
An Extended Study of the Correlation of Cognitive
Complexity-related Code Measures

Luigi Lavazza
Dipartimento di Scienze Teoriche e Applicate

Università degli Studi dell’Insubria
Varese, Italy

email:luigi.lavazza@uninsubria.it

Abstract—Several measures have been proposed to represent
various characteristics of code, such as size, complexity, co-
hesion, coupling, etc. These measures are deemed interesting
because the internal characteristics they measure (which are not
interesting per se) are believed to be correlated with external
software qualities (like reliability, maintainability, etc.) that are
definitely interesting for developers or users. Although many
measures have been proposed for software code, new measures
are continuously proposed. However, before starting using a new
measure, we would like to ascertain that it is actually useful
and that it provides some improvement with respect to well
established measures that have been in use for a long time
and whose merits have been widely evaluated. In 2018, a new
code measure, named “Cognitive Complexity” was proposed.
According to the proposers, this measure should correlate to code
understandability much better than traditional code measures,
such as McCabe Complexity, for instance. However, hardly any
experimentation proved whether the “Cognitive Complexity”
measure is better than other measures or not. Actually, it was
not even verified whether the new measure provides different
knowledge concerning code with respect to traditional measures.
In this paper, we aim at evaluating experimentally to what
extent the new measure is correlated with traditional measures.
To this end, we measured the code from a set of open-source
Java projects and derived models of “Cognitive Complexity”
based on the traditional code measures yielded by a state-of-
the-art code measurement tool. We found that fairly accurate
models of “Cognitive Complexity” can be obtained using just
a few traditional code measures. In this sense, the “Cognitive
Complexity” measure does not appear to provide additional
knowledge with respect to previously proposed measures.

Keywords–Cognitive complexity; software code measures;
McCabe complexity; cyclomatic complexity; Halstead mea-
sures; static code measures

I. INTRODUCTION

In [1], the correlation between “Cognitive Complexity,” a
measure proposed with the aim of representing the complexity
of understanding code [2], and “traditional” measures was
studied.

In fact, many measures of the internal characteristics of
code, such as size, complexity, cohesion or coupling, have
been proposed in the past (for instance, Chidamber and
Kemerer proposed a suite of metrics that are suitable for
representing the characteristics of object-oriented code [3])
and new ones are continuously proposed. However, code
measures are of little interest per se, since they address internal
properties of software. In general, developers, managers and

users are more interested in external software qualities, like
faultiness or maintainability. Therefore, it is necessary that
internal property measures are correlated to some external
property of interest. Such correlation makes it possible, among
other things, to predict interesting external qualities, which
are unknown, based on measures of internal code properties,
which can be easily collected.

In 2018, a new code measure was proposed with the aim
of representing the complexity of understanding code [2]. The
measure is a code measure, which accounts exclusively for
internal code properties. However, according to the author, it is
expected to be strictly correlated with code understandability,
which is an external code property. This measure is named
“Cognitive Complexity,” however, in the remainder of this
paper we shall refer to this measure as “CoCo,” to avoid
confusion with the concept of cognitive complexity, i.e., the
external property that CoCo is expected to measure.

Some initial work has been done to evaluate whether
CoCo is actually correlated with code understandability [4]:
preliminary results do not support the claim that CoCo is better
correlated to code understandability than previously proposed
measures.

At any rate, whatever the goal that a new code measure is
supposed to help achieving, the new measure should provide
some “knowledge” that existing code measures are not able
to capture. If a new measure is so strongly correlated with
other measures that the latters can be used to predict the
new measure with good accuracy, it is unlikely that the new
measure actually conveys any new knowledge.

CoCo is receiving some attention, probably because it is
provided by SonarQube, which is a quite popular tool.
Therefore, it is time to look for evidence that CoCo provides
additional knowledge with respect to well established code
measures. To this end, the following two research questions
were addressed by a previous paper [1]:

RQ1 How strongly is CoCo correlated with each of the
code measures that are commonly used in software
development?

RQ2 Is it possible to build models that predict the value of
CoCo based on the values of commonly used code
measures? If so, how accurate are the predictions that
can be achieved?

85

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

These research questions were addressed by analyzing the
code from nine open source Java projects. It was found that
CoCo appears strongly correlated to McCabe’s complexity and
slightly less strongly correlated to several other code measures.
Several regression models of CoCo as a function of traditional
measures were also found. Based on these findings, it was
concluded that—at least for the considered software projects—
CoCo does not appear to convey additional information with
respect to traditional measures.

In this paper, we first report in some detail the work
described in [1], then we look for further evidence that may
confirm (or challenge) previous findings. To this end,

1) We selected two large open source Java projects, whose
code we used in the following activities.

2) We evaluated the correlation between CoCo and tradi-
tional measures in the two selected open source Java
projects.

3) We used two models found in [1] to predict the CoCo of
the two projects’ methods. We then evaluated the accu-
racy of the prediction.

4) Finally, we used machine learning techniques to verify
whether it is possible to estimate CoCo based on tradi-
tional measures with an even greater accuracy than via
regression.

