
ADAPTIVE 2013

The Fifth International Conference on Adaptive and Self-Adaptive Systems and

Applications

ISBN: 978-1-61208-274-5

May 27- June 1, 2013

Valencia, Spain

ADAPTIVE 2013 Editors

Jaime Lloret Mauri, Polytechnic University of Valencia, Spain

Jose Alfredo F. Costa, Universidade Federal do Rio Grande do Norte (UFRN), Brazil



ADAPTIVE 2013

Foreword

The Fifth International Conference on Adaptive and Self-Adaptive Systems and
Applications (ADAPTIVE 2013), held between May 27 and June 1, 2013 in Valencia, Spain,
targeted advanced system and application design paradigms driven by adaptiveness and self-
adaptiveness. With the current tendencies in developing and deploying complex systems, and
under the continuous changes of system and application requirements, adaptation is a key
feature. Speed and scalability of changes require self-adaptation for special cases. How to build
systems to be easily adaptive and self-adaptive, what constraints and what mechanisms must
be used, and how to evaluate a stable state in such systems are challenging duties. Context-
aware and user-aware are major situations where environment and user feedback is considered
for further adaptation.

We take here the opportunity to warmly thank all the members of the ADAPTIVE 2013
Technical Program Committee, as well as the numerous reviewers. The creation of such a broad
and high quality conference program would not have been possible without their involvement.
We also kindly thank all the authors who dedicated much of their time and efforts to contribute
to ADAPTIVE 2013. We truly believe that, thanks to all these efforts, the final conference
program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the ADAPTIVE 2013 organizing
committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that ADAPTIVE 2013 was a successful international forum for the exchange of
ideas and results between academia and industry and for the promotion of progress in the field
of adaptive and self-adaptive systems and applications.

We are convinced that the participants found the event useful and communications very
open. We hope that Valencia, Spain provided a pleasant environment during the conference
and everyone saved some time to explore this historic city.

ADAPTIVE 2013 Chairs:

ADAPTIVE General Chair
Jaime Lloret Mauri, Polytechnic University of Valencia, Spain



ADAPTIVE Advisory Chairs
Radu Calinescu, Aston University, UK
Thomas H. Morris, Mississippi State University, USA
Serge Kernbach, University of Stuttgart, Germany
Antonio Bucchiarone, FBK-IRST of Trento, Italy
Jose Alfredo F. Costa, Universidade Federal do Rio Grande do Norte (UFRN), Brazil

ADAPTIVE Industry/Research Chairs
Dalimír Orfánus, ABB Corporate Research Center, Norway
Weirong Jiang, Juniper Networks Inc. - Sunnyvale, USA



Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.



ADAPTIVE 2013

Committee

ADAPTIVE General Chair

Jaime Lloret Mauri, Polytechnic University of Valencia, Spain

ADAPTIVE Advisory Chairs

Radu Calinescu, Aston University, UK
Thomas H. Morris, Mississippi State University, USA
Serge Kernbach, University of Stuttgart, Germany
Antonio Bucchiarone, FBK-IRST of Trento, Italy
Jose Alfredo F. Costa, Universidade Federal do Rio Grande do Norte (UFRN), Brazil

ADAPTIVE Industry/Research Chairs

Dalimír Orfánus, ABB Corporate Research Center, Norway
Weirong Jiang, Juniper Networks Inc. - Sunnyvale, USA

ADAPTIVE 2013 Technical Program Committee

Sherif Abdelwahed, Mississippi State University, USA
Nadia Abchiche-Mimouni, Université d'Evry, France
Habtamu Abie, Norwegian Computing Center/Norsk Regnesentral-Blindern, Norway
Muhammad Tanvir Afzal, Mohammad Ali Jinnah University- Islamabad, Pakistan
Jose Maria Alcaraz Calero, Hewlett-Packard Laboratories-Bristol, UK
Giner Alor Hernández, Instituto Tecnológico de Orizaba - Veracruz, México
Richard Anthony, University of Greenwich, UK
Flavien Balbo, Université Paris-Dauphine, Lamsade-CNRS, France
Luciano Baresi, Politecnico di Milano, Italy
Imen Ben Lahmar, Institut Telecom SudParis, France
Jesus G. Boticario, Centre for Innovation and Technological Development UNED, Spain
Sven Brueckner, Soar Technology, Inc., USA
Yuriy Brun, University of Washington - Seattle, USA
Radu Calinescu, Aston University, UK
Aldo Campi, Center for Industrial Research on ICT (CIRI ICT) - University of Bologna., Italy
Valérie Camps, IRIT-Toulouse, France
Radu Calinescu, University of York, UK
Chris Cannings, University of Sheffield, UK
Carlos Carrascosa, Universidad Politécnica de Valencia, Spain
Federica Cena, University of Torino, Italy
Luke Chen, University of Ulster, UK
Po-Hsun Cheng, National Kaohsiung Normal University, Taiwan



José Alfredo F. Costa, Federal University, UFRN, Brazil
Carlos E. Cuesta, Rey Juan Carlos University, Spain
Heiko Desruelle, Ghent University - IBBT, Belgium
Juan Ramon Diaz, Polytechnic University of Valencia, Spain
Mihaela Dinsoreanu, Technical University of Cluj-Napoca, Romania
Ioanna Dionysiou, University of Nicosia, Cyprus
Shlomi Dolev, Ben Gurion University, Israel
Bruce Edmonds, Manchester Metropolitan University, UK
Alois Ferscha, Johannes Kepler Universität Linz, Austria
Ziny Flikop, Consultant, USA
Adina Magda Florea, University "Politehnica" of Bucharest, Romania
Carlos Flores, Universidad de Colima, México
Jorge Fox, ISTI-CNR [Consiglio Nazionale delle Ricerche (CNR), Italy
Naoki Fukuta, Shizuoka University, Japan
Matjaz Gams, Jožef Stefan Institute - Ljubljana, Slovenia
Francisco José García Peñalvo, Universidad de Salamanca, Spain
John C. Georgas, Northern Arizona University, USA
Joseph Giampapa, Carnegie Mellon University, USA
George Giannakopoulos, NCSR Demokritos, Greece
Harald Gjermundrod, University of Nicosia, Cyprus
Marie-Pierre Gleizes, IRIT - Paul Sabatier University, France
Gregor Grambow, University of Ulm, Germany
Mirsad Hadzikadic, College of Computing and Informatics, USA
Salima Hassas, Université Claude Bernard-Lyon, France
Joerg Henkel, Karlsruhe Institute of Technology, Germany
Leszek Holenderski, Philips Research-Eindhoven, The Netherlands
Marc-Philippe Huget, University of Savoie, France
Waqar Jaffry, Vrije Universitiet - Amsterdam, The Netherlands
Jean-Paul Jamont, Université Pierre Mendès France - IUT de Valence & Laboratoire LCIS/INP Grenoble,
France
Weirong Jiang, Xilinx Research Labs, USA
Imène Jraidi, University of Montreal, Canada
Ilia Kabak, "STANKIN" Moscow State Technological University, Russia
Anthony Karageorgos, University of Manchester, UK
Serge Kernbach, University of Stuttgart, Germany
M. Alojzy Klopotek, Institute of Computer Science - Polish Academy of Sciences, Poland
Mitch Kokar, Northeastern University - Boston, USA
Satoshi Kurihara, Osaka University, Japan
Marc Kurz, Institute for Pervasive Computing, Johannes Kepler University of Linz, Austria
Rico Kusber, University of Kassel, Germany
Mario La Manna, SELEX Sistemi Integrati, Italy
Mikel Larrea, University of the Basque Country UPV/EHU, Spain
Ricardo Lent, Imperial College London, UK
Jingpeng Li, University of Nottingham Ningbo, China
Henrique Lopes Cardoso, LIACC, Universidade do Porto, Portugal
Emiliano Lorini, Institut de Recherche en Informatique de Toulouse (IRIT), France
Hiep Luong, University of Arkansas, USA
Sam Malek, George Mason University, USA



Paulo Martins, University of Trás-os-Montes e Alto Douro (UTAD), Portugal
Olga Melekhova, Université Pierre et Marie Curie - Paris 6, France
John-Jules Meyer, Universiteit Utrecht, The Netherlands
Frederic Migeon, IRIT/Toulouse University, France
Gero Müehl, University of Rostock, Germany
Christian Müller-Schloer, Leibniz University of Hanover, Germany
Masayuki Murata, Osaka University Suita, Japan
Filippo Neri, University of Naples "Federico II", Italy
Dirk Niebuhr, Clausthal University of Technology, Germany
Andrea Omicini, Università degli Studi di Bologna - Cesena, Italy
Flavio Oquendo, European University of Brittany/IRISA-UBS, France
Mathias Pacher, Leibniz Universität Hannover, Germany
Raja Humza Qadir, dSPACE GmbH, Paderborn, Germany
Claudia Raibulet, University of Milano-Bicocca, Italy
Mahesh (Michael) S. Raisinghani, TWU School of Management, USA
Sitalakshmi Ramakrishnan, Monash University, Australia
Wolfgang Reif, University of Augsburg, Germany
Brian M. Sadler, Army Research Laboratory, USA
Yacine Sam, Université François Rabelais Tours, France
Huseyin Seker, De Montfort University Leicester, UK
Sebastian Senge, TU Dortmund, Germany
Igor Sfiligoi, University of California San Diego - La Jolla, USA
Vasco Soares, Instituto de Telecomunicações / Polytechnic Institute of Castelo Branco, Portugal
Christoph Sondermann-Wölke, Universität Paderborn, Germany
Panagiotis Spapis, National and Kapodistrian University of Athens, Greece
Stephan Stilkerich, EADS Innovation Works, Germany
Greg Sullivan, BAE Systems, USA
Yehia Taher, Tilburg University, The Netherlands
Javid Teheri, The University of Sydney, Australia
Christof Teuscher, Portland State University, USA
Sotirios Terzis, University of Strathclyde, UK
Catherine Tessier, ONERA - Toulouse, France
Christof Teuscher, Portland State University, USA
Peppo Valetto, Drexel University, USA
Arlette van Wissen, VU University Amsterdam, Netherlands
Natalie van der Wal, VU University Amsterdam, Netherlands
Eiko Yoneki, University of Cambridge, UK



Table of Contents

On the Utilization of Heterogeneous Sensors and System Adaptability for Opportunistic Activity
and Context Recognition
Marc Kurz, Gerold Hölzl, and Alois Ferscha

1

Multilevel Planning for Self-Optimizing Mechatronic Systems
Christoph Rasche and Steffen Ziegert

8

Testing the Reconfiguration of Adaptive Systems
Kai Nehring and Peter Liggesmeyer

14

Adaptive System Framework: A Way to a Simple Development of Adaptive Hypermedia Systems
Martin Balík and Ivan Jelínek

20

A FPGA Implementation of Prediction Error Method for Adaptive Feedback Cancellation using
Xilinx System Generator
Marius Rotaru, Cristian Stanciu, Silviu Ciochina, Felix Albu, and Henri Coandă

26

A Software Infrastructure for Executing Adaptive Daily Routines in Smart Automation
Environments
Estefanía Serral Asensio, Pedro Valderas, and Vicente Pelechano

30

Self-discovery Algorithms for a Massively-Parallel Computer
Kier J Dugan, Jeff S Reeve, and Andrew D Brown

36

A Software Design Pattern Based Approach to Adaptive Video Games
Muhammad Iftekher Chowdhury and Michael Katchabaw

40

A Gravitational Approach for Enhancing Cluster Visualization in Self-Organizing Maps
Leonardo Enzo Brito da Silva and José Alfredo Ferreira Costa

48

Model-driven Self-optimization Using Integer Linear Programming and Pseudo-Boolean
Optimization
Sebastian Götz, Claas Wilke, Sebastian Richly, Christian Piechnick, Georg Püschel, and Uwe Assmann

55

Towards Systematic Model-based Testing of Self-adaptive Software
Georg Püschel, Sebastian Götz, Claas Wilke, and Uwe Aßmann

65

StaCo: Stackelberg-based Coverage Approach in Robotic Swarms
Katerina Stankova, Bijan Ranjbar-Sahraei, Gerhard Weiss, and Karl Tuyls

71

EvoRoF: A Framework for On-line and On-board Evolutionary Robotics
Florian Schlachter, Patrick Alschbach, and Katja Deuschl

77

An Experimental Framework for Exploiting Vision in Swarm Robotics
Sjriek Alers, Bijan Ranjbar-Sahraei, Stefan May, Karl Tuyls, and Gerhard Weiss

83



On the Utilization of Heterogeneous Sensors and
System Adaptability for Opportunistic Activity and

Context Recognition

Marc Kurz, Gerold Hölzl, Alois Ferscha
Johannes Kepler University Linz
Institute for Pervasive Computing

Linz, Austria
{kurz, hoelzl, ferscha}@pervasive.jku.at

Abstract—Opportunistic activity and context recognition sys-
tems draw from the characteristic to utilize sensors as they
happen to be available instead of predefining a fixed sensing
infrastructure at design time of the system. Thus, the kinds and
modalities of sensors are not predefined. Sensors of different types
and working characteristics shall be used equally if the delivered
environmental quantity is useful for executing a recognition task.
This heterogeneity in the sensing infrastructure and the lack
of a defined sensor infrastructure motivates the utilization of
sensor abstractions and sensor self-descriptions for identifying
and configuring sensors according to recognition tasks. This
paper describes how sensors of different kinds can be accessed
in a common way, and how they can be utilized at runtime by
using their semantic self-descriptions. The different steps within
the lifecycle of sensor descriptions are described to understand
the powerful concepts of self-describing sensors and sensor ab-
stractions. Furthermore, a prototypical framework realizing the
vision of opportunistic activity recognition is presented together
with a discussion of subsequent steps to adapt the system to
different application domains.

Keywords—Activity recognition; system adaption; opportunis-
tic activity recognition; heterogeneous sensors

I. INTRODUCTION

Common and established activity and context recognition
systems usually define the recognition task together with the
sensing infrastructure (i.e., the sensors, their positions and
locations, spatial and proximity relationships, sampling rates,
etc.) initially, at design time of the system. The successful
recognition of activities and more generally the context of
subjects is heavily dependent on the reliability of the sensing
infrastructure over a certain amount of time, which is often
difficult to achieve, due to sensor displacements or sensor
disconnects (e.g., a sensor may run out of power). In contrast
to that, opportunistic systems utilize sensor systems as they
happen to be available to execute a dynamically defined
recognition goal [1][2]. The challenge altered from deploying
application specific sensor systems for a fixed recognition task
to the utilization of sensors that happen to be available for
dynamically stated recognition goals [1][3][4]. The available
sensor systems have to be discovered, identified, and config-
ured to cooperative sensor ensembles that are best suited to
execute a certain recognition goal in a specific application
domain. Furthermore, an opportunistic system has to be robust
and flexible against spontaneous changes in the surrounding

sensor environment, allowing the continuity of the recognition
process even if sensors disappear (or appear) in the sensing
infrastructure [5]. Therefore, three crucial challenges (amongst
others) can be identified: (i) the utilization of sensor systems
of different kinds and modalities as data delivering entities,
(ii) the identification of sensors and their capabilities for
configuring ensembles according to recognition goals, and (iii)
the adaptation of an opportunistic activity recognition system
(together with the sensor representations and the low-level
algorithmic dependencies) to a specific application domain.
This paper presents the concepts of sensor abstractions [1][6]
and sensor self-descriptions [1] to cope with these challeng-
ing aspects. Furthermore, a reference implementation of an
opportunistic activity and context recognition system is pre-
sented, referred to as the OPPORTUNITY Framework [1][6][7]
accompanied with a discussion how the framework together
with the sensor representations (composed of abstractions and
self-descriptions) can be easily adapted to diverse application
domains.

The remainder of the paper is structured as follows. Section
II motivates and presents the concept of sensor abstractions,
which enables a common usage of different sensor systems.
Section III describes how sensor systems can be utilized and
configured dynamically according to an actual recognition
goal by using their self-description, and how the sensor
self-description evolves over time by illustrating the self-
description life-cycle. Section IV discusses how the OPPOR-
TUNITY Framework can be adapted to different application
domains. The final Section V closes with a conclusion and
summarizes the core contributions of this paper.

II. SENSORS IN THE OPPORTUNITY FRAMEWORK

Opportunistic activity and context recognition systems do
not predefine their sensing infrastructure initially, as it was the
usual case in decades of related systems (e.g., Salber et al.
[8], Bao and Intille [9], Ravi et al. [10], Tapia et al. [11],
and Ward et al. [12]). Instead, the system makes best use
of the currently available sensors for executing a recognition
goal. This aspect also includes heterogeneity within the sensing
infrastructure, as the lack of a defined sensing infrastructure
also includes missing definitions of the kinds and modalities
of the sensors involved in an ensemble. Therefore, an activity
recognition system that operates in an opportunistic way has to
be capable of handling different sources of environmental data.

1Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Fig. 1. An actual sensing infrastructure showing different types of available
sensors.

These sources do not have to necessarily be physical sensors
(e.g., acceleration, orientation, temperature, etc.), but can also
be immaterial devices that can provide valuable information
to a system [6]. Sensor abstractions [1][6] provide a common
and easy accessible interface to handle different kinds of
material and immaterial devices as general type Sensor (e.g.,
physical, online, playback, synthetic, and harvest sensors). The
abstractions hide the low level access and connection details
and provide methods to handle different devices in a common
way. This concept enables the inclusion of sensors in ensemble
configurations (the set of sensors that is best suited to execute a
recognition goal [2][4]) of different kinds, types and modalities
as they happen to be available.

The OPPORTUNITY Framework [1][7] is a prototypical
implementation (written in Java/OSGi) of a system that recog-
nizes human activities in an opportunistic way. By enabling
the utilization of sensors of different modalities, thus does
not restrict the sensing infrastructure to be composed of
a predefined set of specific sensors, the system is flexible
towards the generation of ensembles for activity recognition.
By further utilizing the concept of self-describing sensors
(see Section III) the system is robust against changes in the
sensing infrastructure, thus can react on spontaneous changes
on the sensors’ availability by reconfiguring the corresponding
activity recognition chains and the ensemble [5]. Furthermore,
since also immaterial devices like a PlayBackSensor [6] - that
replays a pre-recorded data source, thus simulates an actual
sensor - can be utilized at runtime of the system, this allows the
configuration of hybrid simulation scenarios made of physical
and simulated (playback) devices. The different classes that
implement the hardware access (in case of PhysicalSensors),
the connection to a remote data source (OnlineSensor), or the
reading of datasource for PlayBackSensors are all derived from
a common interface. This means from the framework’s point
of view all these devices and sources of environmental data
can be accessed and utilized in a common way.

Figure 1 displays an example for an actual sensing infras-
tructure with two active recognition goals (the two red rectan-
gles) within the OPPORTUNITY Framework. This schematic

Fig. 2. Impressions of the (physical) sensor systems that are available within
the OPPORTUNITY Framework.

illustration is available as visualization in the OPPORTUNITY
Framework and presents the current available sensor devices,
the active sensing mission, and the active data flows between
the involved units. The entire actual sensing infrastructure
in this example consists of 17 sensors, each illustrated by
a colored ellipse, whereas 13 are of type PlaybackSensor
(green), 2 are of type PhysicalSensor (yellow), respectively one
of type OnlineSensor (blue), and one of type SyntheticSensor
(orange). The arrows in the figure indicate the dataflows
from sensors to active recognition goals, and between sensors
themselves. Thus, an ensemble is the best configurable set
of sensors that cooperates to execute a recognition goal,
whereas different types of sensors can be utilized by accessing
them in a common, standardized way by providing interfaces
and APIs to hide the low-level access details. The following
Table I provides an overview of the currently available sensor
abstractions in the OPPORTUNITY Framework.

The data sources for the sensors of type PlaybackSensor
in Table I have been recorded in two recording sessions.
First, a kitchen scenario in May 2010 was set up, where 72
sensors with more than 10 modalities have been utilized, and
12 subjects performed early morning activities, each 6 runs.
Second, another kitchen equipped with sensors in December
2011, where 5 subjects performed activities like coffee prepa-
ration, coffee drinking, and table cleaning. These recording
sessions are described in detail in [13] and [3]. Figure 2
provides impressions of the sensors that are made available
as PlaybackSensor or PhysicalSensors in the OPPORTUNITY
Framework. This means, they can be replayed anytime and
behave as if they would be physically present. This enables
the configuration of hybrid and powerful simulation scenarios
for opportunistic activity recognition.

Figure 2(a) shows the MotionJacket sensor [14], which
contains five XSens MTx units, mounted on the upper and
lower arms, and one on the upper back position. Furthermore,
one bluetooth accelerometer is mounted on the knee of the
person, and one SunSPOT device is attached on the shoe toe-
box. Figure 2(b) displays a reed switch as it was used in the
dataset recording session in [13]. These magnetic switches
were mounted in the environment, on different fitments and

2Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



TABLE I. OVERVIEW OF CURRENTLY AVAILABLE SENSOR ABSTRACTIONS IN THE OPPORTUNITY FRAMEWORK.

