
System-on-Chip Implementation of Neural Network Training on FPGA

Ramón J. Aliaga, Rafael Gadea, Ricardo J. Colom, José M. Monzó,

Christoph W. Lerche, and Jorge D. Martínez

Institute for the Implementation of Advanced Information and Communication Technologies

(ITACA)

Universidad Politécnica de Valencia

Camino de Vera s/n, 46022 Valencia, Spain

E-mail: {raalva, rgadea, rcolom, jmonfer, chler, jdmartinez}@upvnet.upv.es

Abstract—Implementations of Artificial Neural

Networks (ANNs) and their training often have to deal

with a trade-off between efficiency and flexibility. Pure

software solutions on general-purpose processors tend

to be slow because they do not take advantage of the

inherent parallelism, whereas hardware realizations

usually rely on optimizations that reduce the range of

applicable network topologies, or attempt to increase

processing efficiency by means of low-precision data

representation. This paper describes a mixed approach

to ANN training, based on a system-on-chip

architecture on a reconfigurable device, where a

coprocessor with a large number of parallel neural

processing units is controlled by software running on

an embedded processor. Software control and the use

of floating-point arithmetic guarantee system

generality, and replication of processing logic is used

to exploit parallelism. Implementation of the proposed

architecture on a low-cost Altera FPGA achieves a

performance of 431 MCUPS (millions of connection

updates per second).

Keywords: artificial neural networks (ANN),

backpropagation, field-programmable gate array

(FPGA), multilayer perceptron (MLP), system-on-chip

(SoC).

1. Introduction

Artificial neural networks (ANNs) are bio-inspired

architectures that implement parameterized non-linear

functions of several variables, according to a

computational structure based on mathematical models

of the human brain [2][3]. The most important

characteristics typically associated with them are

parallelism, modularity and generalization capability

[4].

Parallelism and modularity are given by the logical

structure of the networks. ANNs are organized as a

series of sequential layers consisting of several simple,

identical computational elements, called neurons,

which process the outputs from the previous layer in

parallel. A sequential general-purpose processor is

unable to take advantage of the high degree of

parallelism in neural networks, hence hardware

implementations on ASIC or reconfigurable devices are

much more efficient [5].

“Generalization capability” refers to the fact that

ANNs learn from example, i.e., after adjusting its

parameters according to a given set of sample input-

output pairs, they have good interpolation properties

when presented with new, different inputs. This ability

makes neural networks a popular choice for the

implementation of function interpolators, estimators or

predictors in real-time systems. Sample applications of

ANNs include forecasting in economics [6], speech

recognition [7], and medical imaging [8].

A large number of hardware architectures have been

proposed for the implementation of ANNs, ranging

from early analog proposals [9] to modern network-on-

chip (NoC) platforms [10]. Most of the efforts on

optimization of hardware ANN architectures have been

concentrated on the implementation of the recall phase,

i.e., of already-trained neural networks, relying on the

training phase being performed off-chip using a

software algorithm on a different platform. However,

network training algorithms receive the same benefits

from hardware parallelization.

As ANN training is much more expensive

computationally, hardware realizations tend to resort to

heavy optimization and simplification procedures in

order to increase processing speed. This usually

44

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

implies a loss in generality of application, as the

optimizations rely on the restriction of certain network

parameters, especially network topology and arithmetic

representation format. Fixed-point arithmetic is most

common, especially 16-bit representation, which is

considered the minimum precision that guarantees

network generalization [11]. Studies such as [12]

indicate that floating-point implementations on FPGA

may be impractical in terms of resource usage;

however, their ability to represent very small values

with high precision translates into faster network

convergence [12]. We believe that an ANN training

system with wide applicability should be using

floating-point arithmetic.

On the other hand, efficient implementations that

focus on maximizing throughput, such as pipelined

systolic arrays [13], leave little room for

reconfiguration of the network topology. Most

implementations can only train networks with a fixed

structure; in other cases, the number of layers is fixed

and only the number of neurons in each layer can be

selected up to a maximum number. Changing the

network topology requires system regeneration and

device reconfiguration. This is a major drawback,

because it is extremely difficult to determine an

appropriate topology for a given problem prior to the

actual training, except for very simple applications with

a reduced number of inputs [14]. There exist

procedures for the selection of the optimal network

architecture for a problem, such as network pruning

[15] or genetic algorithms [16], but all of them involve

the execution of the base training algorithm on

different network topologies at some point [17].

It follows that a flexible ANN training system

should be able to train arbitrary network topologies

with floating-point precision. One possible approach is

the use of a distributed multiprocessor system with a

job partitioning scheme. This is evaluated in [18] in the

context of a LAN implementation, and it is shown that

the optimal parallelization scheme for small networks

with large training sets is the exploitation of training-

set parallelism, i.e., having each processor implement

the whole network functionality but work on a different

subset of input data. In that case, the major cause for

efficiency loss in the system is communication

overhead between processing nodes.