The paper is structured as follows. Section II provides
some background, by introducing CoCo and describing the
traditional code measures used in this study. Section III
describes the empirical study that was carried out to answer the
research questions. Section IV discusses the results obtained
by the original study [1] and answers the research questions.
Section V describes a second empirical study, which provides
further evidence that confirms previous findings. Section VI
explores whether it is possible to uncover even stronger
relationships by means of machine learning, or if the usage of
ML just confirms the previous findings obtained via ordinary
least squares regression. Section VII discusses the threats to
the validity of the study. Section VIII accounts for related
work. Finally, in Section IX some conclusions are drawn, and
future work is outlined.

II. CODE MEASURES

In this paper we deal with measures of the internal attributes
of code. Internal attributes of code can be measured by looking
at code alone, without considering software qualities (like
faultiness, robustness, maintainability, etc.) that are externally
perceivable.

Several measures for internal software attributes (e.g., size,
structural complexity, cohesion, coupling) were proposed [5]
to quantify the properties of software modules. These measures
are interesting because they concern code properties that are
believed to affect external software qualities (like faultiness
or maintainability), which are interesting for developers and
users.

Since CoCo is computed at the method level, in what
follows, we consider only measures at the same granularity
level, i.e., measures that are applicable to methods.

A. “Traditional” Code Measures

Since the first high-level programming languages were
introduced, several measures were proposed, to represent the
possibly relevant characteristics of code. For instance, the
Lines Of Code (LOC) measure the size of a software module,
while McCabe Complexity (also known as Cyclomatic Com-
plexity) [6] was proposed to represent the “complexity” of
code, with the idea that high levels of complexity characterize
code that is difficult to test and maintain. The object-oriented
measures by Chidamber and Kemerer [3] were proposed to
recognize poor software design: for instance, modules with
high levels of coupling are supposed to be associated with
difficult maintenance.

In this paper, we are interested in evaluating the correla-
tion between CoCo and traditional measures. Since CoCo is
defined at the method level, here we consider only traditional
measures addressing methods; measures defined to represent
the properties of classes or other code structures are ignored.

We used SourceMeter [7] to collect code measures. The
collected method-level measures are listed in Table I.

Here we provide just a brief description of the collected
measures; readers can find complete specifications and addi-
tional information in the documentation of SourceMeter.

The measures listed in Table I include Halstead mea-
sures [8], several maintainability indexes, including the origi-
nal one [9], McCabe complexity, measures of the nesting level
(i.e., how deeply are code control structures included in each
other), logical lines of code (which are counted excluding
blank lines, comment-only lines, etc.).

TABLE I
THE MEASURES COLLECTED VIA SOURCEMETER.

Metric name Abbreviation
Halstead Calculated Program Length HCPL
Halstead Difficulty HDIF
Halstead Effort HEFF
Halstead Number of Delivered Bugs HNDB
Halstead Program Length HPL
Halstead Program Vocabulary HPV
Halstead Time Required to Program HTRP
Halstead Volume HVOL
Maintainability Index (Microsoft version) MIMS
Maintainability Index (Original version) MI
Maintainability Index (SEI version) MISEI
Maintainability Index (SourceMeter version) MISM
McCabe’s Cyclomatic Complexity McCC
Nesting Level NL
Nesting Level Else-If NLE
Logical Lines of Code LLOC
Number of Statements NOS

B. The “Cognitive Complexity” Measure

In 2017, SonarSource introduced Cognitive Complexity [2]
as a new measure for the understandability of any given
piece of code. This new measure was named “Cognitive
Complexity” because its authors assumed that the measure was
suitable to represent the cognitive complexity of understanding
code. To this end, CoCo was proposed with the aim “to remedy

86

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Cyclomatic Complexity’s shortcomings and produce a mea-
surement that more accurately reflects the relative difficulty of
understanding, and therefore of maintaining methods, classes,
and applications” [2].

Rather than a direct measure, CoCo is an indicator, which
takes into account several aspects of code. Like McCabe’s
complexity, it takes into account decision points (conditional
statements, loops, switch statements, etc.), but, unlike Mc-
Cabe’s complexity, CoCo gives them a weight equal to their
nesting level plus 1. So, for instance, in the following code
fragment

void firstMethod() {
if (condition1)

for (int i = 0; i < 10; i++)
while (condition2) { x+=a[i]; }

}

the if statement at nesting level 0 has weight 1, the for
statement at nesting level 1 has weight 2, and the while
statement at nesting level 2 has weight 3; accordingly CoCo=
1+2+3=6. The same code has McCabe complexity = 4 (3
decision points plus one).

Consider instead the following code fragment, in which the
control structures are not nested.

void secondMethod() {
if (condition1) { x=0; }
for (int i = 0; i < 10; i++) { x+=2*i; }
while (condition2) { x=x/2; }

}

This code has CoCo = 3, while its McCabe complexity is still
4. It is thus apparent that nested structures increase CoCo,
while they have no effect on McCabe complexity.

