
WebODRA - A Web Framework for the Object-Oriented DBMS ODRA

Mariusz Trzaska

Chair of Software Engineering

Polish-Japanese Institute of Information Technology

Warsaw, Poland

mtrzaska@pjwstk.edu.pl

Abstract—The modern Web requires new ways for creating

applications. We present our approach combining a web

framework with a modern object-oriented database. It makes

it easier to develop web applications by rising the level of

abstraction. In contrast to many existing solutions, where the

business logic is developed in an object-oriented programming

language and data is stored and processed in a relational

system, our proposal employs a single programming and query

language. Such a solution, together with flexible routing rules,

creates a coherent ecosystem and, as an additional benefit,

reduces the impedance mismatch. Our research is supported

by a working prototype of the web framework for ODRA, a

powerful object-oriented database management system.

Furthermore, a simple web application (a forum) has been

created to prove usefulness of the approach and the

framework.

Keywords-Web frameworks; Web tools; Web applications;

Object-Oriented Databases.

I. INTRODUCTION

Modern web applications are usually developed using the
three-tier architecture: a presentation layer, business logic (a
middle tier) and a data tier. Each of them can be developed
through a different technology and can utilize incompatible
data models.

Typically, the middle tier is developed using an object-
oriented programming language like Java, MS C#, Ruby, etc.
However, the object-orientedness is a bit blurry. There is no
single, well-accepted, specific definition or set of properties
which determines features of an object-oriented
programming language. Java and C# are pretty close to each
other in that area, but for instance Ruby is based on different
concepts, in particular, duck typing [1].

Contrary to implementation of the business logic, the
data is usually stored using a relational database system. This
causes a negative phenomenon known as impedance
mismatch. During the years, numerous approaches have been
formulated to solve or minimize the problem. Following
Trzaska [2], the solution could use a single model both for
the business logic and for the data. In this paper, we would
like to employ the idea for a tool aiming at creating web
applications. We propose a paradigm which uses the same
high level language for working with data and implementing
a business logic. In fact, those two utilizations are
indistinguishable.

On the software level, our tool is implemented as a
prototype system, called WebODRA, which integrates two
independent components:

 The object-oriented DBMS ODRA with SBQL, a
powerful programming and query language,

 A web server.
This approach increases significantly the level of

abstraction, which reduces implementation time, decreases
the number of errors and of course, completely eliminates the
impedance mismatch. The programmers are able to focus on
website’s creation using a single, coherent technology.

The main contribution of the paper are the following:

 A new coherent paradigm of creating web
application using the same high level programming
and query language;

 A working prototype implementation of the
approach containing object-oriented database, web
server and all the necessary components.

The rest of the paper is organized as follows. To fully
understand our motivation and approach, some related
solutions are presented in Section 2. Section 3 briefly
discusses key concepts of the utilized database and
programming/query language. Section 4 presents the
prototype implementation of the proposed web framework.
Section 5 is devoted to a sample utilization of the prototype.
Section 6 concludes.

II. RELATED SOLUTIONS

There are a lot of different web frameworks using many
approaches. Just to name the most popular ones (by
platform):

 Java: Apache Struts, Java Server Faces, JBoss Seam,
Spring, Grails (Groovy);

 MS C#: ASP.Net, ASP.NET MVC, Kentico;

 PHP: CakePHP, Symfony, Zend;

 Smalltalk: Seaside [3];

 Ruby: Ruby on Rails, Sinatra.
They differ in some details but unfortunately share the

same problems related to inconsistent models for
programming languages and data. Even when an object-
relational mapper is utilized the problems decrease not
vanish. For instance, the Ruby’s Active Record requires
some additional information from a programmer to specify
some non-mappable objects like arrays [4].

However, it is also possible to find solutions, where a
website is developed using a single model. The next
paragraphs contain description of such frameworks.

