
Appropriate Machine Learning Methods for Service Recommendation Based on
Measured Consumer Experiences Within a Service Market

Jens Kirchner

Karlsruhe University of Applied Sciences
Linnaeus University

Email: Jens.Kirchner@hs-karlsruhe.de,
Jens.Kirchner@lnu.se

Philipp Karg and Andreas Heberle

Karlsruhe University of Applied Sciences
Moltkestr. 30, 76133 Karlsruhe, Germany

Email: kaph1014@hs-karlsruhe.de,
Andreas.Heberle@hs-karlsruhe.de

Welf Löwe

Linnaeus University
351 06 Växjö, Sweden

Email: Welf.Lowe@lnu.se

Abstract—The actual experience of the performance of services
at consumers’ side is a desirable foundation for service selection.
Considering the knowledge of previous performance experiences
from a consumer’s perspective, a service broker can automatically
select the best-fitting service out of a set of functionally similar
services. In this paper, we present the evaluation of machine
learning methods and frameworks which can be employed for
service recommendation based on shared experiences of previous
consumers. Implemented in a prototype, our approach considers
a consumer’s call context as well as its selection preferences
(expressed in utility functions). The implementation of the frame-
work aims at the time-critical optimisation of service consumption
with focus on runtime aspects and scalability. Therefore, we
evaluated and employed high-performance, online and large scale
machine learning methods and frameworks. Considering the
Internet as a service market with perpetual change, strategies for
concept drift have to be found. The evaluation showed that with
the current approach, the framework recommended the actual
best-fit service instance in 70 % of the validation cases, while in
90 % of the cases, the best or second best-fit was recommended.
Furthermore, within our approach employing the best method,
we achieved 94.5 % of the overall maximum achievable utility
value.

Keywords–Service Selection; Service Recommendation; Ma-
chine Learning; Big Data.

I. INTRODUCTION

Service-Oriented Computing (SOC), Software as a Ser-
vice (SaaS), Cloud Computing and Mobile Computing indicate
that the Internet develops itself to a market of services where
service consumers can dynamically and ubiquitously consume
functionality from services with limited or no knowledge about
the implementation or the system environment of the provided
service. Besides the functionality, service consumers are inter-
ested in the performance of a service, which is expressed in its
non-functional properties (NFPs) such as response time, avail-
ability or monetary charges. Within a service market, service
functionality may be provided by several competing service
instances. Among these similar services, service consumers are
interested in the consumption of the service instance which
fits best towards their preferences. In [1], we described that
service selection has to be based on the actual experience of
NFPs at consumer side. We defined Service Level Achievement
to be the general performance of a service at consumer side
(consumer side measured NFPs). In the case of basing service
selection on Service Level Achievements, a service broker can
automatically select the best-fit service among functionally

similar services. In contrast, when the selection is based on
Service Level Agreements (SLAs), one can only state the fact
that SLAs have not been met; mitigating the issue, however,
requires human action, hence, time. Perpetual change is one
of the major characteristics of service markets such as the
Internet. NFPs of service instances can be volatile (e. g., high
load at certain times and limited resources), new functional
equivalent instances enter the market; others are temporary
or permanently not available. A collaborative knowledge base
of consumption experiences benefits single users and helps
them to optimise service selection towards their needs and
based on their call context. Call contexts consider aspects that
have an influence on NFPs at consumer side such as location,
time, weekday, etc. When recommendation is based on actual
experienced NFPs, their preferred weight from consumer side
and the call context, the knowledge base has to be built on a
potentially high load of measurement data, which needs to
be processed and learned promptly. Within our framework,
we develop a service broker which bases its decisions on
consumption measurements of previous service calls [1]. In
particular, service recommendations are based on a call context
and a user’s preferences which are expressed in a utility func-
tion. Basing service selection on Service Level Achievements
requires measuring the NFPs of services at the moment of the
actual service call. E. g., measuring response time of a service
at a point in time called from a certain location. This can be
easily integrated in SOC/SaaS infrastructures. However, it also
requires the aggregation of individually measured data to turn
it into knowledge about the expected performance of services
in the future. Machine learning is an obvious candidate for this
aggregation. For this task, machine learning methods have to
cope with a high load of data efficiently in real-time or short
periods.

Machine learning cannot be used out of the box until we
find answers to the following questions: 1) Which concrete
machine learning algorithm can be applied effectively, i. e.,
with high accuracy in the prediction of achievements? 2) Are
there differences in the accuracy of different algorithms in the
prediction of achievements? 3) How can we apply effective
machine learning efficiently, i. e., with a minimum impact on
service (selection) time?

In this paper, we seek to answer 1) by selecting reason-
able candidates and experimentally evaluating their prediction
accuracy. Addressing 2), for the selected algorithms, we even
assessed prediction accuracy and its effect on the actual utility

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

of the consumers (here, response time and availability). Finally,
in order to address 3), we defined an architecture that is
split into a foreground and background model. The service
recommendation knowledge in the foreground model is used
for fast service selection. It is asynchronously updated with the
knowledge output of the background model, which, in turn, is
gained by (potentially not quite as fast) machine learning on
service call measurements at consumer side.

For the evaluation of appropriate machine learning ap-
proaches and their implementations in machine learning frame-
works which can be employed for best-fit service recommen-
dation, our focus was set on speed, real-time/online processing,
accuracy and concept drift mechanisms. “Concept drift occurs
when the values of hidden variables change over time. That is,
there is some unknown context for concept learning and when
that context changes, the learned concept may no longer be
valid and must be updated or relearned” [2]. The evaluation
was conducted with a prototype implementation of a holistic
recommendation component for a service broker in order to
determine the most appropriate method and framework for this
purpose.

