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Abstract—This paper focuses on futuristic connected vehicles
and presents a strategy for autonomous platooning of general
connected vehicles including low-speed utility vehicles, which
drive over various terrains, not limited to roads. In such general
environments, the goal of a following vehicle is to keep following
its preceding vehicle with minimum distance and without colli-
sion. Since the vehicles are connected, the following vehicle in the
proposed strategy receives the controls of its immediate preceding
vehicle through communications and predicts a future pose of the
preceding vehicle in a receding horizon. Further, the prediction
incorporates the inertial motion and is probabilistically executed
in the framework of Recursive Bayesian Estimation by fusing the
two distributions predicted by a particle filter through Gaussian
approximation. The performance of the proposed strategy was
investigated using simulated golf carts with a drive-by-wire
system. The proposed strategy has been found to improve the
accuracy of the conventional following by 30.4%.

Index Terms—autonomous following; connected vehicles; recur-
sive bayesian estimation; receding horizon control.

I. INTRODUCTION

The last two decades have seen the dramatic advancement
of vehicle autonomy including autonomous platooning, which
allows a sequence of vehicles to drive autonomously. While
the leader vehicle may also be automated, the first interest of
autonomous platooning results in autonomously navigating a
follower vehicle such that it keeps a targeted distance from its
preceding vehicle during the entire navigation. Autonomous
following has become the primary concern of autonomous
platooning.

Past work on autonomous vehicles can be primarily studied
in two applications. With society’s interest, recent efforts have
been most exerted on autonomous driving where vehicles are
expected to be driven with a minimum or target distance to
minimize traffic congestion while avoiding collision [1]. Since
roads are structured well having planar surfaces with various
marks and signs, such as lanes, the majority of the work was
conducted on the detection and localization of such objects and
autonomous following in the reduced free space [2]. Because
vehicles on public roads are not connected to each other,
follower vehicles determine their final control actions based
on what they can observe using their sensors.

The second application is often known in the name of multi-
robot cooperation. Formation control is a synchronous ap-
proach where all the robots including the leader are controlled
to maintain the pre-designed formation [3][4]. This is not the

approach of interest in this paper since the paper is concerned
with the autonomous control of a following vehicle only. The
other popular approach is the leader-follower approach where
each of the follower robots sequentially and independently
determines its path after the path of the leader is given [5]–
[7], which is along with the interest of this paper and has
been widely studied. Some early work planned a path to pass
through waypoints whereas trajectories specifying states in
full-led follower robots subject to dynamic behavior more
accurately [8]. Extended work includes that of [9] which
developed a collision avoidance strategy for environments
with obstacles that do not allow the maintenance of the
pre-designed formation. Communication between the leader
robot and a follower robot was proposed by [10] to transmit
the follower’s path computed by the leader after the leader
redesigned its path for obstacle avoidance. The technique
works well if the leader robot is autonomous. However, the
full autonomy of the leader robot in the real world is still
unrealistic, so autonomous following should be developed for
manually operated leader vehicles.

This paper presents a strategy for autonomous following of
general connected vehicles including low-speed utility vehi-
cles. The proposed technique does not rely on traffic marks
and signs to drive over various terrains and enhances its au-
tonomous following capability by using vehicle connectivity;
the following vehicle receives the controls of its immediate
preceding vehicle through communications and predicts a
future pose of the preceding vehicle in a receding horizon.
Further, the prediction incorporates the inertial motion and
is probabilistically executed in the framework of Recursive
Bayesian Estimation (RBE) by fusing the two distributions
predicted by a Particle Filter (PF) through Gaussian approxi-
mation.

