EXPERIMENTAL RESULTS FOR DOCUMENT 3 WITH ORIGINAL SIZE OF 4589312B

10 characters 50 characters 100 characters 500 characters 1000 characters 5000 characters

Size % Size % Size % Size % Size % Size %

Method 1 4589321 1.00000 4589363 1.00001 4591027 1.00037 4595001 1.00123 4605370 1.00349 4682285 1.02025

Method 2 4589313 1.00000 4589356 1.00000 4589574 1.00005 4592093 1.00060 4595782 1.00140 4608077 1.00408

Method 3 4589512 1.00004 4589567 1.00005 4589597 1.00006 4591231 1.00041 4593443 1.00090 / /

Method 4 4589376 1.00001 4589396 1.00011 4591778 1.00010 4595859 1.00142 4603958 1.00319 / /

1.206% for Document 1, less then 1.033% for Document 2,
and less then 1.021% for Document 3 for evaluated message
lengths. Method 2 has the smallest influence on the size for
the short and large documents, and Method 3 has the smallest
influence on the size for the medium document.

From the Table II, one can see that Method 2 has the
highest embedding capacity, followed by Method 1, and the
smallest embedding capacity has Method 4. The number of
invisible characters is only a small portion of the number of
all characters in every document, and in our three documents
is less then 17% (see Table II). So, if we compare our Method
2 with the method introduced by Khairullah [32] (Table II),
we can embed more characters by Method 2. One can see that
for all three documents, the maximal number of embedded
bits by [32] (’number of invisible characters’ ×24) is almost a
half than the maximal number of embedded bits by Method 2
(’number of characters, without q, p, j, y, and g’ ×8). For the
method proposed by Bhaya et al. in [33], we have that three
consecutive capital letters in the document serve to embed one
character, so, the maximal number of embedded bits depends
strongly of number of capital letters. If we use 8 bits per
character, we have that this method has the smallest embedding
capacity compared to other analyzed methods (Table II). Even
in the case that all characters are capital letters, we can embed
almost three times less characters, than in the case of Method
2. Bhaya et al. in [33] suggested to use only three similar font
types, which limits the maximal number of different characters
that can be embedded to 27. This can be changed if we use
four or five similar font types, resulting in up to 64 and 125
different characters. But finding bigger number of similar fonts
is very difficult, and at the end, user may notice the differences
in the font used for capital letters. Additional problem can arise
if non-Latin language is used and if selected font is not present
on the machine. For example, if you use Cyrillic letters, and
font is not present, the capital letters will be displayed as Latin,

Figure 1. Detection of hiding with Method 2 and 3 by changing page
background color

and coding will be visible to human eyes.

A. Robustness and Steganalysis
Some of the text steganography methods like line shift

coding, word shift coding, and luminance modulation coding
are robust to document printing and scanning, but have low
embedding rates. Other methods, like open method, have
higher embedding rates, but are less or not robust at all against
document printing and scanning. Property coding belongs to
second group, and it is not robust at all against document
printing and scanning. Property Coding is resistant to save
actions, compared to two methods presented in [35], and also
has smaller overhead compared to other two methods from
[35].

Hidden text with Property Coding can be changed or
destroyed by text editing. The presence of Methods 2, 3, and
4 can be easily detected if somebody changes intentionally
the background color of the document, causing the borders
and underlining to became visible (see Figure 1). Method 1 is
resistant to this kind of attack.

Property Coding is not entirely suitable for copyright
protection applications where robust data-hiding is required,
because the attacker can always use Optical Character Recog-

28Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

nition (OCR) to completely remove the hidden data.

VI. CONCLUSION
Four new format based methods specially designated for

hiding data in MS-Words documents are given. Because they
change the properties of some document objects offered by
MS-Word, we called the new type of methods Property Coding.
These methods are resistant to saving actions, introduce very
small overhead on the document size, and can embed up to 8
bits per character.

REFERENCES
[1] I. J. Cox, M. L. Miller, J. A. Bloom, J. Fridrich, and T. Kalker, Eds.,

Digital Watermarking and Steganography. Elsevier Inc., Burlington,
MA, 2008, ISBN: 978-0-12-372585-1.

[2] H. Singh, P. K. Singh, and K. Saroha, “A Survey on Text Based
Steganography,” in Proceedings of the 3rd National Conference
INDIACom-2009 2009, New Delhi, India, 2009, pp. 3–9.

[3] M. Agarwal, “Text Steganographic Approaches: A Comparison,” In-
ternational Journal of Network Security & Its Applications, vol. 5(1),
2013, pp. 91–106.

[4] M. J. Atallah et al., “Natural language watermarking: design, analysis,
and a proof-ofconcept implementation,” in Proceedings of the 4th
International Workshop on Information Hiding April 25-27, 2001,
Pittsburgh, USA. Springer Berlin Heidelberg, Apr. 2001, pp. 185–
200, Moskowitz, I. S., Ed., LNCS: 2137, ISBN: 978-3-540-45496-0.