In Section II, the architecture of our service selection
framework is introduced. Section III describes the challenges
and optimisation focus within service selection. Section IV
focuses on the pre-selection and evaluation of machine learning
methods and frameworks. In Section V, the conducted evalu-
ation of machine learning methods regarding appropriateness
for service selection in a service market is described. Related
work is outlined in Section VI. Finally, the conclusion is done
in Section VII.

II. FRAMEWORK ARCHITECTURE

In [1], we introduced our framework which optimises
service selection based on consumer experience, call context
and preferences (utility functions). In this paper, we focus
on the recommendation component of our framework, which
is depicted in Figure 1. The illustration shows the service
consumer’s realm where a local component manages dynamic
bindings and requests for best-fit service instances. The second
task is to measure a service call’s performance (measurement
of experienced NFPs) and to provide this information to the
central broker component for learning purpose. Within the
scope of this paper, our main focus is set on the foreground
and background model combination, which is important for
the overall recommendation process.

When a measurement feedback ticket arrives, the collected
data is persisted and the pre-processing of the data is con-
ducted. Afterwards, the data is used for the online learning of
the NFPs. There exists a learning model for each NFP and
service instance combination. In time or amount intervals, for
each utility function and call context, the utility values for each
service instance are calculated. Once all utility values for all
instances are calculated, the service instance with the highest
utility value within each utility function and call context will be
updated in the foreground table. This foreground table contains
the recommendation information for each call context and
preference (utility function). When a service recommendation
request arrives, the broker only has to look up this information
in the recommendation table of the foreground model, while
the actual learning and calculation is done asynchronously in
the background model.

Central Broker

Service Consumer

Foreground Model Background Model

Local Component
Service Request

Best-fit Service Recommendation for each
Call Context Class and Utility Function

Service Instance

Data Pre-Processing

Performance Prediction

Service Selection
Optimisation

Data Pre-Processing

Feedback Ticket

Service Selection

Optimised Service Selection

Measured Service
Performance (NFPs)

Service..U1U1

Figure 1. Foreground and background model within our framework.

The background model activities comprise machine learn-
ing, calculation and determination for the optimisation at
consumer side. However, these tasks are time-consuming. The
decoupling of the time-consuming tasks of the background
model from the foreground model, which handles the time-
critical recommendation tasks, reduces or even avoids the costs
in terms of (service) time.

III. OPTIMISATION FOCUS AND CHALLENGES

Following the Cross Industry Standard Process for Data
Mining (CRISP-DM) [3], before machine learning methods
can be employed, it is mandatory to have a clear understanding
of the optimisation goals as well as the data which is used. As
introduced above, the service broker and its learning compo-
nent are supposed to recommend the best-fit service instance
among functionally equivalent candidates. In particular, they
are supposed to be aware of the call context and a consumer’s
preferences and base their recommendation on the experiences
of previous service calls by consumers of similar call contexts.

In general, the selection of a service instance is based on
one or more NFPs. NFPs have different scales of measurement
with different optimisation functions. For example, response
time is a ratio scale with an optimisation towards the minimum.
The availability for a service at a specific time is nominal:
a service is either available or not. In such a case, the
optimisation focus is to select a service instance which has the
highest (maximum) probability of being available. When the
selection of a service instance is based on more than one NFP,
NFP data has to be normalised in order to be comparable and
calculable. Usually, in such a case, not all NFPs are equally
important, so their importance has to be weighted and taken
into account. Within our framework, utility functions are used
to calculate the utility value for each service instance based
on the expected NFPs of each candidate and their weighted
impact. “Utility functions can be captured in a vector of real
values, each representing the weight of a corresponding quality
metric [NFP]. The idea is based on a weighted scoring model”

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

[1]. For instance, lowest response time is more important
(weighted: 60 %) than lowest price (weighted: 40 %) would
results in a utility function U(ResponseT ime, Price) = 0.6×
||ResponseT ime|| + 0.4 × ||Price||, where || · || normalises
ResponseT ime and Price, respectively, between 0 and 1 [1].
Since preferences vary, the utility functions also vary among
all service consumers. Therefore, within the overall optimisa-
tion/recommendation process, the overall utility is individual.
However, within a single tier recommendation, the NFPs of
service instances are based on consumers’ contexts. Hence,
within the same call context (e. g., time, weekday, location,
type/size of input data), consumers with different preferences
experience statistically similar NFPs, but the calculated utilities
are different due to different utility functions. Within our
framework, the expected NFPs of service instances are learned
and each individual utility value is (pre-)calculated, which is
then used for the actual individual service recommendation.

Analysing the market, change is the most important char-
acteristic regarding the data. Besides new service instances,
existing ones may temporarily not be available or cease to exist
for good. But one has also to take into account that changes in
infrastructure, network or market participants’ behaviour arise,
which also affect the NFPs within certain call contexts. These
things are in general not evident to consumers, but have to
be taken into account for recommendation tasks. Therefore,
learning components for service brokers have to cope with
rapid change. Service recommendation is in total a time-critical
challenge. First, change has to be discovered quickly, and
secondly, the recommendation query itself is supposed to be
part of a service call and service time is one of the major
optimisation goals. However, service recommendation is time-
consuming, especially the learning and calculation part of it.
Within our framework, we tackle this drawback by introducing
two approaches. The first approach splits the component for
direct dynamic service recommendation requests into a fore-
ground and a background model. The learning of the expected
NFPs is done in the background model, while its results
together with the pre-calculated utility values, and therefore
the best-fit service instances within each utility cluster and call
context class, are stored in the foreground model, which can
be easily and quickly retrieved. The second approach focuses
on dynamic service binding, which is mainly based on the idea
that service bindings are updated at consumers’ side. For this,
we developed a plug-in for middleware/SOA products. The
actual service binding addresses within the dynamic service
binding are updated by the central component by the usage of
the publish–subscribe pattern [1].