CoCo also accounts for Boolean predicates (while Mc-
Cabe’s complexity does not): a Boolean predicate contributes
to CoCo depending on the number of its sub-sequences of
logical operators. For instance, consider the following code
fragment, where a, b, c, d, e, f are Boolean vari-
ables

void thirdMethod() {
if (a && b && c || d || e && f) { ... }

}

Predicate a && b && c || d || e && f contains
three sub-sequences with the same logical operators, i.e.,
a && b && c, c || d || e, and e && f, so it adds
3 to the value of CoCo.

Other aspects of code contribute to increment CoCo, but
they are much less frequent than those described above. For a
complete description of CoCo, see the definition [2].

III. THE EMPIRICAL STUDY

The empirical study involved a set of open-source Java
programs. The Java code was measured, and the collected data
were analyzed via well consolidated statistical methods. The
dataset is described in Section III-A, while the measurement

and analysis methods are described in Section III-B. The
results we obtained are reported in Section III-C.

A. The Dataset

The code to be analyzed within the study was a convenience
sample: data whose code was already available from previous
studies concerning completely different topics was used. In
practice, this amount to a random choice.

The projects that supplied the code for the study are listed in
Table II, where some descriptive statistics for the most relevant
measures are also given (for space reasons, statistics are given
only for a subset of representative measures). Methods having
CoCo=0 (i.e., with no decidion points, no complex boolean
expressions, etc.) or NOS=0 (i.e., having no statements) are
clearly uninteresting, therefore their data were excluded, so
Table II does not account for such methods. Overall, the initial
dataset included data from 13,922 methods. The dataset is
available on demand for replication purposes.

B. The Method

The first phase of the study consisted in measuring the code.
We used SourceMeter to obtain the traditional measures listed
in Table I, and a self-constructed tool to measure CoCo. The
data from the two tools were joined, thus obtaining a single
dataset with 8,214 data points.

The second step consisted in selecting the data for the study.
We excluded from the study all the methods having CoCo <5,
since those methods would bias the results, because of ‘built-
in’ relationships. For instance a piece of code having CoCo =
0 also has McCabe complexity = 1; similarly, CoCo = 1
implies that McCabe complexity = 2 for all but a few very
peculiar cases, etc. In addition, low-complexity methods are
of little interest: CoCo is meant to represent the complexity
of understanding code, and CoCo is less than 5 for methods
that are so simple that understanding them is hardly an issue.
Therefore, by excluding only methods having CoCo < 5 we
are sure to exclude only ‘non-interesting’ code.

We also excluded methods having CoCo > 50, because our
dataset contains too few methods having CoCo > 50 to support
reliable statistical analysis. Besides, CoCo > 50 indicates
exceedingly complex methods; in practice, it is hardly useful
knowing if, say, CoCo = 60 or CoCo = 70, just like it is hardly
useful knowing that McCabe’s complexity is 60 or 70. In these
cases, we just have “too complex” methods.

After removing the exceedingly simple or complex methods,
we got a dataset including 3,610 data points, definitely enough
to perform significant statistical analysis. In this dataset the
mean value of CoCo is 12, while the median is 9.

The third step consisted in performing statistical analysis.
We started by studying the correlation between CoCo and
each one of the other code measures. Since the data are not
normally distributed, we used non-parametric tests, namely
we computed Kendall’s rank correlation coefficient τ [10]
and Spearman’s rank correlation coefficient ρ [11]. Since the
correlation analysis gave encouraging results, we proceeded to
evaluate correlations via both linear and non-linear correlation

87

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE II
DESCRIPTIVE STATISTICS OF THE DATASETS.