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

CouchApp [5] is a technology which allows to create
applications delivered to the browser from CouchDB [6].
The applications are implemented using JavaScript and
HTML5. The general idea is quite similar to our approach
because CouchDB is a database management system.
However, on contrary to our framework, the DBMS follows
the NoSQL philosophy and allows to store documents in the
JSON [7] format. There is also no query language similar to
SQL or our SBQL (see section 3). All database queries are
performed using dedicated API and JavaScript. The result is
also returned as a JSON data.

Of course, every web application, needs a GUI. In case of
CouchApp a GUI is created as a transformation of returned
JSON data into some other format. For instance there are
functions, which together with dedicated views, are able to
convert the data into HTML, XML, CVS, etc.

Another approach to create a web application might
employ the Model Driven Architecture (MDA) paradigm.
The idea is to define a model (or models) and, through some
transformations, receive a working application. There is a lot
of such systems [8, 9, 10]. However, they are not widely
utilized. One of the reason could be the amount and type of
work which has to be done to get a working website. For
instance [10], which is quite common for all MDA solutions,
needs the following models and information to be precisely
defined:

 UWA requirements,

 Information model,

 Navigation model,

 Transaction & operation model,

 Publishing model,

 Customization model,

 Logical models (UML diagrams): class, sequence.
Of course, the above information is not only required by

MDA tools. Furthermore, they have to be provided by all
websites’ developers. However, it seems that the way of
defining them, makes the difference in popularity.

The last described solution is not exactly a framework for
programmers. Oracle Application Express [11] is more like a
tool for a rapid web application development for the Oracle
database. It is available, under different names, since 2000.
The application requires a dedicated server and provides
easy-to-use programming environment accessible via a web
browser.

Most of its functionalities is available via dedicated
graphical user interfaces, various wizards and helpers. But,
still there are possibilities for using a programming language,
namely PL/SQL. SQL, despite of thirty-years existence, and
big popularity is the subject of heavy criticism. The SQL’s
flaws like: inconsistencies, incompatibilities between
vendors and shortcomings of the relational model, decrease a
value of the solution. Furthermore, application generators
have some inherent shortcomings which make them less
flexible (in terms of usability, functionality, GUI) than
application developed by programmers. We believe that
using a more powerful programming and query language
together with an object-oriented model can formulate a much
better approach.

III. THE ODRA DATABASE

As mentioned previously, our proposal for creating
websites is based on utilization an object-oriented database
together with a powerful query and programming language.
DBMS could be used as a source for data and could be
utilized to implement a business logic. For the purpose of the
first requirement we need a database query language.
However, because of the second necessity, we might need
something more flexible and powerful: a fully-fledged
programming language with imperative constructs. Both
criteria are met by our prototype DBMS called ODRA.

ODRA (Object Database for Rapid Application
development) is a prototype object-oriented database
management system [12, 13, 14, 15] based on SBA (Stack-
Based Architecture) [16]. The ODRA project started to
develop new paradigms of database application
development. This goal is going to be reached mainly by
increasing the level of abstraction at which the programmer
works. ODRA introduces a new universal declarative query
and programming language SBQL (Stack-Based Query
Language) [12], together with distributed, database-oriented
and object-oriented execution environment. Such an
approach provides functionality common to the variety of
popular technologies (such as relational/object databases,
several types of middleware, general purpose programming
languages and their execution environments) in a single
universal, easy to learn, interoperable and effective to use
application programming environment.

ODRA consists of three closely integrated components:

 Object Database Management System (ODMS),

 Compiler and interpreter for object-oriented query
programming language SBQL,

 Middleware with distributed communication
facilities based on the distributed databases
technologies.

The system is additionally equipped with a set of tools
for integrating heterogeneous legacy data sources. The
continuously extended toolset includes importers (filters)
and/or wrappers to XML, RDF, relational data, web services,
etc.

ODRA has all chances to achieve high availability and
high scalability because it is a main memory database system
with memory mapping files and makes no limitations
concerning the number of servers working in parallel. In
ODRA many advanced optimization methods that improve
the overall performance without compromising universality
and genericity of programming interfaces have been
implemented.

The next subsections contain a short discussion of the
ODRA main features including its query and programming
language SBQL.

