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Abstract—Implementations of Artificial Neural 

Networks (ANNs) and their training often have to deal 

with a trade-off between efficiency and flexibility. Pure 

software solutions on general-purpose processors tend 

to be slow because they do not take advantage of the 

inherent parallelism, whereas hardware realizations 

usually rely on optimizations that reduce the range of 

applicable network topologies, or attempt to increase 

processing efficiency by means of low-precision data 

representation. This paper describes a mixed approach 

to ANN training, based on a system-on-chip 

architecture on a reconfigurable device, where a 

coprocessor with a large number of parallel neural 

processing units is controlled by software running on 

an embedded processor. Software control and the use 

of floating-point arithmetic guarantee system 

generality, and replication of processing logic is used 

to exploit parallelism. Implementation of the proposed 

architecture on a low-cost Altera FPGA achieves a 

performance of 431 MCUPS (millions of connection 

updates per second). 

 

Keywords: artificial neural networks (ANN), 

backpropagation, field-programmable gate array 

(FPGA), multilayer perceptron (MLP), system-on-chip 

(SoC). 

 

1. Introduction 
 

Artificial neural networks (ANNs) are bio-inspired 

architectures that implement parameterized non-linear 

functions of several variables, according to a 

computational structure based on mathematical models 

of the human brain [2][3]. The most important 

characteristics typically associated with them are 

parallelism, modularity and generalization capability 

[4]. 

Parallelism and modularity are given by the logical 

structure of the networks. ANNs are organized as a 

series of sequential layers consisting of several simple, 

identical computational elements, called neurons, 

which process the outputs from the previous layer in 

parallel. A sequential general-purpose processor is 

unable to take advantage of the high degree of 

parallelism in neural networks, hence hardware 

implementations on ASIC or reconfigurable devices are 

much more efficient [5]. 

“Generalization capability” refers to the fact that 

ANNs learn from example, i.e., after adjusting its 

parameters according to a given set of sample input-

output pairs, they have good interpolation properties 

when presented with new, different inputs. This ability 

makes neural networks a popular choice for the 

implementation of function interpolators, estimators or 

predictors in real-time systems. Sample applications of 

ANNs include forecasting in economics [6], speech 

recognition [7], and medical imaging [8]. 

A large number of hardware architectures have been 

proposed for the implementation of ANNs, ranging 

from early analog proposals [9] to modern network-on-

chip (NoC) platforms [10]. Most of the efforts on 

optimization of hardware ANN architectures have been 

concentrated on the implementation of the recall phase, 

i.e., of already-trained neural networks, relying on the 

training phase being performed off-chip using a 

software algorithm on a different platform. However, 

network training algorithms receive the same benefits 

from hardware parallelization. 

As ANN training is much more expensive 

computationally, hardware realizations tend to resort to 

heavy optimization and simplification procedures in 

order to increase processing speed. This usually 
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implies a loss in generality of application, as the 

optimizations rely on the restriction of certain network 

parameters, especially network topology and arithmetic 

representation format. Fixed-point arithmetic is most 

common, especially 16-bit representation, which is 

considered the minimum precision that guarantees 

network generalization [11]. Studies such as [12] 

indicate that floating-point implementations on FPGA 

may be impractical in terms of resource usage; 

however, their ability to represent very small values 

with high precision translates into faster network 

convergence [12]. We believe that an ANN training 

system with wide applicability should be using 

floating-point arithmetic. 

On the other hand, efficient implementations that 

focus on maximizing throughput, such as pipelined 

systolic arrays [13], leave little room for 

reconfiguration of the network topology. Most 

implementations can only train networks with a fixed 

structure; in other cases, the number of layers is fixed 

and only the number of neurons in each layer can be 

selected up to a maximum number. Changing the 

network topology requires system regeneration and 

device reconfiguration. This is a major drawback, 

because it is extremely difficult to determine an 

appropriate topology for a given problem prior to the 

actual training, except for very simple applications with 

a reduced number of inputs [14]. There exist 

procedures for the selection of the optimal network 

architecture for a problem, such as network pruning 

[15] or genetic algorithms [16], but all of them involve 

the execution of the base training algorithm on 

different network topologies at some point [17]. 