The paper is organized as follows. The next section de-
scribes the mathematical foundation of the leader vehicle es-
timation problem and two conventional techniques to achieve
autonomous following. Section III presents the technique
which is proposed to enhance autonomous following leverag-
ing vehicle connection. Experimental studies are conducted in
Section IV, and conclusions and future work are summarized
in the final section.
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II. RECURSIVE BAYESIAN ESTIMATION

A. Leader and Follower Vehicle Models

Consider a leader vehicle l with its unknown global state
given by xl ∈ X l, the motion of which is generically modeled
by

xl
k = f l

(
xl
k−1,w

l
k

)
, (1)

where wl
k is a motion noise. This leader vehicle is observed by

an autonomous follower vehicle f , the global state of which
is evolved with the motion model

xf
k = ff

(
xf
k−1,u

f
k ,w

f
k

)
, (2)

where xf
k ∈ X f and uf

k ∈ Uf represent the state and control
input of the follower vehicle, respectively, and wf

k ∈ Wf is
the motion noise of the follower vehicle.

The follower vehicle will be equipped with various sensors
including those for self-localization and those for observa-
tion of targets of interest and environments. To focus on
autonomous following, the pose of the follower vehicle is
assumed to be known exactly, so only the model of the sensor
for leader vehicle localization is thus formulated:

fzlk = fhl
(
xl,xf

k ,
fvl

k

)
(3)

where fzlk is the observation of the leader vehicle by the sensor
on the follower vehicle, and fvl

k represents the observation
noise [13].

B. Recursive Bayesian Estimation

In the context of autonomous following, the RBE gener-
ically estimates belief on the leader vehicle in the global
coordinate frame. This is done by representing the belief in
terms of a Probability Density Function (PDF) and recur-
sively updating it through prediction and correction. Let us
consider a generic scenario where a sequence of observations
of the leader vehicle by the follower vehicle is given by
f z̃l1:k ≡

{
f z̃lκ|∀κ ∈ {1, ..., k}

}
. Note here that (̃·) represents

an instance of variable (·). Given the initial belief p
(
xl
0

)
and

the sequence of observations f z̃l1:k, the lead vehicle belief at
time step k, p

(
xl
k|f z̃l1:k, x̃

f
1:k

)
, is updated as follows:

Prediction: Computes the follower vehicle belief at k

p
(
xl
k|f z̃l1:k−1, x̃

f
1:k−1

)
from the belief updated at k − 1

p
(
xl
k−1|f z̃l1:k−1, x̃

f
1:k−1

)
. The prediction is carried out by

Chapman-Kolmogorov equation:

p
(
xl
k|f z̃l1:k−1, x̃

f
1:k−1

)
∫
X l

p
(
xl
k|xl

k−1

)
p
(
xl
k−1|f z̃l1:k−1, x̃

f
1:k−1

)
dxl

k−1, (4)

where p
(
xl
k|xl

k−1

)
is a Markov motion model defined by (1).

Correction: Computes the robot and target belief
p
(
xl
k|sz̃l1:k, x̃

f
1:k

)
given the predicted belief

p
(
xl
k|f z̃l1:k−1, x̃

f
1:k−1

)
and the new observation f z̃lk at the

new state x̃f
k . The equation is derived by applying formulas

for marginal distribution and conditional independence and
given by

p
(
xl
k|f z̃l1:k, x̃

f
1:k

)
=

l
(
xl
k|f z̃lk, x̃

f
k

)
p
(
xl
k|f z̃l1:k−1, x̃

f
1:k−1

)
∫
X l l

(
xl
k|f z̃lk, x̃

f
k

)
p
(
xl
k|f z̃l1:k−1, x̃

f
1:k−1

)
dxl

k

, (5)

where l
(
xl
k|f z̃lk, x̃

f
k

)
represents the likelihood of xl

k given
observation f z̃lk.

There are two approaches that have been commonly used
for the autonomous control of the follower vehicle. The
inexpensive approach is observation based and determines the
next control of the follower vehicle uf

k+1 using the latest
observation f z̃lk and the current state x̃f

k ; the control uf
k+1 is

found such that the belief resembles the observation likelihood:

J
(
l
(
xl
k|f z̃lk, x̃

f
k

))
=

∥∥∥g (
l
(
xl
k|f z̃lk, x̃

f
k

))
−

(
xf
k+1 + dk

)∥∥∥
2
→ min

uf
k+1

(6)

where
xf
k+1 = ff

(
x̃f
k ,u

f
k+1, w̃

f
k+1

)
, (7)

g (·) returns the centroid of the likelihood, and dk is the
desired gap of the follower vehicle to the leader vehicle. ∥ · ∥
is an L2 norm.