In [1], we proposed the implementation of a similar

multiprocessor system in a single FPGA, using

embedded processors modified with custom parallel

logic to accelerate neural computations. However, this

approach resulted in limited efficiency, due to a high

communication overhead given by the need of

software-driven data distribution between processors,

and restrictions on the custom logic, imposed by the

embedded processors’ architecture. In this paper, we

present a refinement of the system where all neural

processing is integrated in a single hardware

coprocessor with a high number of parallel processing

units. Data transmission and partial result combination

is handled directly by dedicated hardware, and high

efficiency is achieved through data and instruction

pipelining and careful coding of the training algorithm,

exploiting instruction-level parallelism. Training speed

is significantly improved, up to 20 times faster than our

previous implementation.

The paper is structured as follows. We begin by

establishing the theoretical background behind ANN

training in Section 2. The next section discusses our

proposed hardware system architecture, describing the

designed coprocessor and its integration in the whole

system-on-chip. Section 4 describes software

programming issues for both the master controller and

the custom coprocessor. In the next section,

implementation results on a specific Altera

development board are presented. Finally, training

performance is evaluated and conclusions are drawn.

2. Network training

Our proposed system architecture can be applied to

a variety of ANN types that allow batch training

operation, but our current implementation is

constrained to one of the most widely used, the

Multilayer Perceptron (MLP). In this section, we will

describe this particular type of neural network and the

training algorithms we have considered.

2.1. Multilayer Perceptron

A multilayer perceptron [19] comprises several

layers (typically two or three) of similar simple

processing elements, called neurons, which take the

previous layer’s neurons’ outputs as inputs, as

illustrated in Figure 1. Each neuron computes a

weighted sum of its inputs and modifies the result by

means of a bounded non-linear activation function ϕ

whose purpose is to limit the range of the neuron’s

output. The transfer function for a neuron k is thus

given by

()kk

j

jjkkk

vo

owbv

ϕ=

⋅+= ∑
 (1)

where the sum runs over all neuron inputs, and oj

denotes the output of neuron j. The network’s free

45

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

parameters are the weights wjk and biases bk in each

neuron.

The numbers of layers and of neurons in each layer

are enough to completely describe the topology of a

fully connected MLP, i.e., a network where all

connections between neurons in consecutive layers are

present. We shall use the notation N0 / N1 / … / NM to

refer to a MLP with N0 inputs and M layers of neurons,

where the i-th layer has Ni neurons. Partially connected

MLPs can be thought of as special cases of MLP where

some weights are forced to 0.

2.2. Backpropagation

MLP training is the process of adaptation of the free

parameters in such a way that the network’s global

transfer function approaches some specific target

behavior. This target function is defined by means of a

set of V training vectors (){ }V
iii 1

,
=

yx , representing

sample inputs xi and their associated desired network

outputs yi. The set of network weights W is adjusted

iteratively with the goal of minimizing the mean square

error (MSE)

 () ()∑
=

−=
V

i

iiF
V

E

1

2
;

2

1
yWxW (2)

where F is the ANN’s transfer function, dependent on

the parameters W, and denotes the Euclidean norm

in NM–dimensional space. In order to minimize E,

computation of the gradient E∇ is needed. The most

popular way to do this is the error backpropagation

algorithm, or simply backpropagation [20], because of

its efficient parallel, distributed implementation. This

method of obtaining the network gradient consists of

propagating neuron errors through the network layers

in reverse order as follows:

Fix a training vector ()ii yx , . Starting at the output

neurons, a local gradient is calculated as

 () jjj v εϕδ ⋅′= (3)

where εj is the neuron’s error, i.e., the difference

between the estimated output ()jvϕ and the desired

output from the training vector. The local gradients in

other layers are computed iteratively following the

formula

 ()












⋅⋅′= ∑
k

kjkjj wv δϕδ (4)

where the sum runs over all neurons k in the next layer.

Finally, the gradient for weight wjk, connecting

neuron/input j with neuron k in the next layer, is given

by

 kj

i
jk

o
w

E
δ⋅=

∂

∂

vector

 (5)

The gradient for the bias bk is equal to δk.

Thus, the computations involved in the

backpropagation algorithm for each training vector can

be structured into three distinct phases (most authors

only mention two phases; the last one is either ignored

or merged with the second one):

• Forward phase: The outputs (and derivatives) in

each neuron are computed recursively, from the

first to the last layer.

• Backward phase: The local gradients δj in each

neuron are computed recursively, backwards from

the last to the first layer.

• Gradient phase: Gradients for each free parameter

are computed using (5). Computations for this

phase can be organized in any order.