We predefined the following optimisation goals for the
recommendation unit within our framework:

1) High-performance service determination
2) High recommendation accuracy of the best-fit service

instance
3) Continuous machine learning process
4) Adaptation to performance (NFP) changes

IV. MACHINE LEARNING METHODS AND FRAMEWORKS

This section focuses on the pre-selection and evaluation of
machine learning methods and frameworks.

A. Pre-selection of machine learning methods
Based on [4][5], there are several aspects for the evaluation

of machine learning methods such as speed, accuracy, scala-
bility, robustness and interpretability. The requirements listed
in Table I were defined for the pre-selection of appropriate
machine learning methods.

TABLE I. REQUIREMENTS FOR THE SELECTION OF MACHINE
LEARNING METHODS

Speed describes how efficient the machine learning method performs con-
cerning the training and prediction time. Furthermore, this aspect also
concerns the overall machine learning process as a ’critical path’ from
end-user side.

Accuracy describes how effective the machine learning method performs:
Degree of correct classification or coefficient of determination in
regression [5].

Scalability considers the ability of the method to be efficiently applied to a large
data set [5].

Robustness describes the ability to make correct classifications and predictions,
given noisy or missing data value. It also considers whether the
method is able to run automatically in a changing environment [5].

There is a broad variety of learning methods that address
classification and regression. The major aim of our recom-
mendation unit is to recommend the best-fit service. Although
the prediction of a certain value can be employed for pre-
calculation purpose, the goal within the overall recommenda-
tion process is to recommend best-fit service instances, which
is a nominal result. For classification in general, the costs of
the learning phase are cheaper than for regression. Therefore,
we focused primarily on classification methods in the initial
phase. In [4], the author published a comprehensive overview
of established supervised machine learning classification tech-
niques. This overview provides useful information for method
selection, highlighting the benefits and drawbacks of each
method which helped us to find appropriate methods for further
evaluation. Table II is an extraction reduced to the requirements
we outlined in Table I.

As previously mentioned, although in general accuracy is
an important desire in machine learning, in our time-critical
domain, speed is as important within our recommendation
process. However, due to the separation of the foreground and
background model, speed is not as important anymore, since
learning is done asynchronously in the background model.
Therefore, we are able to put a stronger focus on accuracy
again. Scalability and robustness are also important criteria
in our framework. Although Naı̈ve Bayes and Decision Trees
are not highly rated on accuracy in Table II, their rating
in all other criteria is high and, among all criteria, they
have the highest overall rating. After initial pre-tests with
test data sets of various kinds, we selected Naı̈ve Bayes,
Hoeffding Tree [6] and Fast Incremental Model Trees with
Drift Detection (FIMT-DD) [7] for the implementation in our
framework, and therefore, for the evaluation within our broker
scenario.

The Naı̈ve Bayes classifier is a simple probabilistic classi-
fier based on Bayesian statistics (Bayes’ theorem) with strong
independence assumptions [8]. The Hoeffding tree or Very Fast
Decision Tree (VFDT) is an incremental, anytime decision
tree induction algorithm that is capable of learning from
massive data streams, assuming that the distribution generating
examples do not change over time. It exploits the fact that
a small sample can often be enough to choose an optimal

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

TABLE II. COMPARISON OF THE MAJOR MACHINE LEARNING METHODS
(**** REPRESENT THE BEST AND * THE WORST PERFORMANCE) (BASED ON [4])

Decision Tree Naı̈ve Bayes Neural Networks kNN SVM Rule Learners

Speed of Learning/Training *** **** * **** * **
Speed of Classification/Prediction **** **** **** * **** ****

Scalability / Incremental Learning ** **** *** **** ** *
Accuracy ** * *** ** **** **

Robustness/Tolerance to missing values *** **** * * ** **
Robustness/Tolerance to noise ** *** ** * ** *

splitting attribute. This idea is supported mathematically by the
Hoeffding bound, which quantifies the number of observations
needed to estimate some statistics within a prescribed preci-
sion [6][9]. FIMT-DD focus on time-changing data streams
with explicit drift detection [7].

B. Machine learning frameworks
Besides the machine learning methods, their implementa-

tion within libraries and frameworks are as important. For the
selection of machine learning frameworks, we considered the
requirements listed in Table III to be relevant.

TABLE III. REQUIREMENTS FOR THE SELECTION OF MACHINE
LEARNING FRAMEWORKS/LIBRARIES

Integration Easy integration of the library in Java; Capability of online pro-
cessing within a machine learning workflow (online learning)

Automation High degree of automation; Ability to adapt to changes (e. g.,
changing service instances, service consumers with new call con-
texts)

Usage Strong dependency between the library and the machine learning
methods; Framework targets general approaches and is not limited
to specific purposes

Open Source Framework should be open source and freely available to the public

In order to get an overview about popular and wide-spread
software in the data analytic and data mining area, we took
the results of KDnuggets’ online poll about software that their
open community members had used within the past 12 months
in real projects [10]. The results of the poll, in which 3,000
had participated, contain open source as well as commercial
products. Although these results give an overview about the
software in this field, it has to be considered critically, since
the poll was open and everyone could have taken part.