It follows that a flexible ANN training system 

should be able to train arbitrary network topologies 

with floating-point precision. One possible approach is 

the use of a distributed multiprocessor system with a 

job partitioning scheme. This is evaluated in [18] in the 

context of a LAN implementation, and it is shown that 

the optimal parallelization scheme for small networks 

with large training sets is the exploitation of training-

set parallelism, i.e., having each processor implement 

the whole network functionality but work on a different 

subset of input data. In that case, the major cause for 

efficiency loss in the system is communication 

overhead between processing nodes. 

In [1], we proposed the implementation of a similar 

multiprocessor system in a single FPGA, using 

embedded processors modified with custom parallel 

logic to accelerate neural computations. However, this 

approach resulted in limited efficiency, due to a high 

communication overhead given by the need of 

software-driven data distribution between processors, 

and restrictions on the custom logic, imposed by the 

embedded processors’ architecture. In this paper, we 

present a refinement of the system where all neural 

processing is integrated in a single hardware 

coprocessor with a high number of parallel processing 

units. Data transmission and partial result combination 

is handled directly by dedicated hardware, and high 

efficiency is achieved through data and instruction 

pipelining and careful coding of the training algorithm, 

exploiting instruction-level parallelism. Training speed 

is significantly improved, up to 20 times faster than our 

previous implementation. 

The paper is structured as follows. We begin by 

establishing the theoretical background behind ANN 

training in Section 2. The next section discusses our 

proposed hardware system architecture, describing the 

designed coprocessor and its integration in the whole 

system-on-chip. Section 4 describes software 

programming issues for both the master controller and 

the custom coprocessor. In the next section, 

implementation results on a specific Altera 

development board are presented. Finally, training 

performance is evaluated and conclusions are drawn. 

 

2. Network training 
 

Our proposed system architecture can be applied to 

a variety of ANN types that allow batch training 

operation, but our current implementation is 

constrained to one of the most widely used, the 

Multilayer Perceptron (MLP). In this section, we will 

describe this particular type of neural network and the 

training algorithms we have considered. 

 

2.1. Multilayer Perceptron 
 

A multilayer perceptron [19] comprises several 

layers (typically two or three) of similar simple 

processing elements, called neurons, which take the 

previous layer’s neurons’ outputs as inputs, as 

illustrated in Figure 1. Each neuron computes a 

weighted sum of its inputs and modifies the result by 

means of a bounded non-linear activation function ϕ 

whose purpose is to limit the range of the neuron’s 

output. The transfer function for a neuron k is thus 

given by 

 

( )kk

j

jjkkk

vo

owbv

ϕ=

⋅+= ∑
 (1) 

where the sum runs over all neuron inputs, and oj 

denotes the output of neuron j. The network’s free 
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parameters are the weights wjk and biases bk in each 

neuron. 

The numbers of layers and of neurons in each layer 

are enough to completely describe the topology of a 

fully connected MLP, i.e., a network where all 

connections between neurons in consecutive layers are 

present. We shall use the notation N0 / N1 / … / NM to 

refer to a MLP with N0 inputs and M layers of neurons, 

where the i-th layer has Ni neurons. Partially connected 

MLPs can be thought of as special cases of MLP where 

some weights are forced to 0. 