Project num. Measure mean st.dev. median min max
methods

CoCo 3.1 4.3 2.0 1 79
HPV 32.3 17.1 28.0 0 211

MI 100.3 14.7 102.2 0 135
hibernate 2532 McCC 3.3 2.4 2.0 1 33

NLE 1.3 0.8 1.0 0 7
LLOC 15.2 12.3 12.0 3 201
CoCo 3.3 4.0 2.0 1 34
HPV 35.0 18.4 29.0 10 120

MI 100.3 14.0 102.5 56 132
jcaptcha 317 McCC 3.5 2.2 3.0 2 18

NLE 1.3 0.8 1.0 0 5
LLOC 14.6 10.6 11.0 3 80
CoCo 4.0 7.2 2.0 1 84
HPV 30.6 22.9 28.0 0 280

MI 101.7 20.6 104.0 0 135
jjwt 205 McCC 4.3 4.6 3.0 2 46

NLE 1.3 0.8 1.0 0 4
LLOC 13.5 14.9 11.0 3 169
CoCo 5.6 8.7 3.0 1 73
HPV 38.3 21.1 32.0 14 145

json MI 96.4 15.3 99.0 45 131
iterator 379 McCC 4.6 3.9 3.0 1 28

NLE 1.6 1.0 1.0 0 7
LLOC 18.0 15.1 13.0 3 110
CoCo 5.7 15.8 2.0 1 203
HPV 41.0 36.9 31.5 11 413

JSON- MI 95.7 18.2 97.4 32 133
java 260 McCC 5.0 5.8 3.0 2 50

NLE 1.5 1.1 1.0 0 7
LLOC 21.5 26.5 13.0 3 255
CoCo 4.6 6.4 2.0 1 61
HPV 36.6 21.4 30.0 8 163

MI 98.1 15.2 100.4 44 135
log4j 798 McCC 4.1 3.4 3.0 1 34

NLE 1.6 1.0 1.0 0 8
LLOC 16.9 13.4 12.0 3 115
CoCo 4.4 5.5 3.0 1 37
HPV 33.7 20.0 28.0 0 122

netty- MI 97.7 20.8 101.4 0 132
socketio 136 McCC 4.1 2.8 3.0 1 19

NLE 1.6 0.9 1.0 0 5
LLOC 15.0 12.3 11.0 3 84
CoCo 5.2 8.2 2.0 1 118
HPV 39.3 25.7 32.0 0 326

MI 93.7 17.2 96.4 0 128
pdfbox 3587 McCC 4.5 4.5 3.0 1 58

NLE 1.6 1.1 1.0 0 10
LLOC 22.3 21.8 15.0 3 330
CoCo 5.6 10.1 3.0 1 186
HPV 38.7 28.5 31.0 0 740

jasper MI 93.4 18.1 96.5 0 132
reports 6415 McCC 4.9 5.6 3.0 1 117

NLE 1.6 1.1 1.0 0 10
LLOC 23.5 26.0 15.0 3 383

analysis. Namely, we performed ordinary least squares (OLS)
linear regression analysis and OLS regression analysis after
log-log transformation of data. In both cases, we identified
and excluded outliers based on Cook’s distance [12].

In all the performed analysis, we considered the results
significant at the usual α = 0.05 level.

C. Results of the Study

The results of Kendall’s and Spearman’s correlation tests
are given in Table III. All the reported results are statistically
significant, with p-values well below 0.001.

After the evaluation of correlations between CoCo and
other measures, we proceeded to building regression models.
We obtained 65 statistically significant models after log-log

TABLE III
RESULTS OF CORRELATION TEST.

Measure τ ρ
HCPL 0.45 0.62
HDIF 0.38 0.52
HEFF 0.47 0.63
HNDB 0.47 0.63
HPL 0.50 0.67
HPV 0.46 0.62
HTRP 0.47 0.63
HVOL 0.50 0.66
MI −0.56 −0.73
MIMS −0.56 −0.73
MISEI −0.41 −0.57
MISM −0.41 −0.57
McCC 0.71 0.85
NL 0.50 0.61
NLE 0.50 0.60
LLOC 0.55 0.72
NOS 0.52 0.68

transformation of measures. Table IV provides a summary
of the most accurate models we found. For each model, the
adjusted R2 determination coefficient is given (obtained after
excluding outliers). We also give a few indicators of the
accuracy of the models (computed including outliers): MAR
is the mean of absolute residuals (i.e., the average absolute
prediction error), MMRE is the mean magnitude of relative
errors, while MdMRE is the median magnitude of relative
errors. MMRE and MdMRE are considered biased indicators:
we report them here only as a complement to MAR, which
we considered the indicator of accuracy to be taken into
account [13].

Note that in addition to the measures listed in Table I, we
used also MCC/LLOC, i.e., McCabe’s complexity density.

IV. DISCUSSION OF THE RESULTS FROM THE EMPIRICAL
STUDY

The results of the correlation tests given in Table III show
that CoCo is correlated with all the traditional code measures
we considered. Specifically, CoCo is strongly correlated with
McCabe’s complexity: this is quite noticeable, considering that
CoCo was proposed to improve McCabe’s complexity.

We can thus answer RQ1 as follows:
Our study shows medium to strong correlations between
CoCo and each of the commonly used code measures that
we considered. Specifically, CoCo appears most strongly cor-
related with McCabe’s complexity.

The results given in Table IV let us answer RQ2 as follows:
Our study shows that it possible to build models that predict
the value of CoCo based on commonly used measures, as well
as using Halstead measures and maintainability indexes. Many
of the obtained models feature quite good accuracy.

Noticeably, the independent variables that support the most
accurate models are McCabe’s complexity, the nesting level
and the number of logical lines of code. This is hardly
surprising, given that elements of MCC and NLE are used in
the definition of CoCo. As to LLOC, it is clear that the longer
the code, the more decision points it contains (on average),

88

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV
MODELS FOUND.