Each individual phase may be carried out with parallel

and distributed processing, however the forward and

backward phases must be executed sequentially due to

data dependence; failure to do so leads to a modified

training algorithm [13].

The complete gradient for one epoch, i.e.

presentation of the whole training set, is obtained by

averaging the partial contributions from all training

vectors:

 ∑
=

∂

∂
=

∂

∂
V

i i
jkjk w

E

Vw

E

1 vector

1
. (6)

Fig. 1. A fully connected 2/5/4/1

multilayer perceptron.

46

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

2.3. Resilient Propagation

One common approach to weight adjustment is

MSE minimization by standard gradient descent, i.e.

the weights are updated by subtracting a multiple of

their respective gradients from them after each epoch:

 () () ()()nnn E WWW ∇⋅−=+ µ1 (7)

However, this procedure may provide very slow global

network convergence due to a few neurons becoming

saturated, i.e. having outputs close to the bounds given

by the activation function and very small derivatives,

leading to small weight updates between epochs, even

if said weights are still far from their optimal values.

A number of modifications of the weight update

mechanism have been proposed in order to address this

issue, including conjugate gradient algorithms [21] and

quasi-Newton methods [22]. We have selected the

Resilient Propagation (RPROP) algorithm [23], where

the magnitude of each weight update is kept

independent of the gradient; instead, the last weight

update is stored as reference and amplified or reduced

depending on whether the gradient maintained or

changed its sign. RPROP is reportedly faster than

gradient descent by an order of magnitude, and allows

a very efficient hardware implementation, in terms of

both execution time and resource occupation.

2.4. Activation Function

It is a well-known fact that MLPs with at least two

layers are universal approximators, i.e. they can be

used to approximate any given continuous mapping

with arbitrary accuracy on a bounded domain, as long

as the activation function ϕ is bounded, monotone, and

continuously differentiable [24]. Besides, convergence

has been shown to be faster if ϕ is an odd bipolar

function [25]. The most common activation function,

shown in Figure 2, is the hyperbolic tangent

 ()
tt

tt

ee

ee
t

−

−

+

−
=ϕ (8)

which has all of the aforementioned properties.

However, this function does not lend itself to an

efficient digital implementation, requiring large

operators to implement exponentials and division.

Traditionally, ANN implementations have resorted

to either look-up tables (LUT) or low-order

approximations of ϕ, such as piecewise linear

approximations [26], but these approaches are not

viable in our situation: a LUT with floating-point

precision would be too big, and piecewise linear

approximations, while useful for hardware realizations

of the recall phase of MLPs (i.e. of pre-trained

networks with fixed weights), are inadequate for the

implementation of the training phase, since they don’t

satisfy the hypothesis of the universal approximation

theorem, thus hurting network convergence.

Our solution has been to implement a modified

activation function ϕ~ , which is an odd cubic spline

approximation of ϕ, with fixed exact values at

abscissae 0, 0.25, 0.5, 1, 1.5, 2 and 3, saturation at 4,

and fixed derivatives at the extreme points. This is a

valid activation function since it satisfies all conditions

stated previously, so it provides valid ANNs with

correct training. This modified function allows an

efficient implementation in our system architecture,

based on repeated multiply-and-accumulate (MAC)

operations. It can also be approximated by the

hyperbolic tangent if needed, with an absolute error

lower than 10
–3

, as shown in Figure 3.

3. System architecture description

An overview of the designed system architecture

and included components is presented in Figure 4. The

core of the system is the neural coprocessor, with an

embedded microcontroller acting as master processor,

-8 -4 0 4 8
-1

-0.5

0

0.5

1

Fig. 2. Hyperbolic tangent.

-8 -4 0 4 8
0

2

4

6

8
x 10

-4

Fig. 3. Approximation error for the

modified activation function.

47

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

running from a program memory block which may be

external to the FPGA. Input data flows to the

coprocessor, i.e. training vectors and coprocessor

instructions, are fed to the coprocessor input queues

using DMA devices, controlled by the master

processor. Memory blocks containing current network

weights and resulting gradients are integrated into the

coprocessor, but are also externally accessible. All

coprocessor ports are implemented as Altera Avalon

slave interfaces. An external training set repository is

assumed, as well as memory blocks for the storage of

the coprocessor subprogram and the variables of the

RPROP algorithm (weight update magnitudes and

previous network gradient). The two latter should be

internal to the FPGA to increase performance.

3.1. Coprocessor architecture

Figure 5 depicts the components of the neural

coprocessor. It consists of a parameterized number P of

arithmetic processing units (PU), restricted to a power

of two to simplify logic design. All PUs execute the

same operations simultaneously, and are capable of

processing up to 8 different time-multiplexed data

flows thanks to datapath pipelining. Each of the 8P

supported data flows has an associated internal memory

block for the storage of temporary variables; these

memories can be individually read or written in order

to set up the training session or retrieve results,

according to an Active Data Flow Register.