 

2.2. Backpropagation 
 

MLP training is the process of adaptation of the free 

parameters in such a way that the network’s global 

transfer function approaches some specific target 

behavior. This target function is defined by means of a 

set of V training vectors ( ){ }V
iii 1

,
=

yx , representing 

sample inputs xi and their associated desired network 

outputs yi. The set of network weights W is adjusted 

iteratively with the goal of minimizing the mean square 

error (MSE) 

 ( ) ( )∑
=

−=
V

i

iiF
V

E

1

2
;

2

1
yWxW  (2) 

where F is the ANN’s transfer function, dependent on 

the parameters W, and  denotes the Euclidean norm 

in NM–dimensional  space. In order to minimize E, 

computation of the gradient E∇  is needed. The most 

popular way to do this is the error backpropagation 

algorithm, or simply backpropagation [20], because of 

its efficient parallel, distributed implementation. This 

method of obtaining the network gradient consists of 

propagating neuron errors through the network layers 

in reverse order as follows: 

Fix a training vector ( )ii yx , . Starting at the output 

neurons, a local gradient is calculated as 

 ( ) jjj v εϕδ ⋅′=  (3) 

where εj is the neuron’s error, i.e., the difference 

between the estimated output ( )jvϕ  and the desired 

output from the training vector. The local gradients in 

other layers are computed iteratively following the 

formula 

 ( )












⋅⋅′= ∑
k

kjkjj wv δϕδ  (4) 

where the sum runs over all neurons k in the next layer. 

Finally, the gradient for weight wjk, connecting 

neuron/input j with neuron k in the next layer, is given 

by 

 kj

i
jk

o
w

E
δ⋅=

∂

∂

vector 

 (5) 

The gradient for the bias bk is equal to δk. 

Thus, the computations involved in the 

backpropagation algorithm for each training vector can 

be structured into three distinct phases (most authors 

only mention two phases; the last one is either ignored 

or merged with the second one): 

• Forward phase: The outputs (and derivatives) in 

each neuron are computed recursively, from the 

first to the last layer. 

• Backward phase: The local gradients δj in each 

neuron are computed recursively, backwards from 

the last to the first layer. 

• Gradient phase: Gradients for each free parameter 

are computed using (5). Computations for this 

phase can be organized in any order. 

Each individual phase may be carried out with parallel 

and distributed processing, however the forward and 

backward phases must be executed sequentially due to 

data dependence; failure to do so leads to a modified 

training algorithm [13]. 

The complete gradient for one epoch, i.e. 

presentation of the whole training set, is obtained by 

averaging the partial contributions from all training 

vectors: 

 ∑
=

∂

∂
=

∂

∂
V

i i
jkjk w

E

Vw

E

1 vector 

1
. (6) 

 

 

 
Fig. 1. A fully connected 2/5/4/1    

multilayer perceptron. 
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2.3. Resilient Propagation 
 

One common approach to weight adjustment is 

MSE minimization by standard gradient descent, i.e. 

the weights are updated by subtracting a multiple of 

their respective gradients from them after each epoch: 

 ( ) ( ) ( )( )nnn E WWW ∇⋅−=+ µ1  (7) 

However, this procedure may provide very slow global 

network convergence due to a few neurons becoming 

saturated, i.e. having outputs close to the bounds given 

by the activation function and very small derivatives, 

leading to small weight updates between epochs, even 

if said weights are still far from their optimal values. 

A number of modifications of the weight update 

mechanism have been proposed in order to address this 

issue, including conjugate gradient algorithms [21] and 

quasi-Newton methods [22]. We have selected the 

Resilient Propagation (RPROP) algorithm [23], where 

the magnitude of each weight update is kept 

independent of the gradient; instead, the last weight 

update is stored as reference and amplified or reduced 

depending on whether the gradient maintained or 

changed its sign. RPROP is reportedly faster than 

gradient descent by an order of magnitude, and allows 

a very efficient hardware implementation, in terms of 

both execution time and resource occupation. 

 

2.4. Activation Function 
 

It is a well-known fact that MLPs with at least two 

layers are universal approximators, i.e. they can be 

used to approximate any given continuous mapping 

with arbitrary accuracy on a bounded domain, as long 

as the activation function ϕ is bounded, monotone, and 

continuously differentiable [24]. Besides, convergence 

has been shown to be faster if ϕ is an odd bipolar 

function [25]. The most common activation function, 

shown in Figure 2, is the hyperbolic tangent 

 ( )
tt

tt

ee

ee
t

−

−

+

−
=ϕ  (8) 

which has all of the aforementioned properties. 