The more intelligent approach identifies a sequence of nc

controls, uf
k+1:k+nc

, by predicting the belief recursively up to
the (k+nc)-th time step in the framework of receding horizon
control (RHC):

J
(
p
(
xl
k+nc

|f z̃l1:k, x̃
f
1:k

))
=

∥∥∥g (
p
(
xl
k+nc

|f z̃l1:k, x̃
f
1:k

))
−

(
x̃f
k+nc

+ dk

)∥∥∥
2

→ min
uf

k+1:k+nc

(8)

where

p
(
xl
k+κ|f z̃l1:k, x̃

f
1:k

)
=

∫
X l

p
(
xl
k+κ|xl

k+κ−1

)
p
(
xl
k+κ−1|f z̃l1:k, x̃

f
1:k

)
dxl

k, (9a)

xf
k+κ = ff

(
x̃f
k+κ−1,u

f
k+κ, w̃

f
k+κ

)
(9b)

∀κ ∈ {1, ..., nc}

It is to be noted that (8) may be represented with an integral
payoff instead of the terminal payoff.

Both approaches work well if the leader vehicle has a
predictable motion and moves within the range the follower
vehicle can track. However, the motion of the leader vehicle
is, precisely, given not by (1) but by

xl
k = f l

(
xl
k−1,u

l
k,w

l
k

)
, (10)

where the control of the leader vehicle, ul
k, significantly affects

its motion in addition to the motion noise wl
k. If the intention
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of the leader vehicle, ul
k+1:k+nc

, is beyond the expectation,
the follower vehicle may not be able to track the leader
vehicle successfully. The number of steps to look ahead nc,
as a consequence, cannot be large, which results in unstable
controls.

III. AUTONOMOUS PLATOONING

A. Overview

Figure 1 illustrates the proposed technique for autonomous
platooning. The technique is built on conventional methods but
incorporates novel leader intention prediction, which was orig-
inally proposed by the authors for robotic escorting [11][12].
The following vehicle estimates the current pose of the leader
vehicle xl

k and predicts its future pose xl,α
k+np

from the current
pose using the RBE as the conventional following does. Here,
the superscript α indicates the conventional following whereas
np indicates the number of steps to look ahead by the proposed
technique. However, the future pose of the leader vehicle in the
proposed technique is additionally predicted as xl,β

k+np
using

the current leader vehicle data transmitted through connection
to the follower vehicle including the steering angle and the
vehicle speed, which cannot be observed well. Here, the
superscript β indicates the prediction using the leader vehicle’s
control. The proposed technique then fuses the two predictions
and determines future controls uf

k+1:k+np
using the RHC. Pre-

diction using the vehicle control data is an additional effective
source for follower control because the current control is often
the intention of the leader vehicle in a longer time horizon.
The number of steps to look ahead by the proposed technique,
np, is thus larger than that of the conventional technique nc,
and the prediction by the proposed technique is also expected
to be more accurate. The follower vehicle, thus, can potentially
achieve more smooth and successful platooning even in noisier
environments.

B. Prediction Using Particle Filter

The steering angle of the leader vehicle cannot be observed
from the follower vehicle whereas the speed of the leader
vehicle cannot be accurately measured from the follower ve-
hicle due to the dynamic relative motion. Since it receives the
precise steering angle and vehicle speed through connection,
ũl
k, the follower vehicle can identify what the leader vehicle

intends to do. Let the intended control that may be used up to
the time step k + np be ul

k→np
∼ N

(
ũl
k,Σ

l,u
k

)
. Using the

PF, the pose of the leader vehicle can be then predicted by
leveraging the intention as

xβ
k+κ,i = fβ

(
xβ,i
k+κ−1,u

β,i
k→np

,wβ,i
k

)
,

∀κ ∈ [1, ..., np] ,∀i ∈ [1, ..., N ] , (11)

where wβ,i
k ∼ N

(
w̄α

k ,Σ
β,w
k

)
, and N is the number of

particles.

