
Decentralized Bootstrapping for WebRTC-based P2P Networks

Dennis Boldt, Felix Kaminski and Stefan Fischer
Institute of Telematics
University of Lübeck

Lübeck, Germany
Email: {boldt,kaminski,fischer}@itm.uni-luebeck.de

Abstract—Around the millennium, peer-to-peer (P2P) networks
were standalone applications, where users had to configure their
firewalls properly to be able to connect to the network. Nowadays,
P2P connections between browsers are possible without the need
for any user-side configuration. This can be achieved with the
Web Real-Time Communication protocol stack (WebRTC). Re-
cent research showed that WebRTC-based peer-to-peer networks
can work as a decentralized, redundant and encrypted storage
for user data. However, all existing networks employ a centralized
bootstrapping infrastructure, which still is a single point of
failure. In this paper, we present a decentralized architecture to
handle bootstrapping for a WebRTC-based peer-to-peer network,
completely removing the need for a central instance. The architec-
ture uses the highly decentralized Domain Name System (DNS),
combined with so-called Master-Peers. Our evaluation shows that
the architecture scales well and reduces the bootstrapping time
remarkably.

Keywords–Peer-to-Peer; Decentralized; Bootstrapping;
WebRTC; Chord; DNS

I. INTRODUCTION

The Internet changed in the last 20 years. In the 1990s, the
Internet was a consume-only network, where content providers
produced the content, and people consumed it. Starting in
the 2000s, the Internet changed to a user-generated content
network. Thus, new web technologies and protocols were
designed to support that shift. In 2006, the first technology was
the XMLHttpRequest (XHR) [1]. XHR provides asynchronous
HTTP requests without page reloading. To get real-time up-
dates from the server, a client needs to perform XHR requests
frequently. In 2009, a first draft of the WebSockets Protocol
was published [2]. The main benefit of the WebSockets Pro-
tocol is that connections are bidirectional. It can be used by a
server to push data to a client immediately.

To enable browser-to-browser communication, Web Real-
Time Communication (WebRTC) was developed in recent
years [3], [4] (see Section II-C).

The main challenge of every P2P network is bootstrapping,
which is the initial creation of the network itself and new
peers joining it. This is still a challenge for classical P2P
networks [5], [6], thus we review some typical bootstrapping
methods in Section II-A. As bootstrapping is a core function-
ality inherent to P2P, it is also required for WebRTC-based
P2P networks.

Our contribution in this paper is a decentralized archi-
tecture to handle bootstrapping for a WebRTC-based P2P
network, which avoids having a single point of failure (SPOF).
WebRTC still needs servers to exchange meta data and to cope
with Network Address Translators (NATs) [7]. We achieve the
bootstrapping by deploying these servers behind DNS-based

load balancers around the world. These servers are used in
combination with a geolocation approach.

The remainder of this paper is organized as follows: Sec-
tion II gives an overview on the fundamentals. Related work
on browser-based P2P networks is presented in Section III,
our bootstrapping architecture is presented in Section IV, and
Section V shows experimental results. Finally, the paper ends
with a conclusion and future work in Section VI.

II. FUNDAMENTALS

If a component is both a consumer and a producer, it needs
both client and server functionality and is then called a peer. A
network which connects directly multiple peers is called a P2P
network. In such a network, peers can communicate directly
without the need for a central server. P2P networks are so-
called overlay networks. They can be classified as structured or
unstructured [8]. Unstructured networks establish connections
between peers in an arbitrary manner, e.g., Gnutella [9] or
Kazaa [10]. Here, the location of data is not known. To find
data, a peer has to flood the entire network. In structured
networks, peers have unique identifiers and the location of data
can be associated with a specific peer, e.g., Kademlia [11]
or Chord [12]. Because of this, the network behaves like a
Distributed Hash Table (DHT). Structured networks organize
themselves in topologies:

Full mesh: In a full mesh topology, every peer is connected
to every other peer. A joining peer needs to establish a
connection to every peer in the network.

Star: In a star topology, every peer is connected to a central
peer. The problem of the star topology is that all messages are
routed through the central peer which conforms to the classical
client-server architecture.

Ring: A common P2P topology is the ring topology. The
number of connections in the network depends on the ring
algorithm. In Chord, every peer maintains a so-called finger
table of size log2(N).

Tree: A binary tree is another common topology for P2P
networks. Examples are Kademlia [11] or P-Grid [13].