Short Name Sensor Type # of Sensors Further Details
Reed Switch PlaybackSensor 13 HAMLIN MITI-3V1 Magnetic Reed Switch
USB Accel PlaybackSensor 8 USB ADXL330 3-axis Accelerometer
BT Accel PlaybackSensor 1 Bluetooth ADXL330 3-axis Accelerometer
Ubisense PlaybackSensor 1 UBISENSE Location Tracking System
Shoetoebox PlaybackSensor 2 Sun SPOT LIS3L02AQ Accelerometer
Motionjacket PlaybackSensor 5 XSENS Xbus Kit MTx
Motionjacket PhysicalSensor n XSENS Xbus Kit MTx
Ubisense PhysicalSensor 1 System (n tags) UBISENSE Location Tracking System
TI Chronos PhysicalSensor n Texas Instruments eZ430 Chronos
SunSpot PhysicalSensor n Sun SPOT LIS3L02AQ Accelerometer
RFID PhysicalSensor n Inside Contactless M210-2G
MEMS Microphone PhysicalSensor n —
IPhone4 PhysicalSensor n Iphone4 Sensor Platform
IntertiaCube3 PhysicalSensor n InterSense Wireless InertiaCube3
TI EZ430 PhysicalSensor n Texas Instruments EZ430 Chronos
AxisCamera OnlineSensor n AXIS 2120 Network Camera
FSA Pressure SyntheticSensor n XSENSOR PX100:26.64.01

household appliances (e.g., drawers, fridges, doors, etc.). Fig-
ure 2(c) shows an InterSense Wireless Inertiacube3 capable
of 3 DOF tracking (acceleration, gyro, and magnetometer),
mounted on the shoes of persons. Clipping (d) of Figure 2
contains an off-the-shelf wrist worn device (i.e., the Texas In-
struments EZ430 Chronos) in a watch-like form, that provides
acceleration at a maximum sampling rate of 100Hz. The last
clipping (e) shows multiple sensors as used in [13] and [3], and
as made available in the OPPORTUNITY Framework as sensor
abstraction. First, two of the XSens MTx systems (i.e., the
MotionJacket) mounted on the upper and lower right arm are
visible. Second, three of the bluetooth acceleration (the white
devices) are shown. These self-constructed devices contain a
simple acceleration sensor, a bluetooth communication unit
and power supply.

The OPPORTUNITY Framework is meant to be open-
ended. This means on the one hand that the abstraction concept
is not restricted to the yet identified six abstractions (i.e.,
PhysicalSensor, PlaybackSensor, OnlineSensor, SyntheticSen-
sor, HarvestSensor, and ProxySensor) [6]. Furthermore, the
available sensors and sensor abstractions as presented in Table
I and Figure 2 are a starting point in the OPPORTUNITY
Framework and subject to add further (abstracted) sensors
on demand. The following Section III describes the second
important concept in opportunistic systems on the sensor level:
sensor self-descriptions.

III. UTILIZING SENSORS

One major research challenge in an opportunistic activity
recognition system is the fact that the sensor devices are
not known at design time of the system. This means the
system has to be able to handle devices of different modalities
and kinds, and has to react on spontaneous changes in the
sensing infrastructure. For enabling an opportunistic system
to handle and access a possible variety of different devices
and modalities - even material and immaterial devices - we
discussed the concept of Sensor Abstractions in the previous
Section II. Since not only the sensor infrastructure is subject
to changes over time, but also the recognition goal is not
defined in an opportunistic system, thus can be stated by users
or applications at runtime [1][2][4], the set of sensors has
to be identified that can be utilized for a recognition goal.
This means that each sensor needs a description on a semantic
level that provides the information to the system what it can

be used for, how it has to be configured (e.g., which sensor
signal features and classification algorithms have to be used,
which parameters are required, etc.), and what is the expected
performance. Therefore we propose the concept of Sensor Self-
Descriptions providing information what the sensor can be
used for and how it has to be configured [1].

The sensor self-description - as the name already tells -
describes a sensor, thus provides relevant information about
the physical and working characteristics and the recognition
capabilities to the opportunistic activity and context recog-
nition system. The description itself is tightly coupled to a
sensor and has to meet different requirements, like (i) machine-
readability, (ii) human-readability, (iii) ease of access, and
(iv) extensibility. Taken these requirements, the decision about
the format for the sensor self-descriptions is obvious: XML,
respectively SensorML [15]. This XML language specification
provides standard models, schemes and definitions for describ-
ing sensors and measurement processes.

The self-description of sensors is designed to semantically
describe the sensing device on a meta-level regarding its
working and physical characteristics (e.g., dimensions, weight,
power consumption, sampling rate, etc.), and its recognition
capabilities and assignment in sensor ensembles for specific
recognition goals. These two use cases of the sensor self-
descriptions emerge the need to segment them into one part
of the description that holds the technical details as they
are defined in the corresponding fact sheet delivered by the
manufacturer, and into a second part that enables the dynamic
configuration of the sensor in cooperative ensembles that
aim at executing a recognition goal as accurate as possible.
The dynamic part of the sensor self-descriptions contains so-
called ExperienceItems (Figure 3 shows the important parts
from an exemplary ExperienceItem, like the required classifier,
the modality of the sensor, the location of the sensor, the
recognizable activities together with the DoF value, and the
required feature extraction method) [1][16].

Each ExperienceItem acts as snapshot to memorize the
sensor capabilities in form of recognizable activities and fur-
ther information about the sensor (e.g., location, orientation,
topology of the place, etc.), thus describes a complete recog-
nition chain [17] (i.e., data preprocessing and segmentation,
feature extraction, classification, and decision fusion) and the
specific methods. Each ExperienceItem features a correspond-

3Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Fig. 3. Selected parts of an exemplary ExperienceItem as part of the sensor
self-description [16].

ing Degree of Fulfillment (DoF), which is a quality-of-service
metric in the range of [0, 1], which expresses how well a
certain activity is recognized (i.e., the DoF is an estimate of
the expected accuracy) [1]. The ExperienceItem is used by the
framework to configure an available sensor with the required
machine learning algorithms and the correct training data (i.e.,
the complete activity recognition chain) to recognize a certain
set of activities. ExperienceItems can either be generated
offline by a human expert, or autonomously by the system at
runtime. The manual generation of ExperienceItems requires
offline labeling and training to gather a classifier model and
the translation of the configured algorithms into SensorML,
respectively self-description syntax. The more interesting way
of generating ExperienceItems is done autonomously by the
system by applying transfer learning (a sensor ”learns” how
to recognize certain activities from other sensors, experience
is transferred to enhance the system’s overall recognition
capabilities) [14].

The segmented sensor self-description has different stages
that can be described by the corresponding sensor lifecycle.
Figure 4 shows the lifecycle for an exemplary sensor to-
gether with the stages and their transitions (i.e., (i) sensor

manufactured, (ii) sensor enrolled, (iii) expert knowledge, (iv)
sensor active, (v) sensor ready, and (vi) sensor out of service).
The lifecycle-stages of the sensor and its self-description are
described in the following list:

(i) Sensor manufactured: the sensor is ready to use and
delivered with its technical specification. In Figure 4,
the example on the left hand side shows an InterSense
InertiaCube3 sensor with the corresponding datasheet.
Neither the technical self-description, nor the dynamic
description (in SensorML [15] syntax, as required
in an opportunistic activity and context recognition
system) is yet available at this stage in the lifecycle.
The base for specifying and generating the technical
self-description is given with the datasheet delivered
with the device by the manufacturer.

(ii) Sensor enrolled: this stage in the sensor lifecycle
occurs once the technical sensor self-description is
available. This means the sensor is ready to be used
within an opportunistic activity recognition system but
still has no ExperienceItems in its dynamic descrip-
tion that enable the involvement in the execution of
recognition goals.

(iii) Expert knowledge: this stage can be seen as extension
to the previous stage (sensor enrolled). A human
expert, who manually adds ExperienceItems to the
dynamic sensor self-description, can extend the avail-
able (dynamic) self-description. This involves offline
training and the manual extension of the dynamic
sensor self-description by adding ExperienceItems.

(iv) Sensor active: The sensor is active, which means it
is involved in the process of executing a recognition
goal. The role of the sensor can either be that it is
integrated in a running ensemble, or that it is involved
as learner. That means its sensor self-description is
extended autonomously by the system, by adding
further ExperienceItems by observing the configured
ensemble and its recognition results.

(v) Sensor ready: The sensor is ready to be used within
the execution of specific recognition goals but is not
currently involved in a running ensemble. That means
its self-description already contains one or more Ex-
perienceItems. In this passive mode, the enhancement
of the self-description can be done again by a human
expert in an offline way.

(vi) Sensor out of service: The sensor is outdated, which
can be the case once a newer version of a spe-
cific sensor type is available. The corresponding self-
description is versioned and made available for future
use with the newer sensor device. The technical de-
scription might be outdated but the gathered experi-
ence in the dynamic sensor self-description could be
of high value for the new device in future recognition
goals.

The combination of the two concepts on the sensor level
(i.e., sensor abstractions and sensor self-descriptions) rep-
resents a data delivering entity in an opportunistic activity
recognition system. The step towards a whole new paradigm in

4Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Fig. 4. The lifecycle of sensors and the corresponding self-descriptions in the OPPORTUNITY Framework.

activity recognition without the application dependent deploy-
ment of sensors and the reliability of the sensing infrastructure
is done and opens new challenges (and possibilities) in open-
ended systems. The foundation for flexible and robust activity
recognition in an opportunistic way is given, the following Sec-
tion IV discusses necessary steps to adapt the OPPORTUNITY
Framework (and the accompanying sensor representations) to
different application domains.

IV. FRAMEWORK ADAPTATION

The OPPORTUNITY Framework together with the ma-
chine learning technologies, the sensor representations and
high-level goal processing concepts has to be adaptable to
different domains with less possible efforts. The developed
concepts operate application and domain independent, they
have to be taken and adapted accordingly. Based on the avail-
able reference implementation or an already existing domain-
or application specific adapted release of the framework, the
adaption process itself consists of at most three independent
steps:

(i) Activity knowledge extension or replacement.

(ii) Sensor system inclusion to enhance the set of possible
and accessible sensors.

(iii) Extension of the sensors self-descriptions.

An example for a necessary framework adaptation is the
deployment of the system in private households for activity
recognition in order to implicitly control electronic devices.
This adaptation of the OPPORTUNITY Framework for opti-
mized energy consumption in private households is described
in detail in [18]. There, a field study has been conducted to

evaluate the energy saving potentials based on the inhabitants
activities (e.g., if someone is not watching television, the
TV set can be safely switched off). The OPPORTUNITY
Framework (which was used for activity recognition) has been
adapted accordingly to meet the requirements and character-
istics in such an application. Sensor abstractions have been
added to make the expected sensors (i.e., smart phones, wrist-
worn accelerometers, Ubisense positioning sensors) available
in the application. New sensor descriptions have been added
and existing descriptions have been modified to represent the
recognition capabilities based on activity representations and
relations (in form of an OWL-ontology). The system was able
to (i) run stable over a two-week period in each household and
to (ii) handle dynamically varying sensor settings.

In the following, these three steps are described in de-
tail, and Figure 5 presents an illustration of the adaptation-
workflow. Either all of the steps are executed or a subset of
them, which is shown in the figure, to come from the starting
basis of the framework (left-hand side) to the domain-adapted
framework (right-hand side), depending on the situation.

A. Knowledge Representation Modification

The activity knowledge representation is composed using
the W3C standard language OWL. Its purpose is to describe
activities, the relations among them and more generally the
context for a specific application domain. It is left to the
application developer how this knowledge is designed, whether
it is for example following the development criteria of a
taxonomy (strictly hierarchical), or other semantic structures
(e.g., ontologies, topic maps, etc.). In [1] we present an
example for an ontology, which provides activities, movable
and environmental objects, as network of relations for a kitchen

5Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Fig. 5. The application-/domain-specific framework adaptation as three step process.

scenario, containing more than 130 different classes. The
ontology itself builds the knowledge base for an application by
providing a vocabulary and relations between terms explaining
their relationship to each other.

B. Sensor System Inclusion

As already discussed, an opportunistic system does not
restrict the kinds and modalities of sensors that act as input
sources for environmental quantities. Therefore, to adapt the
framework to a new domain, it might be necessary to add sen-
sor abstractions to meet the requirements of possibly occurring
sensors. This means, that an application developer, who adapts
the framework has to add sensor abstractions by using the
defined and common API in form of an interface that acts as
common base for having a general way of accessing sensors.
Once the abstraction for a sensor device is included in the
framework, all appearing sensors of this type can be accessed
equally and operate as general type sensor. The challenging
aspects within the sensor system inclusion step are the low
level access details, which have to be implemented once. From
the framework’s point of view - as all devices are derived from
the interface that defines a sensor - those low level details of
accessing the device are hidden. Not only material devices
(e.g., acceleration, temperature, humidity, orientation sensors)
are possible as sources of environmental quantities, but also
immaterial sources, like online accessible webservices (e.g.,
weather or traffic information) can be of high value in an
activity and context recognition system.

C. Self-Description Extension

The final step in the framework adaptation work flow is the
extension of the sensor self-descriptions. If a completely new
sensor type has been added in the previous step as new sensor
abstraction, the inclusion of an accompanying new technical
description is necessary (see Figure 4). This has to be done

only once for each sensor type, since the technical description
is static and shared among sensor of the same type. The
modification of the dynamic sensor self-description can either
make an extension of the existing descriptions and Experien-
ceItems necessary, or a definition of completely new dynamic
descriptions. The first case occurs, whenever existing sensor
devices are re-utilized for a new application domain. This
makes the extension of the existing dynamic self-descriptions
necessary to cover the new activity definitions according to the
accompanying ontology by adding new ExperienceItems. The
second case occurs, whenever new sensor devices are added
and utilized in a new application (domain). This means, new
dynamic self-descriptions have to be generated for each device
initially. The extension of recognition capabilities in form of
ExperienceItems can either be done before operation manually,
or during runtime of the system autonomously (as described
in [14]).

V. CONCLUSION AND FUTURE WORK

This paper presents the two concepts of sensor abstractions
and sensor self-descriptions that are big steps towards the
vision of recognizing human activities in an opportunistic way
(shown in a reference implementation called OPPORTUNITY
Framework). The capability of utilizing heterogeneous devices
by abstracting them to a generalized type - which can be of
material and immaterial nature - enables flexible, continuous
and dynamic activity recognition with presumably unknown
sensor settings. The sensor self-descriptions provide semantic
information about individual devices with respect to their
capability of recognizing specific activities. This allows for (i)
dynamically configuring activity recognition chains at system
runtime, and (ii) to react on spontaneous changes in the
sensing infrastructure in terms of appearing and disappearing
sensor devices. The sensor (self-description) lifecycle and the
stepwise adaptation of the OPPORTUNITY Framework to

6Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



specific application domains is discussed, whereas this can be
broken down to three subsequent steps (i.e., (i) knowledge
representation extension, (ii) sensor system inclusion, and
(iii) self-description extension). The major contributions of
this paper can be summarized to (i) the discussion and the
proof of concept of the sensor representation composed of
abstractions and self-descriptions, (ii) the identification of a
sensor lifecycle representing the sensor’s evolution over time,
and (iii) - based on the previous items - the stepwise adaptation
of an opportunistic activity recognition system to specific
application domains.

Future work within the topic of utilizing heterogeneous
sensors for accurate activity recognition will tackle the multi-
sensor combination with sensor fusion technologies [19] for
the specific activity classes. As discussed in related work
(e.g., Kuncheva and Whitacker [20]), the prediction of the
accuracy of multi-sensor combinations (i.e., ensembles) is a
very challenging task. Currently, research work is conducted
that utilizes the mutual information of pairwise sensor com-
binations in order to predict the accuracy of dynamically
configured ensembles. Furthermore, shaping and optimization
is currently investigated, meaning that the set of sensors that is
included in an ensemble has to be well selected. If a desired
activity can be recognized by a lot of sensors, including all
of them in the ensemble does not necessarily mean that the
accuracy is higher than including only a subset of sensors (the
accuracy can even be worse). Therefore, the ensembles have
to be optimized towards a maximized expected accuracy for
the activities that have to be recognized.

ACKNOWLEDGMENT

The project OPPORTUNITY acknowledges the financial
support of the Future and Emerging Technologies (FET)
programme within the Seventh Framework Programme for
Research of the European Commission, under FET-Open grant
number: 225938.

REFERENCES

[1] M. Kurz, G. Hölzl, A. Ferscha, A. Calatroni, D. Roggen, G. Tröster,
H. Sagha, R. Chavarriaga, J. del R. Millán, D. Bannach, K. Kunze,
and P. Lukowicz, “The opportunity framework and data processing
ecosystem for opportunistic activity and context recognition,” Inter-
national Journal of Sensors, Wireless Communications and Control,
Special Issue on Autonomic and Opportunistic Communications, vol. 1,
December 2011.

[2] D. Roggen, K. Förster, A. Calatroni, T. Holleczek, Y. Fang, G. Troester,
P. Lukowicz, G. Pirkl, D. Bannach, K. Kunze, A. Ferscha, C. Holzmann,
A. Riener, R. Chavarriaga, and J. del R. Millán, “Opportunity: Towards
opportunistic activity and context recognition systems,” in Proceedings
of the 3rd IEEE WoWMoM Workshop on Autonomic and Opportunistic
Communications (AOC 2009). Kos, Greece: IEEE CS Press, June
2009.

[3] G. Hölzl, M. Kurz, and A. Ferscha, “Goal oriented opportunistic
recognition of high-level composed activities using dynamically con-
figured hidden markov models,” in The 3rd International Conference
on Ambient Systems, Networks and Technologies (ANT2012), August
2012.

[4] ——, “Goal processing and semantic matchmaking in opportunistic
activity and context recognition systems,” in The 9th International
Conference on Autonomic and Autonomous Systems (ICAS2013), March
24 - 29, Lisbon, Portugal, March 2013, p. 7.

[5] M. Kurz, G. Hölzl, and A. Ferscha, “Dynamic adaptation of op-
portunistic sensor configurations for continuous and accurate activity
recognition,” in Fourth International Conference on Adaptive and Self-
Adaptive Systems and Applications (ADAPTIVE2012), July 22-27, Nice,
France, July 2012.

[6] M. Kurz and A. Ferscha, “Sensor abstractions for opportunistic activity
and context recognition systems,” in 5th European Conference on
Smart Sensing and Context (EuroSSC 2010), November 14-16, Passau
Germany. Berlin-Heidelberg: Springer LNCS, November 2010, pp.
135–149.

[7] M. Kurz, A. Ferscha, A. Calatroni, D. Roggen, and G. Tröster, “Towards
a framework for opportunistic activity and context recognition,” in 12th
ACM International Conference on Ubiquitous Computing (Ubicomp
2010), Workshop on Context awareness and information processing in
opportunistic ubiquitous systems, Copenhagen, Denmark, September 26
- 29, 2010, September 2010.

[8] D. Salber, A. Dey, and G. Abowd, “The context toolkit: aiding the
development of context-enabled applications,” in Proceedings of the
SIGCHI conference on Human factors in computing systems: the CHI
is the limit. ACM, 1999, pp. 434–441.

[9] L. Bao and S. Intille, “Activity recognition from user-annotated accel-
eration data,” in Pervasive Computing, ser. Lecture Notes in Computer
Science, A. Ferscha and F. Mattern, Eds. Springer Berlin / Heidelberg,
2004.

[10] N. Ravi, D. Nikhil, P. Mysore, and M. L. Littman, “Activity recognition
from accelerometer data,” in In Proceedings of the Seventeenth Confer-
ence on Innovative Applications of Artificial Intelligence (IAAI), 2005,
pp. 1541–1546.

[11] E. Tapia, S. Intille, and K. Larson, “Activity recognition in the home
using simple and ubiquitous sensors,” in Pervasive Computing, ser.
Lecture Notes in Computer Science, A. Ferscha and F. Mattern, Eds.
Springer Berlin / Heidelberg, 2004, pp. 158–175.

[12] J. A. Ward, P. Lukowicz, G. Tröster, and T. E. Starner, “Activity
recognition of assembly tasks using body-worn microphones and ac-
celerometers,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 28, pp. 1553–1567, 2006.

[13] D. Roggen, A. Calatroni, M. Rossi, T. Holleczek, K. Förster, G. Tröster,
P. Lukowicz, D. Bannach, G. Pirkl, A. Ferscha, J. Doppler, C. Holz-
mann, M. Kurz, G. Holl, R. Chavarriaga, M. Creatura, and J. del
R. Millán, “Collecting complex activity data sets in highly rich net-
worked sensor environments,” in Proceedings of the Seventh Inter-
national Conference on Networked Sensing Systems (INSS), Kassel,
Germany. IEEE Computer Society Press, June 2010.