Figure 1. Conventional platooning vs. proposed platooning.

The pose can also be predicted using the motion model
without the control as

xα,i
k+κ+1 = fα

(
xα,i
k+κ,w

α,i
k

)
,

∀κ ∈ [1, ..., np] ,∀i ∈ [1, ..., N ] , (12)

where wα,i
k ∼ N (w̄α

k ,Σ
α,w
k ). Note that the PF is used in

the proposed technique because the motion model is non-
Gaussian; the particles of both predictions will be spread in a
non-Gaussian manner in the state space due to the nonlinearity
of the motion models. Clearly, prediction with control is more
accurate if the current control lasts long in the future whereas
prediction with the current pose and without control is more
accurate if the current control is given transitionally. The
level of confidence of the predictions is determined by Σα,w

k ,
Σβ,w

k and Σl,u
k . While Σα,w

k in the model without control
modeling is much larger than Σβ,w

k , the control uncertainty
Σl,u

k , which is added to fβ , becomes the factor to determine
which prediction is more certain.

C. Receding Horizon Control Based on the Hybrid Prediction

Once they have been spread over the state space, the two sets
of particles must be fused to ultimately determine the control
action. The proposed approach uniquely approximates each
distribution as a Gaussian distribution. This approximation is
valid since random noise dominates the distribution over time.
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By definition, the mean and the covariance of each distribution
is calculated as

x̄
(·)
k+np

=
1

N

N∑
i=1

x
(·),i
k+np

(13a)

Σ
(·)
k+np

=
1

N

N∑
i=1

(
x
(·),i
k+np

− x̄
(·)
k+np

)(
x
(·),i
k+np

− x̄
(·)
k+np

)⊤

(13b)

where (·) is prediction without control α or prediction with
control β, and ⊤ represents the transpose of the matrix.
The mean of the probability distribution combining the two
distributions can be then derived through the multiplication:

x̄l
k+np

=
Σβ

k+np

Σα
k+np

+Σβ
k+np

x̄α
k+np

+
Σα

k+np

Σα
k+np

+Σβ
k+np

x̄β
k+np

.

(14)
Now that the target pose of the leader vehicle in the np

step lookaheads is identified, the RHC determines a sequence
of control actions of the follower vehicle by minimizing the
objective function:

J
(
x̄l
k+np

)
=

∥∥∥x̄l
k+np

−
(
xf
k+np

+ dk

)∥∥∥
2
→ min

uf
k+1:k+np

(15)

where

xf
k+κ = ff

(
xf
k+κ−1,u

f
k+κ, w̃

f
k+κ

)
,

∀κ ∈ {1, ..., np} . (16)

IV. EXPERIMENTAL RESULTS

A. Experimental Settings
The proposed technique was evaluated using two golf carts

in a simulated environment, which are available to the au-
thors for real-world demonstration in the future. Each cart
has a full set of components for autonomous platooning
including a communication module for vehicle connection,
a stereo camera for relative pose measurement, a GPS and
IMU for global positioning, and a drive-by-wire system for
computer-controlled actuation. The simulated carts used the
same components. Figure 2(a) shows the real cart whereas
their simulated version is shown in Figure 2(b). In order to
validate the efficacy of the proposed platooning technique
over conventional techniques, the two conventional techniques
described in Section II were also used for autonomous pla-
tooning. One was observation based with no prediction and
connection, and the other was with prediction but without
connection. Since the aim of the experimental analysis is the
proof-of-concept, the motion models of the leader cart and the
follower cart were for the two-dimensional space and given by

x
(·)
k = v

(·)
k cos θ

(·)
k (17a)

y
(·)
k = v

(·)
k sin θ

(·)
k (17b)

θ
(·)
k =

v
(·)
k

L
tan γ

(·)
k , (17c)

(a) Golf cart. (b) Simulated golf cart.