However, this function does not lend itself to an 

efficient digital implementation, requiring large 

operators to implement exponentials and division. 

Traditionally, ANN implementations have resorted 

to either look-up tables (LUT) or low-order 

approximations of ϕ, such as piecewise linear 

approximations [26], but these approaches are not 

viable in our situation: a LUT with floating-point 

precision would be too big, and piecewise linear 

approximations, while useful for hardware realizations 

of the recall phase of MLPs (i.e. of pre-trained 

networks with fixed weights), are inadequate for the 

implementation of the training phase, since they don’t 

satisfy the hypothesis of the universal approximation 

theorem, thus hurting network convergence. 

Our solution has been to implement a modified 

activation function ϕ~ , which is an odd cubic spline 

approximation of ϕ, with fixed exact values at 

abscissae 0, 0.25, 0.5, 1, 1.5, 2 and 3, saturation at 4, 

and fixed derivatives at the extreme points. This is a 

valid activation function since it satisfies all conditions 

stated previously, so it provides valid ANNs with 

correct training. This modified function allows an 

efficient implementation in our system architecture, 

based on repeated multiply-and-accumulate (MAC) 

operations. It can also be approximated by the 

hyperbolic tangent if needed, with an absolute error 

lower than 10
–3

, as shown in Figure 3. 

 

3. System architecture description 
 

An overview of the designed system architecture 

and included components is presented in Figure 4. The 

core of the system is the neural coprocessor, with an 

embedded microcontroller acting as master processor, 

-8 -4 0 4 8
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-0.5

0

0.5

1

 
Fig. 2. Hyperbolic tangent. 
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Fig. 3. Approximation error for the 

modified activation function. 
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running from a program memory block which may be 

external to the FPGA. Input data flows to the 

coprocessor, i.e. training vectors and coprocessor 

instructions, are fed to the coprocessor input queues 

using DMA devices, controlled by the master 

processor. Memory blocks containing current network 

weights and resulting gradients are integrated into the 

coprocessor, but are also externally accessible. All 

coprocessor ports are implemented as Altera Avalon 

slave interfaces. An external training set repository is 

assumed, as well as memory blocks for the storage of 

the coprocessor subprogram and the variables of the 

RPROP algorithm (weight update magnitudes and 

previous network gradient). The two latter should be 

internal to the FPGA to increase performance. 

 

3.1. Coprocessor architecture 
 

Figure 5 depicts the components of the neural 

coprocessor. It consists of a parameterized number P of 

arithmetic processing units (PU), restricted to a power 

of two to simplify logic design. All PUs execute the 

same operations simultaneously, and are capable of 

processing up to 8 different time-multiplexed data 

flows thanks to datapath pipelining. Each of the 8P 

supported data flows has an associated internal memory 

block for the storage of temporary variables; these 

memories can be individually read or written in order 

to set up the training session or retrieve results, 

according to an Active Data Flow Register. 

 
Fig. 4. System architecture. 

 

 
Fig. 5. Contents of the neural coprocessor. 
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The coprocessor’s control port allows the master 

processor to access internal control registers in order to 

modify the coprocessor’s behavior. Options include 

automatic endianness conversion for training vectors 

and results, to support communication with different 

remote hosts, and clearing of the gradient memory, in 

order to set up new training epochs. Additionally, a 

Valid Data Level Register specifies the number of data 

flows actually in use, so that results from invalid data 

flows may be ignored. Coprocessor status signals can 

also be read from the control port; they include 

input/output FIFO status and a “user bit” configurable 

through coprocessor instructions. These signals are 

used for execution flow control. 

Figure 6 shows the schematic for the contents of 

each PU. It consists of an adder unit, a multiplier unit, 

a local memory block and a reduced number of local 

registers. 