[14] M. Kurz, G. Hölzl, A. Ferscha, A. Calatroni, D. Roggen, and
G. Troester, “Real-time transfer and evaluation of activity recogni-
tion capabilities in an opportunistic system,” in Third International
Conference on Adaptive and Self-Adaptive Systems and Applications
(ADAPTIVE2011), September 25-30, Rome, Italy, September 2011, pp.
73–78.

[15] M. Botts and A. Robin, “OpenGIS Sensor Model Language (SensorML)
Implementation Specification,” OGC, Tech. Rep., Jul. 2007.

[16] M. Kurz, G. Hölzl, A. Ferscha, H. Sagha, J. del R. Millán, and
R. Chavarriaga, “Dynamic quantification of activity recognition capabil-
ities in opportunistic systems,” in Fourth Conference on Context Aware-
ness for Proactive Systems: CAPS2011, 15-16 May 2011, Budapest,
Hungary, May 2011.

[17] D. Roggen, S. Magnenat, M. Waibel, and G. Troster, “Wearable
computing,” Robotics Automation Magazine, IEEE, vol. 18, no. 2, pp.
83–95, june 2011.

[18] G. Hölzl, M. Kurz, P. Halbmayer, J. Erhart, M. Matscheko, A. Ferscha,
S. Eisl, and J. Kaltenleithner, “Locomotion@location: When the rubber
hits the road,” in The 9th International Conference on Autonomic
Computing (ICAC2012), September 2012, p. 5.

[19] J. Kittler, M. Hatef, R. P. W. Duin, and J. Matas, “On combining clas-
sifiers,” Pattern Analysis and Machine Intelligence, IEEE Transactions
on, vol. 20, no. 3, pp. 226–239, 1998.

[20] L. I. Kuncheva and C. J. Whitaker, “Measures of diversity in classifier
ensembles and their relationship with the ensemble accuracy,” Machine
learning, vol. 51, no. 2, pp. 181–207, 2003.

7Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Multilevel Planning for Self-Optimizing Mechatronic
Systems

Christoph Rasche
C-LAB

University of Paderborn
crasche@c-lab.de

Steffen Ziegert
Department of Computer Science

University of Paderborn
steffen.ziegert@uni-paderborn.de

Abstract—This paper presents a multilevel planning approach
for the use in complex self-optimizing mechatronic systems. The
approach has been designed for the RailCab system, which is an
autonomous railbound transportation system. The term multilevel
planning denotes planning on different levels of abstraction where
each level involves different aspects and thus raises different
planning tasks to solve. These planning tasks are not independent
of each other. Plans for the higher level planning tasks involve re-
configurations of the system’s software architecture and influence
parameters used by the lower level planner to compute Pareto
optimal behavior. Additionally, the higher level planner relies
on plans computed by the lower level planner in order to meet
the execution times (of system reconfigurations) that it assumed.
To actually assure that the lower level planner computes Pareto
optimal plans and takes multiple objectives (which are conflictive)
into account, it is based on multi-objective optimization (with
Pareto fronts as output).

Keywords—hybrid planning; graph transformation; temporal
planning; Pareto front; optimal planning

I. INTRODUCTION

The ever increasing complexity of mechatronic systems and
the integration of more and more sophisticated functionality
leads to new challenges for their design and development. The
Collaborative Research Centre 614 “Self-optimizing Concepts
and Structures in Mechanical Engineering” (CRC 614) at the
University of Paderborn treats problems that occur during the
design of complex mechatronic systems. The goal is to design
self-optimizing systems, that are able to react autonomously to
environmental changes by changing their parameters, as well
as their objectives, if necessary. The developed concepts go far
beyond simple control strategies.

To be able to test the approaches under real world conditions
the RailCab system [1], an innovative autonomous railbound
transportation systems has been built at the University of
Paderborn. It consists of single RailCabs for the driverless
transportation of passengers and goods while each vehicle
drives on demand. The RailCabs are not coupled mechanically
but convoys can be created in order to decrease energy
consumption.

A highly complex system like the RailCab system involves
various tasks that need to be achieved during runtime. These
tasks involve behavior at different levels of abstraction. Each
RailCab has an individual goal, e.g., transporting passengers or
goods to a specified target station within a specified time.
On a high level of abstraction RailCabs plan their route
to the target station. Each route in the railway network is

assumed to consist of a number of track segments, leading
to a discrete planning task at this level. The choice of route
and driving speed depends on the routes of other RailCabs in
the system. Thus, this abstraction level includes planning of
system reconfigurations, like the establishment or breakup of
a convoy of RailCabs. These reconfigurations require precise
timing information and affect the software architecture of the
system, e.g., a convoy operation requires a communication link
between the participating RailCabs.

The planning task on the lower level considers continuous
behavior and parameters of a single RailCab that has to be
planned according to external requirements. For example, a
RailCab has to provide a certain level of driving comfort and
must not run out of energy before reaching its destination.
The fulfillment of these conflictive requirements depends on
a variety of control parameters of the RailCab, for which the
planner has to determine Pareto optimal settings. The approach
is called hybrid planning because it uses an initial discrete plan
and forecasts continuous system behavior by simulation during
runtime.

Decisions on the higher level, like joining or leaving a
convoy, also affect the lower level planning task: due to
changing operating conditions, the parameter settings of the
lower level planner have to be adapted online to still move
with Pareto optimal settings. Since, the planning technique on
the lower level refines the higher level actions into continuous
behavior, it can guarantee that the next track segment is reached
in exactly the time that the higher level temporal planner
assumed. Thus, replanning on the lower level will not cause
the higher level plan to be invalid afterwards.

This paper presents a hierarchical planning system for
self-optimizing mechatronic systems. The temporal planning
technique deployed on the higher level of abstraction has
been published before in [2], but was treated in isolation only.
Here, we specifically address the interrelation of this planning
technique with a lower level planner and its ability to adapt its
parameter settings online.

The paper is structured as follows. The temporal planning
technique, which is used on the higher level of abstraction
for planning routes and cooperative behavior, is introduced in
Section II. Afterwards, the hybrid planning approach, which is
based on multi-objective optimization and used as the lower
level planning technique, is described briefly in Section III.
The ability to adapt the environmental changes, like emerging
drag or temperature changes during movement, is outlined in

8Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



duration = 4

:Track

:RailCab

:Convoy

:RailCab

:Track :Track

«++»
member

next

«- -»
on

member

on

next

«++»
on

Fig. 1: Story pattern joinConvoy

Section IV. The remainder of the paper shows related work in
Section V before giving a conclusion in Section VI.

II. TEMPORAL PLANNING OF SOFTWARE ARCHITECTURE
RECONFIGURATION

We employ a model-based approach to the design of self-
optimizing mechatronic systems. System models are given in
MECHATRONICUML [3], a UML profile for the development
of such systems. In the model for the RailCab scenario, the
railway system consists of track segments that are connected
to each other via next links. A RailCab that operates in the
system can occupy such a track segment. Furthermore, RailCabs
can coordinate with other RailCabs to form a convoy. To
safely operate in a convoy, acceleration and braking has to
be coordinated and managed between convoy members. Such
an active convoy operation is represented by an instance of the
Convoy type. A Convoy instance has a member link to each
participating RailCab.

This approach to temporal planning deals with software
architecture reconfiguration of self-optimizing systems. The
communication behavior of components is not considered
by this technique. Reconfigurations concerning the software
architecture, e.g., the instantiation of a convoy, are modeled
with story patterns [4], an extension of UML object diagrams.

Story patterns have a formal semantics based on (typed)
graph transformation systems [5]. A graph transformation
system consists of a graph representing the initial configuration
of the system and a set of rules. Each rule consists of
a pair of graphs, called left-hand side (LHS) and right-
hand side (RHS), that schematically define how the graph
representing the system’s configuration can be transformed into
new configurations. Elements that are specified in both graphs
are preserved, other elements are deleted (if specified in the LHS
only) or created (if specified in the RHS only). Syntactically, a
story pattern represents such a rule by integrating the LHS and
RHS into one graph and using stereotypes to indicate elements
that are only present in the LHS or in the RHS.

Fig. 1 provides an example of a reconfiguration, which takes
4 time units: a RailCab joining a convoy of RailCabs. Objects
and links that are being created or deleted by the application
of the story pattern are labelled with the stereotypes «++» and
«--», respectively. The story pattern specifies the creation of
a member link representing the RailCab’s participation in the
convoy operation simultaneously with its movement to the next
track segment. The story pattern can be executed to transform
the state graph into a new configuration if it contains a subgraph
that matches the LHS of the story pattern.

duration = 4

:Track:Track

:RailCab

«- -»
:Convoy

:RailCab

:Track

:RailCab

next

on «- -»
on

«- -»
member

next

member

«- -»
member

«++»
on

Fig. 2: Story pattern breakConvoy

Our modeling formalism also allows to express that certain
objects or links are not permitted to appear in the current state
graph. See for example the story pattern given in Fig. 2. The
crossed out RailCab object and the link connecting it to the
Convoy object are not allowed to appear in the state graph.
Such a restriction to the applicability of a story pattern is called
a negative application condition (NAC).

In addition to the story patterns that define possible
transformations, we need an initial configuration and a goal
specification to feed the planning system with. A goal specifi-
cation is a partly specified configuration that can be modeled
as an ordinary object graph. Goal specifications are either
generated from user input or predefined by the system designer.
Initial configurations for the planning system are generated
from actual runtime states of the system.

Consequently, we are interested not only in which graph
transformations to execute but also in the points in time when
a graph transformation is supposed to start. In this temporal
planning approach, a plan is therefore a set of tuples of points
in time and graph transformations. The graph transformations
itself have annotated durations.

We solve these planning tasks by translating the models
into the Planning Domain Definition Language (PDDL) [6]
and feeding them into an off-the-shelf planning system, like
SGPlan6 [7]. In PDDL, a domain is defined by action schemata,
as well as types and predicates that can be used within action
schemata. An action schema consists of a list of parameters,
a precondition, and an effect. In the precondition, a list of
literals that are required for applying the action can be specified.
Similarly, the effect of an action specifies a list of literals that are
obtained when the action is applied. An action is instantiated –
in the context of PDDL this is called grounding – by substituting
the parameters with existing objects. Our translation scheme
builds the declarations (of types and predicates) from the class
diagram and generates an action schema for each story patterns.

In PDDL, action schemata for time-consuming actions split
the literals used in their precondition and effect into different
sets according to their time of evaluation. Literals can be
required at_start, over_all, and at_end when used in the
precondition and be effective at_start and at_end when
used in the effect. The obvious approach to assume that the
applicability check happens (in zero time) at the beginning
of the reconfiguration and the actual change at its end is not
suitable for many situations. Unintended interferences, e.g., the
deinstantiation and use of a software component at the same
time, could occur. The planning domain has to be generated
in a way such that conflicts due to a concurrent execution of

9Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



60.041: (MOVE rc0 t16 t17) [4.0000]
60.042: (MOVECONVOY convoy0 rc2 rc3 t18 t19 t20) [4.0000]
64.043: (BREAKCONVOY convoy0 rc2 rc3 t19 t20 t21) [4.0000]
64.044: (MOVE rc0 t17 t18) [4.0000]
68.045: (MOVE rc3 t21 t22) [4.0000]
68.046: (CREATECONVOY convoy0 rc2 rc1 t19 t25 t26) [4.0000]
72.047: (MOVE rc3 t22 t23) [4.0000]
72.048: (MOVECONVOY convoy0 rc2 rc1 t25 t26 t27) [4.0000]
72.049: (MOVE rc0 t18 t19) [4.0000]

Fig. 3: Excerpt of a concurrent reconfiguration plan

reconfigurations are not possible. However, we do not want to
burden the designer of the planning domain with its complicated
and error-prone definition. Therefore, the questions that our
translation scheme needs to address are: does the concurrent
execution of two graph transformations result in any conflicts,
and how can such a concurrent execution be avoided? To safely
control whether a concurrent execution is allowed, our solution
generates additional literals that lock access to graph nodes and
edges when they are in use by a reconfiguration.

Consider for instance the application of the story patterns
joinConvoy and breakConvoy given in Fig. 1 and 2. Let us
assume that one of the reconfigurations, e.g., breakConvoy, is
currently being applied. This means, its condition has already
been checked but the alteration of the configuration has not yet
been executed. The execution of a reconfiguration of RailCab
r1 joining the convoy makes no sense in this situation and
should not be allowed because the convoy will be deinstantiated
by breakConvoy. The problem is that the configuration is
in the process of being changed, but this is not reflected in
the intermediate state graph. Checking the applicability at the
beginning of a reconfiguration and executing the alteration at
its end is ineligible as a general solution. Our solution to this
problem encodes information about the deinstantiation of the
convoy into the configuration by acquiring a write lock of the
Convoy object when the breakConvoy reconfiguration starts
and releasing the lock when the reconfiguration ends. In the
opposite case, i.e., if joinConvoy starts first, it encodes into the
configuration that it requires the Convoy object by acquiring a
read lock and releasing it when the reconfiguration ends. This
approach is very suitable for a translation into PDDL since
locking functionality can simply be realized by defining new
predicates and functions for the locks. Since acquiring and
releasing all locking literals of a reconfiguration is done as an
atomic step (at the beginning and the end of the reconfiguration,
respectively), there can be no deadlocks when acquiring the
locks. For more details on the translation scheme we refer the
reader to [2].

Our model includes story patterns to move RailCabs or
convoys of RailCabs and story patterns related to convoy de-
/instantiation and membership change. All these story patterns
are available in the generated planning domain as action
schemata.

Listing 3 shows an excerpt of a plan that was generated by
SGPlan6 for a planning task involving 4 RailCabs. During the
interval [60–64], RailCabs rc2 and rc3 operate in convoy mode.
From 64 to 68, they break up the convoy operation because the
underlying domain specifies a Y junction between tracks t19,
t20, and t25, and they need to move along different routes to
arrive at their target locations. To do so, rc2 has to fall back,

i.e., it still occupies t19 at 68. Concurrently, i.e., during the
interval [60–68], rc0 moves from t16 to t18 but waits from 68
to 72 to not crash into rc2. To sum up, the reconfiguration plans
that SGPlan6 produces take advantage of parallel execution of
actions when possible, while guaranteeing that concurrently
executed actions do not interfere with each other. With regard
to the application scenario, this means that RailCabs operate
in parallel if they are sufficiently apart from each other, but
wait for the execution of other RailCabs’ reconfigurations if
necessary, e.g., to clear a common track segment.

III. HYBRID PLANNING

Besides the temporal planning approach for the coordination
of several RailCabs, e.g., to create a convoy each RailCab
computes single behavioral plans in order to move from its
initial position to its destination with Pareto optimal settings
on the lower level. Such plans are necessary as the RailCab
has only limited energy resources. The passengers can, e.g.,
change the velocity of their RailCab, which influences the
energy consumption.

A hierarchical hybrid planner is used for the purpose of
creating behavioral plans [8]. This hybrid planning approach
first computes an initial plan and forecasts continuous system
behavior. The purpose is the creation and adaptation of a plan
in order to always move with Pareto optimal settings from the
start position to the destination. The problem of planning is
modeled as a linear optimization problem and solved using the
Simplex algorithm.

Such a plan has to consider conflictive objectives. These
objectives have to be optimized which leads to a multi-objective
optimization problem. A Pareto set is the solution set of such
a problem and forms a (k − 1)-dimensional object. In this
context, k denotes the number of objectives involved in the
problem. The computation of a single Pareto front for each
track section is neglected in this paper. The interested reader
is referred to a detailed description in [10].

A multi-objective optimization, using the program GAIO
[9], [10] is performed, which results in Pareto fronts. Based on
the Pareto fronts several Pareto optimal configurations of system
parameters with different degrees of performance regarding
each objective are provided to the planner. The planner then
selects one of these sets of Pareto points for each track section.
A plan then consists of a set of Pareto points leading to Pareto
optimal settings at each track section.

The initially computed plan, based on the Pareto points
computed before starting the journey, does not take into account
the actual operating conditions during the journey, which might
deviate from the a priory assumed conditions, e.g., due to
environmental changes. Hence, only preliminary parameters
can be taken into account for the computation of feasible plans.

Creating and dissolving convoys, for example, leads to
states where the RailCabs do not move any longer with
Pareto optimal settings due to a considerable change of drag.
In a convoy each RailCab behind the leader moves in the
slipstream of the RailCab in front of it. This changes the
energy consumption at consistent movement speed dramatically
for most of the RailCabs and a new plan considering the new
energy consumption should be computed for every RailCab

10Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Fig. 4: An example Pareto front. The blue circle represents the Pareto point
selected by the planner while the red cross shows the working point.

that is affected by these changes. Additionally, the energy
consumption has to be decreased when moving in a slipstream
as the current energy consumption would increase the speed of
the RailCab and the timing assumptions, on which the temporal
planner relies, would not be met.

The same is true, if a RailCab leaves a convoy. It then
faces a higher drag and thus needs more energy to keep its
speed constant. Therefore, an adaptation of the Pareto front is
performed, as described in the following section. The planner
then computes a new plan that is based on new parameters,
which are calculated by the adaptation approach, in order to
always work on valid data.

IV. BEHAVIORAL ADAPTATION OF DIFFERING MODEL
PARAMETERS

As mentioned, it is hardly possible to avoid deviations
between the settings achieved by the use of previously computed
Pareto fronts and the real settings, reached during operation.
From this it follows that the Pareto points, on which the original
plan is based, become invalid and thus the entire plan becomes
invalid. To still be able to use a plan, which is as close to be
optimal as possible, a change of the Pareto front has to be
conducted.

Fig. 4 shows an example for a parameter change. The line
denotes the Pareto front computed by the use of the model
values and the blue circle shows the Pareto point selected
by the planner. Each Pareto point considered in this paper
has a comfort value, given by f1 and an energy consumption
value, given by f2. The currently measured comfort and energy
consumption leads to the working point denoted by a red
cross. This example includes considerable changes in the
energy consumption as well as between the measured comfort
value and the comfort value given by the selected Pareto
point. Such differences make the entire plan invalid and a
recalculation, based on the newly determined working point
must be conducted.

To be able to detect such deviations and to change the plan,
several values like energy consumption and passenger comfort

have to be measured continuously during RailCab operation.
Based on the measured values the current working point has
to be calculated.

It is not possible to simply compute new Pareto fronts,
leading to the measured working point as the changes of the
environmental parameters are not computable and it is possible
that the current working point is not Pareto optimal. In that
case no Pareto front, containing the working point exists. Thus,
an iterative approximation of the model Pareto front towards
the measurements is conducted.

A. Taylor Series Approximation

An approximation using Taylor Series expansion can be
performed, to successively approximate a Pareto front given
by model parameters closer to a working point, obtained by
measured values [11].

The functions, used to compute Pareto fronts for an entire
RailCab are rather complex and mainly a combination of the
multi-objective functions for single systems, presented in [8],
[12], [13] and [14]. The resulting Pareto points selected by
the planner are n-dimensional. To adapt a Pareto point to a
working point each dimension is considered individually.

Let x0 be the Pareto point and let xm be the working point.
First, a Taylor series for each parameter pi in dimension i
of the multi-objective function is computed, using the partial
derivatives as follows:

Ti(x) = f(x0) +

∂f(x0)
∂xi

1!
(x− x0) +

∂2f(x0)
∂xi

2!
(x− x0)2

+

∂3f(x0)
∂xi

3!
(x− x0)3 + · · ·

(1)

Additionally, the differences between the Pareto point and
the working point for each parameter ∆pi = ‖x0 − xm‖i
are computed. These differences are used to compute new
parameter values pin , as shown in the following equation.

pin = pi +
∆pi

Ti(xm)
(2)

The Pareto front is then newly computed, based on this
new parameters and the procedure is started over again until no
further reduction of the differences is achieved. The resulting
Pareto front is close to the working point and based on the
new environmental parameters. The planner then uses Pareto
fronts, based on the newly determined parameters to conduct a
replanning, leading to a new and feasible path.

B. Result

Fig. 5 shows an example for a recalculated Pareto front.
The values used in this example are abstract values without
units of measurement. Two simple functions were used to
represent passenger comfort and an energy consumption at
a specific movement speed. The functions lead to a two-
dimensional Pareto front. The axis f1 depicts the current energy
consumption and the axis f2 the current passenger comfort.

11Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Fig. 5: Recalculated Pareto front based on measurement point. The blue circle
shows the Pareto point selected by the planner. The red cross denotes the

working point. The original Pareto front has been adapted towards the
working point.