A. Bootstrapping Methods
Research in the area of bootstrapping was done by

GauthierDickey and Grothoff [15], Cramer et al. [5] or Knoll
et al. [16]. They divide the existing bootstrapping methods into
peer-based and mediator-based approaches:

1) Peer-based approaches: These approaches involve tech-
nologies where peers can find other peers without the need for
a third party.

a) A Peer Cache is a database of peers to which a peer
was connected previously. To join the network, a peer

17Copyright (c) IARIA, 2017. ISBN: 978-1-61208-557-9

WEB 2017 : The Fifth International Conference on Building and Exploring Web Based Environments

IP

UDP

ICE, STUN, TURN

SRTP SCTP

RTCPeerConnection RTCDataChannel

DTLS (mandatory)

TCP

TLS (optional)

XHR WebSockets

HTTP

Figure 1. WebRTC protocol stack (Based on [14]).

tries to connect to one peer in its cache. If that fails,
the joining peer tries the next peers from the cache.
If all peers fail, or a peer joins the P2P network for
the first time, a fallback is needed, e.g., a rendezvous
server (see below).

b) Multicast/Broadcast: Peers in a Local Area Network
(LAN) join a multicast group. A joining peer sends
a request to that group. As a reply, the peer receives
some peers to which it can connect. This approach
works well for Universal Plug and Play (UPnP) or
zero-configuration networking (Zeroconf) within a
LAN, but it does not scale for world-wide networks.

c) Random IP Probing: A joining peer randomly se-
lects Internet Protocol (IP) addresses [17] and tries
to connect to a specific port. If a host is a peer
of the network already, it answers according to the
bootstrapping protocol. If not, the joining peer tries
another IP address. Obviously, this does not scale on
the Internet.

2) Mediator-based approaches: A mediator is a so called
well-known entry point, which must be known prior to boot-
strapping. This entry point should never change and must
always be available. Mediators can be peers of the network
or separate hosts.

a) Rendezvous Server: A rendezvous server is a central
server to which a joining peer can connect. The
rendezvous server returns a list of active peers, or it
forwards the joining request to a peer in the network.
This approach is used by Napster [18] as a central
index, and by BitTorrent [19], where it is called
tracker.

b) Internet Relay Chat: Knoll et al. [16] propose to use
the Internet Relay Chat (IRC) [20] for bootstrapping,
because it is a highly decentralized architecture. A
joining peer connects to an IRC channel, where it
can communicate with all peers. IRC is a widely
distributed and failure tolerant decentralized network,
thus it is quite reliable.

B. Bootstrapping Requirements

Bootstrapping can be organized centralized or decentral-
ized. If bootstrapping is centralized, it uses a single cen-
tral bootstrapping server following the client-server approach,
which is a SPOF. The opposite is decentralized bootstrapping,
where all components of the bootstrapping are decentralized.
Knoll et al. [16] propose five requirements for a decentralized
bootstrapping architecture:

1) Robustness against Failure: All components of the
bootstrapping should be completely decentralized and the
bootstrapping should not exhibit a SPOF, e.g., no central
bootstrapping server.

2) Robustness against Security Appliances: Users should
not have trouble with their NATs, e.g., users cannot connect
to the P2P network without configuring port forwarding.

3) Robustness against External Inference: All components
of the bootstrapping should be decentralized. No entity is
able to shut down elemental components of the bootstrapping.
Additionally, the bootstrapping should still work if the initiator
leaves, thus other peers take over the tasks of the initiator.

4) Efficiency: The bootstrapping should be fast and
lightweight. This could be the number of messages exchanged
for bootstrapping or joining of a peer should happen in a
reasonable amount of time.

5) Scalability: The bootstrap must scale with the number
of peers in the network.

C. WebRTC
Web Real-Time Communication (WebRTC) does not rein-

vent the wheel, it is a protocol stack (see Figure 1) based
on existing protocols [3] and combines them into the cor-
responding WebRTC API [4]. WebRTC is used to estab-
lish direct P2P connections between two browsers, based on
RTCMediaStreams [21] and RTCDataChannels [22]. Most
WebRTC projects are focused on multimedia applications
such as telephone conferences and use RTCMediaStreams.
RTCDataChannels are a universal channel type in binary-
format. They are implemented through encapsulating the
Stream Control Transmission Protocol (SCTP) over the User
Datagram Protocol (UDP) [23] (SCTP-over-UDP), which al-
lows the configuration of reliability and in-order-delivery with-
out using the Transmission Control Protocol (TCP) [24].

In order to establish a browser-to-browser P2P connection,
WebRTC uses the well-known Offer/Answer Model [25] from
the Session Initiation Protocol (SIP) [26]. This includes offer
and answer messages serialized with the Session Description
Protocol (SDP) [27], which contain media capabilities, e.g.,
for the Real-Time Transport Protocol (RTP) [28]. Additionally,
WebRTC collects connectivity information with Interactive
Connectivity Establishment (ICE) [29] to search for the most
efficient connection between two peers. This is done in three
steps: Gathering ICE candidates, exchange offer/answer mes-
sages and ICE candidates, and finally running connectivity
checks.

In the first step, ICE gathers so-called ICE candidates,
which are transport addresses (e.g., IP/port tuples) of three
types:

18Copyright (c) IARIA, 2017. ISBN: 978-1-61208-557-9

WEB 2017 : The Fifth International Conference on Building and Exploring Web Based Environments

1. offer +
host candidate

Peer A

Signaling
Channel

Peer B

STUN/TURN X STUN/TURN Y

2. Request
 ICE candidates

8. ICE candidate
Y

3. ICE candidate
X

4. offer + ICE candidate
X

10. answer + ICE candidate
Y

7. Request
 ICE candidates

5. offer + ICE candidate
X

6. answer +
host candidate

9. answer + ICE candidate
Y

11. Direct connection

Figure 2. WebRTC Offer/Answer Model, including the offer/answer
messages, ICE candidates and the signaling channel.