The following frameworks were pre-evaluated based on our
requirements listed in Table III, but were not suitable for our
purpose. RapidMiner [11] is a well-known and widely-used
desktop application for solving a variety of machine learning,
data and text mining tasks. It offers a comprehensive selec-
tion of machine learning methods and integrates third-party
libraries. Despite of all the benefits, we declined RapidMiner
mainly because of the missing capability of incremental/online
learning. A reason for that could be that RapidMiner comes
from the area of classical batch processing and analytics.
Furthermore, an integration in Java is possible but requires
additional efforts for automation tasks. R [12] is an open
source software environment for statistical computing and
graphics. With a classical statistical background, R does not
provide modern machine learning approaches and does not
focus on incremental learning. Apache Mahout [13] is a suite
of machine learning libraries with algorithms for clustering,
classification and collaborative filtering on top of scalable and

distributed systems. Despite the overall advantages, it was not
selected because of the little selection of machine learning
methods and the specific use cases. Other libraries such as
Apache Spark [14], KNIME [15], Shogun [16], Shark [17],
scikit-learn [18] and Vowpal Wabbit [19] were reviewed but
not considered for further evaluation, because of early misfits
to our requirements.

We selected Weka [20] and MOA [21] because of their
extensive collection of classical machine learning methods as
well as new algorithms with state of the art concepts for
incremental learning. Because of their native Java integration
ability, they provide a high degree of automation. Furthermore,
Weka is also used by other software in this sector, such as
RapidMiner. Both frameworks are open source and developed
by the University of Waikato. Weka contains different methods
and algorithms for pre-processing, classification, regression,
clustering, association rules and visualisation. MOA stands for
Massive Online Analysis, which focuses on online algorithms
for data streams. It includes several state of the art algorithms
for classification, regression and clustering.

V. EVALUATION

This section describes the evaluation scenario, evaluation
criteria, the evaluation environment and method as well as
the results of the evaluation of machine learning methods re-
garding their appropriateness for service selection in a service
market.

A. Evaluation scenario
The evaluation of the learning methods and frameworks

implies that the actual best-fit service instance is known at
each call context (location, weekday, time, etc.) with each
utility function. This is a challenge when it comes to a real-
world validation. In reality, service calls in a service market,
especially the Internet, cannot be repeated under the exactly
identical conditions as the Internet’s network behaviour as
well as a service’s infrastructure are complex systems in
terms of factors that influence service calls. For instance, at
a certain, unique moment, the load of a service instance’s
system environment and the network load or any incident
are combinations of coincidences and can therefore not be
repeated. In order to gain exact reproducible situations, all
service calls which are supposed to be compared need to
be made at the same moment which is practically infeasible,
especially when there are several competitive service instances.

To get a situation where the validation process retrieves ex-
actly the best-fit service instance for validation at each moment
considering call context and utility function, we developed a
simulator which creates service instance measurements for a
certain time period based on predefined behaviour profiles. The

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

implementation of this framework follows a periodic behaviour
influenced by statistical random-based deviation. Currently,
the periodic behaviour of the simulated Web services follows
our initial measurements in [1] and considers: day/night time,
weeks, months, work days and weekends. The random-based
deviation is supposed to simulate unexpected incidences such
as network traffic jams, high/low usage of a service’s limited
infrastructure. The random-based influence over a period was
also evidenced in our real-world service tests [1]. At the
moment, two NFPs are simulated which are response time and
availability.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

225

250

275

300

325

F
ri

21
.0

2.

S
at

 2
2.

02
.

S
un

 2
3.

02
.

M
on

 2
4.

02
.

Tu
e

25
.0

2.

W
ed

 2
6.

02
.

T
hu

 2
7.

02
.

F
ri

28
.0

2.

S
at

 0
1.

03
.

S
un

 0
2.

03
.

M
on

 0
3.

03
.

Tu
e

04
.0

3.

W
ed

 0
5.

03
.

T
hu

 0
6.

03
.

F
ri

07
.0

3.

S
at

 0
8.

03
.

S
un

 0
9.

03
.

M
on

 1
0.

03
.

Tu
e

11
.0

3.

W
ed

 1
2.

03
.

T
hu

 1
3.

03
.

F
ri

14
.0

3.

S
at

 1
5.

03
.

S
un

 1
6.

03
.

M
on

 1
7.

03
.

Tu
e

18
.0

3.

W
ed

 1
9.

03
.

T
hu

 2
0.

03
.

F
ri

21
.0

3.

S
at

 2
2.

03
.

S
un

 2
3.

03
.

M
on

 2
4.

03
.

Tu
e

25
.0

3.

Day

R
es

po
ns

e
T

im
e

(m
s)

Service Instance

●

●

●

●

DE1Service

DE2Service

SE1Service

US1Service

Figure 2. Overview about the simulated response time of four service
instances and their trend over the whole period.

●
● ● ● ●

●
●

●

●

●

● ● ●

●

● ● ●
●

●

●
●

● ●

● ● ●
●

●

97.5

98.0

98.5

S
un

M
on Tu

e

W
ed

T
hu F
ri

S
at

Weekday

A
va

ila
bi

lit
y

(%
) Service Instance

●

●

●

●

DE1Service

DE2Service

SE1Service

US1Service

Availability by Weekday

●
●

●
● ● ● ● ●

●

●

● ● ●
●

● ●
●

● ●
● ● ●

●
●● ● ●

●
● ●

●
● ●

●

● ● ● ● ● ● ●
● ● ● ●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
●

●
● ● ●

●

●
●

●

●

● ●
●

●
● ● ●

●

● ●
● ● ● ● ● ● ●

●

●

●

●
● ●

●
●

● ●

95

96

97

98

99

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Daytime

A
va

ila
bi

lit
y

(%
) Service Instance

●

●

●

●

DE1Service

DE2Service

SE1Service

US1Service

Availability by Daytime

Figure 3. Overall periodic behaviour regarding availability of the simulated
service instances with weekday and daytime aspects.