A low comfort value results in a high passenger comfort. In
the depicted example scenario the planner selected the Pareto
point at position (26.5,11.2) from the model Pareto front for
the current track section, framed by a blue circle in order to
reach the required comfort without consuming too much energy.
The measured data revealed a current working point at position
(10,5), which is framed by a red cross.

Such a difference between the Pareto point and the working
point makes the overall plan, used to move to the destination
invalid. In order to be able to compute a new plan an adaptation
of the Pareto front towards the working point is conducted, as
shown in Fig. 5. Based on these resulting values new Pareto
fronts can be computed, used by the planner to create a feasible
plan.

V. RELATED WORK

The multilevel planning approach presented in this paper is
based on the assumption that the planning tasks are inherently
hierarchical and can be separated into higher level and lower
level tasks. No interleaving between the planning techniques
is necessary; thus, they can be applied sequentially on their
respective abstraction levels (beginning at the highest level). For
systems where a strict separation of the planning tasks is not
possible, Marthi et al. [15] proposed an approach called angelic
hierarchical planning. Their approach provides the higher level
planner with models that allow to make guarantees on the
satisfiability of the lower level planning tasks. This prevents
the system from having to backtrack to a higher abstraction
level, which results in a significant speedup.

When researchers try to tie AI planning techniques with
the software engineering domain, their techniques often rely
on graph transformation systems. Estler and Wehrheim [16]
developed a heuristic search planner along with a technique
to learn domain-specific heuristics from modeling artifacts
(among other things from a meta-model). These techniques are
promising because of their intuitive representation and close

association to model-based software engineering. However,
up to today, they usually do not support time-consuming
reconfigurations.

Similar to our approach for the generation of temporal
plans, Tichy and Klöpper [17] presented an automatic trans-
lation of graph transformation rules into PDDL actions to
plan self-adaptive behavior. The support for time-consuming
reconfigurations was addressed only in terms of stereotypes;
concurrency issues were not treated. Our temporal planning
technique can be seen as an extension of their approach.

The use of Pareto optimal solutions is a common approach
for planning in multi-objective applications. Hongfu et al. [18],
e.g., solve the multi-objective problem of intelligent mission
planning in dynamic environments by a combination of Pareto
fronts, receding horizon control, fuzzy inference systems and
expert knowledge. In contrast to the approach presented in this
paper they select a Pareto point from the computed front, based
on expert knowledge.

Klöpper et al. [19] use Pareto based planning in multi-
agent mechatronic systems. In their system operation strategies
exist, that correspond to Pareto optimal configurations. These
operation strategies represent trade-offs between the system
objectives and expected system state changes regarding limited
resources, as e.g., energy and execution time. The resulting
Pareto optimal configurations are used as input to the planning
model, which is based on a state-action formalism. They also
use a hybrid planning approach, combining local planning and
reactive behavior for decision making in real-time.

VI. CONCLUSION

We presented a multilevel planning approach for self-
optimizing mechatronic systems that adapt itself to envoronmen-
tal changes. Many other planning approaches do not consider
environmental influences. A plan is often computed a priori
and followed by the autonomous system. Changes of the
environment, like newly detected obstacles, can then force
a replanning. Nevertheless, most times it is assumed that parts
of the environment, like weather, temperature, etc., have no
influence to the system. There are several applications for which
such an assumption does not hold. The presented RailCab
system is such a system that is directly influenced, e.g., by
drag changes which influences the energy consumption.

In our approach, Pareto optimal plans cannot be created
a priory due to unpredictable environmental influences, like
emerging headwind or temperature changes during movement.
Such influences lead to changing parameter values that have
to be taken into account. Therefore, the Pareto front that the
initial plan is based on is adapted online towards a measured
working point. After such an adaptation, the planner replans
using the updated parameter values.

In addition, there are planning tasks on a higher abstraction
level that are solved by an independent planning system. Plans
for the higher level planning tasks involve reconfigurations of
the system’s software architecture and influence parameters
used by the lower level planner to compute Pareto optimal
behavior. This higher level temporal planner allows to execute
system reconfigurations in parallel. Its planning tasks are solved
by translating them into a PDDL representation that can be
handled by off-the-shelf planning systems.

12Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Our combined approach is a first step towards a self-
optimizing system that computes temporal reconfiguration plans,
which change the software architecture of the system and solve
conflictive objectives. Furthermore, it is able to adapt its control
parameters to environmental changes like changing drag. In
theory, it can be applied to several applications that need to take
temporal properties and environmental changes into account.

ACKNOWLEDGMENT

This work was developed in the course of the Collaborative
Research Centre 614 “Self-optimizing Concepts and Structures
in Mechanical Engineering” and funded by the German
Research Foundation (DFG).

REFERENCES

[1] C. Henke, M. Tichy, T. Schneider, J. Bocker, and W. Schafer, “System
architecture and risk management for autonomous railway convoys,” in
Systems Conference, 2008 2nd Annual IEEE, April 2008, pp. 1–8.

[2] S. Ziegert and H. Wehrheim, “Temporal reconfiguration plans for self-
adaptive systems,” in Software Engineering (SE 2013), ser. Lecture
Notes in Informatics (LNI). Gesellschaft für Informatik e.V. (GI),
February 2013.

[3] S. Becker et al., “The MechatronicUML design method – process, syntax,
and semantics,” Software Engineering Group, Heinz Nixdorf Institute,
University of Paderborn, Tech. Rep., 2012.

[4] T. Fischer, J. Niere, L. Torunski, and A. Zündorf, “Story diagrams: A
new graph rewrite language based on the unified modeling language,” in
6th Int. Workshop on Theory and Application of Graph Transformations
(TAGT 1998), 1998.

[5] H. Ehrig et al., “Algebraic approaches to graph transformation II: Single
pushout approach and comparison with double pushout approach,” in
Handbook of Graph Grammars and Computing by Graph Transformation,
Volume 1: Foundations, G. Rozenberg, Ed. World Scientific, 1997,
ch. 4, pp. 247–312.

[6] M. Fox and D. Long, “PDDL2.1: An extension to PDDL for expressing
temporal planning domains,” Journal of Artificial Intelligence Research
(JAIR), vol. 20, 2003, pp. 61–124.

[7] Y. Chen, B. W. Wah, and C.-W. Hsu, “Temporal planning using subgoal
partitioning and resolution in SGPlan,” Journal of Artificial Intelligence
Research (JAIR), vol. 26, 2006, pp. 323–369.

[8] N. Esau et al., “Hierarchical hybrid planning for a self-optimizing active
suspension system,” in 7th IEEE Conference in Industrial Electronics
and Applications, IEEE. Singapore: IEEE, 18 - 20 Jul. 2012.

[9] M. Dellnitz, O. Schütze, and T. Hestermeyer, “Covering Pareto sets by
multilevel subdivision techniques,” Journal of Optimization Theory and
Application, vol. 124 (1), 2005, pp. 113–136.

[10] O. Schütze, K. Witting, S. Ober-Blöbaum, and M. Dellnitz, “Set oriented
methods for the numerical treatment of multi-objective optimization
problems,” in EVOLVE – A Bridge Between Probability, Set Oriented
Numerics, and Evolutionary Computation, ser. Studies in Computational
Intelligence, E. T. et al., Ed. Springer Berlin Heidelberg, 2013, vol.
447, pp. 187–219.

[11] J. Li, H.-C. Zhang, and Z. Lin, “Asymmetric negotiation based
collaborative product design for component reuse in disparate products,”
Computers & Industrial Engineering, vol. 57, no. 1, 2009, pp. 80–90.

[12] C. Romaus, J. Bocker, K. Witting, A. Seifried, and O. Znamenshchykov,
“Optimal energy management for a hybrid energy storage system
combining batteries and double layer capacitors,” in Energy Conversion
Congress and Exposition, 2009. ECCE 2009. IEEE, September 2009,
pp. 1640–1647.

[13] A. Trachtler, E. Munch, and H. Vocking, “Iterative learning and self-
optimization techniques for the innovative railcab-system,” in IEEE
Industrial Electronics, IECON 2006 - 32nd Annual Conference on,
November 2006, pp. 4683–4688.

[14] A. Pottharst et al., “Operating point assignment of a linear motor driven
vehicle using multiobjective optimization methods,” in Proc. of the
11th International Power Electronics and Motion Control Conference
(EPE-PEMC 2004), 2004.

[15] B. Marthi, S. J. Russell, and J. Wolfe, “Angelic hierarchical planning:
Optimal and online algorithms,” in Int. Conf. on Automated Planning
and Scheduling (ICAPS 2008), 2008.

[16] H.-C. Estler and H. Wehrheim, “Heuristic search-based planning for
graph transformation systems,” in Workshop on Knowledge Engineering
for Planning and Scheduling (KEPS 2011), 2011, pp. 54–61.

[17] M. Tichy and B. Klöpper, “Planning self-adaptation with graph transfor-
mations,” in Int. Symp. on Applications of Graph Transformation with
Industrial Relevance (AGTIVE 2011), 2011.

[18] H. Liu, X. Gu, J. Chen, and H. Liu, “Intelligent multi-objective receding
horizon control for ucav mission planning,” in Computer Science
and Information Processing (CSIP), 2012 International Conference on,
August 2012, pp. 1154–1158.

[19] B. Klöpper, S. Honiden, and W. Dangelmaier, “Divide & conquer in
planning for self-optimizing mechatronic systems - a first application
example,” in Computational Intelligence in Control and Automation
(CICA), 2011 IEEE Symposium on, April 2011, pp. 108–115.

13Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Testing the Reconfiguration of Adaptive Systems

Kai Nehring, Peter Liggesmeyer
AG Software Engineering: Dependability

University of Kaiserslautern
Kaiserslautern, Germany

Email: nehring@cs.uni-kl.de, liggesmeyer@cs.uni-kl.de

Abstract—Adaptive systems can change their internal struc-
ture in order to respond to changes in their environment.
These changes can cause malfunctions if not applied correctly.
Current test approaches do not cover every aspect of the
reconfiguration sufficiently. In this paper, we present a novel
approach for testing the reconfiguration process of adaptive
systems with respect to structural changes. The approach
presents testers with guidelines for choosing the appropriate
test strategy for a certain aspect, such as order of recon-
figuration, state transfer, and transaction handling, of the
reconfiguration procedure.

Keywords-adaptive system; testing; reconfiguration; test pro-
cess model; structural changes

I. INTRODUCTION

Dynamically adaptive systems are a promising alternative
to static systems when a system must modify its structure
or behaviour due to changes in its executional context.
Testing such systems, however, can be a challenging task
since their structure and even their functionality may change
at runtime — a test approach would have to take this
into account. Current test- and verification approaches fo-
cus on the functionality and execution environment[4], the
adaption policy[5][7], and automated evaluation of struc-
tural changes[3], but not on the reconfiguration itself on
the executable system. Furthermore, some test approaches
require complex (formal) models of the system in order to
be applicable[6].

We have already illustrated how the visualisation and
inspection of structural changes in adaptive systems can help
to detect potential defects, and, at the same time, omit formal
models[1]. However, other aspects, such as the state transfer
from an object to its replacement, which are often interwo-
ven with structural changes remained uncovered, too. We
propose a novel approach to test the reconfiguration process
of adaptive systems with respect to structural changes. The
approach is designed as an additional test activity, hence it is
a supplement and not a replacement for the aforementioned
approaches.

In Section II, we propose a process model to test the
reconfiguration procedure. Section III summarises our expe-
rience when we applied the test process on adaptive systems.
Section IV completes with a conclusion and an overview of
the future work.

II. TEST PROCESS MODEL

We propose a self-contained iterative test process model
that addresses issues that may arise when structural changes
are involved during the reconfiguration, such as replacing the
instance of component X with an instance of component Y .
The test process model is comprised of 6 iterations, each of
which focuses on a specific aspect of the reconfiguration,
such as the state transfer between a component and its
replacement. Furthermore, the process model can be tailored
to fit the system under test, i.e., iterations can be omitted if
they focus on an aspect that is not supported in the system
under test. Each iteration is further divided into three phases:

1) Preparation, in which workload, instrumentation
probes, etc. will be prepared

2) Execution, in which the workload will be executed in
order to collect data about the system’s behaviour

3) Evaluation, in which the obtained runtime data is
evaluated

Breaking down an iteration into phases not only allows the
reuse of information from other iterations, but also to split
and dispatch the procedure to multiple roles. The Domain
expert provides the workload (i.e., the input data) that is
executed at runtime. The expert also evaluates the result of
the processing and determines whether the system processes
the data correctly. Developer and System Manager execute
the workload on the instrumented system. The Architect
evaluates the structural changes.

The separation into phases has been omitted for simplicity
reasons in the following outlines of the iterations.

A. Iteration 1 — System Overview

Understanding the internal structure of a system is essen-
tial to estimate effects of changes in its structure. Design
documents are often a valuable source of knowledge, but
they are, however, not always very reliable for several
reasons:

• Development and maintenance can cause the system’s
structure to change over time. Changes in the source
code are not always reflected in the design documents.

• The system has not been implemented as specified.
• etc.

14Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Goal of Iteration 1 is to create a (virtually) complete
runtime model of the system, which can later be used
to select the actual components for further investigation.
However, the iteration can be omitted if detailed and reliable
knowledge of the system’s runtime composition is available.

Assignments to attributes, which hold references to other
objects and their values, must be tracked in order to create
a runtime model. Since design documents can be outdated,
inconsistent, or incomplete, the attributes are best collected
from the source code. Instrumentation probes must be cre-
ated for each attribute to track changes. Furthermore, a
representative workload must be prepared in order to execute
the system’s functionality in different states/configurations,
and to cause reconfigurations. An external trigger must
be prepared if the reconfiguration is not induced by the
workload itself.

The workload must be executed on the instrumented sys-
tem. Depending on the approach that is used to implement
the functionality, the workload might be required to run
twice — before and after the reconfiguration — to track
all utilised object–instances. Particularly components which
utilise lazy loading would be incomplete otherwise.

Analysis of the collected information will not only unveil
the object/component composition at runtime but also the
order of changes during the reconfiguration. However, the
vast amount of information may be overwhelming and may
make further analysis more difficult since potentially lots
of objects are displayed although they are not linked to the
reconfiguration. Furthermore, the runtime behaviour of the
system might be altered due to the instrumentation overhead,
which may cause the system to change the reconfiguration
strategy[2].

B. Iteration 2 — Structural Changes

The order of instructions required to perform a recon-
figuration is usually flexible to some degree. Although
all considered execution paths eventually lead to a valid
composition or configuration, quality-of-service and system
integrity might be affected by a particular strategy. A recon-
figuration strategy which focuses on system integrity might
passivate all components before changes are performed —
this might result in a reduced quality-of-service since the
system is either unavailable or operates in a gracefully
degraded mode (for a longer period of time). A quality-of-
service based approach might try to minimise the downtime
by performing as many steps as possible parallel to normal
operation, which may increase the risk of inconsistencies in
the system’s data. The structural changes in the course of
the reconfiguration are evaluated in Iteration 2.

Typically, only few components are affected by a recon-
figuration. Tracing changes in such components can help in
breaking up the complex system into partitions. The result of
Iteration 1 can be used to eliminate unnecessary components,
which results in a smaller set of probes to instrument the

system. A component can be considered unnecessary, if it
is neither involved in, nor affected by the reconfiguration.

The workload must fulfil the same requirements as in
Iteration 1, and it can even be reused if Iteration 1 has
been executed. It must then be executed on the instrumented
system.

Analysis of the trace is best done using a graphical
representation, such as a series of object diagrams[1]. In
such an approach, the trace will be transformed into a series
of object diagrams, at which each state, caused by a change
in the structure, is expressed by a new object diagram.
Developers and architects evaluate each diagram and decide
whether the system passed through an illegal state. Unlike
other methods, such as AMOEBA-RT[3], this approach does
not require a formal model, such as a temporal logic model,
to describe the system states.

C. Iteration 3 — Data Integrity

The system is in a transitional state during the recon-
figuration. It can operate with either reduced or mixed
functionality, be non-functional at all, or, in the worst case,
in an inconsistent operational state. The approach used to
achieve adaptability not only has a great influence on the
observable behaviour, but also on system integrity and data
integrity. Iteration 3 tests the data integrity in presence of a
(increasing) load, such as incoming user requests.

The type of workload depends on the strategy used
to achieve adaptability, and is distinguished between step
load and ramp load. While ramp load slowly increases the
workload on the system, step load suddenly puts a lot of
pressure on the system, displayed in Figure 1. The system’s
behaviour on step load can point to potential defects, if
the system implements a load-based adaptation strategy[2].
Furthermore, if the system is designed to buffer user requests
while it is reconfigured, then a step load-like increase of
requests could cause the buffer to run out of space before the
reconfiguration has been completed. To test the behaviour of
the system under these conditions, the load must be sized
accordingly.

The system should not show unexpected behaviour, such
as crashes, or lost requests, that can be traced back to the
reconfiguration. Furthermore, it is advisable to verify that
all structural changes during the reconfiguration have been
applied correctly in order to preclude the possibility that a
faulty trigger prevented the reconfiguration. If a queue (or,
in more general, a “buffer”) is used to buffer user requests,
additional tests are required to ensure that it satisfies the
following requirements:

• The queue/buffer must either be properly sized or be
resizable in order to prevent the loss of user requests
according to the quality requirements.

• The order of requests must be preserved, if not other-
wise specified.

15Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Time

Load

Threshold

(a)
(b)

Figure 1. Ramp load vs. step load: ramp load (a) changes continuously
whereas step load (b) changes suddenly. Reconfiguration of the system
occurs if the load exceeds a predefined threshold.

• All buffered requests must be processed after the re-
configuration has been completed, or actions have to
be taken if the reconfiguration failed. The order of
the execution must be equal to the order in which the
requests were buffered, if not otherwise specified.

• New requests must be buffered until all previously
received requests have been executed, if not otherwise
specified.

D. Iteration 4 — State Transfer

A stateful component may be instructed to transfer its
internal state to the replacement if it is about to be replaced.
Iteration 4 checks whether the state of a component will be
transferred correctly to its replacement, and, if necessary,
type conversion is done in a way so that the replacement
is fully operational. Furthermore, potential access violations
due to the reconfiguration on concurrent systems can be
checked.

A set of instrumentation probes should be prepared in
order to monitor the runtime composition. If a component
X is about to be replaced with Y , and both X and Y are
instances of the same type, then the instrumentation facility
must be able to distinguish them, e.g., by recording their
memory addresses.

Furthermore, two workloads must be prepared. The first
workload is applied on the system before the component is
about to be replaced — the preload phase. It is responsible
to set up the state of the instance of component X that
must then be transferred to the replacement Y . The sec-
ond workload must be executed either during or after the
reconfiguration, depending on whether the system utilises
concurrency.

On a purely single threaded system, the second workload
is executed solely to verify that the new instance Y is fully
operational and (optional required) conversion of the internal

state has been successfully carried out.
On a multi threaded system, the second workload must

be executed while the reconfiguration is running to test the
following situations:

• The system must not alter the state of instance X once
the state transfer has begun, i.e., user requests have to
be stored in a buffer, if not otherwise specified.

• The system must be fully operational after the recon-
figuration, i.e., the state transfer has been successfully
carried out.

After the state transfer (of instance X) has been per-
formed and workload 2 has been executed, the replacement
(instance Y ) should be comprised of the required data of
instance X and of the new data. Depending on the type of
system, this can manifest in the following situations:

• All data, e.g., items in a shopping trolley, have been
added to the replacement.

• All data, e.g., GPS coordinates of a route, have been
added to the replacement and the order has been
preserved. In addition, all new data have been appended
to the previous ones.

• A new state, e.g., a new random number, has been cal-
culated correctly using the previous state of instance X .

E. Iteration 5 — Transaction Handling

The reconfiguration of a system can impact transaction
capable components either directly, if the component is
target of a reconfiguration, or indirectly, if the transaction
capable component utilises a component that is part of
the reconfiguration or vice versa. Iteration 5 checks the
transaction handling during a reconfiguration.

The system specification should provide information
about the observable behaviour when a reconfiguration is
triggered while a transaction is running. It can most likely
be narrowed down to the following two situations:

1) The reconfiguration must be delayed until the trans-
action has been finished. A finished transaction can
be either successful or unsuccessful in which case
rollback has to be performed.

2) The transaction must be aborted and a rollback must
be performed to undo changes. Nevertheless, the re-
configuration must be delayed until the rollback has
been completed to ensure data integrity.

The progress of a transaction is, however, of no interest,
i.e., a component X must not be passivated (e.g., in order
to replace it) even if its job is done. In case of a rollback,
which can still occur if the last operation in the transaction
fails, the component X might be needed again.

A set of instrumentation probes should be prepared in
order to monitor the component composition. Also a work-
load must be prepared to utilise the system. Furthermore,
the reconfiguration must be triggered while a transaction is
running.

16Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



During the execution, a snapshot of the datasource that
is about to be altered should be made to simplify the
integrity check after the reconfiguration has been performed.
The reconfiguration must not only be triggered while the
workload is executing but also while a transaction is running.

The evaluation of the reconfiguration encompasses several
steps. First, the system composition must be checked —
the system must be in an operational state. This includes
that no crashes or deadlocks occurred at runtime due to an
incomplete system composition (e.g., crashes due to null
pointer exceptions) or passivated components.

Depending on the specification of the system, the trans-
action must be either be rolled back or the reconfiguration
must be delayed until the transaction has been finished. The
latter includes a rollback, i.e., the system must not change
its composition while a transaction is running.

In the last step, the data integrity must be evaluated. The
data must either be unaltered (in case of a rollback) or fully
updated.

F. Iteration 6 — Identity

It is in some cases important to know whether one or more
components use the same instance of a component X or
instances of the same type T , where X is an implementation
or a subtype of T . Iteration 6 focuses on the identity of the
instances.

A typical workload must be executed on an instrumented
system. The instrumentation facility must be able to distin-
guish multiple instances of the same type. Common practice
is to record the memory address of each instance. Developers
then compare the utilised objects and determine whether the
usage scenario is acceptable.

III. EVALUATION

We have evaluated the test approach on three systems so
far:

1) adaptive Tic-Tac-Toe: a version of the well known
game Noughts and Crosses, which automatically ad-
justs the game level of the computer player in relation
to the human player’s skills

2) an adaptive ERP system, which utilises a local cache
if the connection to the off-site master ERP system
is faulty. It automatically synchronises and utilises the
off-site ERP as soon as it becomes available again

3) an Emergency Detection System, which can be used to
monitor humans in an ambient assisted living scenario.
The system utilises a variety of sensors, such as pulse
sensors, fall sensors, etc. A new sensor will be utilised
after it becomes available to the system and if the
quality-of-service level can be improved by the new
sensor

A. adaptive Tic-Tac-Toe

The only reconfigurable component in the program is the
computer player, whose playing strategy (Easy, Medium, and
Advanced) can be adjusted after each match according to the
following predefined rules:

1) The game level shall be increased to the next higher
level if the computer loses two consecutive matches.
The game level remains unaltered if the highest game
level has already been reached.

2) The game level shall be decreased to the next lower
level if either

a) two consecutive matches end with a draw, or
b) the computer player wins two consecutive

matches.
The game level remains unaltered if the lowest game
level has already been reached.

Applicable iterations are:
• Iteration 2 to create an overview of the reconfiguration

process and to track structural changes
• Iteration 6 for an overall view of the used instances
The structure of the game is rather simple since only the

play strategy can be varied. In the course of tailoring, the
remaining iterations have been removed for the following
reasons:

• The structure of the computer player is simple; an
complete overview is unnecessary

• The play strategy cannot be replaced while a match is
running

• No state transfer among the game strategies is sup-
ported

• The game does not utilise transactions
Furthermore, the tracing of the program would deliver

identical results for Iteration 2 and Iteration 6, which is
why we reused the tracing results of Iteration 2 for further
analysis in Iteration 6.

The evaluation of the trace unveiled abnormal behaviour
whenever the human player repeatedly won matches in the
game level Advanced. The computer player reconfigured
itself even though it already utilised the Advanced strategy
level, which contradicts the requirements. Also, we could
observe a strange behaviour where the Advanced level was
replaced with another instance of the same class, which
does not change the behaviour of the computer player.
Further examinations located the defect in the method which
increases the game level. The method did not identify
the level Advanced correctly. Traditional testing did not
uncover the defect since Advanced is the highest level in the
current version of the game. Furthermore, the game did not
expose unusual behaviour to justify further investigations.
However, the defect would have caused stagnancy in the
level Advanced once further levels would have been added
to the game.

17Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



B. ERP System

The class diagram in Figure 2 shows a simplified overview
of the system. The CashRegisterController com-
prises a reference to an implementation of the ERP interface.
This reference is subject to change if the master ERP is
replaced with the cache, and vice versa.

Figure 2. ERP class diagram (Key: UML class diagram)

A full system trace in not required since the reconfigurable
portion of the system is rather small. The current version
does not allow a cash register system to operate while the
system is being reconfigured, which is why Iteration 3 is
not applicable. Neither is Iteration 5 since the system does
not utilise transactional components beyond the database
management system. Besides the reconfiguration process
itself (Iteration 2) and the state transfer test (Iteration 4), the
component identity (Iteration 6) is subject to test to ensure
that the same master ERP system is used, i.e, the same server
address and identical login credentials are used.

Two sets of data were prepared in order to test the state
transfer. The first set was used to preload the system with in-
formation, which were stored in the master ERP’s database.
The second data set was used to populate the ERPCache
after the reconfiguration “master ERP to ERPCache”. That
data was transferred to the master ERP once it became
available again, which resulted in a combined set of data.

Two snapshots were created to gather the internal state
of the master ERP — one before the first reconfiguration
and one after the final reconfiguration. The analysis of the
ERP-data did not unveil deviations from the expected data,
i.e., the state transfer has been implemented correctly.

The tracing results of Iteration 2 were reused to check
whether the master ERP was the same before the first
reconfiguration (transition to the ERPCache) and after the
second reconfiguration (transition back to the master ERP).
The hash codes of the utilised master ERP instances were
equal in both cases, i.e., the same ERP system was used.

C. Emergency Detection System

The Emergency Detection System (EDS) is a monitoring
system, applicable for example in an ambient assisted living

scenario. It constantly evaluates informations which it ac-
quires from several sources, such as blood pressure sensors,
pulse sensors, and location sensors. If it detects a critical
situation, it can execute a variety of protocols, e.g., notify
emergency medical staff. A critical situation can be caused,
for example, by a sudden change in vital signs, or by a fall
of the monitored person. The system automatically selects
a sensor configuration to offer the highest possible service
quality. Furthermore, it reconfigures itself to utilise newly
added sensors without service interruption.

If a new sensor is registered at the EDSManager, which
is a centralised administration component to keep track
of all available sensors, its contribution to the system is
analysed. The system will be reconfigured to utilise the new
sensor if the new sensor is considered valuable. A sensor
is rated valuable if the EDS-evaluation-algorithm can create
a sensor configuration that results in a higher quality-of-
service, either by adding new kind of sensor, which was
not available before (e.g., a fall sensor), or by replacing
an existing sensor with a higher grade sensor (e.g., higher
Safety Integrity Level (SIL)). The sensors are connected to
a an implementation of the IEDSHandler-interface. Each
supported configuration is represented by its own implemen-
tation, i.e., an implementation that supports only a pulse
sensor and a pressure sensor can be distinguished from an
implementation that supports pulse sensor, pressure sensor,
and a location sensor. Each IEDSHandler-implementation
processes the sensor-signals and sets off the alarm if a
critical situation is detected. This design offers flexibility
since a new handler can be set up in the background. If it
is fully constructed, the new handler replaces the old one
without service interruption.

According to the system description, sensor signals are
not processed while the handler is replaced, and historic data
is not transferred either. Hence, Iteration 3 and Iteration 4
are not applicable. The system does not support transaction,
which is why Iteration 5 is not applicable, too. The com-
ponent identity (Iteration 6) is of interest to identify which
sensors are utilised at a particular point in time.

The reconfiguration test had been divided into three
stages:

1) The initial system configuration comprises a blood
pressure sensor (SIL 2) and a pulse sensor (SIL 2)

2) A location sensor (SIL 1) is added — the system
should integrate the location sensor.

3) A new pulse sensor (SIL 3) is added — the system
should replace the previously used SIL 2 pulse sensor
with the SIL 3 pulse sensor.

Starting from the initial configuration, the location sensor
was added. The system incorporated the location sensor
without service interruption. Then the new pulse sensor was
added. The evaluation of the object diagrams showed that a
new handler was created, which utilised the pressure sensor,
the location sensor, and the new (SIL 3) pulse sensor.

18Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



The system went through a total of 33 states from startup
to the final configuration. Analysis of the object diagrams
showed that the integrity was not compromised at any time.

IV. CONCLUSION AND FUTURE WORK

Structural changes may not be the only concern in an
adaptive system when a reconfiguration is performed. In
order to test state transfer, transaction handling, etc., a
more rigour testing strategy is necessary. In this paper, we
presented an approach to test the reconfiguration procedure
of adaptive systems with respect to structural changes having
regard to the special properties, such as state transfer. The
iterative process model can be tailored to fit the system
under test. Furthermore, the process model is designed to
be an additional test activity, not a replacement for other
processes and therefore focuses on the reconfiguration only,
i.e., component test, etc. remain unaffected.

There are extensions to this work, which have not been
discussed yet. Quality requirements, such as maximum tol-
erable reconfiguration time, have not been included to the
test process model, which is to be addressed in future work.

REFERENCES

[1] K. Nehring and P. Liggesmeyer, “Tracing structural changes of
adaptive systems,” in ADAPTIVE 2010: The Second Interna-
tional Conference on Adaptive and Self-Adaptive Systems and
Applications, 2010, pp. 142–145.

[2] S.-W. Cheng, D. Garlan, and B. Schmerl, “Architecture-
based self-adaptation in the presence of multiple objectives,”
in Proceedings of the 2006 international workshop on Self-
adaptation and self-managing systems, SEAMS ’06, 2006, pp.
2–8.

[3] H. J. Goldsby, B. H. Cheng, and J. Zhang, “AMOEBA-RT:
Run-Time Verification of Adaptive Software,” 2008, pp. 212–
224.

[4] Component+ Partners, “Built-in testing for component-based
development,” in EC IST 5th Framework Project IST-1999-
20162 Component+, Technical Report D3, 2001.

[5] F. Munoz and B. Baudry, “Artificial table testing dynamically
adaptive systems,” CoRR, abs/0903.0914, 2009.

[6] J. Zhang and B. H. C. Cheng, “Using temporal logic to
specify adaptive program semantics,” in Journal of Systems
and Software, Volume 79(10), 2006, pp. 1361–1369.

[7] J. Zhang, H. J. Goldsby, and B. H. Cheng, “Modular verifi-
cation of dynamically adaptive systems,” in AOSD ’09: Pro-
ceedings of the 8th ACM international conference on Aspect-
oriented software development, 2009, pp. 161–172.

19Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Adaptive System Framework
A Way to a Simple Development of Adaptive Hypermedia Systems

Balı́k Martin and Jelı́nek Ivan
Department of Computer Science and Engineering

Faculty of Electrical Engineering, Czech Technical University
Prague, Czech Republic

e-mail: {balikm1, jelinek}@fel.cvut.cz

Abstract—Adaptive hypermedia systems (AHS) are complex
systems that require an expensive and time-consuming design
and development process. Complex solutions are usually realized
as reusable frameworks and program libraries. However, there
is currently no widely acceptable solution for building AHS.
Based on our research, we are developing a framework that
could significantly make the design and development of AHS
easier. First, we formalized the adaptive system architecture,
and then, we defined basic structures for storing required data.
Further, we designed the adaptation and integration modules
and developed reusable adaptive web user interface components.
Such a framework is considered to become a foundation stone
for various types of AHS.

Keywords—adaptive hypermedia; personalisation; framework;
software development

I. INTRODUCTION

The purpose of adaptive hypermedia systems (AHS) is
to adapt content, presentation and navigation of hypermedia
to satisfy user’s needs and preferences. The fundamental
principle of AHS is to observe user’s behavior, to build a user
model reflecting all user’s characteristics, e.g., knowledge,
preferences, or event history, and to customize the pages
presented to the user based on these characteristics. The aim
of our research is to provide a reference model of AHS and
its implementation that would contribute to the facilitation
of an AHS development process.

The Generic Ontological Model for Adaptive Web En-
vironments (GOMAWE) [1] forms a theoretical basis for
an application framework that should rapidly simplify and
speed up the AHS development. This is achieved by reusable
ready-to-use software components provided by the framework
implementation and extensibility of the framework for further
use cases and novel technologies.

The Adaptive System Framework (ASF) was built to help
a software developer create adaptive web applications. ASF
provides the most typical AHS components serving as building
blocks for further development. ASF is based on the theoretical
model and satisfies the following important requirements. To
be generally applicable, the framework has to be split into com-
ponents with independent responsibilities. To follow generally
accepted solutions to common application problems, design
patterns [2] should be extensively used. The implementation
of the framework should be based on well-known and widely
used application frameworks. In contrast to other frameworks
focusing on the users’ collaboration [3] or adaptation process

modeling [4], our framework aims at formalization of adap-
tive system architecture. Further, it focuses on targeting the
problem of a storage layer abstraction, foundations of the data
structures needed for a user modeling and providing a basic
set of adaptation-oriented user interface components.

The paper is structured as follows. Section 1 deals with the
description of AHS and the tasks to solve. In Section 2, a cur-
rent state of the art of the discussed topic is being reviewed. In
Section 3, an ASF framework is described in detail focusing on
individual layers. In Section 4, both an evaluation method and
application of the framework in a prototype implementation is
discussed. Finally, the paper concludes by summarizing results
of the research and indicates the directions of the future work;
see Section 5.

II. RELATED RESEARCH

Hypermedia adaptation has become a topic of a re-
searchers’ interest for almost 15 years. The researchers have
been trying to formalize an adaptive system architecture,
behavior and to line up with the existing web development
standards. Since self-adaptive systems are complex, they re-
quire a special approach in the process of designing and
developing such projects.

In the early stage of the AHS research, the model AHAM
with its implementation AHA! [5] was the first widely used
architecture of the adaptive systems. The AHAM domain
model can be represented by single ontology, since it deals
with the concepts and their mutual relations. However, it was
not designed to deal with multiple ontologies. The AHA!
system is built on the basis of outdated technologies, and
the web user interface is not in compliance with modern
web standards. Therefore, we offer the improvements which
lie in building a novel framework based on up-to-date web
technologies.

In the following text, we present a layout of already
existing adaptation frameworks and libraries.

GRAPPLE (Generic Responsive Adaptive Personalized
Learning Environment) [6] has been developed at the Eind-
hoven University of Technology, as a part of the FP7
project [7]. This system is focused on adaptive learning. It is
integrated with existing learning systems (e.g., Blackboard [8]
or Moodle [9]). The most important contribution of this
project lies in integrating the adaptive delivery of the teaching
materials for the course into a supported learning process.

20Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



RDF
Reactor

JPA

Hibernate
Hibernate Empire

DB Triple
store

...
RDF2GO

Jena / Sesame

Storage layer implementationAlgorithms
implementation

UI implementation

Storage interfaceReasoning interfaceUI interface

JSF

Primefaces

...

Adaptive UI controls
extensions BO exceptionsHelper classesSpring framework

User

Figure 1. Adaptive system framework architecture

Another project, specifically focused on adaptive learning,
is the Adaptive eLearning Platform [10]. This system is the
implementation of the Virtual Apparatus Framework, a content
development paradigm modeled after the process of developing
a teaching lab activity. The approach used in this project is
tightly connected to the learning process and is based more on
pedagogical principles than on software engineering.

A further promising project is also HyperAdapt [11]. In
this project, a specialized approach utilizing an aspect-oriented
programming is used. The authors place the adaptivity into
separate modules called adaptation aspects. The aspects are
not applied on a model level, but on XML documents.

One of the solutions intended to extend legacy web
applications with adaptive behavior is the Adaptive Server
Framework [12]. Compared to our solution, this project is
focused on server-side components only. The design principle
is to separate the implementation of adaptive behavior from the
server application business logic. The coupling of components
is ensured by a message-based communication.

A similar solution is the Rainbow project [13]. This project
uses an architecture-based approach. The system adaptation
is predefined by the architecture style of the system. The
commonly used design principle is the principle of a modular
architecture.

Another solution partially inspiring our design of
GOMAWE is the MUSE semantic framework [14]. The frame-
work is built on multidimensional ontological planes. The
intersection between the planes allows the representation of
semantic rules. A similar principle is used in GOMAWE,
where a multidimensional matrix of rules is used to infer the
information not explicitly stored in the user model.

In comparison with other solutions, our ASF project aims
at supporting not only adaptive learning, but also adaptive
hypermedia systems in general. The purpose of our project is
to provide a reusable solution that could be used by the devel-
opers of adaptive applications. We formally described adaptive
hypermedia within the GOMAWE model and designed the

framework that will be described in detail in the following
sections. The Adaptive System Framework is a solution for
a simpler and rapid development of AHS.

III. FRAMEWORK ARCHITECTURE

The ASF architecture is generic. It defines an interface
of various layers of the potential system, and therefore its
implementation can be realized in multiple programming lan-
guages. Fig. 1 represents the description of ASF architecture
based on our GOMAWE model. The ASF architecture consists
of the layers replacing the GOMAWE Storage, Reasoning
and UI interface layers. The main highlighted components
of the core framework library define the fundamentals of
the architecture. The default implementation is built on the
selected persistence frameworks supporting relational database
and triple stores. In our experiments the storage layer was
based on various frameworks, e.g., JPA, Hibernate, Empire, or
RDF Reactor. However, our framework can be extended by any
other implementation of the storage interface. The extensions
are indicated by the ‘. . . ’ symbol in the diagram; see Fig. 1.
The same situation is in case of algorithms performing the
adaptation above the storage layer. Some algorithms are part
of the framework, others can be added by the developer as an
implementation of the reasoning interface.

The user interface is based on Java Server Faces (JSF)
and is supported by a Primefaces components suite [15]. Our
goal is to extend basic web components by the adaptation-
specific extensions; see Fig. 1. We think that there are several
adaptation techniques that the framework can provide “out
of the box” allowing the developers to apply the adaptation
without any need of additional work.

A. Data storage

One of the most important parts of every adaptive system is
the user model. This is the repository, where information about
the user is stored. This information is used in the adaptation
process to filter information and personalize the presentation
according to the user’s preferences.

21Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



«interface»

T : Object

IAdaptationAlgorithm

adapt(T)  :T

«interface»

T : IContentObject

IContentAdaptationAlgorithm

::IAdaptationAlgorithm
adapt(T)  :T

«interface»

T : ILink<?>

ILinkAdaptationAlgorithm

::IAdaptationAlgorithm
adapt(T)  :T

«interface»

T : Collection<? extends ILink<?>>

ILinkGroupAdaptationAlgorithm

::IAdaptationAlgorithm
adapt(T)  :T

Figure 2. Adaptation algorithms classification

We divided the user data into two parts – the user profile
and user model. The user profile contains explicit user’s prefer-
ences. This data is corresponding to the “settings page” and is
stored as key-value pairs. The key is usually a constant string
defined by the developer of the application. The user model, on
the other hand, stores the data observed while the application
monitors the user. The information is always associated with a
domain object and represents the user’s relation to the object,
e.g, user’s knowledge of the topic, user’s preferences, or their
past experience. The user model corresponds to the overlay
over the application domain model.

The access to the user model and user’s profile is sup-
ported by an adaptation manager. The adaptation manager
implementation is based both on the Singleton Design Pattern
providing a manager instance and the Factory Method Design
Pattern used for creating domain-specific model instances for
an individual user.

In our design, the user model has a special architecture.
Each attribute is assigned to one dimension. Dimensions can
be custom-defined for each adaptive system. The dimension
forms a group of related attributes. It can be visualized as
a multidimensional matrix.

The multidimensional user model is formally described as
follows:

Definition 1 (Multidimensional User Model). The Multidi-
mensional User Model is a tuple MUM = (D,A, V )

r : A→ V |∀a ∈ A : r(a) ∈ Va ∧ r(a) ∈ D, (1)

where D is a finite set of dimensions, A is a finite set of
attributes, each associated with a particular dimension, V is a
set of attribute values and Va is the domain of attribute a.

Another important part of the adaptive system storage is the
rule repository. The rules can represent conditions defined by
the author of the content of the application, e.g., by a teacher
who prepares an adaptive course, or they can be generated
by specialized adaptation algorithms. The rules assume that
the user-model characteristics are associated with predefined
dimensions. The dimensions can be used to filter the rules
while the rules are being evaluated. This contributes to better
performance and helps the designer of an adaptive algorithm
to maintain the rules easier.

Both the domain and the user model can be represented
by simple concepts and their relations. However, our solution
was designed to use multiple lightweight ontologies. The use
of ontologies was motivated by the requirements of the data
semantics, data exchange and integration among applications,
and as well, by the need to infer the information implicitly
stored in the user model.

The adaptive process is executed above the storage layer
and acts as a mediator between the raw data and the user.

B. Adaptive behavior

One of the goals of the framework optimization is to
make components of an adaptive system reusable and generally
applicable. To achieve this requirement, we defined a general
interface over any algorithm that will be used to perform the
adaptation (Fig. 2).