1) Host Candidates: They contain the local transport
address and are obtained directly from the local network
interface.

2) Server Reflexive Candidates: They contain the public
transport address from the public side of a NAT, which is
usually not known to peers behind a NAT. They are obtained
by using Session Traversal Utilities for NAT (STUN) [30].
STUN connects via UDP to an external STUN-server, which
returns the public transport address. STUN can also be used
to keep a public transport address binding alive.

3) Relay Candidates: They contain an external trans-
port address from a publicly available relay server. They
are obtained by using Traversal Using Relays around NAT
(TURN) [31], which connects to a TURN server, which itself
binds a transport address and returns that to the peer.

In the second step, offer/answer messages and ICE can-
didates are exchanged between two peers through a so-called
Signaling Channel, which implementation is not specified in
WebRTC, so it could be XHR or WebSockets (left side of
Figure 1).

Finally, the third step pairs the candidates and both peers
perform connectivity checks with all ICE candidate-pairs to
see, which pairs work:

1): ICE tries a direct connection with the Host Candidates,
e.g., within LANs.

2): If that fails, ICE tries to connect to the Server Reflex
Candidates. In case of a Full Cone NAT [32], any peer can
send packets to that public transport address, which forwards
them to the local transport address of the peer behind the NAT.

3): If this fails as well, i.e., a peer is behind a Symmetric
NAT [32], only the initial external host (e.g., the STUN server)
can send a packet back to the peer behind the NAT. The
fallbacks are the Relay Candidates.

Figure 2 shows all required steps to establish a direct P2P
connection with the WebRTC Offer/Answer Model: Peer A
creates an offer and initiates a communication with a STUN/-
TURN server, and as a result, A receives ICE candidates
(steps 1 to 3). Both the offer and the ICE candidates are sent to
peer B through the signaling channel (steps 4 and 5). As soon
as B receives the offer, it creates an answer and performs
the same process (steps 6 to 8) and sends its connectivity
information through the same signaling channel back to A
(steps 9 and 10). After the signaling is complete, both peers
have all connectivity information: answer, offer and both ICE

candidates. Finally, both peers perform connectivity-checks
with all ICE candidate-pairs to establish a direct connection
to each other (step 11).

Observation 1: WebRTC-based P2P networks always re-
quire two components for bootstrapping: A signaling mech-
anism to exchange the offer/answer messages and the ICE
candidates (e.g., a signaling server), and a STUN/TURN
server to establish connections from/to peers behind NATs.
Consequently, WebRTC-based P2P networks are always hybrid
P2P networks.

III. RELATED WORK

Vogt et al. presented BOPlish in 2013 [33], [34]. They
claim that their approach is not supposed to operate on
Internet-scale. They use one central bootstrap server, which
holds a number of WebSocket connections to peers that have
recently joined the network. Thus, a joining peer is able to
perform the signaling over these WebSocket connections. If
all recently joined peers have left the network, a joining peer
will not be able to join the network anymore. Their future
work included a JavaScript implementation of Chord.

In 2014, we presented a browser-based P2P network [35].
Our network was based on a so-called WebSocket SOCKS5
Proxy (WSSP). Browsers are connecting to the WSSP with
WebSockets, where they use the SOCKS5 protocol, Like this,
a browser is able to connect to other browsers through the
WSSP. We also use the WSSP as the central bootstrapping
component. because it is used to handle bootstrapping and
to proxy connections. We implemented Chord in JavaScript
to create a P2P ring topology. Our future work included a
WebRTC-based network.

In parallel, Vogt et al. continued their work on BOPlish
which was presented in 2014 [36]. Like our approach, they
use Chord to create a P2P ring topology. They refer to a
bootstrapping component which handles WebRTC specifics
like offers and answers. Unfortunately, they do not explain
protocol details.

Desprat et al. presented a hybrid client-server and P2P
network for a collaborative Computer Aided Design (CAD)
in 2015 [37]. Their approach is not designed to operate on
Internet-scale. It is made for a small group of peers (max. 7-8
users). They create a WebRTC-based P2P full mesh topology
between all peers. The P2P network is used to distribute real-
time updates, and a client-server architecture (based on XHR)
to persist the CAD data. The bootstrapping uses Peer.js [38]:
A new peer connects to a central server which returns a list
of Identifiers (IDs) of all existing peers in the network. Now,
the new peer connects to a signaling server via WebSockets
and gets an ID. The new peer can initiate the signaling and
connects to all peers.

Disterhöft and Graffi proposed a WebRTC-based P2P net-
work for social networks in 2015 [39]. Their implementation
is based on the Google Web Toolkit (GWT) [40], which
allows to create web applications in Java. In Java they used
OpenChord [41] to create a ring topology. OpenChord uses
native TCP/IP connections, thus they modified it to use Peer.js.
Peer.js is used to perform the signaling and to create the
connections. As before, the drawback of this approach is the
central Peer.js server to handle the bootstrapping, which again
is a SPOF.