Fig. 4. System architecture.

Fig. 5. Contents of the neural coprocessor.

48

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

The coprocessor’s control port allows the master

processor to access internal control registers in order to

modify the coprocessor’s behavior. Options include

automatic endianness conversion for training vectors

and results, to support communication with different

remote hosts, and clearing of the gradient memory, in

order to set up new training epochs. Additionally, a

Valid Data Level Register specifies the number of data

flows actually in use, so that results from invalid data

flows may be ignored. Coprocessor status signals can

also be read from the control port; they include

input/output FIFO status and a “user bit” configurable

through coprocessor instructions. These signals are

used for execution flow control.

Figure 6 shows the schematic for the contents of

each PU. It consists of an adder unit, a multiplier unit,

a local memory block and a reduced number of local

registers.

The adder and multiplier units are based on Altera

32-bit floating-point pipelined IP cores. Both of them

implement an 8-stage pipeline and accept a new

operation each clock cycle. Their inputs can be chosen

from the local registers, their current outputs, and

hardwired constants (1 for the multiplier and 0 for the

adder) that allow them to behave as shift registers. The

set of operand choices for both units has been kept

small in order to reduce both the logic usage and the

size of the instruction word; the backpropagation

algorithm was analyzed in order to determine the

smallest possible set of operand choices.

Arithmetic operators are not disabled during

instructions that don’t need to use them; instead, they

are used as shift registers by multiplying its current

value by 1 or adding 0, respectively. This is necessary

because a different functional unit might need to read

their outputs in successive clock cycles, corresponding

to different data flows, hence these outputs must

change every clock cycle.

A dual-port memory block (one read and one write

port) is used as a large register bank to store variables

for each data flow; the top 3 bits from each port’s

address input are used to select the correct data flow. A

previous analysis of the backpropagation algorithm

revealed that one read and one write operation per

cycle are enough except in some parts of the backward

phase, where two reads may be needed; however,

allowing them in a single clock cycle would require a

triple port memory which would have to be

implemented as two dual port memory blocks in

parallel, thus halving the amount of memory available

for each data flow.

Each PU has three general-purpose local registers

named L0, L1 and L2, implemented as 8-stage 32-bit

shift registers. They are used as intermediate storage

between large memories (global weight memory or

local register banks) and the arithmetic units, in order

to allow reuse of commonly accessed variables.

Additionally, two registers C0 and C1 are used to load

polynomial coefficients from a small 512 bit LUT, for

the computation of the spline function ϕ~ and its

Fig. 6. RTL description of a processing unit.

49

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

derivative; the value of the abscissa is always taken

from L0. C0 is used for multiplicative and C1 for

additive coefficients.

As illustrated in Figure 6, the inputs to the adder

subsystem in each PU can be bypassed using external

control signals, allowing the coprocessor to rearrange

the existing adder logic into a multistage adder tree,

which can be used to combine results from different

data flows.

3.2. Coprocessor programming model

Figure 7 describes instruction word format for the

neural coprocessor. There are two different types of

instructions: “short” and “long” instructions, with a

length of 32 and 64 bits respectively.

The purpose of short instructions is to implement

communication with the coprocessor’s input and output

data streams by accessing individual addresses in local

memory. Each instruction specifies up to three

sequential tasks: updating the Active Data Flow

Register, writing the contents of internal memory

address A0 from the (new) active data flow into the

output queue, and loading the first word from the FIFO

vector queue into address A3. Additionally, the value

of the “user bit” available through the control port may

be changed. These instructions are consumed at a rate

of one every clock cycle and implement a three stage

instruction pipeline.

Long instructions are used to perform arithmetic

operations on values in local memory, possibly using

weights from global memory as parameters. Each

instruction specifies four different operations that are

executed sequentially, if enabled:

• Loading local registers with values from memory.

Addresses A0 from local memory and A1 and A2

from global memory are available. Also,

coefficient register C0 is loaded.

• Multiplication. Four bits are used to select input

operands; a value of zero indicates “no operation”,

i.e., multiplying the current output with 1. Register

C1 is also loaded in this stage.

• Addition. Again, four bits select the values to be

added, with zeros indicating addition of the current

adder output with 0.

• Storing arithmetic results (from either the adder or

the multiplier) into address A3 of local memory.

This specifies four instruction pipeline stages, each one

taking 8 clock cycles to complete. A new instruction is

accepted every 8 clock cycles; each cycle, a new input

is taken from a different data flow. Hence the

coprocessor works as a Single-Instruction Multiple-

Data (SIMD) machine, with the same instruction

executing simultaneously on all PUs and acting on 8

time-multiplexed data flows within each PU.