Figure 2 and Figure 3 depict an overview about the
simulated NFPs. The simulated validation data set comprises
a period of 30 days and has a total set of 460,800 records (40
records/hour × 24 hours/day × 30 day × 16 unique clients).

The records contain information about day, time, response
time in millisecond and availability (Boolean). Within the
simulation, between each record there is a time interval of
90 seconds. Figure 2 shows in a condensed form the response
time of all services instances within the whole period. Note that
the line is only the trend. Within the recommendation process,
the actual best-fit service instance at each time is important
and not the averaged value of each service instance. The line
is therefore only a visual orientation for us to determine the
concept drift of each service instance within the period (e. g.,
DE2Service). Figure 3 shows the statistical value of availability
with a focus on weekday and daytime periods.

B. Evaluation criteria
For the evaluation of the appropriateness of machine learn-

ing algorithms and their implementation in frameworks, each
framework has to recommend the best-fit service instance
based on a user’s utility function and call context, i. e., the
instance with the highest utility value. Implemented in our
foreground-/background-model scenario, the machine learning
algorithms have to estimate the expected NFP behaviour for all
NFPs and all service instances. As described above, this results
in n×m models (while n is the amount of considered NFPs
and m is the amount of service instances). Since the number
of modes can increase significantly, the recommendation table
of the foreground model is updated asynchronously by the
background model. In the background model, NFPs are learned
continuously using the incremental learning functionality of
the machine learning methods. However, although the expected
NFPs per service instance are learned online, the utility values
for each utility function and call context, and therefore the
determination of the best-fit service instance, are calculated
asynchronously in time- and count-based intervals. Besides the
fact whether the actual best-fit service instance was recom-
mended at each time, we also focus on how good the pre-
calculated utility value was. For this, we took two indicators:
TOP1 accuracy gives evidence on the recommendation quality
as percentage of the correctly determined best-fit services with
respect to the actual best-fit services instances, whereas the
TOP2 accuracy shows the percentage of the determined best-
fit instance within the actual top-two best-fit service instances.

C. Evaluation environment and method
For the execution of the evaluation, we used a test machine

running Linux (Ubuntu 12.04 LTS) as its operating system,
equipped with an i5-3340M CPU @ 2.70GHz x 4 (64 bit) and
15.6 GiB RAM.

The evaluation focuses on the overall recommendation.
Recall that the overall process is split into the learning of the
actual expected NFPs in a certain call context, for which we
employ machine learning frameworks, and the calculation of
the utility values according to service consumers’ individual
utility functions (preferences), from which the best-fit service
can be determined. The machine learning frameworks learn
each incoming record online, while the pre-calculation and
determination part is conducted in intervals.

The evaluation is supposed to evaluate the accuracy within
the period of examination at each point in time. Therefore,
the data is not split into a training and validation set. In fact,
with each learning interval, which also contains the update
of the foreground table, the recommendation entry for a call

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

context and utility function is validated with the actual best-fit
service for the upcoming service call. Hence, at each time, with
the previously learned records, the recommendation quality for
future recommendation requests in the same call context and
with the same utility function is measured. The idea is that
change in general can be evaluated.

D. Evaluation results
As written above, the overall learning for the recommen-

dation of the best-fit service instance is split into the learning
of the expected NFPs, for which we employ the machine
learning methods/frameworks, and the determination of the
best-fit instance based on pre-calculation. The first part is
done continuously, while the second part is done in intervals.
For the overall evaluation, we conducted two rounds, one
with an interval of 10 records and one with 100 records.
Table IV shows the results for 100 records, since there were
only minor differences between both rounds; however, the
10 records round achieved slightly better results. As shown,
the results of the FIMT-DD achieved around 70 % of correct
predictions (with 10 record intervals, we achieved over 70 %).
Note that the calculated utility ranges from 0–100. Comparing
all methods, there is not much difference between Naı̈ve Bayes
and Hoeffding Tree. The FIMT-DD shows very good results.
It has the highest update rate of the foreground table, which
is an indication that it reacts quicker and more fine-grained on
change than the other methods.

TABLE IV. EVALUATION RESULTS OF THE MACHINE LEARNING
METHODS NAÏVE BAYES, HOEFFDING TREE AND FIMT-DD

WITHIN THE OPTIMISED SERVICE SELECTION/RECOMMENDATION

Naı̈ve Bayes Hoeffding Tree FIMT-DD

TOP1 Accuracy (in %) 58.634 59.837 69.287
TOP2 Accuracy (in %) 90.163 90.421 93.471
Mean Absolute Error (Utility) 1.656 1.660 1.049
Recommend. Table Updates 659 647 1.189

40

50

60

70

F
ri

21
.0

2.

S
at

 2
2.

02
.

S
un

 2
3.

02
.

M
on

 2
4.

02
.

Tu
e

25
.0

2.

W
ed

 2
6.

02
.

T
hu

 2
7.

02
.

F
ri

28
.0

2.

S
at

 0
1.

03
.

S
un

 0
2.

03
.

M
on

 0
3.

03
.

Tu
e

04
.0

3.

W
ed

 0
5.

03
.

T
hu

 0
6.

03
.

F
ri

07
.0

3.

S
at

 0
8.