19Copyright (c) IARIA, 2017. ISBN: 978-1-61208-557-9

WEB 2017 : The Fifth International Conference on Building and Exploring Web Based Environments

Bille et al. published RTCSS in 2016 [42]. RTCSS pro-
vides an API to create objects that are synchronized between
browsers, using a publish/subscribe pattern. For bootstrapping,
they use a centralized socket.io-based signaling server [43].
When a new peer connects to this server, it receives its ID
and a list of peer IDs existing in the network (similar to
Peer.js). Then, the new peer connects to each peers using
signaling. Consequently, the peers form a full mesh network.
This is unsuitable for very large WebRTC-based networks, as
the number of WebRTC connections per browser is limited.

Observation 2: All existing WebRTC-based P2P networks
exhibit one SPOF, by using a central bootstrapping.

IV. BOOTSTRAPPING ARCHITECTURE

This section presents a decentralized bootstrapping archi-
tecture for WebRTC-based P2P networks, which resolves Ob-
servation 2. We start by analyzing the bootstrapping methods
from Section II-A, to figure out which methods do work in the
context of WebRTC:

Using a Peer Cache requires peers to exchange connec-
tivity information to reconnect to a previously known peer. A
WebRTC peer has no way to initiate this exchange, once all
WebRTC connections are closed. Multicast/Broadcast relies on
packet forwarding, which is usually not enabled on Internet
routers. Consequently, broadcast is not suited for WebRTC.
Random IP Probing requires peers to listen on a specific
port for incoming connections, which is not possible with
WebRTC. IRC is a protocol built on top of TCP. Using IRC is
not feasible in an WebRTC environment, since clients cannot
connect directly to TCP sockets. A Rendezvous Server acts as
a third party, which a browser can reach by using XHR or
WebSockets.

As required in Observation 1, WebRTC needs a signaling
server and a STUN/TURN server. Thus, the only possi-
ble bootstrapping method for WebRTC-based P2P networks
are Rendezvous Servers. Knoll et al. [16] use the IRC for
bootstrapping, because it is an existing, highly decentralized
architecture. Since we cannot use IRC, our goal is to use an
existing, highly decentralized architecture for bootstrapping as
well: The Domain Name System (DNS) [44].

A. Slave Peers and Master Peers
We define that a peer can operate in two ways, Master and

Slave:
Slave Peers are regular peers in the Chord ring. They don’t

have any special functionalities, except those which are needed
for the Chord protocol. Thus, they are perfectly suited for
browser environments.

Master Peers are regular peers and act as STUN/TURN
servers and as signaling servers, with access to the Chord ring
via RTCDataChannels. For STUN/TURN, they need to listen
on a fixed port. Consequently, they can only run in a server
environment.

B. Signaling Channel
To join the network, peer A connects via WebSockets to a

Master Peer M and sends a findSuccessor-request, which M
forwards in-network via WebRTC to the corresponding peer B.
Both, the WebSocket connection between peer A and M as
well as the in-network WebRTC connections are the signaling

channel to be used for the Offer/Answer Model as explained
in Section II-C. A Signaling Channel is shown in Figure 3.
Having a higher Round Trip Time (RTT) between A and M
results in a higher bootstrapping time.

A

WebSocket

WebRTC

Web
RTCWebRTC

M

B

Figure 3. Signaling Channel.

Therefore, our goal is to reduce the RTT of this connection
in the next subsections.

C. Scalable Bootstrapping
To allow a scalable way of managing signaling server

addresses, we use a load balancer which uses DNS Round
Robin Load Balancing [45]. The load balancer only serves as a
public DNS entry (i.e., a domain) for some associated Master
Peers (see Figure 4). Joining peers do not need to know IP
addresses of any specific Master Peer, but only the domain
of the load balancer. The DNS lookup returns the IP address
of one associated Master Peer and a new peer can join the
network.

M M

M

M

Loadbalancer 1

Figure 4. Scalable Bootstrapping.

D. Multiple Load Balancers
As it can be seen in Figure 4, the load balancer is now

the SPOF. Therefore, we extend our architecture with multiple
DNS-based load balancers, each one with a set of associated
Master Peers. This can be seen in Figure 5 (other peers exists
between the Master Peers, but are not shown). The Master
Peers are located geographically close to the load balancers.
Thus, the RTT to the Master Peers is similar to the RTT to
the load balancer.

E. Geolocated Bootstrapping
To reduce bootstrapping times, we also use a geolocation-

based approach with a distributed set of load balancers around
the world. The associated Master Peers are still geographically

20Copyright (c) IARIA, 2017. ISBN: 978-1-61208-557-9

WEB 2017 : The Fifth International Conference on Building and Exploring Web Based Environments

M

M

M

M

M

M

M

M

Loadbalancer 1 Loadbalancer 2

Figure 5. Multiple Load Balancers.

close to the load balancers. The P2P application itself is
distributed with a load balancer list with their corresponding
latitude- and longitude-coordinates. Given two load balancers
and a peer A wants to join the network. It uses the native
Geolocation API to retrieve its approximate latitude- and
longitude-coordinates. By knowing the coordinates of the load
balancers, A connects to the closest available load balancer.