The execution of long instructions follows the

VLIW (Very Long Instruction Word) paradigm, in that

a sequence of simple sequential operations on the

execution units (adder, multiplier, registers) is specified

by a single instruction, so that instruction-level

parallelism is achieved at compilation time. The

coprocessor hardware provides no forwarding or

scheduling logic; instead, the compiler that generates

coprocessor code is responsible for the optimization of

the algorithm and the prevention of data hazards

between consecutive instructions with data

dependence, inserting NOP instructions or ad-hoc data

forwarding as needed. Thus, hardware complexity is

reduced at the expense of increased compilation time.

An extra bit in the instruction word allows the

coprocessor to enter an extended instruction pipeline

that implements an adder tree. Adder input selection is

ignored in this case; instead, the bypass signals shown

in Figure 6 are used to implement the accumulation of

results from the multipliers in each data flow. Figure 8

L
0
 L
O
A
D

L
1
 L
O
A
D

L
2
 L
O
A
D

lo
n
g
 i
n
s
t.

C
 L
O
A
D

M
U
L
 S
E
L
 A

M
U
L
 S
E
L
 B

A
D
D
 S
E
L
 A

A
D
D
 S
E
L
 B

L
1
 S
E
L

S
T
O
R
E

S
T
O
R
E
 S
E
L

A
D
D
E
R
 T
R
E
E

s
h
o
rt
 i
n
s
t.

R
E
S
U
L
T
 O
U
T

V
E
C
T
O
R
 I
N

N
E
W
 A
D
F
R

U
S
E
R
 B
IT

U
S
E
R
 B
IT
 S
E
T

Fig. 7. Coprocessor instruction word format.

50

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

schematizes the connections between multipliers and

adders in both operating cases. The organization of the

resulting adder tree into pipeline stages is shown in

Figure 9. Accumulation of the outputs of the

multipliers is divided in two different phases. The first

phase uses 1−P adders to implement a P2log -stage

adder tree where spatial accumulation is performed,

i.e., results from the same time slot in different PUs are

combined. Its output is a stream of 8 partial sums

coming out in consecutive clock cycles, which are

accumulated in the second phase using the remaining

adder and delay lines. There are eight available time

slots; seven of them are used to combine of the partial

sums using a 3-stage temporal tree structure, obtaining

the sum of all multiplier outputs. The last time slot is

used to accumulate that value with the previous value

in address A2 of gradient memory. The second phase is

independent of P and takes 5 eight-cycle stages to

complete.

4. System software

This implementation of MLP training takes

advantage of training-set parallelism, with different

training vectors being handled in different coprocessor

data flows using the same instructions. This obviously

restricts our implementation to batch-mode training.

4.1. Backpropagation algorithm

The coprocessor code necessary for ANN training is

divided into two distinct sections. The first one is a

series of short instructions that read values from the

vector queue and store them in the correct local

memory addresses for each data flow. This way, up to

8P whole training vectors are loaded into the same

local addresses. The second section is formed by long

(arithmetic) instructions that execute both the

backpropagation algorithm and the gradient

accumulation process. All data flows share the same

local memory map, with their input values (training

vectors) being pre-loaded by the first part of the

program. An extensive analysis of the backpropagation

algorithm has been done in order to achieve an optimal

translation into coprocessor instructions, following the

three phase structure described in Section 2.2.

In the forward phase, the outputs and derivatives

from all neurons in each layer are computed

sequentially, according to (1). For each layer, the value

of vk is obtained first for all neurons k in that layer,

using as many MAC instructions as layer inputs for

each neuron. The coprocessor ability to load two

different network weights is exploited to include the

addition of bias bk with no need for an extra instruction.

After all vk have been computed, the activation function

and its derivative are evaluated using the Horner

scheme [27], organizing arithmetic operations as a

sequence of n MACs, where n is the polynomial

degree:

()
()()

()
() 012

01
2

2

0123

01
2

2
3

3

~

~

bxbxb

bxbxbx

axaxaxa

axaxaxax

+⋅+⋅=

++=′

+⋅+⋅+⋅=

+++=

ϕ

ϕ

 (9)

Both polynomials can be computed in parallel by

alternating the use of the adder and the multiplier, such

that in a given 8-cycle stage, the adder is evaluating

one of the functions while the multiplier is evaluating

the other one. This is outlined in Figure 10, where each

horizontal line represents concurrent operations. This

Fig. 8. Left: normal configuration. Right:

Adder tree configuration.

Fig. 9. Adder tree pipeline stages.

51

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

way, only 5 instructions are necessary for the

computation of the activation function and its

derivative.