03
.

S
un

 0
9.

03
.

M
on

 1
0.

03
.

Tu
e

11
.0

3.

W
ed

 1
2.

03
.

T
hu

 1
3.

03
.

F
ri

14
.0

3.

S
at

 1
5.

03
.

S
un

 1
6.

03
.

M
on

 1
7.

03
.

Tu
e

18
.0

3.

W
ed

 1
9.

03
.

T
hu

 2
0.

03
.

F
ri

21
.0

3.

S
at

 2
2.

03
.

S
un

 2
3.

03
.

M
on

 2
4.

03
.

Tu
e

25
.0

3.

Day

A
cc

ur
ac

y
(%

)

Methods

TOP1 FIMT−DD

TOP1 Hoeffding Tree

TOP1 Naive Bayes

Figure 4. Service recommendation accuracy of the FIMT-DD, Hoeffding
Tree and Naı̈ve Bayes algorithm in the course of time.

The cold start problem applies to service recommenda-
tion, which means that good recommendation results are also

supposed to be achieved with a small set of records at the
beginning. Depicted in Figure 4, we can see that for the TOP 1
indicator in the overall recommendation process, the FIMT-
DD quickly achieves a high accuracy. The drift detection of
the FIMT-DD seems to work at the end of the period where
some service instances change their performance behaviour
(see Figure 2).

Our recommendation approach is supposed to be scalable.
Table V shows the processing time of the overall process
(NFP learning, utility pre-calculation, best-fit determination
and update of the foreground table) for incoming measurement
records. As we can see, a single record is processed in less
than three milliseconds by a total of 460 thousand records.
For all machine learning methods, we used the MOA frame-
work. The figures show that, in term of learning overhead,
there is not much difference between the methods. However,
comparing the figures, Naı̈ve Bayes would be able to process
approximately 900 records more in an hour than the FIMT-DD.
Comparing the numbers of the 100 record and the 10 record
intervals (factor 8.8), it reveals that since the NFPs are learned
continuously for every incoming record, the time-consuming
part is related to the pre-calculation and best-fit determination.
Although this is also due to the fact that these figures also
include the evaluation steps (calculation of the actual NFPs,
calculation of the actual utility values and determination of the
actual best-fit instance), there is a high optimisation potential
within the pre-calculation/-determination steps such as in-
memory databases instead of hard disk databases. However,
since these steps are asynchronous, they do not harm the
recommendation process and are still good enough for back-
ground processing.

TABLE V. TIME FOR PROCESSING A SINGLE INSTANCE IN
MILLISECONDS OF THE MACHINE LEARNING METHODS NAÏVE

BAYES, HOEFFDING TREE AND FIMT-DD

Processing per record (ms) Naı̈ve Bayes Hoeffding Tree FIMT-DD

100 record intervals 2.602 2.614 2.621
10 record intervals 22.997 23.080 23.129

Figure 5 reveals more insight in the accuracy measure. The
figure shows the degree of accuracy of the utility prediction.
Once again, the best-fit service instance is the instance with the
highest utility value regarding a service consumer’s individual
preferences (utility function). So, the closer the prediction
towards the actual utility value is, the better the method.
Comparing the method’s charts, we see that for Naı̈ve Bayes
and Hoeffding Tree the predicted utility values at each time are
both quite similar and do not reflect the curve of the actual
values. In contrast, the chart for FIMT-DD depicts that the
prediction is very close to the actual values. The intercepts of
the curves show, that FIMT-DD does cope with change rapidly.
In all cases, intercepts – which denote a change in the best-fit
ranking – are also reflected in the prediction quite accurately.

For the evaluation of service recommendation in general,
the actual utility gain is an important measure. Since the
selection of service instances are based on several NFPs, the
utility value as a basis for the individual preferences is an
appropriate measure to benchmark service recommendation.
In Table VI, the average experienced utility value after the
service recommendation based on the FIMT-DD algorithm

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

FIMT−DD

Hoefdding Tree

Naive Bayes

30

40

50

60

70

80

90

30

40

50

60

70

80

90

30

40

50

60

70

80

90

F
ri

21
.0

2.

S
at

 2
2.

02
.

S
un

 2
3.

02
.

M
on

 2
4.

02
.

Tu
e

25
.0

2.

W
ed

 2
6.

02
.

T
hu

 2
7.

02
.

F
ri

28
.0

2.

S
at

 0
1.

03
.

S
un

 0
2.

03
.

M
on

 0
3.

03
.

Tu
e

04
.0

3.

W
ed

 0
5.

03
.

T
hu

 0
6.

03
.

F
ri

07
.0

3.

S
at

 0
8.

03
.

S
un

 0
9.

03
.

M
on

 1
0.

03
.

Tu
e

11
.0

3.

W
ed

 1
2.

03
.

T
hu

 1
3.

03
.

F
ri

14
.0

3.

S
at

 1
5.

03
.

S
un

 1
6.

03
.

M
on

 1
7.

03
.

Tu
e

18
.0

3.

W
ed

 1
9.

03
.

T
hu

 2
0.

03
.

F
ri

21
.0

3.

S
at

 2
2.

03
.

S
un

 2
3.

03
.

M
on

 2
4.

03
.

Tu
e

25
.0

3.

Day

U
til

ity

Utility Value

DE1Service Actual

DE1Service Predicted

DE2Service Actual

DE2Service Predicted

SE1Service Actual

SE1Service Predicted

US1Service Actual

US1Service Predicted

Figure 5. Detailed overview about the predicted and actual utility values.