The adaptation algorithms are further divided according to
the “adaptation techniques taxonomy” (Fig. 3). A simplified
version of the taxonomy is based on the taxonomy defined
in [16]. Less important techniques currently not implemented
by the framework were excluded from the original taxonomy.
A content adaptation, link adaptation and link-group adaptation
algorithms are specified in the framework.

Content
Adaptation
Techniques

Adaptive
Presentation
Techniques

Adaptive
Navigation
Techniques

Inserting/removing
fragments

Altering
fragments

Link Sorting/
Ordering

Link Annotation

Link Generation

Link Hiding

. . .

. . .

Figure 3. Simplified adaptation techniques taxonomy

22Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



A content adaptation algorithm is an algorithm which is
used to transparently transform the content of the domain
concepts based on the user model. It can be used to substitute
the elements of the domain concepts. For example, we can
recognize various extents based on the user’s knowledge
stereotypes (beginner, advanced, expert).

A link adaptation algorithm is intended for customizing
a single link. On the other hand, the link-group adaptation
algorithm assumes a collection of the links to serve as both
input and result. The links can be adapted by sorting. The
input collection is processed, and the order of the links is
modified. A different approach is used for a link generation. In
this case, the result is not dependent on the adaptation function
input, since the data is retrieved from a repository. Other link
adaptation strategies include a direct guidance, link annotation
or adaptive link hiding.

There are two main types of the link adaptation algorithms
in the framework:

• adaptation based on the current context, where the
existing links can be sorted, filtered, etc.

• link generation, where the algorithm is responsible
only for retrieving the input data. A default value can
be provided to the adaptation function. It can be used
in case when the user disables the adaptation, or if
there is not sufficient input data to generate the links
automatically.

In GOMAWE, the adaptation was designed as an
extendable set of black box components that perform the
adaptation based on the information stored in the user model.
A framework implementation (Fig. 4) is realized as a Strategy
Design Pattern [2]. The intent of the Strategy Design Pattern
is, first, to define a family of algorithms, second, encapsulate
each of them, and third, make them interchangeable. It enables
the algorithm to vary independently of the clients that use it.

We can define an elementary adaptation as an adaptation
function.

Definition 2 (Adaptation Function). An Adaptation Function
AF is a transformation between default and adapted hyperme-

IAdaptationAlgorithm

«interface»

T : Collection<? extends ILink<?>>

ILinkGroupAdaptationAlgorithm

::IAdaptationAlgorithm
adapt(object :T)  :T

T : ILink<S>
S : IPersistable<?> & IRateable

SimilarByContentLinkAdaptationAlgorithm

adapt(linkList :Collection<T>)  :Collection<T>
SimilarByContentLinkAdaptationAlgorithm(centroidObject :S)

T : IPersistable<?>

SimilarByUserWalkLinkGenerationAlgorithm

adapt(defaultLinkList :Collection<? extends ILink<T>>)  :Collection<? extends ILink<T>>
SimilarByUserWalkLinkGenerationAlgorithm(walkRepository :IUserWalkDAO<? extends IUserWalk<T>>, currentUser :IUser)

LinkGroupComponent

generateContent()  :void

ILinkGroupAdaptationAlgorithm.adapt()

< T->Collection<? extends ILink<T>> >

< T->Collection<T> >

Figure 4. Link-group adaptation algorithms

«abstract»

T : Object

AdaptationCondition

name  :String
operator  :Operator
value  :String

T : Object

CompositeAdaptationCondition

connective  :Connective

evaluate(valueObject :T)  :boolean

«interface»

T : Object

IAdaptationCondition

evaluate(valueObject :T)  :boolean

UserModelAdaptationCondition

userModel  :UserModel

evaluate(domainModelInstance :IPersistable<?>)  :boolean
UserModelAdaptationCondition(userModel :UserModel, attributeName :String, unaryOperator :Operator)
UserModelAdaptationCondition(userModel :UserModel, attributeName :String, binaryOperator :Operator, value :String)

forall c in conditions 
c.evaluate()

0..*

conditions

1

< T->IPersistable<?> >

Figure 5. Condition class hierarchy

dia elements. A hypermedia element is considered as a portion
of HTML code that is a part of the web page.

AF : ed → ea, (2)

where ed is the default element, and ea is the adapted element.

A generic group adaptation function usually takes a col-
lection of default or initial values as an input, and returns an
adapted collection of items of the same type. The particular
algorithm is encapsulated inside the black box which is im-
plemented as a class. Algorithm instances can be optionally
parametrized before the actual adaptation is performed.

Another extension of the adaptation component will lie in
the meta-adaptation support, where best-suited algorithms will
be adaptively selected. For this purpose, the Strategy Design
Pattern will be extended to the Adaptive Strategy Design
Pattern [17]. The Adaptive Strategy Design Pattern defines a
self-adaptive strategy. A single strategy referencing the best
available concrete strategy is exposed to the client and the
client is required only to provide an access to the environment
information that can be used to choose the best strategy.

The data filtering in the user model is based on the
conditions (Fig. 5). Condition classes follow the Composite
Design Pattern [2]. The task of the Composite Design Pattern
is to compose objects into tree-like structures to represent
part-whole hierarchies. The Composite allows clients to treat
individual objects and the compositions of objects uniformly.
The conditions have multiple applications in the framework.
The same hierarchy is used for evaluating the rules. The pur-
pose of the condition is determined by a particular implemen-
tation of the abstract AdaptationCondition class.

The rules are defined on the intersections of the user model
dimensions. The dimensions are used to limit the information
space and to contribute to better evaluation performance. There
are two ways of creating the rules in the data storage. The rules
can be defined directly by the content designer, or they can be
a product of an adaptation algorithm. The combination of these
techniques can lead to interesting adaptive behavior. This will
be the objective of our future research.

In the following sub-section, we will show an example of
an adaptation algorithm that can be integrated into the system.

23Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



document← currentWalk.get(currentWalk.size−1)
for all userWalk in walks do

newIndex← currentWalk.getPosition(document)
oldIndex ← userWalk.getPosition(document)
{compare a similarity of documents preceding the
current one in the current and a stored walk}
while newIndex ≥ 0 ∧ oldIndex ≥ 0 do

if currentWalkDoc 6= userWalkDoc then
break

else
increment quality and decrement indexes

end if
end while
if quality > 0 then

put into document-quality map
end if

end for
sort document quality map by document quality
return set of documents sorted by quality

Figure 6. Algorithm: Get possible subsequent documents by comparing
the history of the user walk transitions

Example (Walking the document space).
To clerify a link adaptation, we will show how the adaptive link
generation based on the similarity of navigating paths within
the document space is supported by the framework.

Let us have a finite set D of the documents d. A document
walk is an ordered set W , where W ⊆ P . The document walk
is always associated with the user and represents a navigation
sequence of the user throughout the document set in a single
session. Finding a similar sequence allows us to predict the
next most suitable document for a current user based on other
users’ behavior (Fig. 6).

The desired algorithm is classified as a link-group adapta-
tion algorithm based on ASF (Fig. 2). In our case, it is a link
generation algorithm.

Fig. 7 presents a sequence diagram describing typical steps
of the adaptation algorithm sequencing. In our specific case,

the user walk algorithm, first, requests the default values from
the user model (in case of a link generation, this step is
not required), and, second, it loads other user walks from
the repository. Based on this data, a set of recommended
subsequent documents is returned to the content generator.

C. User interface

The most user-oriented layer of the framework comprises
the user interface components that are customized for the web-
page adaptation. The components are based on the JSF
and the Primefaces component suite. The components utilize
JavaScript and AJAX to provide rich user experience.
An added value to the commonly used web components is
the tight coupling with adaptive behavior, user model and the
adaptation engine.

An adaptive text output can be taken as an example of
a simple component. In a common web component framework,
we can find a text output component generating a text to the
web page. The text content selection or customization must be
done by the developer. In our framework, we want to provide
intelligent web components tightly bound with the adaptation
engine. The adaptive text component is able to provide various
content adaptation techniques. The functionality of the compo-
nent should be based on the configuration, selected algorithm
and on the provided data storage for the data binding. Any of
these parameters can be changed later, without any significant
modifications to the web page logic and code.

IV. PROTOTYPE VALIDATION

The Adaptive System Framework was applied in the de-
velopment of a learning course. We chose an adaptive learning
environment since the adaptation is very often applied in this
area. The university environment provides many opportunities
to evaluate such an application in the courses and seminars.
Our adaptive learning application was used in a C language
programming course.

The implementation of the storage layer was based
on JPA API and Hibernate implementation. MySQL Server
database was used as a data storage. The choice of the

Client

Content template Adaptation
algorithm

User model Repository

View page()

request adapted links()

request user data()

data()

request data()

data()

link collection()

page content()

Figure 7. Adaptation algorithm usage

24Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



storage limited some benefits of the framework. However, as
a prototype, it was sufficient enough to validate the frame-
work architecture. At present, we are working on the future
extensions of the adaptive application, where the ontologies
representing an important feature of our design will be used.
In the next version of the learning course, the data will be saved
in a triple store and the integration features will be evaluated.

The centralized user model management is beneficial for
the application development. Using the adaptation manager,
the user profile and user model properties can be accessed
from any component of the application.

The design of the application core based on the ASF
framework consists of the following important steps:

1) Definition of the domain objects – in case of the
learning application called learning objects and their
relations

2) Definition of the user profile and user model attributes
3) Design of the adaptive algorithms for the desired

behavior
4) Configuration of data sources
5) Binding the data results either to the application logic

or directly to the adaptive UI components

The application was tested by 35 students, and the con-
tent was limited to one topic of one week of the semester.
From the results of the log analysis, we could get interesting
observations regarding the feedback from the students. In
this phase, the feedback was limited to a preference screen
only. While using an online course, 5 students (14%) tried
to change the adaptation setting and 5 of them tried to reset
the result statistics. More students were interested in personal
settings, particularly, the visual theme of the application.
12 students (34%) changed the visual theme. From these
results, we can conclude that a default setting of the adaptation
is very important and that the adaptation based on automatic
observations of the users should be extensively applied. An
explicit feedback can be expected after the users become more
friendly with the system and start customizing the system to
be more comfortable to use.

V. CONCLUSIONS AND FUTURE WORK

The Adaptive System Framework can be regarded as
a possible solution to an effective development of adaptive
hypermedia systems. The proposed framework defines funda-
mental components and is based on a formal model. It provides
various possibilities of its implementations and their further
extensions. It leads to a simplified process of the development
and, at the same time, it does not limit the developer in
customized extensions. The default framework implementation
is based on both modern frameworks used for the development
of the web applications and state-of-the-art technologies of the
Semantic Web.

We have verified the framework by implementing a pro-
totype of e-learning web application. In the future, we would
like to extend the framework with more reusable adaptable JSF
components based on the well-known adaptation techniques.
Extending a set of implemented algorithms will enable use new
methods of the personalization. The results will be thoroughly
verified by the application of an adaptive web-based learning
in real-class scenarios.

ACKNOWLEDGMENT

The results of our research form a part of the scientific
work of a special research group WEBING [18]. The work
was supported by the grant of the Grant Agency of the Czech
Technical University in Prague.

REFERENCES

[1] M. Balı́k and I. Jelı́nek, “Towards Semantic Web-based Adaptive
Hypermedia Model,” in ESWC Ph.D. Symposium, Tenerife, Spain,
2008, pp. 1–5.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: ele-
ments of reusable object-oriented software. Addison-Wesley Longman
Publishing Co., Inc., 1995.

[3] M. Šimko, M. Barla, and M. Bieliková, “ALEF : A Framework for
Adaptive Web-Based Learning 2.0,” Ifip International Federation For
Information Processing, vol. 324, 2010, pp. 367–378.

[4] E. Knutov, P. De Bra, and M. Pechenizkiy, “Generic Adaptation Frame-
work: A Process-Oriented Perspective,” Journal Of Digital Information,
vol. 12, no. 1, 2011.

[5] H. Wu, E. de Kort, and P. De Bra, “Design issues for general-purpose
adaptive hypermedia systems,” in Proceedings of the twelfth ACM
conference on Hypertext and Hypermedia - HYPERTEXT ’01. New
York, New York, USA: ACM Press, 2001, pp. 141–150.

[6] P. De Bra, D. Smits, K. V. D. Sluijs, A. I. Cristea, and M. Hendrix,
“GRAPPLE: Personalization and adaptation in learning management
systems,” in Proceedings of World Conference on Educational Multime-
dia, Hypermedia and Telecommunications (ED-MEDIA 2010), Toronto,
Canada, 2010, pp. 3029–3038.

[7] GRAPPLE Project Website. [Accessed: Apr. 24, 2013]. [Online].
Available: http://www.grapple-project.org/

[8] Blackboard Learning System Website. [Accessed: May 6, 2013].
[Online]. Available: http://www.blackboard.com/

[9] Moodle Learning System Website. [Accessed: May 6, 2013]. [Online].
Available: https://moodle.org/

[10] D. Ben-Naim, “A Software Architecture that Promotes Pedagogical
Ownership in Intelligent Tutoring Systems,” Ph.D. dissertation, Uni-
versity of New South Wales, Sydney, Australia, 2010.

[11] M. Niederhausen, S. Karol, U. Aß mann, and K. Meiß ner, “Hyper-
Adapt: Enabling Aspects for XML,” in Web Engineering, 9th Interna-
tional Conference, ICWE 2009, ser. Lecture Notes in Computer Science,
M. Gaedke, M. Grossniklaus, and O. Dı́az, Eds. San Sebastián:
Springer, 2009, pp. 461–464.

[12] I. Gorton, Y. Liu, and N. Trivedi, “An extensible and lightweight
architecture for adaptive server,” Softw., Pract. Exper., vol. 38, no. 8,
2008, pp. 853–883.

[13] S. Cheng, “Rainbow: Cost-Effective Software Architecture-Based Self-
Adaptation,” Ph.D. dissertation, Carnegie Mellon University, Pittsburgh,
2008.

[14] F. Carmagnola, F. Cena, C. Gena, and I. Torre, “MUSE: A Multidi-
mensional Semantic Environment for Adaptive Hypermedia Systems,”
in Proceedings of Lernen, Wissensentdeckung und Adaptivität (LWA),
M. Bauer, B. Brandherm, J. Fürnkranz, G. Grieser, A. Hotho, A. Jedl-
itschka, and A. Kröner, Eds. Saarbrücken, Germany: DFKI, 2005, pp.
14–19.

[15] PrimeFaces Component Suite. [Accessed: Jan. 31, 2013]. [Online].
Available: http://primefaces.org

[16] E. Knutov, P. De Bra, and M. Pechenizkiy, “AH 12 years later: a
comprehensive survey of adaptive hypermedia methods and techniques,”
New Review of Hypermedia and Multimedia, vol. 15, no. 1, Apr. 2009,
pp. 5–38.

[17] O. Aubert and A. Beugnard, “Adaptive Strategy Design Pattern,”
in Proceedings of The Second Asian Pacific Pattern Languages of
Programming Conference (KoalaPLoP 2001), The Country Place, Mel-
bourne, 2001, pp. 1–12.

[18] Webing Research Group Website. [Accessed: May 6, 2013]. [Online].
Available: http://webing.felk.cvut.cz

25Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



A FPGA Implementation of Prediction Error Method for Adaptive Feedback 

Cancellation using Xilinx System Generator
TM

 
 

 

Marius Rotaru, Cristian Stanciu, Silviu Ciochină 

Dept. of Telecommunications 

University Politehnica of Bucharest 

Bucharest, Romania 

marius.rotaru@gmail.com, {cristian, silviu}@comm.pub.ro 

Felix Albu, Henri Coandă 

Electrical Engineering Department 

Valahia University of Targoviste 

Targoviste, Romania 

{felix.albu, coanda}@valahia.ro

 

 
Abstract—This paper describes a real-time, field 

programmable gate array (FPGA) implementation of 

Feedback Cancellation (FC) system to improve the intra-cabin 

communication among the driver and passengers, which is 

typically degraded by the noisy environment and by the 

distance in between them. The feedback canceller, used to 

reduce the acoustic coupling the loudspeaker and the 

microphone, is based on the continuously adaptive filtering 

technique, implementing the prediction error method (PEM) 

for closed loop system identification. The adaptive algorithm 

implements the modified least mean square algorithm (MLMS) 

while for the linear prediction a fix-order linear predictor has 

been selected. The implementation was done using Xilinx 

System GeneratorTM (XSG) 

Keywords-Adaptive Algorithm; Adaptive Feedback 

Cancellation; Prediction  Error; MLMS; FPGA; Xilinx System 

Generator 

I.  INTRODUCTION  

The acoustic feedback is a major problem of audio 
processing field, occurring whenever the sound is captured 
and reproduced in the same environment. The 
communication in vans and limousines between the 
passengers in the front and the rear is degraded due to the 
presence of the noise as well as the long distance between 
them [1]. This can be improved by using a speech 
reinforcement system. The simplest, one channel speech 
reinforcement system, picks-up the speech using a 
microphone, amplifies it and then plays it back to a 
loudspeaker. Due to the electro-acoustic coupling between 
loudspeakers and microphone, a closed-loop system is 
created. To avoid the instability (howling) of the system, a 
feedback canceller has to be used. 

Different methods attempting to minimize the effect of 
acoustic feedback have been proposed in literature. They are 
broadly classified as feedforward suppression and feedback 
cancelation techniques. For the case of feedforward 
suppression technique, the use of notch-filter based howling 
suppression (NHS) represents a traditional and robust 
solution [1-3]. The main disadvantage of this method is that 
it is reactive: in order to identify and eliminate the oscillation 
frequencies the howling must firstly occur. A more 
promising solution is to use the adaptive feedback 
cancellation (AFC) method, which is based on the estimation 

Figure 1.  Adaptive Feedback cancellation structure 

of acoustic feedback path, belongings to the class of room 
modeling methods. As illustrated in the Fig. 1, the feedback 
canceller ��(�)	 produces an estimate ��(	)	 of the feedback 
signal f(n), obtained by filtering the loudspeaker signal x(n) 
with F(q) , and subtracts it from the microphone signal d(n) 
so that ideally the clean speech signal s(n) amplified by a 
factor K and played back to the loudspeaker. Depending on 
the quality of the feedback path estimation, the feedback is 
almost eliminated. The most robust method to eliminate it is 
based on the closed loop identification theory [4] - [5]. The 
direct method for closed loop identification [5], named 
prediction-error-method (PEM) is a promising proactive 
solution for AFC. Prediction error for AFC (PEMAFC) 
algorithms has been deeply analyzed in context hearing aids 
applications [6-10]. Also, recently the PEMAFC method has 
been tested in the car scenario case [11-12]. In this paper we 
propose a FPGA implementation of the PEMAFC algorithm 
in Xilinx System GeneratorTM, based on the configuration 
from [8-9] using a fix model of input signal. 

The paper is organized as follows: Section II is dedicated 
to the description of the PEMAFC algorithm implemented 
on FPGA. The Section III covers the FPGA implementation 
aspects. In Section IV the experiments as well as the results 
are reported. Section V presents the conclusions of the work. 

 

II. PREDICTION ERROR METHOD FOR AFC SYSTEM 

The notation from [8] has been adopted: q
−1 denotes the 

unitary delay, so that q
−1 u(n) = u(n−1). A discrete-time 

filter with filter length L is represented as a polynomial  

F(q) in q, i.e., 

 Feedback path 

F(q) 

s(n) 

+ 

- 

x(n) 

��(n) 

e(n) d(n) 

f(n) 

Adaptive Filter 

��(q) 

K(q)  q-D 

26Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



 F(q) = f0 + f1 q
−1  + · ·  ·  + fL−1 q

−L+1,  (1) 

or by its vector f=[f0, f1… fL-1]
T, so that the filtering 

operation consists of applying the polynomial to the input 

sequence: 

 F(q)x(n) = f Tx(n), (2) 

with   x(n) = [x(n), x(n−1), …, x(n−L+1)] T .  

As proposed in the [6], [7] and reiterated in [8], the direct 

method of the closed-loop identification of feedback path 

F(q) and the desired signal model H(q) is presented in the 

Fig.2. The main assumption of this method starts from the 

fact that the desired signal d(n) can be modeled as a 

H(q)w(n), where w(n) is the white noise signal and the H(q) 

is the desired signal model, which is inversely stable 

(A(q)=H
-1(q)). In such case the bias in the feedback path 

estimation can be eliminated by decorrelating the signal of 

the adaptive algorithm by passing them through A(q). In 

case of PEM, the feedback path F(q) and the desired signal 

model H(q) are estimated by minimizing the energy of so 

calling prediction error ep(n): 

 
1

p
ˆ ˆ( )( ( ) ( ) ( )),( )e H q d n F q x nn

−
−=  (3) 

i.e., 
1 2ˆ ˆ ˆ( ( )) {| ( )( ( ) ( ) ( )) | }J n Ε H q d n F q x n

−
= −f  

          
T 2

p p
ˆ{| ( ( ) ( ) ( )) | }.Ε d n n n= − f x  (4) 

Minimizing (4) generates: 

 
p p p p

1ˆ( ) { ( ) ( )} { ( ) ( )}
T

n Ε n n Ε n d n
−

=f x x x . (5) 

Writing dp(n) as: 

 
1

p
ˆ ( ) ( ) ( ) ( ).( ) H q s n F q x nd n

−
+=  (6) 

When ˆ( ) ( )H q H q= ,  

 
p

( ) ( ),( ) ( ) F q x nd n w n +=  (7) 

and the speech signal s(n) is converted to a white noise 
signal w(n), resulting an unbiased feedback path estimate. 