The backward phase begins with simple

multiplication operations to obtain local gradients in

the output layer according to (3). For other layers, the

bracketed sum in (4) needs to be computed first using

as many MAC operations as neurons in the next layer;

if the next layer is small enough, data forwarding has to

be planned. Finally, the gradient phase makes use of

the adder tree configuration of the coprocessor,

computing gradients using (5) and then adding all

multiplier results and accumulating them with the

previous partial sum in gradient memory. Aggregated

square error is also computed and accumulated; it must

be divided by the total number of vectors afterwards to

obtain the epoch’s MSE (2).

4.2. Master processor program

Execution of whole training sessions is controlled

by the master processor. The first action is initialization

of network weights using the Nguyen-Widrow rule

[28]; initial weights are then stored in the coprocessor’s

weight memory. Afterwards, coprocessor code is

compiled for both code sections specified in Section

4.1 and stored in memory; this code loads 8P vectors,

executes backpropagation on all of them

simultaneously and accumulates the results in gradient

memory. Coprocessor code needs to be recompiled

each time because it is dependent on network topology,

which is a parameter for each training session.

Arbitrary MLP topologies are supported, as long as

each data flow’s local memory is large enough to

contain all associated temporary variables.

After these initialization steps, the actual training is

performed. New epochs are issued until a stop

condition is fulfilled (either a maximum number of

epochs is reached, or the network’s MSE falls below a

given threshold). For the master processor, each epoch

consists of a series of DMA transfers. A transfer of the

whole training set into the vector queue is first set up.

After that, a number of consecutive transfers of the

whole coprocessor code into the instruction queue are

issued, as many times as needed to exhaust the whole

training set, since only 8P vectors are processed each

time. Before the first transfer, the control port must be

used to tell the coprocessor to overwrite gradient

memory instead of accumulating previous results; this

option must be turned off after the first iteration.

Similarly, for the last transfer, the value of the Valid

Data Level Register must be updated to reflect the

actual number of vectors left, so that outputs from

inactive data flows are not accumulated when

computing gradients. After the last instruction transfer

is processed, the gradient memory contains the final

network gradient of (6), except for the factor V1 , as

well as the epoch’s aggregated square error. The

RPROP algorithm is now executed by the master

processor to obtain the new network gradients; the

multiplicative factor V1 is irrelevant since only the

sign of the gradient components is used.

5. Implementation

The system has been implemented on an Altera

DE2-70 development board, with a Cyclone II

EP2C70F896C6 reconfigurable device and external

RAM memory for both the master processor program

and storage of the training set; up to 64 MB are

available for training vectors. The master controller is

implemented as a Nios II/f embedded processor. A 16

KB internal memory for coprocessor instructions is

necessary to contain the program for all applicable

MLP topologies.

The limitation on the size of the coprocessor fitting

into the FPGA comes from the amount of available on-

chip memory blocks for the realization of local

memories, hence the minimum amount of necessary

memory was determined first. It was established that

128 words (4 kbit) were enough for each data flow,

allowing the training of networks with up to

approximately 40 neurons. Also, weight and gradient

memories were limited to 2 KB, imposing a limit of

511 network weights.

Each coprocessor PU has an occupation of

approximately 2970 logic elements and 10 4-kbit

memory blocks, as well as four 18x18 multiplier

Fig. 10. Evaluation of the activation function

and its derivative.

52

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

blocks, with full-capability floating-point operators, i.e.

supporting denormal numbers and full-range rounding.

It is possible to fit up to 16=P processing units in the

coprocessor for this FPGA, allowing the simultaneous

processing of up to 128 training vectors. The

coprocessor works with an internal 100 MHz clock,

while the rest of the system uses a 50 MHz clock; the

use of dual-port memories for every coprocessor

interface makes it possible to implement independent

clock domains. Thus, the coprocessor has a maximal

computational performance of 3.2 GFLOPS; this value

is maintained during most of the execution of the

backpropagation algorithm and gradient accumulation.

The system makes use of the on-board Ethernet NIC

to allow the board to be connected to a local IP

network, so that a remote computer can use the FPGA

system to perform any network training. The remote

host needs to provide the MLP topology, the whole

training set, and training stop conditions (maximum

epoch number or MSE threshold). On training

completion, the board returns the final network

weights, the MSE evolution for all epochs, and

information about total training time. Matlab has been

used to implement the connection protocol and test the

training results on the client PC side.

6. Performance

Training performance was evaluated for the well-

known Iris plants problem [29], using a data set

consisting of 150 four-dimensional inputs and three

different outputs representing membership to three

different classes with the values 1 and –1. The number

of training epochs was fixed to 100, and the size of the

training set V was modified by replicating the base data

set. The number of CUPS (Connection Updates Per

Second) was selected as a metric for system

performance. This quantity is defined as the amount of

network parameters divided by the time needed to

process each training sample and update network

parameters accordingly; for batch training, this is equal

to

training

epochs

epoch

CUPS
T

WVN

T

WV
== (10)

where W is the number of network weights, Nepochs is

the number of training epochs, and Tepoch and Ttraining

are the time length of each epoch and the whole

training session, respectively.