The geolocated bootstrapping only reduces the WebSocket
RTT and the STUN/TURN RTT to the Master Peer of the
bootstrapping process. Given a global Chord ring, one cannot
guarantee that a peer connects to a successor close to it, e.g.,
the same country or the same continent.

V. EVALUATION

A. Experimental Setup and Results

To evaluate our architecture, we use Amazon Web Services
– Elastic Compute Cloud (AWS EC2) instances and AWS
Elastic Load Balancers, which use DNS Round Robin Load
Balancing. Each Master Peer can be started through Amazon
Machine Images (AMIs) and can be automatically registered
to the load balancer in an AWS Auto Scaling Group. As a
STUN/TURN server, we use coTURN [46]. We only measure
the bootstrapping time from a joining peer A in central Europe
(located in Lübeck) to one Master Peer M , deployed in each
AWS region. Like this, we prevent in-network messages, which
can span the whole globe. We divide the measurement into
three steps:

1) TCP and WebSocket handshake time,
2) Chord time, e.g., from findSuccessor-Request until

the successor is returned, and
3) WebRTC process time, until the connection is opened

(incl. offer, answer, ICE).

Figure 6 shows our result, which is an average value for
25 tests per region. It can be seen, that the bootstrapping
increases with the distance to the Master Peer. Bootstrapping
with a Master Peer in region eu-central-1 (Frankfurt) needs
778ms, while bootstrapping with a Master Peer in region
ap-southeast-2 (Sydney) needs 3777ms. This shows, that our
decentralized bootstrapping reduces the bootstrapping time
remarkably. The box plots in Figure 7 show the detailed
distribution of the three evaluated steps.

26 messages are exchanged between a joining peer A and
a Master Peer M during the bootstrapping process:

eu
-ce

ntr
al-

1

eu
-w

est
-1

us
-ea

st-
1

us
-w

est
-2

us
-w

est
-1

ap
-no

rth
ea

st-
1

sa-
ea

st-
1

ap
-so

uth
ea

st-
1

ap
-no

rth
ea

st-
2

ap
-so

uth
ea

st-
2

0

1,000

2,000

3,000

4,000

AWS Region

B
oo

ts
tr

ap
pi

ng
Ti

m
e

(m
s)

WebSocket
Chord

WebRTC

Figure 6. Average value for 25 tests per AWS region.

TCP and WebSocket handshake (4 messages)
A sends a TCP-SY N to M receives a TCP-ACK from M
A sends WebSocket-request to M and receives the response

Chord (2 messages)
A sends the findSuccessor-request to M and receives the findSuccessor-response

WebRTC (20 messages)
A sends a STUN request to M and receives a Server Reflexive Candidate
A sends a TURN request to M and receives a Relay Candidate
A sends the offer to M and receives an acknowledgement
A sends the Host Candidate to M and receives an acknowledgement
A sends the Server Reflexive Candidate to M and receives an acknowledgement
A sends the Server Relay Candidate M and receives an acknowledgement
A receives the answer from M and sends an acknowledgement
A receives the Host Candidate to M and sends an acknowledgement
A receives the Server Reflexive Candidate to M and sends an acknowledgement
A receives the Server Relay Candidate M and sends an acknowledgement

This number of messages is the smallest possible with
WebRTC.

B. Bootstrapping Requirements

Finally we evaluate our bootstrapping wrt. to Section II-B:

1) Robustness against Failure: We have a geolocated boot-
strapping with multiple load balancers and multiple Master
Peers. Thus, we do not have a SPOF.

2) Robustness against Security Appliances: WebRTC uses
STUN/TURN and ICE, which handles peers behind NATs.
Therefore, user do not have to configure any port forwarding.

3) Robustness against External Inference: All components
of the bootstrapping are decentralized. Even if the initial
Master Peer leaves the Auto Scaling Group, other Master Peers
will be available.

4) Efficiency: Because of the geolocated bootstrapping, a
peer always selects the closest load balancer. The RTT to
a Master Peer is small and the bootstrapping happens in
the shortest possible time (see Section V-A). The number of
messages exchanged is the smallest possible with WebRTC.

21Copyright (c) IARIA, 2017. ISBN: 978-1-61208-557-9

WEB 2017 : The Fifth International Conference on Building and Exploring Web Based Environments

eu
-ce

ntr
al-

1

eu
-w

est
-1

us
-ea

st-
1

us
-w

est
-2

us
-w

est
-1

ap
-no

rth
ea

st-
1

sa-
ea

st-
1

ap
-so

uth
ea

st-
1

ap
-no

rth
ea

st-
2

ap
-so

uth
ea

st-
2

0

500

1,000

1,500

Ti
m

e
(m

s)

(a) TCP and WebSocket handshake time.

eu
-ce

ntr
al-

1

eu
-w

est
-1

us
-ea

st-
1

us
-w

est
-2

us
-w

est
-1

ap
-no

rth
ea

st-
1

sa-
ea

st-
1

ap
-so

uth
ea

st-
1

ap
-no

rth
ea

st-
2

ap
-so

uth
ea

st-
2

100

200

300

400

Ti
m

e
(m

s)
(b) Chord time.

eu
-ce

ntr
al-

1

eu
-w

est
-1

us
-ea

st-
1

us
-w

est
-2

us
-w

est
-1

ap
-no

rth
ea

st-
1

sa-
ea

st-
1

ap
-so

uth
ea

st-
1

ap
-no

rth
ea

st-
2

ap
-so

uth
ea

st-
2

500

1,000

1,500

2,000

Ti
m

e
(m

s)

(c) WebRTC process time.