TABLE VI. UTILITY GAIN WITH SERVICE RECOMMENDATION
USING THE FIMT-DD ALGORITHM IN COMPARISON

After selecting . . . Average expe-
rienced utility
value

FIMT-DD
comparison
in per cent

the FIMT-DD recommended instance 86.79 100.0 %
the perpetual best instance at each time 91.86 94.5 %
the perpetual worst instance at each time 29.22 297.0 %
the statistically best instance statically 81.96 105.9 %
an instance randomly 64.08 135.4 %

is compared with other scenarios. The table reveals good
results. As written above, within this evaluation scenario, the
overall best and worst services can be determined at each time.
Once again, such comparisons are only possible within such a
scenario; this is not possible in reality. Comparing the figures,
we see that the FIMT-DD-based recommendation is able to
achieve 94.5 % of the maximum achievable utility value. It
is 35.4 % better than a random selection approach and even
5.9 % better than the statistically best service instance when
statically using it. Note, that statically choosing the statistically
best service instance is also a kind of learning.

VI. RELATED WORK

In [1], we introduced the overall concept of how knowledge
can benefit service selection/recommendation in general. In
that work, we presented the framework on an abstract level

and introduced the recommendation component as a black
box. In this work, however, we highlighted exactly this rec-
ommendation component and demonstrated the application
of a concrete machine learning approach and how Service
Level Achievements can be turned into knowledge for the
benefit of a consumer-centric optimised service recommen-
dation. In [1], we introduced a multi-stage selection with
multi-stage dependencies of (compound) services. In this work,
however, our focus was set on the general, appropriate and
feasible approach of employing machine learning methods
within service recommendation.

Further details about the evaluation can be read in [22].
This initial approach focuses mainly on the evaluation of
machine learning algorithms which are appropriate for service
recommendation. However, this work does not focus on some
major characteristics of a service market such as the granularity
of contexts and preferences (utility functions) and the avail-
ability of measurement data according to the actual usage of
services. Furthermore, service recommendation also influences
the behaviour of NFPs of service instances. For instance, best-
fit service instances are more often consumed, which might
affect response time. So, in case of limited service resources,
these best-fit instances’ NFPs can change for the worse.

Collaborative filtering (CF) approaches for service recom-
mendation also focus on the exploitation of shared knowledge
about services in order to recommend services to similar
consumers before the actual consumption on an automated
basis [23][24][25][26]. The major drawback of CF is that
consumer-related preference similarities have to be found be-
forehand. With our call context and utility function approach,
new consumers can already benefit from existing knowledge.
CF approaches also do not take into account that consumers
can have different optimisation goals or preferences and only
some approaches [24][25] consider differences between con-
sumers regarding their context. In [27], the authors tackle the
lack of consideration of a consumer’s preferences and interests;
however, they do not take consumer context into account. The
authors of [28] describe an approach to tackle the mentioned
cold-start problem within CF.

Some work focuses on the prediction of NFPs for the
detection of SLA violations such as [29]. This work mainly
focuses on SLAs. In [1] (also cf. [26]), we argued that SLAs
are not a good basis for service selection, considering the
fact that service providers are profit-oriented, it is tempting
to embellish their SLAs in order to be consumed. Also, as
SLAs of consuming and providing services (e. g., compound
services) depend on the SLAs of their sub-providers, deviations
of actual non-functional characteristics and those specified
in SLAs may propagate and spread even unintendedly and
without the control of the providers. Furthermore, the perfor-
mance experience at consumers’ side is also dependent on a
consumer’s call context, which is also not reflected in SLAs.

We recently conducted a paper study about relevant NFPs
during service selection, for which we processed over 4,000
conference papers in the SOC domain. In this study, we discov-
ered only a very few papers considering more than one NFP
during service selection/recommendation. Our approach con-
siders the optimisation (recommendation) with several NFPs
which is challenging due to the fact that the determination of
the best-fit service instance according to service consumers’
individual preferences result in a calculation task. Furthermore,

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

NFPs have different scales of measurement and different
optimisation focuses. Therefore, the complete recommendation
process cannot be left to machine learning alone.

VII. CONCLUSION

We evaluated appropriate machine learning frameworks for
the recommendation of best-fit services according to consumer
preferences and call contexts within a service market. Imple-
mented in the recommendation component for a service broker,
the FIMT-DD showed very good results in the evaluation. Fur-
thermore, its implementation in the MOA framework fulfilled
a high degree of our requirements in terms of recommendation
accuracy, speed of learning, scalability and robustness. With a
high degree of automation, Java integration and being open
source, the MOA framework also fulfilled all software-related
requirements.

This initial evaluation was based on a continuously gener-
ated simulation data set. This data set allowed us to compare
the learning/recommendation results with the overall optimum
and on a reproducible basis, which would have not been
possible with real-world services. The characteristics of the
simulated data set, however, are based on real-world services,
which we observed in former studies. The records in the
data set consisted of continuous data. Within our framework
and in reality, this continuity of records can in general not
be assumed, since the recommendation framework uses mea-
surement of actual invoked service calls. However, service
instances cannot be assumed to be invoked equally often.
Furthermore, best-fit services are more often recommended and
therefore consumed, while underdogs never get the chance to
prove themselves. Also, often recommended service instances
might be affected by the over-consumption if infrastructure
resources are exceeded. In order to tackle this, our framework
needs further strategies and tests of how big the impact of this
potential drawback is in reality and how this can be solved.
The implemented prototype of the overall recommendation
process also needs further performance improvements for the
pre-calculation and pre-determination part. Finally, the overall
approach has to be validated to a real-world scenario with a
realistic number of clients and services.