A. ODRA Object-Oriented Data Model

The ODRA data model is similar to the UML object
model. Because in general UML is designed for modeling
rather than for programming several changes have been
made to the UML object model that do not undermine
seamless transition from a UML class diagram to an ODRA

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

database schema. The ODRA object model covers also the
relational model as a particular case; this feature is essential
for making wrappers to external sources stored in relational
databases. Below, we present a short description of the main
data model elements:

 Objects. The basic concept of the ODRA database
model is object. It is an encapsulated data structure
storing some consistent bulk of information that can
be manipulated as a whole. A database designer and
programmers can create database and programming
objects according to their own needs and concepts.
Objects can be organized as hierarchical data
structures, with attributes, sub-attributes, etc.; the
number of object hierarchy levels is unlimited. Any
component of an object is considered an object too.

 Collections. Objects within a collection have the
same name; the name is the only indicator that they
belong to the same collection. Usually objects from a
collection have the same type, but this requirement is
relaxed for some kinds of heterogeneous collections.
Collections can be nested within objects with no
limits (e.g., in this way it is possible to represent
repeating attributes).

 Links. Objects can be connected by pointer links.
Pointer links represent the notion that is known from
UML as association. Pointer links support only
binary associations; associations with higher arity
and/or with association classes are to be represented
as objects and some set of binary associations. This
is a minor limitation in comparison to UML class
diagrams, introduced to simplify the programming
interface. Pointer links can be organized into
bidirectional pointers enabling navigation in both
directions.

 Modules. In ODRA the basic unit of database
organization is a module. As in popular object-
oriented languages, a module is a separate system
component. An ODRA module groups a set of
database objects and compiled programs and can be
a base for reuse and separation of programmers’
workspaces. From the technical point of view and of
the assumed object relativism principle, modules can
be perceived as special purpose complex objects that
store data and metadata.

 Types, classes and schemata. A class is a
programming abstraction that stores invariant
properties of objects, in particular, its type, some
behavior (methods, operations) and (optionally) an
object name. A class has some number of member
objects. During processing of a member object the
programmer can use all properties stored within its
class. The model introduces atomic types (integer,
real, string, date, boolean) that are known from other
programming languages. Further atomic types are
considered. The programmer can also define his/her
own complex types. Collection types are specified
by cardinality numbers, for instance, [0..*], [1..*],
[0..1], etc.

 Inheritance and polymorphism. As in the UML
object model, classes inherit properties of their
superclasses. Multiple inheritance is allowed, but
name conflicts are not automatically resolved. The
methods from a class hierarchy can be overridden.
An abstract method can be instantiated differently in
different specialized classes (due to late binding);
this feature is known as polymorphism.

 Persistence and object-oriented principles. The
model follows the orthogonal persistence principle,
i.e. a member of any class can be persistent or
volatile. Shared server objects are considered
persistent, however, non-shared objects of a
particular applications can be persistent too. The
model follows the classical compositionality,
substitutability and open-close principles assumed
by majority of object-oriented programming
languages.

Distinction between proper data and metadata (ontology)
is not the property of the ODRA database model. The
distinction can be important on the business model level, but
from the point of view of ODRA both kinds of resources are
treated uniformly.

B. Query and Programming Language SBQL

SBQL (Stack-Based Query Language) is a powerful
query and programming language addressing the object
model described above. SBQL is precise with respect to the
specification of semantics. SBQL has also been carefully
designed from the pragmatic (practical) point of view. The
pragmatic quality of SBQL is achieved by orthogonality of
introduced data/object constructors, orthogonality of all the
language constructs, object relativism, orthogonal
persistence, typing safety, introducing all the classical and
some new programming abstractions (procedures, functions,
modules, types, classes, methods, views, etc.) and following
commonly accepted programming languages’ and software
engineering principles.