The adder and multiplier units are based on Altera 

32-bit floating-point pipelined IP cores. Both of them 

implement an 8-stage pipeline and accept a new 

operation each clock cycle. Their inputs can be chosen 

from the local registers, their current outputs, and 

hardwired constants (1 for the multiplier and 0 for the 

adder) that allow them to behave as shift registers. The 

set of operand choices for both units has been kept 

small in order to reduce both the logic usage and the 

size of the instruction word; the backpropagation 

algorithm was analyzed in order to determine the 

smallest possible set of operand choices. 

Arithmetic operators are not disabled during 

instructions that don’t need to use them; instead, they 

are used as shift registers by multiplying its current 

value by 1 or adding 0, respectively. This is necessary 

because a different functional unit might need to read 

their outputs in successive clock cycles, corresponding 

to different data flows, hence these outputs must 

change every clock cycle. 

A dual-port memory block (one read and one write 

port) is used as a large register bank to store variables 

for each data flow; the top 3 bits from each port’s 

address input are used to select the correct data flow. A 

previous analysis of the backpropagation algorithm 

revealed that one read and one write operation per 

cycle are enough except in some parts of the backward 

phase, where two reads may be needed; however, 

allowing them in a single clock cycle would require a 

triple port memory which would have to be 

implemented as two dual port memory blocks in 

parallel, thus halving the amount of memory available 

for each data flow. 

Each PU has three general-purpose local registers 

named L0, L1 and L2, implemented as 8-stage 32-bit 

shift registers. They are used as intermediate storage 

between large memories (global weight memory or 

local register banks) and the arithmetic units, in order 

to allow reuse of commonly accessed variables. 

Additionally, two registers C0 and C1 are used to load 

polynomial coefficients from a small 512 bit LUT, for 

the computation of the spline function ϕ~  and its 

 
Fig. 6. RTL description of a processing unit. 
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derivative; the value of the abscissa is always taken 

from L0. C0 is used for multiplicative and C1 for 

additive coefficients. 

As illustrated in Figure 6, the inputs to the adder 

subsystem in each PU can be bypassed using external 

control signals, allowing the coprocessor to rearrange 

the existing adder logic into a multistage adder tree, 

which can be used to combine results from different 

data flows. 

 

3.2. Coprocessor programming model 
 

Figure 7 describes instruction word format for the 

neural coprocessor. There are two different types of 

instructions: “short” and “long” instructions, with a 

length of 32 and 64 bits respectively. 

The purpose of short instructions is to implement 

communication with the coprocessor’s input and output 

data streams by accessing individual addresses in local 

memory. Each instruction specifies up to three 

sequential tasks: updating the Active Data Flow 

Register, writing the contents of internal memory 

address A0 from the (new) active data flow into the 

output queue, and loading the first word from the FIFO 

vector queue into address A3. Additionally, the value 

of the “user bit” available through the control port may 

be changed. These instructions are consumed at a rate 

of one every clock cycle and implement a three stage 

instruction pipeline. 

Long instructions are used to perform arithmetic 

operations on values in local memory, possibly using 

weights from global memory as parameters. Each 

instruction specifies four different operations that are 

executed sequentially, if enabled: 

• Loading local registers with values from memory. 

Addresses A0 from local memory and A1 and A2 

from global memory are available. Also, 

coefficient register C0 is loaded. 

• Multiplication. Four bits are used to select input 

operands; a value of zero indicates “no operation”, 

i.e., multiplying the current output with 1. Register 

C1 is also loaded in this stage. 

• Addition. Again, four bits select the values to be 

added, with zeros indicating addition of the current 

adder output with 0. 

• Storing arithmetic results (from either the adder or 

the multiplier) into address A3 of local memory. 

This specifies four instruction pipeline stages, each one 

taking 8 clock cycles to complete. A new instruction is 

accepted every 8 clock cycles; each cycle, a new input 

is taken from a different data flow. Hence the 

coprocessor works as a Single-Instruction Multiple-

Data (SIMD) machine, with the same instruction 

executing simultaneously on all PUs and acting on 8 

time-multiplexed data flows within each PU. 