From (4) it can be observed that minimizing ˆ( ( ))J nf is 

equivalent with performing an adaptive filtering on the 
decorrelated (pre-whitened) signals {dp(n),xp(n)} or 
equivalently on {ep (n), xp (n)}. 

Both fixed and adaptive estimates of the desired signal 
model H

-1(q) have been considered in literature [9]. Since 
our attention is focused on the FPGA implementation, in this 
paper we choose the fixed model, representing the averaging 
of speech spectrum, defined by: 

 
1

1
( )

1
,H q

qα −
=

−
 1α <

 
(8) 

Figure 2.  Feedback cancellation with prediction error method 

The adaptive filtering algorithm selected to perform these 
minimization is the Modified LMS (MLMS) [13], which is 
particularly suited for  adaptive systems whose performance 
suffers from the presence of strong target signals (such as 
speech) that exhibit large fluctuations in short-time power 
levels. The sum version of this algorithm has been selected, 
with the following formula for updating the filter 
coefficients:  

 
( ) ( ) [ ( ), ( )],( 1) ( ) e n n f x n e nn n ++ = xw w  (8) 

 2 2
[ ( ), ( )] ( ) ,

ˆ ˆ( ( ) ( ))
e x

f x n e n n
L n n

µ
µ

σ σ ε
= =

+ +
 (9) 

where L is the length of adaptive filter, 	
̅  is an adaptation 
constant and  ��


�and ���
� are the power estimates of the error 

respectively of the reference signal. They can be obtained as 
follow: 

 

2 2 2 2

, ,
ˆ ˆ( ) ( 1) (1 )( ( ), ( )),

e x e x
n n e n x nσ λσ λ= − + −

 
(10) 

where λ is  a weighting factor chosen as λ =1-1/(KL), with 
K>1. A Summary of PEMAFC algorithm is described in the 
Table.1.  

TABLE I.  TIME-DOMAIN PEMAFC ALGORITHM FOR THE FIXED 

ORDER LP 

Initialization: 

       L,ε,	��,	�, ��(�)=0, e(0)=0,  

Computation:  for each input sample x(n), n= 1, 2,. . .  

         e(n) = d(n) − ���(�)x(n); 

          x(n) = K·e(n-D) 

      Pre-filter  e(n ) and x(n) with A(q) 

       
p

,( ) ( ) ( 1)n e n e ne α= − −   
p

,( ) ( ) ( 1)n x n x nx α= − −         

      Estimate the  power of pre-filtered signals 

          

2 2 2 2

p p
ˆ ˆ( ) ( 1) (1 ) ( )),( ( )n n ne n xσ λσ λ= − + − +

 
      Update the coefficients 

           p p2
( ) ( ).ˆ ˆ( 1) ( )

ˆL
e n nn n

µ

σ ε
++ =

+
xf f  

End 

27Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



III. FPGA IMPLEMENTATION 

This section describes the adaptation of the PEMAFC 
algorithm on a realizable hardware platform suitable for 
automotive environment. Considering the PEMAFC based 
Feedback Cancellers a subcomponent of a speech 
reinforcement system including a noise cancellation 
component as well as a voice activity detector, the target 
platform must be cost effective with a relatively high 
performance DSP. The Xilinx Automotive (XA) Spartan®-6 
families of FPGA was used [14]. 

A. Design Process 

The PEMAFC algorithm was originally developed as 
MATLAB scripts using high precision floating-point 
arithmetic. The SoNoScout NVH Binaural recording and 
analysis system 653A and Sound Level Meter 2250L were 
also used.  A one-to-one conversion to an equivalent FPGA 
implementation cannot be directly or easily implemented 
with reasonable resource utilization. Also, the precision of 
data in the FPGA implementation is limited to a fixed 
number of bits (fixed-point representation) which results in 
the addition of quantization errors to the system. 
    The first step of the implementation consists of identifying 
the parts of the algorithm, which became the main blocks of 
the hardware. A fixed point version of these blocks has been 
implemented using Fixed-Point Toolbox™ in Matlab® [15] 
and then compared to the floating point version. 

Following the Matlab fixed point validation, a Xilinx 
System GeneratorTM (XSG) [16] model was developed. Each 
block has been individually validated by passing the data 
to/from Matlab workspace as well as using the “scope” block 
in the model by connecting the signal of interest to it. Once 
the XSG model has been created it has been validated 
against Matlab implementation. Finally, the design has been 
synthesized using the Xilinx ISE 13.4 design suite and run 
on the FPGA target in the “hardware-in-the-loop co-
simulation”. 

B. The Hardware implementation 

The implementation of the PEMAFC algorithm is done 
on a Spartan6 FPGA, i.e., the XC6SLX45[15]. The system 
clock frequency is approximately 100 MHz and the sampling 
frequency is 16 kHz; consequently, there are approximately 
6250 clock periods available between two successive 
samples. 

The flow of the algorithm is described in Fig.3. In the 
first phase, the output of the adaptive MAC filter y(n) is 
generated and the error signal e(n) is computed.  In the 
second phase a fixed order pre-whitening of error signal e(n)  
and  its  delayed  and    amplified  version x(n) is realized  
based  on (8). A power  estimate  (10)  of    both decorrelated 
error  and  reference signals is generated in the third step.  In 
the fourth step the algorithm’s step size is computed based 
on the previously power estimated values (9).  The last phase 
is dedicated updating the adaptive filter’s coefficients based 
on their past values, decorrelated reference and error signals 
xp(n) respectively ep(n) and the previously computed step 
size. The FPGA implementation of the PEMAFC algorithm 
requires a few RAM memory blocks, as follows. 

 

Figure 3.  Implementation scheme of the PEMAFC 

The first one is associated with the reference signal samples; 
this memory can be viewed as L×1 matrix. The second one is 
associated with the decorrelated reference signal samples  
with the same depth as the previous one.  The third memory 
block is used to keep the filter coefficients. 

Only one division is associated with the PEMAFC 
algorithm (9).  The implementation was based on the Xilinx 
Divider Generator 3.0 block (radix 2 non-restoring division 
version) instead of the CORDIC Divider block, which is 
much more resource consumer. For a better precision, the 
division has been done between ep(n) and the power 
estimation ��  (both operands being reinterpreted as signed 
integers), the result being scaled by  log2(L).  

By selecting 	
̅  as power of two, only four multipliers 
cells are used to implement the PEMAFC algorithm. Two of 
them are used in a pipelined manner, i.e., series of L 
computations (one for updating the filter coefficients and the 
other for computing the output of the FIR filter in a multiply 
with accumulate mode). The other two are involved in the 
power estimation of ep(n) and  xp(n) signals. The input and 
the output signals d(n) and x(n) are represented on 16 bits 
(Q15 representation) while the internal representation at 
different stages varies based on the dynamic range of  
internal “signals”, in order to avoid the overflows and to 
minimize the quantization errors. 

 

IV. RESOURCE USAGE AND SIMULATION RESULTS 

The functional simulations have been done using FPGA 
target in the hardware-in-the-loop co-simulation mode as in  
the Fig.4. The real signal was read from Matlab workspace 
and  it  was  either  a  voice  signal with  an  additive  white  
Gaussian noise (SNR=30dB) or an auto-regressive noise 
generated by passing a white Gaussian noise through a 10 
order AR system. 

The sampling frequency was 16kHz and the adaptive 
algorithm parameters used are: L = 256 (the same length as 
feedback path); fix  step  size 
̅ = 2-6; regularization   factor  
 

 

28Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Figure 4.  Hardware-in-the-loop co-simulation of the PEMAFC 

ε=10-3; weighting factor for power estimation λ = 0.9961; the 
parameter of fixed model � = 0.91. 

The gain and the delay of the forward path are K=10dB 
and D=60 samples (3.75ms) respectively. The feedback path 
was simulated using Simulink FIR Filter block.  

The performance measure was the normalized 

misalignment (in dB), defined as 20log#$%� − ��(	)%
�
/‖�‖�, 

where f is the true impulse response of the feedback path and 
||•||2 denotes the l2 norm. The effect of the quantization error 
on the AFC performance is shown in Fig. 5. 

Table II shows the resource requirement of the FPGA 
implementation as reported by the Xilinx ISE Foundation. 

 

V. CONCLUSIONS 

In this paper, a sequential time based, PEMAFC 
algorithm is implemented on FPGA using Xilinx System 
Generator. Comparable results with infinite precision version 
have been obtained. Resource analysis shows the design uses 
only 15% of the total available general logic resources 
making possible an integration with other in-car sub-systems 
on a single FPGA. The implementation of adaptive estimate 
of signal model will be considered in the future work. 

 

ACKNOWLEDGMENT 

This work was supported under the Grant 
POSDRU/107/1.5/S/76813 and Grant CNCS-UEFISCDI 
PN-II-ID-PCE-2011-3-0097. 

 

 
a) 

 
 

b) 

Figure 5.  Misalignment of the PEMAFC (finite and infinite precision).   

a) auto-regressive noise; b) voice signal. 

TABLE II.  RESOURSE UTILIZATION FOR PEMAFC ALGORITHM WITH 

FIXED LP ORDER.  

Available  Resources (total) Used  Resources 

Slices       (6822)                       896   (15%) 

FFs        (54.576)                     3100   (5%) 

4-LUTs  (27288)              2895 (10%) 

RAMB8B  (323)               3        (1%) 

DSP48A1s  (58)                     4        (6%) 

 

REFERENCES 

[1] E. Hänsler and G. Schmidt, "Acoustic Echo and Noise 
Control: A Practical Approach," John Wiley & Sons, New 
York, NY, USA, 2004. 

[2] J. Chang and J.R. Glover, "The feedback adaptive line 
enhancer: a constrained IIR adaptive filter," IEEE Trans. 
Signal Process., vol. 41, Nov. 1993, pp. 3161–3166. 

[3] P. Gil-Cacho,  T. van Waterschoot, M. Moonen, and S. H. 
Jensen,  "Regularized Adaptive Notch Filters for Acoustic 
Howling Suppression," Proceedings of 17th European Signal 
Process. Conf. (EUSIPCO '09), pp. 2574–2578. 

[4] L. Ljung, "System Identification: Theory for the User," 
Prentice Hall PTR, 1998. 

[5] U. Forssell, "Closed-loop Identication: Methods, Theory, and 
Applications", Dissertations No. 566, Linkӧping 1999. 

[6] J. Hellgren and U. Forssell, "Bias of feedback cancellation 
algorithms in hearing aids based on direct closed loop 
identification," IEEE Trans on Speech and Audio Processing, 
vol.  9,  Nov. 2001, pp.  906–913. 

[7] J. Hellgren, “Analysis of feedback cancellation in hearing aids 
with filtered-X LMS and the direct method of closed loop 
identification,” IEEETrans. Speech Audio Process., vol. 10, 
Feb. 2002, pp. 119–131. 

[8] A.Spriet, I. Proudler,  J. Wouters, and M. Moonen,"Adaptive 
feedback cancellation in hearing aids with linear prediction of 
the desired signal," IEEE Trans on Signal Processing, vol. 53,  
Oct. 2005, pp. 3749-3763. 

[9] Ann Spriet, S. Doclo, Marc Moonen, and Jan Wouters, 
“Feedback Control in Hearing Aids,” in Springer Handbook 
of Speech Processing, pp. 979–999. Springer Verlag, 2008. 

[10] M. Rotaru, F. Albu, and H. Coanda, “A variable step size 
modified decorrelated NLMS algorithm for adaptive feedback 
cancellation in hearing aids,” in Proc. ISETC, Timisoara, 
Romania, 2012, pp. 263–266. 

[11] A. Ortega, E. Lleida, E. Masgrau, L.Buera, and A. Miguel 
"Acoustic Feedback Cancellation in Speech Reinforcement 
Systems for Vehicles"  INTERSPEECH 2005 - Eurospeech, 
9th European Conference on Speech Communication and 
Technology, ISCA, Sep. 2005, pp. 2061-2064. 

[12] S. Cifani , L. C. Montesi, R. Rotili, E. Principi, S. Squartini, 
and F. Piazza, "A PEM-AFROW based algorithm for 
Acoustic Feedback Control in Automotive Speech 
Reinforcement Systems," Proceedings of 6th International 
Symposium on Image and Signal Processing and Analysis, 
Sep. 2009, pp. 656–661. 

[13] J. E. Greenberg, “Modified LMS algorithms for speech 
processing with an adaptive noise canceller,” IEEE Trans. 
Speech Audio Process., vol. 6, no. 4, Jul. 1998, pp. 338–350 

[14] Xilinx Inc., “XA Spartan-6 Automotive FPGA Family 
Overview, ”  DS170 (v1.2),  Dec. 2011. 

[15] MathWorks, “Fixed-Point Toolbox,”  
http://www.mathworks.com/products/fixed, [retrieved: 
March, 2013]. 

[16] Xilinx Inc., “Xilinx System Generator for DSP,” 
http://www.xilinx.com/tools/sysgen.htm, [retrieved: March, 
2013]. 

29Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



A Software Infrastructure for Executing Adaptive
Daily Routines in Smart Automation Environments

Estefanı́a Serral
Christian Doppler Laboratory

for Software Engineering Integration (CDL)
Vienna University of Technology
Email:estefania.serral@tuwien.ac.at

Pedro Valderas and Vicente Pelechano
ProS Research Center

Universitat Politècnica de València
Email:{pvalderas, pele}@pros.upv.es

Abstract—Since the advent of Pervasive Computing, the ex-
ecution of user daily routines in an adaptive way has been a
widely pursued challenge. Its achievement would not only reduce
the tasks that users must perform every day, but it would also
perform them in a more convenient way while optimizing natural
resource consumption. In this work, we meet this challenge by
providing a software infrastructure. It allows users’ routines to
be automated in a non-intrusive way by taking into account
users’ automation desires and demands. We demonstrate this by
performing a case-study based evaluation.

Index Terms—adaptive routine automation; models at runtime;

I. INTRODUCTION

In recent decades, computers have become more and more
common in many items such as ovens, refrigerators, coffee
makers, mobile phones, tablets, etc. This proliferation of
technology brings the building of smart environments closer
to becoming a reality. Smart environments provide services to
control the items that are used in our daily activities [1]. For
instance, there are pervasive services for controlling lights, air
conditioner and heating, windows, coffee makers, etc.

One of the final goals of developing smart environments
is to automate user daily routines by using these services. A
routine is a set of tasks characterized by habitual repetition
in similar contexts. For instance, a typical routine could be
the following. Every working day at 8 o’clock, Bob’s alarm
clock goes off. Bob wakes up, switches the lights on and stops
the alarm. Then, to take a shower, Bob turns on the bathroom
heating if it is cold. Finally, after getting dressed, Bob goes
to the kitchen and makes a coffee for breakfast.

Due to the fact that people are creatures of habit, we
perform numerous daily routines such as the one presented
above. Several works, such as [2][3][4] [5], have dealt with
performing these routines on the users’ behalf; however, their
solutions may lead to intrusive systems that automate tasks
that users do not necessarily want automated. In this work,
we present a software infrastructure capable of automating
users routines in a non-intrusive way. Due to the complexity
of human behaviour, user participation is necessary in order to
avoid intrusiveness when attempting to fulfill user demands.
For this reason, the infrastructure that we propose makes use
of models during runtime. These models allow routines to
be represented by using high-level concepts that are close to

user knowledge. This helps users to understand the routines
to be automated and to participate in their design. By simply
interpreting the models at runtime, the infrastructure can
automate the routines as described.

With this infrastructure, we could make users’ lives easier
and provide them with a higher quality of life: they would
not have to waste their time or worry about the tasks that
could be automated (e.g., Bob will never oversleep in the
morning because the alarm clock is set automatically). In
addition, these tasks could be performed more efficiently and
in a more convenient way for users since tasks can be analyzed
before being automated using the models (e.g., heating could
be turned on 10 minutes early so that the bathroom is already
hot when Bob takes a shower; instead of the alarm clock going
off, Bob’s preferred radio channel could be used). Moreover,
routines could self-adapt according to context (e.g., blinds
could be raised if it is a sunny day instead of switching lights
on) and could help to reduce natural resource consumption
by applying the advice provided by experts on controlling
lighting, heating and air conditioning, taps, and so on (e.g., all
lights could be automatically switched off when the inhabitants
leave home; blinds could be lowered in summer when nobody
is at home so that it is not so hot when the inhabitants arrive).

The rest of the paper is organized as follows. Section II
describes the related work. Section III explains essential
requirements for routine automation. Section IV presents the
software infrastructure that automates routines in a context-
adaptive way. Section V validates the approach using a case
study based evaluation. Section VI concludes the paper.

II. RELATED WORK

Related work can be subdivided into machine-learning
approaches, context-aware rule-based approaches, end-user
centered approaches, and task-oriented computing.

Machine-learning approaches have attempted to deal with
the automation of user routines by automatically inferring
them from past user actions [2][3]. These approaches have
done excellent work by automatically learning from user
behaviour; however, they have some drawbacks. They may
be intrusive for users because they do not usually take into
account users’ desires (e.g., the repeated execution of an action
does not imply that the user wants this automation). Also, they

30Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



reproduce the actions that users have frequently executed in
the past and in the same manner that they were executed. This
prevents user tasks from being carried out in a more efficient
and convenient way and does not allow tasks to be automated
if they were not performed by users (e.g., closing windows
when users are not at home and it starts to rain).

Context-aware rule-based approaches have made great ad-
vances in introducing context into software systems. To auto-
mate user tasks, they program rules that trigger the sequential
execution of actions when a certain context event is produced
[4] [5]. However, although context information is taken into
account, these works do not usually consider the personal
desires of each user; therefore, they may still be annoying. Fur-
thermore,these techniques are only appropriate for automating
relatively simple tasks [6]; hence, they usually require large
numbers of rules. If we also consider that these rules have to be
manually programmed [6], the understanding and maintenance
of the system may become very difficult.

End-user centered approaches provide alternatives for end-
users to program their environments [7][8]. Most of these ap-
proaches are focused on end-user programming by presenting
particular UIs and languages. These approaches generally pro-
vide better user control. However, they have limited capacities
to help end-users build the automations. Therefore, they are
only appropriate for developing simple tasks commonly de-
scribed in the literature, such as controlling lights or doorbells.

Task-oriented computing uses task modelling to facilitate
the interaction of users with the system. These systems have
proven that task modelling is effective in several fields such
as user interface modelling [9], assisting end-users in the exe-
cution of tasks [10], etc. These works show the growing usage
of task modelling and its remarkable results and possibilities
to model system behaviour. However, none of these works at-
tempt to automate adaptive daily routines. Hence, they neither
provide enough expressiveness to specify adaptive routines nor
enough accuracy to allow their subsequent automation.

III. REQUIREMENTS FOR ROUTINE AUTOMATION

The users’ tasks automation is a delicate matter. The execu-
tion of an undesired task will be intrusive for users, and may
bother them, interfere in their goals, or even be dangerous; all
of which would eventually cause the loss of user acceptance
of the system. For instance, consider that the outside door and
the security system have been programmed so that the door is
automatically locked and the security system is automatically
activated when the inhabitants leave home. This can be useful
because they will not have to do these tasks anymore, but it
can also be a burden if the inhabitants are absent-minded: they
will have to unlock the outside door and deactivate the alarm
every time they forget something. To prevent these intrusive
situations, the following aspects are required:

• The routines must be automated according to the
users’ desires and demands. This is essential so that
the routines to be automated are those that users want
and are automated the way they want them to be. Due to
the technical context, and the imprecise and ambiguous

nature of human behaviour, it is very difficult for a
system to sense or infer this information. Therefore, the
participation of the users is necessary in order to fulfill
their automation desires and demands [11].

• The routines must be adaptive to context. Context
information is essential to be able to execute the routines
in the opportune situation. For instance, in the routine
used as the example, it would be intrusive if the bathroom
heating is switched on when the temperature is high or if
the radio is turned on anytime. Therefore, routines must
be described in a context-adaptive way (e.g., the bathroom
heating must be automatically switched on at 7:50 on
working days only if the temperature is low, and the radio
must be turned on 10 minutes later).