SBQL queries can be embedded within statements that
can change the database or program state. We follow the
state-of-the-art known from majority of programming
languages. Typical imperative constructs are creating a new
object, deleting an object, assigning new value to an object
(updating) and inserting an object into another object. We
also introduce typical control and loop statements such as
if…then…else…, while loops, for and for each iterators, and
others. Some peculiarities are implied by queries that may
return collections; thus there are possibilities to generalize
imperative constructs according to this new feature.

SBQL in ODRA project introduces also procedures,
functions and methods. All procedural abstractions of SBQL
can be invoked from any procedural abstractions with no
limitations and can be recursive. SBQL programming
abstractions deal with parameters being any queries; thus,
corresponding parameter passing methods are generalized to
take collections into account.

SBQL is a strongly typed language. Each database and
program entity has to be associated with a type. However,
types do not constraint semi-structured nature of the data. In

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

particular, types allow for optional elements (similar to null
values known from relational systems, but with different
semantics) and collections with arbitrary cardinality
constraints. Strong typing of SBQL is a prerequisite for
developing powerful query optimization methods based on
query rewriting and on indices.

C. Virtual Updatable Views

Another interesting and quite unique ODRA property are
updatable views. Classical SQL views do the mapping from
stored data into virtual data. However, some applications
may require updating of virtual data; hence there is a need
for a reverse mapping: updates of virtual data are to be
mapped into updates of stored data. This leads to the well-
known view updating problem: updates of virtual data can be
accomplished by updating of stored data on many ways, but
the system cannot decide which of them is to be chosen. In
typical solutions these updates are made by side effects of
view invocations. Due to the view updating problem, many
kinds of view updates are limited or forbidden.

In the ODRA project (basing on previous research)
another point of view has been introduced. In general, the
method is based on overloading generic updating operations
(create, delete, update, insert, etc.) acting on virtual objects
by invocation of procedures that are written by the view
definer. The procedures are an inherent part of the view
definition. The procedures have full algorithmic power, thus
there are no limitations concerning the mapping of view
updates into updates of stored data. SBQL updatable views
allow one to achieve full transparency of virtual objects: they
cannot be distinguished from stored objects by any
programming option. This feature is very important for
distributed and heterogeneous databases.

IV. OUR PROPOSAL

Basically, every web application, no matter how it is
developed, requires the following set of logical components:

 A graphical user interface,

 A routing system,

 A business logic,

 Data to work with.
The above components could be implemented using

various approaches. In some cases a programmer has to
manually define them whereas other solutions use generators
to create some of them automatically. Additionally, real
world websites also require some static files: html templates,
css, jpeg, etc.

We have decided to use pure programmatic approach
which means that all necessary definitions are provided by a
programmer. It may look like a lot of work, but thanks to the
high level of abstraction, the amount of information is
significantly reduced.

Another feature which simplifies development is MVC
(Model – View - Controller) architecture which has been
also utilized in many previously mentioned frameworks.
Comparing to the other frameworks, our approach uses the

same object-oriented model both for a business logic
(Controller) and data (Model). This method not only
removes the impedance mismatch but also allows using a
powerful query and programming language for developing a
business logic (behavior of the application). Furthermore, it
is known that query languages operate on higher level of
abstraction, effectively reducing the amount of code which
needs to be written to achieve the same goals. For instance, a
few tenths lines of Java code could be equivalent to a
literally few lines of SBQL (or SQL). Not to mention
performance and various optimizations, which are much
more advanced in query languages.

Another very important area of a web framework is a
graphical user interface. There are different methods to deal
with the topic, some of them follows the MVC pattern. One
of the most popular is using a server-side templating engine.
A template contains an HTML code mixed with special tags,
usually provided by the framework. In most cases, the tags
allow to embed parts of a programming language (e.g., Java),
mainly to insert some data (e.g., a list of products or
customers). However, some programmers use them to
implement additional functionality which duplicates the
controller’s responsibility. Of course it is an incorrect
application of the tags affecting maintainability of the code.
At the end, tags are processed by an engine, a final HTML
page is generated and sent to a web browser.