The execution of long instructions follows the 

VLIW (Very Long Instruction Word) paradigm, in that 

a sequence of simple sequential operations on the 

execution units (adder, multiplier, registers) is specified 

by a single instruction, so that instruction-level 

parallelism is achieved at compilation time. The 

coprocessor hardware provides no forwarding or 

scheduling logic; instead, the compiler that generates 

coprocessor code is responsible for the optimization of 

the algorithm and the prevention of data hazards 

between consecutive instructions with data 

dependence, inserting NOP instructions or ad-hoc data 

forwarding as needed. Thus, hardware complexity is 

reduced at the expense of increased compilation time. 

An extra bit in the instruction word allows the 

coprocessor to enter an extended instruction pipeline 

that implements an adder tree. Adder input selection is 

ignored in this case; instead, the bypass signals shown 

in Figure 6 are used to implement the accumulation of 

results from the multipliers in each data flow. Figure 8 
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Fig. 7. Coprocessor instruction word format. 
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schematizes the connections between multipliers and 

adders in both operating cases. The organization of the 

resulting adder tree into pipeline stages is shown in 

Figure 9. Accumulation of the outputs of the 

multipliers is divided in two different phases. The first 

phase uses 1−P  adders to implement a P2log -stage 

adder tree where spatial accumulation is performed, 

i.e., results from the same time slot in different PUs are 

combined. Its output is a stream of 8 partial sums 

coming out in consecutive clock cycles, which are 

accumulated in the second phase using the remaining 

adder and delay lines. There are eight available time 

slots; seven of them are used to combine of the partial 

sums using a 3-stage temporal tree structure, obtaining 

the sum of all multiplier outputs. The last time slot is 

used to accumulate that value with the previous value 

in address A2 of gradient memory. The second phase is 

independent of P and takes 5 eight-cycle stages to 

complete. 

 

4. System software 
 

This implementation of MLP training takes 

advantage of training-set parallelism, with different 

training vectors being handled in different coprocessor 

data flows using the same instructions. This obviously 

restricts our implementation to batch-mode training. 

 

4.1. Backpropagation algorithm 
 

The coprocessor code necessary for ANN training is 

divided into two distinct sections. The first one is a 

series of short instructions that read values from the 

vector queue and store them in the correct local 

memory addresses for each data flow. This way, up to 

8P whole training vectors are loaded into the same 

local addresses. The second section is formed by long 

(arithmetic) instructions that execute both the 

backpropagation algorithm and the gradient 

accumulation process. All data flows share the same 

local memory map, with their input values (training 

vectors) being pre-loaded by the first part of the 

program. An extensive analysis of the backpropagation 

algorithm has been done in order to achieve an optimal 

translation into coprocessor instructions, following the 

three phase structure described in Section 2.2. 

In the forward phase, the outputs and derivatives 

from all neurons in each layer are computed 

sequentially, according to (1). For each layer, the value 

of vk is obtained first for all neurons k in that layer, 

using as many MAC instructions as layer inputs for 

each neuron. The coprocessor ability to load two 

different network weights is exploited to include the 

addition of bias bk with no need for an extra instruction. 

After all vk have been computed, the activation function 

and its derivative are evaluated using the Horner 

scheme [27], organizing arithmetic operations as a 

sequence of n MACs, where n is the polynomial 

degree: 

 

( )
( )( )

( )
( ) 012

01
2

2

0123

01
2

2
3

3

~

~

bxbxb

bxbxbx

axaxaxa

axaxaxax

+⋅+⋅=

++=′

+⋅+⋅+⋅=

+++=

ϕ

ϕ

 (9) 

Both polynomials can be computed in parallel by 

alternating the use of the adder and the multiplier, such 

that in a given 8-cycle stage, the adder is evaluating 

one of the functions while the multiplier is evaluating 

the other one. This is outlined in Figure 10, where each 

horizontal line represents concurrent operations. This 

 
Fig. 8. Left: normal configuration. Right: 

Adder tree configuration. 

 
Fig. 9. Adder tree pipeline stages. 
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way, only 5 instructions are necessary for the 

computation of the activation function and its 

derivative. 