Figure 7. Detailed distribution of the three evaluation steps.

5) Scalability: If the load gets high, additional Master
Peers associated with the load balancer will be started auto-
matically by the Auto Scaling Group. If the load gets low,
Master Peers are removed. Thus, our bootstrapping scales.
Additionally, the DNS is a well-working decentralized and
scalable system, thus we rely on it.

All requirements are covered. So, we achieved a decen-
tralized bootstrapping architecture for a WebRTC-based P2P
network. Note that just the bootstrapping is decentralized.
WebRTC-based P2P networks itself are still hybrid P2P net-
works, because they require a signaling server and a STUN/-
TURN server. These servers are addressed with well-known
domains.

VI. CONCLUSION AND FUTURE WORK

In this paper, we described a decentralized architecture to
handle the bootstrapping for WebRTC-based P2P networks.
Our architecture is based on Master Peers associated with a
DNS-based load balancer. We have chosen DNS, because it
is an existing, highly decentralized architecture which is used
by browsers. Additionally, we employed a geolocation-based
bootstrapping to reduce the bootstrapping time.

Our future work is mainly focused on security.
Feher et al. [47] provide an overview on the security of
WebRTC, which can be a starting point in order to improve
our bootstrapping architecture. Since we use the DNS Round
Robin Load Balancing for bootstrapping, Domain Name Sys-
tem Security Extensions (DNSSEC) [48] must be taken into
account. Because STUN and TURN support TLS-over-TCP,
a secure connection to the STUN/TURN server can be used
by ICE to collect the connectivity information. WebSockets
support TLS-over-TCP as well, thus the connection to the
Master Peer can be secured too. For TLS it is possible to use
certificates issued by Let’s Encrypt [49], since they support
the Automatic Certificate Management Environment (ACME)
protocol [50]. The established WebRTC connections between
the peers are secured per specification of the WebRTC proto-
col. Even all connections are secured, intermediate nodes in
the P2P network are still able to eavesdrop and to modify the

bootstrapping messages (i.e., connectivity information, offer
and answer messages). Thus, a confidential and authenticated
end-to-end connection to exchange the bootstrapping messages
is required.

REFERENCES

[1] A. van Kesteren, J. Aubourg, J. Song, and H. Steen, “XMLHttpRequest
Level 2,” W3C Working Group Note, Nov. 2014. [Online]. Available:
http://www.w3.org/TR/XMLHttpRequest2/ [retrieved: April, 2017]

[2] I. Fette and A. Melnikov, “The WebSocket Protocol,” RFC 6455
(Proposed Standard), Internet Engineering Task Force, Dec. 2011.
[Online]. Available: http://www.ietf.org/rfc/rfc6455.txt [retrieved: April,
2017]

[3] H. Alvestrand, “Overview: Real time protocols for browser-
based applications,” Internet Engineering Task Force, Internet
Draft, draft-ietf-rtcweb-overview-18, Mar. 2017. [Online]. Avail-
able: https://tools.ietf.org/html/draft-ietf-rtcweb-overview-18 [retrieved:
April, 2017]

[4] A. Bergkvist, D. C. Burnett, C. Jennings, A. Narayanan, and B. Aboba,
“WebRTC 1.0: Real-time communication between browsers,” World
Wide Web Consortium, Working Draft, WD-webrtc-20170313, Mar.
2017. [Online]. Available: https://www.w3.org/TR/2017/WD-webrtc-
20170313/ [retrieved: April, 2017]

[5] C. Cramer, K. Kutzner, and T. Fuhrmann, “Bootstrapping locality-aware
p2p networks,” in Networks, 2004.(ICON 2004). Proceedings. 12th
IEEE International Conference on, vol. 1. IEEE, 2004, pp. 357–361.

[6] J. Dinger and O. P. Waldhorst, “Decentralized bootstrapping of p2p
systems: a practical view,” in NETWORKING 2009. Springer, 2009,
pp. 703–715.

[7] S. Dutton, “Webrtc in the real world: Stun, turn
and signaling,” html5rocks.com, Jul. 2012. [Online]. Avail-
able: https://www.html5rocks.com/en/tutorials/webrtc/basics/ [retrieved:
April, 2017]

[8] V. Vishnumurthy and P. Francis, “A comparison of structured and
unstructured p2p approaches to heterogeneous random peer selection.”
in Usenix Annual Technical Conference, 2007, pp. 309–322.

[9] E. Adar and B. A. Huberman, “Free riding on gnutella,”
First monday, vol. 5, no. 10, 2000, pp. 1–22. [Online].
Available: http://firstmonday.org/issues/issue5 10/adar/index.html [Re-
trieved: April, 2017]

[10] J. Liang, R. Kumar, and K. W. Ross, “Understanding kazaa,”
Manuscript, Polytechnic Univ, 2004, p. 17.