Measures adjusted R2 MAR MMRE MdMRE
MI, NL 0.81 3.60 0.28 0.20
MIMS, NL 0.81 3.60 0.28 0.20
NLE, LLOC 0.79 3.08 0.25 0.20
HCPL, MI, NLE 0.84 2.96 0.24 0.18
HCPL, MIMS, NLE 0.84 2.96 0.24 0.18
HCPL, NLE, LLOC 0.81 3.04 0.25 0.20
HDIF, MI, NL 0.82 3.65 0.28 0.19
HDIF, MI, NLE 0.84 2.96 0.24 0.19
HDIF, MIMS, NL 0.82 3.65 0.28 0.19
HDIF, MIMS, NLE 0.84 2.96 0.24 0.19
HEFF, MI, NL 0.82 3.72 0.28 0.20
HEFF, MI, NLE 0.84 3.01 0.24 0.19
HEFF, MIMS, NL 0.82 3.72 0.28 0.20
HEFF, MIMS, NLE 0.84 3.01 0.24 0.19
HNDB, MI, NL 0.82 3.72 0.28 0.20
HNDB, MI, NLE 0.84 3.01 0.24 0.19
HNDB, MIMS, NL 0.82 3.72 0.28 0.20
HNDB, MIMS, NLE 0.84 3.01 0.24 0.19
HPL, MI, NLE 0.84 3.03 0.24 0.19
HPL, MIMS, NLE 0.84 3.03 0.24 0.19
HPL, NLE, LLOC 0.82 3.03 0.25 0.20
HPV, MI, NL 0.82 3.77 0.28 0.20
HPV, MI, NLE 0.84 2.95 0.24 0.18
HPV, MIMS, NL 0.82 3.77 0.28 0.20
HPV, MIMS, NLE 0.84 2.95 0.24 0.18
HTRP, MI, NL 0.82 3.72 0.28 0.20
HTRP, MI, NLE 0.84 3.01 0.24 0.19
HTRP, MIMS, NL 0.82 3.72 0.28 0.20
HTRP, MIMS, NLE 0.84 3.01 0.24 0.19
HVOL, MI, NLE 0.84 3.04 0.24 0.19
HVOL, MIMS, NLE 0.84 3.04 0.24 0.19
HVOL, NLE, LLOC 0.82 3.03 0.25 0.20
MI, MIMS, NLE 0.81 3.59 0.26 0.19
MI, NL, NLE 0.81 2.89 0.23 0.18
MI, NLE, LLOC 0.83 3.25 0.25 0.19
MIMS, NL, NLE 0.81 2.89 0.23 0.18
MIMS, NLE, LLOC 0.83 3.25 0.25 0.19
McCC, NLE, LLOC 0.95 1.77 0.15 0.11
McCC, NLE, MCC/LLOC 0.95 1.77 0.15 0.11
NL, NLE, LLOC 0.78 2.99 0.24 0.20
NLE, LLOC, MCC/LLOC 0.95 1.77 0.15 0.11

hence we can expect also LLOC to contribute to CoCo. In
fact, the relationship between CoCo and lines of code was
already observed [14].

In conclusion, our study shows that CoCo does not seem
to convey more knowledge than sets of properly chosen
traditional code measures, like MCC, NLE and LLOC.

V. EXPERIMENTAL VERIFICATION OF FORMER RESULTS

In this section we report the results of a second empiri-
cal study, which provides further evidence that confirms the
findings given above.

A. The verification dataset

To verify the results from [1] we selected two large open
source Java projects, namely ant 1.10.12 and tomcat
10.0.0-M10. The descriptive statistics of the two projects’
code are given in Table V.

B. Verifying correlation of CoCo with traditional measures

The first verification activity we carried out consisted in test-
ing the correlation between CoCo and traditional measures. To
this end, we computed Kendall’s rank correlation coefficient

TABLE V
DESCRIPTIVE STATISTICS OF THE NEW DATASETS.

Project num. Measure Mean st.dev. Median Min Max
methods

CoCo 4.73 7.60 2 1 107
HPV 34.22 23.07 27 0 188

ant 3505 MI 101.20 17.91 104 0 136
McCC 4.40 4.30 3 1 53
NLE 1.44 1.06 1 0 9
LLOC 16.19 16.30 11 3 162
CoCo 6.47 14.44 3 1 413
HPV 39.64 30.42 31 0 651

tomcat 8050 MI 96.75 18.76 100 -14 150
McCC 5.12 6.77 3 1 154
NLE 1.69 1.12 1 0 13
LLOC 19.78 24.59 12 1 612

τ [10] and Spearman’s rank correlation coefficient ρ [11], as
was done in [1].

TABLE VI
RESULTS OF THE NEW CORRELATION TESTS.

Measure τ ρ
HCPL 0.47 0.63
HDIF 0.41 0.56
HEFF 0.49 0.66
HNDB 0.49 0.66
HPL 0.52 0.69
HPV 0.47 0.64
HTRP 0.49 0.66
HVOL 0.52 0.69
MI −0.58 −0.75
MIMS −0.58 −0.75
MISEI −0.43 −0.58
MISM −0.43 −0.58
McCC 0.71 0.86
NL 0.50 0.61
NLE 0.50 0.61
LLOC 0.58 0.75
NOS 0.55 0.72

The results we obtained are given in Table VI. In all cases,
the p-value was less than 10−3.

The results in Table VI fully confirm the previous results
reported in Table III. Specifically, in ant and tomcat, the
correlation between CoCo and traditional measures appears
just a bit stronger. However, the differences in both τ and
ρ are so small that they fully confirm the reliability of the
correlation coefficients given in [1].