The backward phase begins with simple 

multiplication operations to obtain local gradients in 

the output layer according to (3). For other layers, the 

bracketed sum in (4) needs to be computed first using 

as many MAC operations as neurons in the next layer; 

if the next layer is small enough, data forwarding has to 

be planned. Finally, the gradient phase makes use of 

the adder tree configuration of the coprocessor, 

computing gradients using (5) and then adding all 

multiplier results and accumulating them with the 

previous partial sum in gradient memory. Aggregated 

square error is also computed and accumulated; it must 

be divided by the total number of vectors afterwards to 

obtain the epoch’s MSE (2). 

 

4.2. Master processor program 
 

Execution of whole training sessions is controlled 

by the master processor. The first action is initialization 

of network weights using the Nguyen-Widrow rule 

[28]; initial weights are then stored in the coprocessor’s 

weight memory. Afterwards, coprocessor code is 

compiled for both code sections specified in Section 

4.1 and stored in memory; this code loads 8P vectors, 

executes backpropagation on all of them 

simultaneously and accumulates the results in gradient 

memory. Coprocessor code needs to be recompiled 

each time because it is dependent on network topology, 

which is a parameter for each training session. 

Arbitrary MLP topologies are supported, as long as 

each data flow’s local memory is large enough to 

contain all associated temporary variables. 

After these initialization steps, the actual training is 

performed. New epochs are issued until a stop 

condition is fulfilled (either a maximum number of 

epochs is reached, or the network’s MSE falls below a 

given threshold). For the master processor, each epoch 

consists of a series of DMA transfers. A transfer of the 

whole training set into the vector queue is first set up. 

After that, a number of consecutive transfers of the 

whole coprocessor code into the instruction queue are 

issued, as many times as needed to exhaust the whole 

training set, since only 8P vectors are processed each 

time. Before the first transfer, the control port must be 

used to tell the coprocessor to overwrite gradient 

memory instead of accumulating previous results; this 

option must be turned off after the first iteration. 

Similarly, for the last transfer, the value of the Valid 

Data Level Register must be updated to reflect the 

actual number of vectors left, so that outputs from 

inactive data flows are not accumulated when 

computing gradients. After the last instruction transfer 

is processed, the gradient memory contains the final 

network gradient of (6), except for the factor V1 , as 

well as the epoch’s aggregated square error. The 

RPROP algorithm is now executed by the master 

processor to obtain the new network gradients; the 

multiplicative factor V1  is irrelevant since only the 

sign of the gradient components is used. 

 

5. Implementation 
 

The system has been implemented on an Altera 

DE2-70 development board, with a Cyclone II 

EP2C70F896C6 reconfigurable device and external 

RAM memory for both the master processor program 

and storage of the training set; up to 64 MB are 

available for training vectors. The master controller is 

implemented as a Nios II/f embedded processor. A 16 

KB internal memory for coprocessor instructions is 

necessary to contain the program for all applicable 

MLP topologies. 

The limitation on the size of the coprocessor fitting 

into the FPGA comes from the amount of available on-

chip memory blocks for the realization of local 

memories, hence the minimum amount of necessary 

memory was determined first. It was established that 

128 words (4 kbit) were enough for each data flow, 

allowing the training of networks with up to 

approximately 40 neurons. Also, weight and gradient 

memories were limited to 2 KB, imposing a limit of 

511 network weights. 

Each coprocessor PU has an occupation of 

approximately 2970 logic elements and 10 4-kbit 

memory blocks, as well as four 18x18 multiplier 

 
Fig. 10. Evaluation of the activation function 

and its derivative. 
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blocks, with full-capability floating-point operators, i.e. 

supporting denormal numbers and full-range rounding. 

It is possible to fit up to 16=P  processing units in the 

coprocessor for this FPGA, allowing the simultaneous 

processing of up to 128 training vectors. The 

coprocessor works with an internal 100 MHz clock, 

while the rest of the system uses a 50 MHz clock; the 

use of dual-port memories for every coprocessor 

interface makes it possible to implement independent 

clock domains. Thus, the coprocessor has a maximal 

computational performance of 3.2 GFLOPS; this value 

is maintained during most of the execution of the 

backpropagation algorithm and gradient accumulation. 