Nonetheless, the prototype and the employment of the
FIMT-DD within the MOA framework build a good foundation
for service brokers recommending a best-fit service towards
service consumers’ preferences. With the foreground/back-
ground architecture of the framework, the time-consuming
overall learning process is decoupled from the actual time-
critical recommendation process. So, our approach only pro-
duces minimal overhead to service times.

REFERENCES

[1] J. Andersson, A. Heberle, J. Kirchner, and W. Löwe, “Service Level
Achievements - Distributed knowledge for optimal service selection,”
in Ninth IEEE European Conference on Web Services (ECOWS), 2011,
pp. 125–132.

[2] C. Sammut and M. Harries, “Concept drift,” in Encyclopedia of
Machine Learning, C. Sammut and G. Webb, Eds. Springer US,
2010, pp. 202–205. [Online]. Available: http://dx.doi.org/10.1007/
978-0-387-30164-8 153

[3] C. Shearer, “The CRISP-DM model: The new blueprint for data
mining,” Journal of Data Warehousing, vol. 5, no. 4, 2000, pp. 13–22.

[4] S. B. Kotsiantis, “Supervised machine learning: A review of classifica-
tion techniques,” Informatica, no. 31, 2007, pp. 249–268.

[5] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd ed.
Elsevier, Morgan Kaufmann, 2006.

[6] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data
streams,” in Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2001,
pp. 97–106.

[7] E. Ikonomovska, J. Gama, and S. Džeroski, “Learning model trees from
evolving data streams,” Data Mining and Knowledge Discovery, vol. 23,
no. 1, 2011, pp. 128–168.

[8] E. J. Keogh and M. J. Pazzani, “Learning augmented bayesian
classifiers: A comparison of distribution-based and classification-based
approaches,” 1999. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.55.7726

[9] Weka, “Weka Javadoc – Hoeffding Tree,” date of retrieval:
25 Oct 2014; http://weka.sourceforge.net/doc.dev/weka/classifiers/trees/
HoeffdingTree.html.

[10] KDnuggets.com – Data Mining Community’s Top Resource
for Data Mining and Analytics Software, “What analytics,
data mining, data science software/tools you used in the
past 12 months for a real project poll,” June 2014, date of
retrieval: 22 Oct 2014; http://www.kdnuggets.com/polls/2014/
analytics-data-mining-data-science-software-used.html.

[11] “RapidMiner,” https://rapidminer.com/, http://sourceforge.net/projects/
rapidminer/.

[12] “The R project for Statistical Computing,” http://www.r-project.org/.
[13] “Apache Mahout,” http://mahout.apache.org/.
[14] “Apache Spark,” http://spark.apache.org/.
[15] “KNIME,” http://www.knime.org/.
[16] “The SHOGUN Machine Learning Toolbox,” http://www.

shogun-toolbox.org/.
[17] “Shark machine learning library,” http://image.diku.dk/shark/sphinx

pages/build/html/index.html.
[18] “scikit-learn – Machine Learning in Python,” http://scikit-learn.org/.
[19] “Vowpal Wabbit (Fast Learning),” http://hunch.net/∼vw/.
[20] Machine Learning Group at the University of Waikato, “Weka – Data

mining with open source machine learning software in Java,” http://
www.cs.waikato.ac.nz/ml/weka/.

[21] University of Waikato, “MOA Massive Online Analysis,” http://moa.
cms.waikato.ac.nz/.

[22] P. Karg, “Evaluation and Implementation of Machine Learning Methods
for an Optimized Web Service Selection in a Future Service Market,”
Master’s thesis, Karlsruhe University of Applied Sciences/Linnaeus
University, Germany/Schweden, 2014.

[23] Z. Zheng, H. Ma, M. Lyu, and I. King, “QoS-aware Web service
recommendation by collaborative filtering,” Services Computing, IEEE
Transactions on, vol. 4, no. 2, 2011, pp. 140–152.

[24] M. Tang, Y. Jiang, J. Liu, and X. Liu, “Location-aware collaborative
filtering for QoS-based service recommendation,” in Web Services
(ICWS), IEEE 19th International Conference on, 2012, pp. 202–209.

[25] L. Kuang, Y. Xia, and Y. Mao, “Personalized services recommendation
based on context-aware QoS prediction,” in Web Services (ICWS),
IEEE 19th International Conference on, 2012, pp. 400–406.

[26] R. Yang, Q. Chen, L. Qi, and W. Dou, “A QoS evaluation method
for personalized service requests,” in Web Information Systems and
Mining, ser. Lecture Notes in Computer Science, vol. 6988. Springer
Heidelberg, 2011, pp. 393–402.

[27] G. Kang, J. Liu, M. Tang, X. Liu, B. Cao, and Y. Xu, “AWSR: Active
Web service recommendation based on usage history,” in Web Services
(ICWS), IEEE 19th International Conference on, 2012, pp. 186–193.

[28] Q. Yu, “Decision tree learning from incomplete QoS to bootstrap service
recommendation,” in Web Services (ICWS), IEEE 19th International
Conference on, 2012, pp. 194–201.

[29] P. Leitner, B. Wetzstein, F. Rosenberg, A. Michlmayr, S. Dustdar, and
F. Leymann, “Runtime prediction of service level agreement violations
for composite services,” in Service-Oriented Computing. ICSOC/Ser-
viceWave 2009 Workshops, 2010, pp. 176–186.

48Copyright (c) IARIA, 2015. ISBN: 978-1-61208-387-2

SERVICE COMPUTATION 2015 : The Seventh International Conferences on Advanced Service Computing