C. Evaluation of the accuracy of CoCo models

As we mentioned in Section III-C, several models of
CoCo as a function of traditional measures were found. A
selection is given in Table IV, where accuracy indications
obtained via classical 10-time 10-fold cross-validation are also
reported.

We can now use the new dataset containing measures from
ant and tomcat to test the accuracy of those models. If
we achieve accurate predictions, that means that the models
obtained from the original dataset represent a fairly general
relationship between CoCo and traditional measures.

The results from the original analysis suggest that the
following two models are the most accurate ones:

89

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

CoCo = 0.6408McCC0.8105NLE0.6404LLOC0.1552 (1)

CoCo = 0.6515

(
McCC

LLOC

)0.8440

NLE0.6392LLOC0.9651

(2)
So, we used models (1) and (2) to estimate the CoCo of ant

and tomcats methods, based on McCC, NLE and LLOC of
those applications’ methods.

When using model (1) we obtained the absolute error
illustrated by the boxplot in Figure 1 (outliers not shown).
The blue diamond represents the MAR.

Fig. 1. Distribution of absolute errors of estimates obtained via (1), without
outliers.

Figure 2 shows the distribution of absolute relative errors
(including outliers). It can be seen that the greatest majority
of estimates is within 5% of the actual CoCo.

Fig. 2. Distribution of absolute relative errors of estimates obtained via (1),
with outliers.

Figure 3 compares actual CoCo values with estimates ob-
tained via (1). The blue straight line represents the perfect
prediction.

Fig. 3. Comparison of actual CoCo with estimates obtained via (1).

When using model (2) we obtained the absolute error
illustrated by the boxplot in Figure 5 (outliers not shown).

Fig. 4. Distribution of absolute relative errors of estimates obtained via (2),
with outliers.

Figure 4 shows the distribution of absolute relative errors
(including outliers). It can be seen that also in this case the
greatest majority of estimates is within 5% of the actual CoCo.

Figure 6 compares actual CoCo values with estimates ob-
tained via (2).

Overall, the evaluation of models (1) and (2) via the ant
and tomcat dataset yielded results extremely close to those
obtained with the 10-times 10-fold cross validation, as shown
in Table VII, where column “10-times 10-fold Xval” reports
the data already given in Table IV, concerning the accuracy
evaluated on the original dataset, while column “ant and
tomcat prediction” provides the accuracy indicators for the
predictions obtained applying (1) and (2) to the ant and
tomcat dataset.

In conclusion, the models of CoCo confirm that there is
a strong correlation between CoCo and traditional measures,
and that it is possible to get a quite accurate estimate of
CoCo based on models that have traditional measures as
independent variables.

90

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5. Distribution of absolute errors of estimates obtained via (2), without
outliers.

Fig. 6. Comparison of actual CoCo with estimates obtained via (2).

VI. COCO ESTIMATION USING MACHINE LEARNING

Previous sections showed that CoCo does not seem to
add much information with respect to traditional measures
(especially McCabe complexity, NLE and logical LOC). In
this section we explore whether it is possible to uncover even
stronger relationships by means of machine learning (ML), or
if the usage of ML just confirms the previous findings obtained
via ordinary least squares (OLS) regression.

We proceeded through the following steps:
1) We used the original dataset to build a model of

CoCo vs. McCC, NLE and LLOC. To this end, we used
Support Vector Regression (SVR) with radial kernel.
The computations were carried out via the R language

TABLE VII
ACCURACY OF MODELS (1) AND (2).

10-times 10-fold Xval ant and tomcat prediction
model MAR MMRE MdMRE MAR MMRE MdMRE

(1) 1.77 0.15 0.11 1.98 0.16 0.13
(2) 1.77 0.15 0.11 2.03 0.16 0.14

and programming environment [15], using the e1071
library. Parameters γ, ε and cost were trained to mini-
mize the MAR (Mean Absolute Residual) via repeated
application of a 5-fold cross validation sampling method
(to this end, the tuning function of the e1071 library
was used).

2) We used the resulting model to estimate CoCo for each
method of ant and tomcat.

3) We evaluated the accuracy of the obtained estimates,
and compared then with the estimates obtained via OLS
regression (as described in Section V-C).

Figure 7 shows the distribution of estimation errors (without
outliers). It is easy to see that the greatest majority of estimates
is quite correct; namely over 50% of the estimation errors are
in [-1, +1] range.

Fig. 7. Distribution of errors of estimates obtained via ML (no outliers).

Figure 8 shows the distribution of absolute estimation errors
(without outliers). The blue diamond represents the MAR. It
is easy to see that over 75% of the estimation errors have
magnitude less than 2.5.

Fig. 8. Distribution of absolute errors of estimates obtained via ML (no
outliers).

91

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9 compares the estimates with the actual CoCo val-
ues. In can be seen that most estimates are very close to
the corresponding actual values. However, in a few cases, the
estimates are relatively far from the actual value.

Fig. 9. Comparison of actual CoCo measures and estimates.