22Copyright (c) IARIA, 2017. ISBN: 978-1-61208-557-9

WEB 2017 : The Fifth International Conference on Building and Exploring Web Based Environments

[11] P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer infor-
mation system based on the xor metric,” in Peer-to-Peer Systems.
Springer, 2002, pp. 53–65.

[12] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applica-
tions,” in ACM SIGCOMM Computer Communication Review, vol. 31,
no. 4. ACM, 2001, pp. 149–160.

[13] K. Aberer et al., “P-grid: a self-organizing structured p2p system,” ACM
SIGMOD Record, vol. 32, no. 3, 2003, pp. 29–33.

[14] I. Grigorik, “High performance browser networking,” 2013. [Online].
Available: https://hpbn.co/webrtc/ [retrieved: April, 2017]

[15] C. GauthierDickey and C. Grothoff, “Bootstrapping of peer-to-peer
networks,” in Applications and the Internet, 2008. SAINT 2008. In-
ternational Symposium on. IEEE, 2008, pp. 205–208.

[16] M. Knoll, A. Wacker, G. Schiele, and T. Weis, “Decentralized boot-
strapping in pervasive applications,” in Pervasive Computing and Com-
munications Workshops, 2007. PerCom Workshops’ 07. Fifth Annual
IEEE International Conference on. IEEE, 2007, pp. 589–592.

[17] J. Postel, “Internet Protocol,” RFC 791 (INTERNET STANDARD),
Internet Engineering Task Force, Sep. 1981, updated by RFCs 1349,
2474, 6864. [Online]. Available: http://www.ietf.org/rfc/rfc791.txt
[retrieved: April, 2017]

[18] P. Mahlmann and C. Schindelhauer, Peer-to-Peer-Netzwerke: Algorith-
men und Methoden. Springer, Jul. 2007, ISBN: 978-3-540-33992-2.

[19] B. Cohen, “The bittorrent protocol specification,” Jan. 2008. [Online].
Available: http://www.bittorrent.org/beps/bep 0003.html [retrieved:
April, 2017]

[20] C. Kalt, “Internet Relay Chat: Client Protocol,” RFC 2812
(Informational), Internet Engineering Task Force, Apr. 2000. [Online].
Available: http://www.ietf.org/rfc/rfc2812.txt [retrieved: April, 2017]

[21] C. Perkins, M. Westerlund, and J. Ott, “Web real-time communication
(webrtc): Media transport and use of rtp,” Internet Engineering
Task Force, Internet Draft, draft-ietf-rtcweb-rtp-usage-26, Mar.
2016. [Online]. Available: https://tools.ietf.org/html/draft-ietf-rtcweb-
rtp-usage-26 [retrieved: April, 2017]

[22] R. Jesup, S. Loreto, and M. Tuexen, “Webrtc data channels,” Internet
Engineering Task Force, Internet Draft, draft-ietf-rtcweb-data-channel-
13, Jan. 2015. [Online]. Available: https://tools.ietf.org/html/draft-ietf-
rtcweb-data-channel-13 [retrieved: April, 2017]

[23] J. Postel, “User Datagram Protocol,” RFC 768 (INTERNET
STANDARD), Internet Engineering Task Force, Aug. 1980. [Online].
Available: http://www.ietf.org/rfc/rfc768.txt [retrieved: April, 2017]

[24] ——, “DoD standard Transmission Control Protocol,” RFC 761,
Internet Engineering Task Force, Jan. 1980. [Online]. Available:
http://www.ietf.org/rfc/rfc761.txt [retrieved: April, 2017]

[25] J. Rosenberg and H. Schulzrinne, “An Offer/Answer Model with
Session Description Protocol (SDP),” RFC 3264 (Proposed Standard),
Internet Engineering Task Force, Jun. 2002. [Online]. Available:
http://www.ietf.org/rfc/rfc3264.txt [retrieved: April, 2017]

[26] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg,
“SIP: Session Initiation Protocol,” RFC 2543 (Proposed Standard),
Internet Engineering Task Force, Mar. 1999. [Online]. Available:
http://www.ietf.org/rfc/rfc2543.txt [retrieved: April, 2017]

[27] M. Handley, V. Jacobson, and C. Perkins, “SDP: Session Description
Protocol,” RFC 4566 (Proposed Standard), Internet Engineering Task
Force, Jul. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4566.txt
[retrieved: April, 2017]

[28] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson, “RTP:
A Transport Protocol for Real-Time Applications,” RFC 3550
(INTERNET STANDARD), Internet Engineering Task Force, Jul.
2003. [Online]. Available: http://www.ietf.org/rfc/rfc3550.txt [retrieved:
April, 2017]

[29] J. Rosenberg, “Interactive Connectivity Establishment (ICE):
A Protocol for Network Address Translator (NAT) Traversal
for Offer/Answer Protocols,” RFC 5245 (Proposed Standard),
Internet Engineering Task Force, Apr. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc5245.txt [retrieved: April, 2017]

[30] J. Rosenberg, R. Mahy, P. Matthews, and D. Wing, “Session
Traversal Utilities for NAT (STUN),” RFC 5389 (Proposed Standard),