The system makes use of the on-board Ethernet NIC 

to allow the board to be connected to a local IP 

network, so that a remote computer can use the FPGA 

system to perform any network training. The remote 

host needs to provide the MLP topology, the whole 

training set, and training stop conditions (maximum 

epoch number or MSE threshold). On training 

completion, the board returns the final network 

weights, the MSE evolution for all epochs, and 

information about total training time. Matlab has been 

used to implement the connection protocol and test the 

training results on the client PC side. 

 

6. Performance 
 

Training performance was evaluated for the well-

known Iris plants problem [29], using a data set 

consisting of 150 four-dimensional inputs and three 

different outputs representing membership to three 

different classes with the values 1 and –1. The number 

of training epochs was fixed to 100, and the size of the 

training set V was modified by replicating the base data 

set. The number of CUPS (Connection Updates Per 

Second) was selected as a metric for system 

performance. This quantity is defined as the amount of 

network parameters divided by the time needed to 

process each training sample and update network 

parameters accordingly; for batch training, this is equal 

to 

 
training

epochs

epoch

CUPS
T

WVN

T

WV
==  (10) 

where W is the number of network weights, Nepochs is 

the number of training epochs, and Tepoch and Ttraining 

are the time length of each epoch and the whole 

training session, respectively. 

The largest topology supported by the system for the 

Iris problem was found to be the 4/18/18/3 MLP. 

Training time was measured for this network and the 

smaller 4/5/5/3, 4/9/8/3 and 4/12/12/3 topologies. 

Results are plotted in Figure 11. Training performance 

increases approaching a limit value as the training set 

grows larger, as expected from a system where 

parallelization speedup stems primarily from training 

set parallelism; this limit value is dependent on network 

topology. Since vector loading time is constant for a 

given problem, the fraction of execution time spent on 

arithmetic computations (backpropagation and gradient 

accumulation) is higher for more complex topologies. 

Hence, system performance increases as the MLP size 

grows, converging to a peak value for sufficiently 

complex networks (4/12/12/3 and higher). For our 

implementation, this peak value is 431 MCUPS. 

 

7. Conclusion and future work 
 

A system-on-chip architecture for MLP training has 

been proposed, where a high level processor controls 

the system execution flow and data transfers and 

generates parameterized machine code, depending on 

network topology, for a low level custom hardware 

coprocessor where the backpropagation algorithm is 

carried out. A SIMD architecture for the neural 

coprocessor is described, with a large number of 

replicated pipelined arithmetic operators in order to 

support the simultaneous processing of hundreds of 

training vectors. Optimized coprocessor code allows 

the arithmetic operators to reach near 100% utilization. 

Implementation of the proposed architecture on a 

low-cost Altera FPGA reaches a training performance 

exceeding 430 MCUPS. This is a competitive value 

compared to other state-of-the-art FPGA 

implementations of MLP training with fixed topology 

and fixed point precision. As far as we know, no other 

FPGA implementation exists with floating point 

precision and arbitrary topology training without 

device reconfiguration; such features are exclusive of 

either software implementations on general-purpose 
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Fig. 11. System performance for different 

topologies and training set sizes. 
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processors, which are slower, or ASIC implementations 

(so-called neurochips), which are much more costly. 

Scalability of this architecture on larger FPGAs is 

constrained mainly by the amount of available on-chip 

memory for the realization of local memory blocks; it 

is probably not practical to relocate this resource to 

external memory because of frequent, wide access (512 

bits every clock cycle for our current implementation). 

The addition of custom superpipelined floating-point 

operators might allow higher clock frequencies, 

although they will be ultimately be limited by FPGA 

routing resources. We intend to explore the possibility 

of using floating-point representations with less than 32 

bits, as well as the adaptation of the neural coprocessor 

architecture to allow other types of ANN such as 

Radial Basis Networks. 
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