The summary of accuracy indicators is:
• MAR= 1.8
• MMRE= 0.145
• MdMRE= 0.115

So, the accuracy of ML models is quite close to the accuracy
of OLS models, as is apparent by comparing the values above
with those in Table VII.

VII. THREATS TO VALIDITY

Concerning the application of traditional measures, we used
a state-of-the-art tool (SourceMeter), which is widely used
and mature, therefore we do not see any threat on this side.
CoCo was measured using an ad-hoc tool that was built based
on the specifications of CoCo [2]. This tool was thoroughly
tested using SonarQube [16] as a reference, therefore we are
reasonably sure that it provides correct measures. However,
when joining the data from SourceMeter with the data from
our tool, we were not able to always match methods identifiers,
because the two tools reported slightly different descriptions
of methods’ names, parameters, etc. We just dropped the
methods’ data for which no sure match could be found: in
this way, we lost less than 2% of the measures. Since the
lost measures depend on characteristics that have nothing to
do with the properties of code being measured, they can
be considered a random subset, which can hardly affect the
outcomes of the study.

Concerning the external validity of the study, as with
most empirical studies in the Software Engineering area,
we cannot be completely sure about the generalizability of
results. However, the dataset used was large enough, and the
selected software projects represent a reasonable variety of
application types. In addition, the verification performed using
a new dataset fully confirmed the original results [1]. Also
the usage of SVR to evaluate the correlation of CoCo with

traditional measure confirmed the original findings. We can
thus conclude that the presented results appear reliable and
reasonably general.

VIII. RELATED WORK

Campbell performed an investigation of the developers’
reaction to the introduction of CoCo in the measurement
and analysis tool SonarCloud [17]. In an analysis of 22
open-source projects, she assessed whether a development
team “accepted” the measure, based on whether they fixed
code areas indicated by the tool as characterized by high
CoCo. Around 77% of developers expressed acceptance of
the measure.

An objective validation of the CoCo measure was performed
by Muñoz Barón et al. [4]. They retrieved data sets from pub-
lished studies that measured the understandability of source
code from the perspective of human developers. They collected
the data concerning various aspects of understandability, as
well as the code snippets used in the experiments. They
used SonarQube [16] to obtain the CoCo measure for each
source code snippet. Then, they computed the correlation of
CoCo with the measures of various aspects of understand-
ability. Muñoz Barón et al. computed the correlation between
CoCo and various aspects of understandability for each of
the 10 experiments reported in the selected papers, as well
as a summary obtained via meta-analysis. Muñoz Barón et al.
concluded that CoCo correlates moderately with some of the
considered understandability aspects.

The paper mentioned above dealt with evaluating the effec-
tiveness of CoCo (a measure of internal code properties) as
an indicator of understandability (an external code property).
To our knowledge, nobody performed an analysis dealing with
how internal code properties only are correlated with CoCo.

Nonetheless, CoCo has been used in some evaluations.
CoCo is provided by SonarQube [16] together with many
other measures and indicators, so some researchers that
used SonarQube to collect code measures ended up using
CoCo together with other measures. Among the papers that
have used CoCo are the following.

Kozik et al. [14] developed a framework for analyzing
software quality dependence on code measures and other
data. Using the framework they found that CoCo affects the
analyzability and adaptability of code.

Papadopoulos et al. [18] investigated the interrelation be-
tween design time quality metrics and runtime quality metrics,
such as cache misses, memory accesses, memory footprint and
CPU cycles. Papadopoulos et al. observed a trade-off between
performance/energy consumption and cognitive complexity.
However, having used CoCo as the only design time quality
metric, it is unknown whether the same kind of trade-off
would be observed with respect to other design-time metrics,
like McCabe’s complexity, for instance. Our study suggests
that this doubt is well funded, i.e., a trade-off involving
performance/energy consumption and design-time metrics like
McCabe’s complexity could very well exist.

92

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Crespo et al. [19] used both the Cognitive complexity rate
(defined as CoCo/LOC) and the Cyclomatic complexity rate
(defined as McCabe complexity/LOC) as part of an assessment
strategy concerning technical debt in an educational context.
They found that the Cognitive complexity rate and the Cy-
clomatic complexity rate provide the same results, or lack of
results, actually. Given the strong correlation that we observed
between CoCo and McCabe’s complexity, the result by Crespo
et al. is not surprising.

IX. CONCLUSIONS

The “Cognitive Complexity” measure (CoCo throughout the
paper) was introduced with the aim of improving the ability
to detect code that is difficult to understand and maintain [2].
Rather than a direct measure, CoCo is an indicator, whose
definition accounts for a few characteristics of source code.
Among these characteristics are the number of decision points
(e.g., if, for, while and switch statements) and the level of
nesting of control statements.

When CoCo was proposed, no evaluations were published
concerning the relationship between CoCo and traditional
measures that directly address the aforementioned character-
istics of code. In this paper, we have reported about empirical
studies aiming at evaluating the correlation between CoCo and
several traditional measures, including those addressing the
same characteristics of code taken into account by CoCo. To
this end, we measured a few open source projects’ code, ob-
taining the measures of 3,610 methods. We then performed sta-
tistical analysis using both correlation tests (namely, Kendall’s
and Spearman’s rank correlation coefficients), regression anal-
ysis and machine learning.