The largest topology supported by the system for the

Iris problem was found to be the 4/18/18/3 MLP.

Training time was measured for this network and the

smaller 4/5/5/3, 4/9/8/3 and 4/12/12/3 topologies.

Results are plotted in Figure 11. Training performance

increases approaching a limit value as the training set

grows larger, as expected from a system where

parallelization speedup stems primarily from training

set parallelism; this limit value is dependent on network

topology. Since vector loading time is constant for a

given problem, the fraction of execution time spent on

arithmetic computations (backpropagation and gradient

accumulation) is higher for more complex topologies.

Hence, system performance increases as the MLP size

grows, converging to a peak value for sufficiently

complex networks (4/12/12/3 and higher). For our

implementation, this peak value is 431 MCUPS.

7. Conclusion and future work

A system-on-chip architecture for MLP training has

been proposed, where a high level processor controls

the system execution flow and data transfers and

generates parameterized machine code, depending on

network topology, for a low level custom hardware

coprocessor where the backpropagation algorithm is

carried out. A SIMD architecture for the neural

coprocessor is described, with a large number of

replicated pipelined arithmetic operators in order to

support the simultaneous processing of hundreds of

training vectors. Optimized coprocessor code allows

the arithmetic operators to reach near 100% utilization.

Implementation of the proposed architecture on a

low-cost Altera FPGA reaches a training performance

exceeding 430 MCUPS. This is a competitive value

compared to other state-of-the-art FPGA

implementations of MLP training with fixed topology

and fixed point precision. As far as we know, no other

FPGA implementation exists with floating point

precision and arbitrary topology training without

device reconfiguration; such features are exclusive of

either software implementations on general-purpose

10
2

10
3

10
4

10
5

0

100

200

300

400

500

Training vectors

P
e

rf
o

rm
a

n
c
e

 (
M

C
U

P
S

)

4/5/5/3

4/9/8/3

4/12/12/3

4/18/18/3

Fig. 11. System performance for different

topologies and training set sizes.

53

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

processors, which are slower, or ASIC implementations

(so-called neurochips), which are much more costly.

Scalability of this architecture on larger FPGAs is

constrained mainly by the amount of available on-chip

memory for the realization of local memory blocks; it

is probably not practical to relocate this resource to

external memory because of frequent, wide access (512

bits every clock cycle for our current implementation).

The addition of custom superpipelined floating-point

operators might allow higher clock frequencies,

although they will be ultimately be limited by FPGA

routing resources. We intend to explore the possibility

of using floating-point representations with less than 32

bits, as well as the adaptation of the neural coprocessor

architecture to allow other types of ANN such as

Radial Basis Networks.

Acknowledgments

This work was supported by the Spanish Ministry of

Science and Innovation under FPU Grant AP2006-

04275 and the Education Department of the Valencian

Government under Grant GVPRE/2008/082.

References

[1] R. J. Aliaga, R. Gadea, R. J. Colom, J. M. Monzó, C. W.

Lerche, J. D. Martinez, A. Sebastiá, F. Mateo,

“Multiprocessor SoC implementation of neural network

training on FPGA”, 2008 International Conference on

Advances in Electronics and Micro-electronics (ENICS), pp.

149-154, 2008.

[2] W. S. McCulloch and W. H. Pitts, “A logical calculus of

the ideas imminent in nervous activity”, Bulletin of

Mathematical Biophysics, no. 5, pp. 115-133, 1943.

[3] B. Widrow and M. E. Hoff, “Adaptive switching

circuits”, IRE WESCON Convention Record, part 4, pp. 96-

104, 1960.

[4] J. Zhu and P. Sutton, “FPGA implementations of neural

networks – a survey of a decade of progress”, Proceedings of

the International Conference on Field Programmable Logic,

pp. 1062-1066, 2003.

[5] M. R. Zargham, Computer Architecture: Single and

Parallel Systems, p. 346, Prentice Hall, 1996.

[6] N. L. D. Khoa, K. Sakakibara, and I. Nishikawa, “Stock

price forecasting using backpropagation neural networks with

time and profit based adjusted weight factors”, Proceedings

of the SICE-ICASE International Joint Conference, pp. 5484-

5488, 2006.

[7] R. P. Lippmann, “Review of neural networks for speech

recognition”, Neural Computation, no. 1, pp. 1-38, 1989.

[8] R. J. Aliaga, J. D. Martinez, R. Gadea, A. Sebastiá, J. M.

Benlloch, F. Sánchez, N. Pavón and C. W. Lerche,

“Corrected position estimation in PET detector modules with

multi-anode PMTs using neural networks”, IEEE

Transactions on Nuclear Science, vol. 53, no. 3, pp. 776-783,

2006.