Internet Engineering Task Force, Oct. 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5389.txt [retrieved: April, 2017]

[31] R. Mahy, P. Matthews, and J. Rosenberg, “Traversal Using Relays
around NAT (TURN): Relay Extensions to Session Traversal
Utilities for NAT (STUN),” RFC 5766 (Proposed Standard),
Internet Engineering Task Force, Apr. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc5766.txt [retrieved: April, 2017]

[32] J. Rosenberg, J. Weinberger, C. Huitema, and R. Mahy, “STUN
- Simple Traversal of User Datagram Protocol (UDP) Through
Network Address Translators (NATs),” RFC 3489 (Proposed Standard),
Internet Engineering Task Force, Mar. 2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3489.txt [retrieved: April, 2017]

[33] C. Vogt, M. J. Werner, and T. C. Schmidt, “Content-centric user
networks: WebRTC as a path to name-based publishing,” in Network
Protocols (ICNP), 2013 21st IEEE International Conference on, Oct
2013, pp. 1–3.

[34] ——, “Leveraging WebRTC for P2P content distribution in web
browsers,” in Network Protocols (ICNP), 2013 21st IEEE International
Conference on, Oct 2013, pp. 1–2.

[35] D. Boldt and S. Fischer, “Return the Data to the Owner: A Browser-
Based Peer-to-Peer Network,” The Ninth International Conference on
Internet and Web Applications and Services, Jul. 2014, pp. 140–146.
[Online]. Available: http://www.thinkmind.org/download.php?articleid=
iciw 2014 7 30 20082 [retrieved: April, 2017]

[36] M. J. Werner, C. Vogt, and T. C. Schmidt, “Let our browsers socialize:
Building user-centric content communities on webrtc,” in Distributed
Computing Systems Workshops (ICDCSW), 2014 IEEE 34th Interna-
tional Conference on. IEEE, 2014, pp. 37–44.

[37] C. Desprat, H. Luga, and J.-P. Jessel, “Hybrid client-server and P2P
network for web-based collaborative 3D design,” in Conference on
Computer Graphics, Visualization and Computer Vision, 2015. WSCG
2015. World Society for Computer Graphics, Jun. 215, pp. 229–238.

[38] M. Bu and E. Zhang, “PeerJS – Simple peer-to-peer with WebRTC.”
[Online]. Available: http://peerjs.com [retrieved: April, 2017]

[39] A. Disterhoft and K. Graffi, “Protected chords in the web: secure p2p
framework for decentralized online social networks,” in Peer-to-Peer
Computing (P2P), 2015 IEEE International Conference on. IEEE,
2015, pp. 1–5.

[40] “Google Web Toolkit.” [Online]. Available: http://www.gwtproject.org/
[retrieved: April, 2017]

[41] “OpenChord.” [Online]. Available: http://open-chord.sourceforge.net/
[retrieved: April, 2017]

[42] R. J. Bille, Y. Lin, and S. K. Chalup, “Rtcss: a framework for
developing real-time peer-to-peer web applications,” in Proceedings of
the Australasian Computer Science Week Multiconference. ACM,
2016, p. 56.

[43] “Socket.io.” [Online]. Available: http://socket.io [retrieved: April, 2017]
[44] P. Mockapetris, “Domain names - concepts and facilities,” RFC 1034

(INTERNET STANDARD), Internet Engineering Task Force, Nov.
1987. [Online]. Available: http://www.ietf.org/rfc/rfc1034.txt [retrieved:
April, 2017]

[45] T. Brisco, “DNS Support for Load Balancing,” RFC 1794
(Informational), Internet Engineering Task Force, Apr. 1995. [Online].
Available: http://www.ietf.org/rfc/rfc1794.txt [retrieved: April, 2017]

[46] “coturn TURN server project.” [Online]. Available:
https://github.com/coturn/coturn [retrieved: April, 2017]

[47] B. Feher, L. Sidi, A. Shabtai, and R. Puzis, “The security of webrtc,”
arXiv preprint arXiv:1601.00184, Jan. 2016. [Online]. Available:
https://arxiv.org/abs/1601.00184 [retrieved: April, 2017]

[48] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose,
“DNS Security Introduction and Requirements,” RFC 4033 (Proposed
Standard), Internet Engineering Task Force, Mar. 2005. [Online].
Available: http://www.ietf.org/rfc/rfc4033.txt [retrieved: April, 2017]

[49] “Let’s Encrypt – Free SSL/TLS Certificates.” [Online]. Available:
https://letsencrypt.org/ [retrieved: April, 2017]

[50] R. Barnes, J. Hoffman-Andrews, and K. J., “Automatic Certificate
Management Environment (ACME),” Internet Engineering Task
Force, Internet Draft, draft-ietf-acme-acme-06, Mar. 2017. [Online].
Available: https://tools.ietf.org/html/draft-ietf-acme-acme-06 [retrieved:
April, 2017]

23Copyright (c) IARIA, 2017. ISBN: 978-1-61208-557-9

WEB 2017 : The Fifth International Conference on Building and Exploring Web Based Environments