We found that CoCo appears strongly correlated to Mc-
Cabe’s complexity and slightly less strongly correlated to
several other code measures. We found several regression
models of CoCo as a function of traditional measures. Not
surprisingly, one of the most accurate models involves Mc-
Cabe’s complexity, NLE (Nesting Level Else-If) and LLOC
(the number of logical lines of code) as independent variables.
Considering that the most accurate models have MAR=1.7,
while the mean CoCo is 12, we may conclude that—at least
for the considered software projects—CoCo does not appear
to convey additional information with respect to traditional
measures.

Cross-dataset validation confirmed the initial results, as did
the models obtained using Support Vector Regression.

In conclusion, the study reported here casts the doubt
that CoCo does not provide appreciable new knowledge with
respect to the measures of code that are traditionally associated
with the notion of complexity.

Concerning future work, it can be noticed that the work re-
ported here concerns exclusively relationships among internal
measures. It could be interesting to evaluate how well the stud-
ied internal measures (CoCo and traditional complexity and
size measure) correlate with external qualities. Specifically, we
plan to repeat previous studies [20], [21] using CoCo together
with (or alternatively to) other code measures.

ACKNOWLEDGMENT

The work reported here was partly supported by Fondo per
la Ricerca di Ateneo, Università degli Studi dell’Insubria.
The author thanks Anatoliy Roshka for developing the tool
that was used to measure CoCo.

REFERENCES

[1] L. Lavazza, “An Empirical Study of the Correlation of Cognitive
Complexity-related Code Measures,” in Proceedings of The Sixteenth
International Conference on Software Engineering Advances – ICSEA,
2021.

[2] G. A. Campbell, “Cognitive complexity - a new way of measuring under-
standability,” https://www.sonarsource.com/docs/CognitiveComplexity.
pdf, 2018, [Online; accessed 7-September-2021].

[3] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6, 1994,
pp. 476–493.

[4] M. M. Barón, M. Wyrich, and S. Wagner, “An empirical validation of
cognitive complexity as a measure of source code understandability,”
in Proceedings of the 14th ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), 2020, pp.
1–12.

[5] N. Fenton and J. Bieman, Software metrics: a rigorous and practical
approach. CRC press, 2014.

[6] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, 1976, pp. 308–320.

[7] “SourceMeter,” https://www.sourcemeter.com/, [Online; accessed 7-
September-2021].

[8] M. H. Halstead, Elements of software science. Elsevier North-Holland,
1977.

[9] P. Oman and J. Hagemeister, “Metrics for assessing a software system’s
maintainability,” in Proceedings Conference on Software Maintenance
1992. IEEE Computer Society, 1992, pp. 337–338.

[10] M. G. Kendall, “Rank and product-moment correlation,” Biometrika,
1949, pp. 177–193.

[11] C. Spearman, “The proof and measurement of association between two
things,” The American journal of psychology, vol. 100, no. 3/4, 1987,
pp. 441–471.

[12] R. D. Cook, “Detection of influential observation in linear regression,”
Technometrics.

[13] M. Shepperd and S. MacDonell, “Evaluating prediction systems in
software project estimation,” Information and Software Technology,
vol. 54, no. 8, 2012, pp. 820–827.

[14] R. Kozik, M. Choraś, D. Puchalski, and R. Renk, “Q-rapids framework
for advanced data analysis to improve rapid software development,”
Journal of Ambient Intelligence and Humanized Computing, vol. 10,
no. 5, 2019, pp. 1927–1936.

[15] R core team, “R: a language and environment for statistical computing,”
2015.

[16] “SonarQube,” https://www.sonarqube.org/, [Online; accessed 7-
September-2021].

[17] G. A. Campbell, “Cognitive complexity: An overview and evaluation,”
in Proceedings of the 2018 International Conference on Technical Debt,
2018, pp. 57–58.

[18] L. Papadopoulos, C. Marantos, G. Digkas, A. Ampatzoglou, A. Chatzi-
georgiou, and D. Soudris, “Interrelations between software quality met-
rics, performance and energy consumption in embedded applications,”
in Proceedings of the 21st International Workshop on software and
compilers for embedded systems, 2018, pp. 62–65.

[19] Y. Crespo, A. Gonzalez-Escribano, and M. Piattini, “Carrot and stick
approaches revisited when managing technical debt in an educational
context,” arXiv preprint arXiv:2104.08993, 2021.

[20] V. Del Bianco, L. Lavazza, S. Morasca, D. Taibi, and D. Tosi, “An inves-
tigation of the users’ perception of OSS quality,” in IFIP International
Conference on Open Source Systems. Springer, 2010, pp. 15–28.

[21] ——, “The QualiSPo approach to OSS product quality evaluation,” in
Proceedings of the 3rd International Workshop on Emerging Trends in
Free/Libre/Open Source Software Research and Development, 2010, pp.
23–28.

93

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