Figure 1 contains a simplified logical architecture of our
prototype framework for developing web application called
WebODRA. The framework consist of two principal parts:

 A web server. It is responsible for responding to
incoming requests from a web browser. The
implementation of the server is based on open source
tool called Jetty [17];

 ODRA Database Management System. This is a
standard instance of the ODRA server introduced in
Section 3.

The following subsections describe each of the
components (from Figure 1) in details.

A. Routing Module

In the center of WebODRA is a routing module which is
responsible for a correct processing of incoming web
requests. The module is driven by rules defined by a
programmer. Each definition, written in SBQL (as an object
with specific properties), contains the following information:

 Url. A regular expression which will be applied to
the incoming request’s url. If there is a match, then
the rule will be executed;

 Weight. It affects an order of the processing;

 Name. Human-readable name of the rule. It is
especially useful during logging;

 Additional Data. The utilization of the additional
data depends on rule’s kind;

 Rule’s Kind. The kind of the rule which affects
processing:

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

Templating Module

Data Storage

Business Logic

Routing Rules

webODRA

Web browser

ODRA DBMS

The Client GUI

Static files (html, jpg, ...)

Routing Module

Data Transformation

Module

Web Server

Static Files

AJAX Data

Figure 1. Logical architecture of WebODRA

o Passthrough. The web framework ignores
those rules and they are processed by the
Jetty server. They serve static files like:
pictures, css, Java script, etc.;

o Data route. They contain a SBQL method

’s name to execute. The method will get

all HTML form parameters entered by a
user which makes possible processing
them by a SBQL code. The result of the
method is transformed (see further) and
returned to the browser;

o Page route. An HTML page which is post-
processed by our simple templating engine
(see further).

B. The Client GUI

As mentioned previously, typical server-side web
templating engines, may lead to overuse tags by
implementing some business functionality. To prevent this
we have decided to use a client-side GUI framework. The
idea is based on embedding in a web page some (meta)
information which will be used to present business data. We
have chosen a framework called Knockout [18] which
utilizes new HTML5 data- attributes. They allow to create
custom attributes and store any information. The process of
showing a web page contains two steps. First, a HTML page
is downloaded from a server, containing the markers. Then
the library sends an AJAX request to asynchronously
retrieve necessary data which are then “injected” into the
page.

The user data submission is performed on a similar rules.
An asynchronous request is send to the server, triggering a
Data Rule which process the provided data.

Standard website navigation is performed using a regular
hyperlinks (“outside” the framework).

C. Templating Module

The templating module is responsible for a coherent look
and fill of the entire website. It operates on a single master
page which has a dynamic area fulfilled with some
functional pages, i.e. a document repository, a forum, news,
etc. For instance, the master page can contain a header, a
navigation panel and a footer.

The process is triggered by Page Route rule. When a
particular page is requested by a browser, the master page is
applied, or which is more correct, the requested page is
embedded in the master page and then returned to the
browser.

D. Data Transformation Module

When a Data Route rule executes a given SBQL method,
the result could be any SBQL data type, i.e. a collection, a
single object, a text. It needs to be processed to the format
recognized by the Client GUI. The Data Transformation
Module recursively converts the result into JSON [7] string,
sends it back to the web browser where it is further
processed.

V. EXAMPLE UTILIZATION OF THE FRAMEWORK

To verify usefulness of our approach, and the
implemented library, we have decided to create a sample

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

portal with a forum functionality (Figure 2). All business
logic has been defined in SBQL language and the data is
stored in the ODRA database. The prototype supports:

 Logon / logout with simple security model,

 Storing forums with topics and posts,

 Adding posts and topics,

 Responsive layout thanks to the Twitter Bootstrap.

Figure 2. A sample forum developed using WebODRA framework

The example is also included in the library release
available from our website.

VI. CONCLUSION AND FUTURE WORK

We have presented our approach to creating web
applications using a single, coherent model utilized both for
data and business logic. Thanks to the powerful query and
programming language SBQL, a programmer stays on the
same high level of abstraction, saving time and making less
errors.

Our approach is supported by a working prototype
framework called WebODRA [19]. Furthermore, we have
created a sample portal with a forum functionality, proving
that the idea is useful.