[9] D. K. McNeill, C. R. Schneider and H. C. Card, “Analog

CMOS neural networks based on Gilbert multipliers with in-

circuit learning”, Proceedings of the 36th Midwest Symposium

on Circuits and Systems, vol. 2, pp. 1271-1274, 1993.

[10] T. Theocharides, G. Link, N. Vijaykrishnan, M. J. Irwin

and V. Srikantam, “A generic reconfigurable neural network

architecture as a network on chip”, Proceedings of the IEEE

International SoC Conference, pp. 191-194, 2004.

[11] J. L. Holt and T. E. Baker, “Backpropagation

simulations using limited precision calculations”,

Proceedings of the International Joint Conference on Neural

Networks, vol. 2, pp. 121-126, 1991.

[12] A. W. Savich, M. Moussa, and S. Areibi, “The impact of

arithmetic representation on implementing MLP-BP on

FPGAs: A study”, IEEE Transactions on Neural Networks,

vol. 18, no. 1, pp. 240-252, 2007.

[13] R. Gadea, J. Cerdá. F. Ballester, and A. Mocholí,

“Artificial neural network implementation on a single FPGA

of a pipelined on-line backpropagation”, Proceedings of the

13th International Symposium on System Synthesis, pp. 225-

230, 2000.

[14] C. Xiang, S. Q. Ding and T. H. Lee, “Architecture

analysis of MLP by geometrical interpretation”, 2004

International Conference on Communications, Circuits and

Systems, vol. 2, pp. 1042-1046, 2004.

[15] B. Hassibi, D. G. Stork and G. J. Wolff, “Optimal Brain

Surgeon and general network pruning”, Proceedings of the

International Conference on Neural Networks, vol. 1, pp.

293-299, 1993.

[16] G. F. Miller, P. M. Todd and S. U. Hedge, “Designing

neural networks using genetic algorithms”, Proceedings of

the 3rd International Conference on Genetic Algorithms, pp.

379-384, 1989.

[17] X. Yao, “Evolutionary artificial neural networks”,

International Journal of Neural Systems, vol. 4, no. 3, pp.

203-222, 1993.

[18] S. Babii, V. Cretu, and E. Petriu, “Performance

evaluation of two distributed backpropagation

implementations”, Proceedings of the International Joint

Conference on Neural Networks, Orlando, 2007.

54

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

[19] S. Haykin, Neural Networks: A Comprehensive

Foundation, 2nd Edition, pp. 156-255, Prentice Hall, 1999.

[20] D. E. Rumelhart, G. E. Hinton and R. J. Williams,

“Learning internal representations by error propagation”,

Parallel Distributed Processing: Explorations in the

Microstructures of Cognition, Vol I: Foundations, Chapter 8,

MIT Press, Cambridge, Massachusetts, 1986.

[21] C. Charalambous, “Conjugate gradient algorithm for

efficient training of artificial neural networks”, IEE

Proceedings – Circuits, Devices and Systems, vol. 139, no. 3,

pp. 301-310, 1992.

[22] R. Fletcher, Practical Methods of Optimization, 2nd

Edition, pp. 49-57, John Wiley & Sons, 1987.

[23] M. Riedmiller and M. Braun, “A direct adaptive method

for faster backpropagation learning: the RPROP algorithm”,

Proceedings of the IEEE International Conference on Neural

Networks, vol. 1, pp. 586-591, 1993.

[24] K. Hornik, M. Stinchcombe and H. White, “Multilayer

feedforward networks are universal approximators”, Neural

Networks, vol. 2, pp. 359-366, 1989.

[25] Y. Le Cun, I. Kanter and S. A. Solla, “Second order

properties of error surfaces: learning time and generalization”,

Proceedings of the Conference on Advances in Neural

Information Processing Systems, vol. 3, pp. 918-924, 1990.

[26] V. Havel and K. Vlcek, “Computation of a nonlinear

squashing function in digiral neural networks”, 11th IEEE

Workshop on Design and Diagnostics of Electronic Circuits

and Systems, pp. 1-4, 2008.

[27] D. Knuth, The Art of Computer Programming, vol. 2:

Seminumerical Algorithms, 3rd Edition, pp. 486-487,

Addison-Wesley, 1997.

[28] D. Nguyen and B. Widrow, “Improving the learning

speed of 2-layer neural networks by choosing initial values of

the adaptive weights”, Proceedings of the International Joint

Conference on Neural Networks, vol. 3, pp. 21-26, 1990.

[29] R. A. Fisher, “The use of multiple measurements in

taxonomic problems”, Annals Eugenics, pp. 179-188, vol. 7,

1936.

55

International Journal On Advances in Systems and Measurements, vol 2 no 1, year 2009, http://www.iariajournals.org/systems_and_measurements/