[5] M. Atallah et al., “Natural Language Watermarking and Tamperproof-
ing,” in Proceedings of the 5th International Workshop on Information
Hiding October 7-9, 2002, Noordwijkerhout, Netherlands. Springer-
Verlag Berlin Heidelberg, Oct. 2003, pp. 196–212, Petitcolas , F. A. P.,
Ed., LNCS: 2578, ISBN: 3-540-00421-1.

[6] M. Topkara, C. M. Taskiran, and E. J. Delp, “Natural language wa-
termarking,” in Proceedings of the SPIE Electronic Imaging: Security,
Steganography, and Watermarking of Multimedia Contents VII, 2005,
vol. 5681, 2005, doi: 10.1117/12.593790.

[7] K. Bennett, “Linguistic steganography: Survey, analysis, and robustness
concerns for hiding information in text,” 2004, cERIAS Tech Report
2004-13.

[8] S. H. Low, N. F. Maxemchuk, J. T. Brassil, and L. O‘Gorman, “Docu-
ment marking and identification using both line and word shifting,”
in Proceedings of the 14th Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM ‘95) April 2-6,
1995, Boston, Massachusettes, Apr. 1995, pp. 853–860.

[9] J. T. Brassil, S. Low, N. F. Maxemchuk, and L. O‘Gorman, “Electronic
Marking and Identification Techniques to Discourage Document Copy-
ing,” IEEE Journal on Selected Areas in Communications, vol. 13 (8),
1995, pp. 1495–1504.

[10] J. T. Brassil, S. Low, and N. F. Maxemchuk, “Copyright protection for
the electronic distribution of text documents,” Proceedings of the IEEE,
vol. 87 (7), 1999, pp. 1181–1196.

[11] Y. Kim, K. Moon, and I. Oh, “A Text Watermarking Algorithm based
on Word Classification and Interword Space Statistics,” in Proceedings
of the 7th International Conference on Document Analysis and Recog-
nition (ICDAR‘03) August 3–6, 2003, Edinburgh, Scotland. IEEE
Computer Society Washington, DC, USA, Aug. 2003, pp. 775–779.

[12] M. Shirali-Shahreza and S. Shirali-Shahreza, “A New Approach to Per-
sian/Arabic Text Steganography,” in Proceedings of the 5th IEEE/ACIS
international Conference on Computer and Information Science and 1st
IEEE/ACIS July 2006, Honolulu, USA, Jul. 2006, pp. 310–315.

[13] M. Aabed, S. Awaideh, A.-R. Elshafei, and A. Gutub, “Arabic Dia-
critics Based Steganography,” in Proceedings of the IEEE International
Conference on Signal Processing and Communications (ICSPC 2007)
November 24–27, 2007, Dubai, UAE, Nov. 2007, pp. 756–759.

[14] A. A. Gutub, L. M. Ghouti, Y. S. Elarian, S. M. Awaideh, and A. K.
Alvi, “Utilizing Diacritic Marks for Arabic Text Steganography ,”
Kuwait Journal of Science & Engineering, vol. 37 (1), 2010, pp. 1–
16, ISSN: 1024-8684.

[15] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques for data
hiding,” IBM Systems Journal, vol. 35, 1996, pp. 313–336.

[16] A. M. Alattar and O. M. Alattar, “Watermarking electronic text doc-
uments containing justified paragraphs and irregular line spacing,” in
Proceedings of the SPIE - Security, Steganography, and Watermarking
of Multimedia Contents VI June, 2004, San Jose, California, USA.
Society of Photo Optical, Jun. 2004, pp. 685–695.

[17] M. Kwan, “The SNOW Home Page,” 2006, URL:
http://www.darkside.com.au/snow/ [accessed: 2014-03-03].

[18] L. Y. Por and B. Delina, “Whitesteg: a new scheme in information
hiding using text steganography,” WSEAS Transaction on Computers,
vol. 7, 2008, pp. 735–745.

[19] L. Y. Por, K. Wong, and K. O. Chee, “UniSpaCh: A text-based data
hiding method using Unicode space characters,” The Journal of Systems
and Software, vol. 85, 2012, pp. 1075–1082.

[20] C. Chen, S. Z. Wang, and X. P. Zhang, “Information Hiding in Text
Using Typesetting Tools with Stego-Encoding,” in Proceedings of the
First International Conference on Innovative Computing, Information
and Control August 30 - September 1, 2006, Beijing, China, 2006, pp.
459–462.

[21] I.-C. Lin and P.-K. Hsu, “A Data Hiding Scheme on Word Docu-
ments using Multiple-base Notation System,” in Proceedings of the
6th International Conference on Intelligent Information Hiding and
Multimedia Signal Processing (IIH-MSP‘10) October 15-17, 2010,
Darmstadt, Germany, Oct. 2010, pp. 31–33.