The contribution of this paper is based on quite new
method for creating websites. To our best effort, we were not
able to find a similar solution, directly employing power of a
modern database to developing web portals.

We believe that this kind of solutions could be a valuable
alternative to existing tools for creating data intensive web
applications. Thus we would like to continue our research in
that field, improving our framework to make them
production-ready.

REFERENCES

[1] Duck Typing. http://rubylearning.com/satishtalim
/duck_typing.html. Last accessed: 2012-08-18

[2] Trzaska, M.: The Smart Persistence Layer. ICSEA 2011: The
Sixth International Conference on Software Engineering
Advances. October 23-29, 2011 - Barcelona, Spain. ISBN:
978-1-61208-165-6. pp. 206-212.

[3] Perscheid M., Tibbe D., Beck M., Berger S., Osburg P.,
Eastman J., Haupt M., Hirschfeld R.: An Introduction to
Seaside, Software Architecture Group (Hasso-Plattner-
Institut), ISBN: 978-3-00-023645-7 (2008)

[4] ActiveRecord: http://ar.rubyonrails.org/classes/ActiveRecord
/Base.html. Last accessed: 2012-08-20.

[5] CouchApp: http://couchapp.org/page/index. Last accessed:
2012-08-21.

[6] Anderson Ch., Lehnardt J., Slater N.: CouchDB: The
Definitive Guide. O'Reilly Media, ISBN-13: 978-1449379681
(2010)

[7] JSON (JavaScript Object Notation): http://www.json.org/.
Last accessed: 2012-08-19.

[8] Arraes Nunes, D., Schwabe, D.: Rapid Prototyping of Web
Applications combining Do-main Specific Languages and
Model Driven Design. Proceedings of the 6th International
Conference on Web Engineering (ICWE'06; July 11-14, 2006,
Palo Alto, California, USA).

[9] Ceri, S., Fraternali, P. and Matera, M. Conceptual Modeling
of Data-Intensive Web Applications, IEEE Internet
Computing 6(4), July/August 2002.

[10] Distante D., Pedone P., Rossi G. and Canfora G.: Model-
Driven Development of Web Ap-plications with UWA, MVC
and JavaServer Faces. Web Engineering Lecture Notes in
Computer Science, 2007, Volume 4607/2007, 457-472, DOI:
10.1007/978-3-540-73597-7_38

[11] Williamson, J.: Oracle Application Express: Fast Track to
Modern Web Applications (1st ed.), McGraw-Hill Osborne
Media, ISBN 0-07-166344-4 (2012)

[12] Subieta K.: Stack-based Query Language. Encyclopedia of
Database Systems 2009. Springer US 2009, ISBN 978-0-387-
35544-3,978-0-387-39940-9, pp. 2771-2772

[13] Adamus R., Habela P., Kaczmarski K., Kowalski T., Lentner
M., Pieciukiewicz T., Stencel K., Subieta K., Trzaska M.,
Wislicki J.: Overview of the Project ODRA. Proceedings of
First International Conference on Object Databases
(ICOODB) 2008, pp. 179-198

[14] Subieta K.: Stack-Based Architecture (SBA) and Stack-Based
Query Language (SBQL). http://www.sbql.pl/. Last accessed:
2012-06-15.

[15] ODRA (Object Database for Rapid Application
development): Description and programmer manual.
http://www.sbql.pl/various/ODRA/ODRA_manual.html. Last
accessed: 2012-06-15.

[16] Subieta K., Beeri C., Matthes F., Schmidt J.: A Stack-Based
Approach to Query Languages. Proc. 2nd East-West
Database Workshop, 1994, Springer Workshops in
Computing, 1995, pp. 159-180.

[17] Jetty - Web Server: http://jetty.codehaus.org/jetty/. Last
accessed: 2012-08-18.

[18] Knockout Framework: http://knockoutjs.com/. Last accessed:
2012-08-19.

[19] The WebODRA framework: http://www.mtrzaska.com/webodra.
Last accessed: 2012-11-08.

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