Figure 2. Physical vs. simulated systems.

where x
(·)
k =

[
x
(·)
k , y

(·)
k , θ

(·)
k

]⊤
is the set of state variables, and

u
(·)
k =

[
v
(·)
k , γ

(·)
k

]⊤
is the set of control variables. (·) is l or

f . For the leader cart model with no control information, the
motion model with the controls of the average observed speed
v̄lk and 0 steering angle was used since it is valid to assume
that the cart moves straight with the current orientation. The
relative difference dk = [dx,k, dy,k, dθ,k]

⊤ places the follower
cart behind the leader cart in the same orientation:

dx,k = d cos θlk (18a)

dy,k = d sin θlk (18b)
dθ,k = 0, (18c)

where d is the targeted distance. In the numerical simulation,
the leader cart was programmed to drive a winding path since
the proposed technique is effective when the cart is turning.
Table I lists the parameters used in the experiment.

TABLE I
PARAMETERS FOR EXPERIMENT

Parameter Value
L 1.2 [m]
v̄lk 8.5 [m/s]
d 4 [m]

Σl,u
k [0.1, 0, 0, 0.087] [,m,m,m]

w̄α
k [0.5, 0.5] [m,m]

Σα,w
k [0.05, 0, 0, 0.017] [m,m,m,m]
w̄β

k [0.5, 0.5] [m,m]
Σβ,w

k [0.5, 0, 0, 0.087] [m,m,m,m]
N 1000

B. Results

Figure 3 shows the results of the proposed platooning tech-
nique compared to those of the two conventional techniques.
Figure 3(a) first shows the paths of the follower cart by the
proposed and the conventional techniques in addition to those
of the leader cart and the ideal follower cart. The path of the
ideal follower cart xideal

k , given that of the leader cart xl
k is

given by
xideal
k = xl

k − dk. (19)
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The closer the path to that of the ideal follower cart, the better
the path. It is seen that the path of the proposed technique is
significantly better than that of the conventional techniques.
The observation based technique with neither prediction nor
connection is shown to have the worst path partly because the
control of the leader cart is not observable and partly because
this limited observation is the only source of information to
determine the control of the follower cart; if the observation is
noisy, the control fluctuates according to the noisy observation
and thus becomes inaccurate. The prediction based technique
with no connection performs better but is still inefficient when
compared to the proposed technique. This is due to the lack of
information on the control of the leader cart, which makes the
prediction of the future pose of the leader cart more accurate.
Figure 3(b) shows the error in the orientation of the follower
cart with respect to the ideal orientation. The superiority of the
proposed technique to the conventional techniques can also be
seen in this result since the configuration of the orientation
with the proposed technique captures that of the leader cart
most.

Figure 3(c) lastly shows the positional error. The positional
error is defined by

E
(·)
k =

∥∥∥xideal
k − x̄f

k

∥∥∥
2

(20)

It is seen that the proposed technique yields the minimum
positional errors constantly, which is the result of the predic-
tion using information through vehicle connectivity. The mean
positional error of the proposed technique is 3.7% whereas
that of the conventional observation and prediction techniques
are 8.0% and 5.3%, respectively. The error of the proposed
technique is particularly small around 10 seconds when the
cart is turning maximally. This is because the technique used
information on the turning. The result conclusively shows
that the proposed technique has improved the accuracy of the
conventional techniques by 30.4%.

V. CONCLUSION AND FUTURE WORK

This paper has presented a strategy for autonomous follow-
ing of general connected vehicles. In the proposed strategy, the
following vehicle receives the controls of its immediate pre-
ceding vehicle through communications and predicts a future
pose of the preceding vehicle using the PF and the Gaussian
fusion. The autonomous control of the follower vehicle is
finally determined through the RHC. The performance of
the proposed strategy was investigated using simulated golf
carts with a drive-by-wire system. The results show that the
proposed strategy improved the accuracy by 30.4%, and it was
particularly effective when the leader cart was turning sharply.

The paper shows only the preliminary results and much
future work is possible. Ongoing work includes experimental
validation using the real golf carts, modeling of uncertainties
and the effect, and the reduction of communication delay.
Communication delay weakens the effect of the proposed
technique, so minimizing it is an essential task to complete.

(a) Vehicle path.

(b) Angular root mean squared error.

(c) Planar position error.

Figure 3. Simulation results.
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