[22] P. V. K. Borges and J. Mayer, “Document Watermarking via Character
Luminance Modulation,” in Proceedings of the IEEE International
Conference of Acoustics, Speech and Signal Processing (ICASSP 2006)
May 14–16, 2006, Toulouse, France, Jul. 2006, pp. II–317, ISBN: 1-
4244-0469-X.

[23] A. K. Bhattacharjya and H. Ancin, “Data embedding in text for a copier
system,” in Proceedings of the IEEE International Conference on Image
Processing (ICIP 99) October 24-28, 1999, Kobe, Japan, Oct. 1999, pp.
245–249.

[24] R. Villán et al., “Text Data-Hiding for Digital and Printed Docu-
ments: Theoretical and Practical Considerations,” in Proceedings of
the SPIE Electronic Imaging: Security, Steganography, and Water-
marking of Multimedia Contents VIII, 2006, vol. 6072, 2006, doi:
10.1117/12.641957.

[25] A. Gutub and M. Fattani, “A Novel Arabic Text Steganography Method
Using Letter Points and Extensions,” in Proceedings of the WASET In-
ternational Conference on Computer, Information and Systems Science
and Engineering (ICCISSE), vol. 21 May, 2007, Vienna, Austria, May
2007, pp. 28–31.

[26] P. Wayner. Elsevier Inc., 2009, 3rd edition, ISBN: 978-0-12-374479-1.
[27] B. Murphy and C. Vogel, “The syntax of concealment: reliable methods

for plain text information hiding,” in Proceedings of the SPIE Interna-
tional Conference on Security, Steganography, and Watermarking of
Multimedia Contents 2007, vol. 6505, 2007, doi: 10.1117/12.713357.

[28] Nakagawa, H. and Matsumoto, T. and Murase, I., “Information
Hiding for Text by Paraphrasing,” 2002, URL: http://www.r.dl.itc.u-
tokyo.ac.jp/ nakagawa/academic-res/finpri02.pdf [accessed: 2014-03-
03].

[29] M. Shirali-Shahreza, “Text Steganography by Changing Words
Spelling,” in Proceedings of the 10th International Conference on
Advanced Communication Technology (ICACT 2008) February, 2008,
Kitakyushu, Japan, vol. 3, Feb. 2008, pp. 1912–1913.

[30] M. Niimi, S. Minewaki, H. Noda, and E. Kawaguchi, “A Framework
for a Simple Sentence Paraphrase Using Concept Hieararchy in SD-
Form Semantics Model,” in Proceedings of the 13th European-Japanese
Conference on Information Modelling and Knowledge Bases (EJC
2003), June 3-6, Kitakyushu, Japan. IOS Press, 2004, pp. 55–66.

[31] M. Topkara, U. Taskiran, and M. J. Atallah, “Information Hiding
Through Errors: A Confusing Approach,” in Proceedings of the SPIE
Electronic Imaging: Security, Steganography, and Watermarking of
Multimedia Contents 2007, vol. 6505, 2007, doi: 10.1117/12.706980.

[32] M. Khairullah, “A Novel Text Steganography System Using Font
Color of the Invisible Characters in Microsoft Word Documents,” in
Proceedings of the Second International Conference on Computer and
Electrical Engineering (ICCEE ’09) December, 2009, Dubai, Dec. 2009,
pp. 482–484, ISBN: 978-0-7695-3925-6.

[33] W. Bhaya, A. M. Rahma, and D. Al-Nasrawi, “Text Steganography

29Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

based on Font Type in MS-Word Documents,” Journal of Computer
Science, vol. 9 (7), 2013, pp. 898–904, ISSN: 1549-3636.

[34] T.-Y. Liu and W.-H. Tsai, “A New Steganographic Method for Data
Hiding in Microsoft Word Documents by a Change Tracking Tech-
nique,” IEEE Transactions on Information Forensics and Security, vol.
2 (1), 2007, pp. 24–30.

[35] A. Castiglione, B. D’Alessio, A. De Santis, and F. Palmieri, “New
steganographic techniques for the OOXML file format,” in Proceedings
of the IFIP WG 8.4/8.9 international cross domain conference on
Availability, reliability and security for business, enterprise and health
information systems August 22-26, 2011, Vienna, Austria. Springer,
Aug. 2011, pp. 344–358, Tjoa, A. M., Quirchmayr, G., You, I., Xu, L.
Eds., LNCS: 6908, ISBN: 978-3-642-23299-2.

30Copyright (c) IARIA, 2014. ISBN: 978-1-61208-376-6

SECURWARE 2014 : The Eighth International Conference on Emerging Security Information, Systems and Technologies