• Routine adaptation must be facilitated at runtime.
Some routines might never change in user life; however,
most of them will. Users’ behaviour usually changes over
time and the automated routines need to be adapted to
these changes. Otherwise, the system may become useless
and intrusive. Since these types of changes cannot be
anticipated at design time, the automation of routines
must be performed in such a way that their adaptation
after system deployment is facilitated at runtime.

IV. THE SOFTWARE INFRASTRUCTURE

A smart environment is developed to provide pervasive
services that serve people in their everyday life. These services
are in charge of interacting with physical devices in order to
change the state of the environment and to sense context. On
top of these services, we develop a software infrastructure (see
Figure 1) that is designed to properly automate user routines
satisfying the requirements explained in the previous section:

• To facilitate user participation, the software infrastruc-
ture makes use of design models at runtime. It provides a
task model that describes the routines by using concepts
of a high-level of abstraction that are close to the domain
and to user knowledge (concepts such as task, preference,
location, etc.). This helps end-users to participate in the
routine description since it allows them to focus on the
main concepts (the abstractions) without being confused
by low-level details [12].

• To execute the described routines in a context-adaptive
way, the task model describes each routine as a co-
ordination of pervasive services that are performed in
the opportune context, i.e., in a context-adaptive way. In
addition, in order to be aware of the current context and to
be able to automate the routines accordingly, the software
infrastructure provides a context manager. It dynamically
manages the context changes produced at runtime by
using a context repository.

• To automate the described routines in such a way that
their adaptation after system deployment is facilitated,
the software infrastructure has an automation engine that
directly interprets the task model at runtime. The model
is machine-processable and precise enough to provide the
infrastructure with all the information needed to execute

31Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Automation
Engine

Lamp Blind
Actuator

Movement
Detector

User 
Location

Alarm Lighting

DoorControl
Window
Control Services

Devices

Task Model

Calendar

Personal 
data

Context Repository

Context
Manager

BlindControl

Window
Actuator

Alarm

Interpret InterpretUpdate

Monitor Execute

Inform

1.

2.

3.

4.

5.

Door

Fig. 1. Runtime infrastructure

the routines. Therefore, when a context change is detected
by the context manager, it informs the engine. The
engine then reads the routine information from the task
model and executes the corresponding pervasive services
according to context. With this strategy, the task model is
the only representation of the routines to be automated.
This allows the routines to be adapted by simply updating
the model. As soon as it is changed to adapt the routines,
the changes are also taken into account by the engine.

Thus, the infrastructure provides the following main compo-
nents (see Figure 1): the context-adaptive task model, which
describes each routine as a context-adaptive coordination of
pervasive services; the context manager, which is in charge of
monitoring context changes at runtime, updating the context
repository accordingly, and informing the automation engine
about the changes; and the automation engine, which is in
charge of automating the routines in the opportune context by
interpreting the models.

A. The Software Infrastructure in Execution

The software infrastructure executes the routines as de-
scribed in the task model. This model allows the routines to
be described precisely and at a high level of abstraction. As an
example, Figure 2 shows the modelling of the routine used in
the introduction (the WakingUp routine). The root task of the
hierarchy represents the routine and is associated to a context

situation, which indicates the context conditions whose ful-
filment starts the execution of the routine (WorkingDay=true
AND CurrentTime=7:50). The root task is broken down into
simpler tasks (turn on bathroom heating, turn on the radio,
illuminate the room and make coffee). An intermediate task
must be broken down until the leaf tasks can be executed by
an available pervasive service. Each leaf task must be related to
a pervasive service that can carry out the task. For instance, the
turn on the radio task is associated to a pervasive service that
interacts with the radio to turn it on. This relation is established
by simply indicating the service identifier.

If the tasks of the same parent are related to each other, they
are carried out in a sequential order according to the indicated
temporal relationships. These relationships may depend on
context. Thus, in the example, the heating is turned on first;
ten minutes later, the radio is turned on and the room is
illuminated; and finally, a coffee is made when the user enters
the kitchen.

A task can have a context precondition (represented between
brackets), which defines the context conditions that must be
fulfilled so that the task is performed (e.g., the turn on
bathroom heating task is only executed if the temperature
is low). If the tasks of the same parent are not related to
each other, only the first task whose context precondition is
satisfied is executed; e.g., to illuminate the room, if the outside
brightness is low, lights will be switched on; otherwise, blinds
will be raised.

To automate the routines as described in the task model,
the software infrastructure performs the following steps (see
Figure 3):

1) Detecting context changes: A context change is phys-
ically detected by a sensor, which is controlled by a
pervasive service in the smart environment. The context
manager monitors all these services to check context
changes. For instance, the context manager monitors the
Clock service to detect the time changes. When a change
is detected (e.g., it is 7:50 a.m.), the manager updates
the current context in the context repository and notifies
the engine about this change.

2) Checking context situations: After receiving the no-
tification of a context change, the engine analyzes the
context situations of the routines specified in the Task
Model to check if any of them depend on the context
change. Then, by making use of the context manager,
the engine checks if any of those context situations are

CurrentTime=07:50
AND WorkingDay=true WakingUp

>>[UserPresence=kitchen]>>Illuminate
the room

[OusideBrightness=low]
Switch light on

[OusideBrightness!=low]
Raise blinds

|=|
make coffee[BathroomTemperature=low]

turn on bathroom heating

10 min>> turn on
the radio

Fig. 2. Routine task for waking up the user

32Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



CurrentTime=7:50

CurrentTime=7:50

CurrentTime=7:49
WorkingDay=true
OutsideBrithness=High
BathroomTemperature=High
UserPresence=Bedroom

CurrentTime=7:50

CurrentTime=7:50
WorkingDay=true
OutsideBrithness=High
BathroomTemperature=High
UserPresence=Bedroom

CurrentTime=7:50
WorkingDay=true
OutsideBrithness=High
BathroomTemperature=High
UserPresence=Bedroom

Task Model

1. Detecting context changes
Current Context

Current Context

Current Context

2. Checking context situations

3. Executing the routine tasks

interpret

interpret tasks 
and context

execute
services

1. detect
context 
change

2. update
context

3. inform about
 the change

CurrentTime=07:50
AND WorkingDay=true WakingUp

>>[UserPresence=kitchen]>>Illuminate
the room

[OusideBrightness=low]
Switch light on

[OusideBrightness!=low]
Raise blinds

turn on
the radio

|||
make coffee[BathroomTemperature=low]

turn on bathroom heating

10 min>>

CurrentTime=07:50
AND WorkingDay=true WakingUp

>>[UserPresence=kitchen]>>Illuminate
the room

[OusideBrightness=low]
Switch light on

[OusideBrightness!=low]
Raise blinds

turn on
the radio

|||
make coffee[BathroomTemperature=low]

turn on bathroom heating

10 min>>

Task Model

Fig. 3. A possible execution of the WakingUp routine

fulfilled. For instance, when the context manager notifies
the engine that it is 7:50 a.m., the engine gets the context
situations that depend on time, such as the one for the
WakingUp routine, and checks them. On a working day,
the engine checks that the context situation of the the
WakingUp routine is satisfied.

3) Executing the routine tasks: The engine executes
the routines whose context situation is satisfied. The
engine uses the context manager to check the con-
text conditions. To execute each routine, the engine
executes its leaf tasks according to their refinements,
their context conditions in the current context, and their
temporal relationships. For instance, to automate the
WakingUp routine, the engine gets the first subtask (turn
on bathroom heating) and checks its precondition (Bath-
roomTemperature=low). If it is true, the engine executes
its related service. The engine then waits 10 minutes,
as its relationship with the next task indicates. After

that, the engine executes the service related to the turn
on the radio task. The engine then gets the next task,
which is the illuminate the room task. To execute it, the
engine gets its first subtask (switch light off ) and checks
its context precondition (OutsideBrightness=low). If it
is satisfied, the engine executes the service related to
the task for switching lights on. Otherwise, the engine
executes the service related to the raise blinds task
because its context precondition is the opposite one
(OutsideBrightness!=low).
Finally, the engine gets the last task. This is related to
the previous task by the >>[UserPresence=Kitchen]>>
relationship; therefore, the engine waits until Bob enters
in the kitchen and then executes the makeCoffee service.

B. Implementation Details

To describe the task model, we have developed a graphical
editor using the Eclipse platform, and the EMF and GMF
plugins. By using this editor, the model can be graphically
edited as shown in Figure 2. These descriptions are stored
in XMI (XML Metadata Interchange), which is machine-
interpretable at runtime. The context repository is represented
as an OWL (Web Ontology Language) ontological model.
OWL is an ontology markup language W3C standard that
greatly facilitates runtime interpretation and reasoning.

The context manager and the automation engine are im-
plemented in Java/OSGi technology and are run in an OSGi
server together with the pervasive services. Note that the
infrastructure is decoupled from the service implementation
since we only need to indicate a service identifier.

Using OSGi, the context manager can listen to the changes
produced in the services to detect context changes and can
also inform the engine when a change is detected. To execute
a task, the engine searches for the pervasive service associated
to the task in the OSGi server by using its service registry.
Then, the engine executes the corresponding service by using
the Java Reflection capabilities.

To manage the task model at runtime, the engine uses the
EMF Model Query plugin that allows a system to work with
any model by querying its structure at runtime. To manage
the context repository at runtime, the context manager uses
the OWL API 2.1.1, which provides facilities for creating,
examining, and modifying an OWL model; and the Pellet
reasoner 1.5.2., which allows the OWL model to be queried.

More technical details can be found in [13].

V. VALIDATION OF THE PROPOSAL

In order to validate the presented software infrastructure,
we have applied a case-study based evaluation by following
the research methodology practices provided in [14].

The purpose of the evaluation was to validate that our
software infrastructure supports the execution of adaptive
routines and only automates the routines that users want and
in the way they want them. To validate this, we evaluated
the following research questions according to the requirements
presented in Section III:

33Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



1) Does the infrastructure facilitate user participation to
take into account user automation desires and demands?

2) Does the infrastructure correctly automate the routines
in a context-adaptive way?

3) Does the infrastructure allow routines to be adapted by
changing the task model at runtime?

We now summarize the results of this evaluation. More
details can be found in [13]. Also, we have recorded several
videos that show the software infrastructure in execution. They
can be found at http://www.pros.upv.es/art.

A. User Participation

We designed and developed 14 case studies in the smart
home domain, covering different set of inhabitants (families,
couples and single people). We selected smart homes because
this a is fertile ground for offering products and services to
improve people’ lives. Specifically, the overall purpose of the
developed case studies was to make inhabitants’ lives more
efficient and comfortable and to save energy consumption. A
total of 18 subjects between 26 and 57 years old participated
as the clients of the case studies (8 female and 10 male). Ten
of them had a strong background in computer science, while
the rest only had basic computer knowledge.

We identified from 6 to 12 routines to be automated in
each case study resulting in a total of 97 routines. It took us
between 40 and 90 minutes to specify the routines of each case
study using the task model. We then briefly taught the subjects
about the main components of the task model notation and
evaluated their comprehension to determine if the task model
facilitated user participation. To do this, we used a short semi-
structured interview in which we asked the subjects questions
to make them reason about the task model. For instance, some
of these questions were: how many tasks will be executed in
this routine?; when will this routine be activated?; when will
this task be executed?.

We found that 14 of the 18 subjects understood the routines
specified in the task model perfectly. The other 4 users, those
with little mathematics and computer skills, understood the
structure of the model (task hierarchy and task relationships)
very well; however, they had difficulty knowing what the used
context conditions meant. To solve this problem, we added a
new view in the task model editor to show these conditions
in natural language. For instance, instead of showing [Out-
sideBrightness=low] switch lights on in the model, we show:
if the outside brightness is low, switch lights on, or instead
of showing >> [UserPresence = Kitchen] >>, we show
when you arrive to the kitchen.

After checking the subjects’ comprehension of the model,
we explained the specified routines to them. We found that
the task model is very useful in discussing and validating the
routines to be automated. If something was not specified the
way the users wanted it to be automated, we refined the model
to fulfil their requirements. We repeated this process until the
users agreed with the specification. This allowed us to describe
the routines by taking into account the automation desires and
demands of the users.

B. Context-Adaptive Routine Automation

Once the task models were validated, we put the system
into operation to automate the described routines. We used a
scale environment with real devices (see http://pros.upv.es/art)
to represent the Smart Home. This execution environment was
made up of a PC and a network of KNX devices connected
to the PC by a USB port. An Equinox distribution (which is
the OSGi implementation of Eclipse) was run in the PC. The
software infrastructure together with the pervasive services
required to execute the leaf tasks of the routines (a total of
26 services) were installed and started in Equinox.

By using JUnit tests, we validated that the routines were
correcly automated in a context-adaptive way. Specifically, the
following aspects were validated:

• All the routines were triggered only when its context
situation was fulfilled.

• When a routine was executed, all the required services
were executed in the correct order and in the correct
context conditions.

The proposed validation consisted in: (1) simulating the
fulfilment of specific context conditions in order to trigger
the execution of several routines, and (2) checking that all the
services that must be executed were registered by the context
manager in the correct order, respecting the corresponding
temporal relationships between the tasks.

We performed this process in an iterative way, which
allowed us to detect and solve some mistakes. For instance,
we realized that the routines dependent on time, made the
system enter into a loop. This was because the system updated
time every second and the smallest time unit considered in
the routines was minutes. Thus, the context situation of these
routines was continuously fulfilled until a minute went by. To
solve this problem without overloading the system, we updated
the context manager to update time every minute.

C. Routine Adaptation after System Deployment

We validated that the routines could be easily evolved by
changing the task model at runtime. Specifically, we changed
the task model to perform the following types of adaptation:
delete routines; modify routines by changing their context
situation and their tasks (task order, context preconditions,
temporal relationships, etc.); and add new routines.

After each adaptation, we simulated the fulfilment of the
context situations of the routines and applied the JUnit tests
again to check that the routines were correctly executed ac-
cording to the performed evolution. For instance, we modified
the WakingUp routine. We changed the second task in order
to wake Bob up with relaxing music; we removed the lighting
task, and added a new task so that the system informed Bob
about the weather when he was in the kitchen. Figure 4 shows
these modifications in the task model and the execution trace
of the WakingUp routine before and after evolving it.

VI. CONCLUSION

In this work, we have presented and evaluated a sofware
infrastructure that achieves the automation of adaptive daily

34Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



CurrentTime=07:50
AND WorkingDay=true WakingUp

>>[UserPresence=kitchen]>>Illuminate
the room

[OusideBrightness=low]
Switch light on

[OusideBrightness!=low]
Raise blinds

|||
make coffee[BathroomTemperature=low]

turn on bathroom heating

10 min>> turn on
the radio

CurrentTime=07:50
AND WorkingDay=true WakingUp

>>[UserPresence=kitchen]>>
make coffee[BathroomTemperature=low]

turn on bathroom heating

10 min>> turn on
relaxing music

inform about
the weather

>>

Modifying a task
Removing a task

Creating a new task

The new task is executed

The Illuminate the room task

 is not executed any more

Fig. 4. Execution traces before and after evolving the WakingUp routine

routines. These routines are represented in high-level abstrac-
tion context-adaptive models that are directly interpreted at
runtime. This considerably facilitates the further adaptation
of the routines by changing the models (i.e., at the modelling
level) at runtime, which is one of the top challenges in software
evolution research [15]. As soon as the models are changed
to adapt the routines, the changes are also taken into account
by the automation engine.

Further work will be dedicated to extending the approach
with machine-learning algorithms in order to provide more
automation in the requirements capture and the routine adapta-
tion after system deployment. When the system is running, the
context manager stores the user actions in the context reposi-
tory. Machine-learning algorithms can use this information to
detect new routines or changes in the ones already specified
and adapt the models accordingly.

ACKNOWLEDGMENT

This work has been supported by the Christian Doppler
Forschungsgesellschaft and the BMWFJ, Austria.

REFERENCES

[1] F. Mattern, “The vision and technical foundations of ubiquitous com-
puting,” Upgrade European Online Magazine, pp. 5–8, 2001.

[2] H. Hagras, V. Callaghan, M. Colley, G. Clarke, A. Pounds-Cornish,
and H. Duman, “Creating an ambient-intelligence environment using
embedded agents,” IEEE Intelligent Systems, vol. 19, no. 6, pp. 12–20,
2004.

[3] P. Rashidi and D. J. Cook, “Keeping the intelligent environment resident
in the loop,” in IE 08, 2008, pp. 1–9.

[4] K. Henricksen, J. Indulska, and A. Rakotonirainy, “Using context and
preferences to implement self-adapting pervasive computing applica-
tions,” Software: Practice and Experience, vol. 36, no. 11-12, pp. 1307–
1330, 2006.

[5] M. Garcı́a-Herranz, P. Haya, and X. Alamán, “Towards a ubiquitous
end-user programming system for smart spaces,” Journal of Universal
Computer Science, vol. 16, no. 12, pp. 1633–1649, 2010.

[6] D. Cook and S. Das, Smart environments: Technology, protocols and
applications. Wiley-Interscience, 2004, vol. 43.

[7] A. K. Dey, R. Hamid, C. Beckmann, I. Li, and D. Hsu, “a cappella:
Programming by demonstration of context-aware applications,” CHI
2004, pp. 33–40, 2004.

[8] J. Chin, V. Callaghan, and G. Clarke, “A programming-by-example
approach to customising digital homes,” in IE 08, 2008, pp. 1–8.

[9] C. Pribeanu, Q. Limbourg, and J. Vanderdonckt, “Task modelling for
context-sensitive user interfaces,” Interactive Systems: Design, Specifi-
cation, and Verification, pp. 49–68, 2001.

[10] R. Huang, Q. Cao, J. Zhou, D. Sun, and Q. Su, “Context-aware active
task discovery for pervasive computing,” in International Conference on
Computer Science and Software Engineering, 2008, pp. 463–466.

[11] F. M. Reyes, “Issues of sensor-based information systems to support
parenting in pervasive settings: A case study,” Emerging Pervasive
and Ubiquitous Aspects of Information Systems: Cross-Disciplinary
Advancements, p. 261, 2011.

[12] F. Paternò, “From model-based to natural development,” HCI Interna-
tional, pp. 592–596, 2003.

[13] E. Serral, “Automating routine tasks in smart environments. a context-
aware model-driven approach,” Ph.D. dissertation, Technical University
of Valencia, DSIC, 2011.

[14] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[15] T. Mens, “The ercim working group on software evolution: the past and
the future,” in IWPSE-Evol workshops. ACM, 2009, pp. 1–4.

35Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Self-discovery Algorithms for a Massively-Parallel
Computer

Kier J. Dugan, Jeff S. Reeve, Andrew D. Brown
Electronics and Computer Science

University of Southampton
Southampton, UK

{kjd1v07, jsr, adb}@ecs.soton.ac.uk

Abstract—SpiNNaker is a biologically-inspired massively-
parallel computer design that will contain over a million pro-
cessors, distributed over more than 60,000 chips. The system
bootstrap must discover how they are connected for the machine
to enter a usable state. In this paper we describe a set of algo-
rithms for discovering missing or malfunctioning inter-chip links,
assigning unique identifiers to each chip, and building point-to-
point network routing tables. All of the algorithms have been
simulated, and will be implemented into SpiNNaker after further
investigation. Our goal is to design an autonomic bootstrap stage
that can operate on arbitrary machine geometries.

Keywords—SpiNNaker; self-discovering networks; parallel
computer bootstrap procedures; self-configuration.

I. INTRODUCTION

SpiNNaker [1] is a biologically-inspired massively-parallel
computer that will contain over a million processors, dis-
tributed across more than sixty-thousand Multi-Processor
System-on-Chip (MPSoC) devices. The flagship application
for this machine is to model large neural-networks contain-
ing biologically-realistic numbers of neurons and synapses
in biological real-time [2]. Each MPSoC contains 18 ARM
processors with the intention of using 16 for simulation, one
as a monitor processor that manages communications for the
chip, and one as a spare for reliability purposes.

The network fabric of SpiNNaker follows a globally asyn-
chronous, locally synchronous (GALS) methodology which
allows each processor to exist in its own clock domain [3].
Inside each MPSoC, an asynchronous network-on-chip (NoC)
connects all of the processors to the router. These routers
communicate with each other using six inter-chip ports which
have also been inspired by NoC designs. Both networks
use m-of-n codes to provide reliable, low-latency, self-timed
communications using compact transmit/receive logic.

Four routing methods, each optimised for a specific task,
operate in parallel throughout the machine [4]. MC (multicast)
traffic is used to carry address-event representation (AER)
simulation data in a one-to-many fashion inspired by neural
connectivity patterns; FR (fixed-route) packets are a special-
isation of this, where the source-addressed routing has been
sacrificed in favour of a larger payload. P2P (point-to-point)
packets carry command and system information between two
chips of the machine in a one-to-one mapping. Finally, NN

(nearest-neighbour) packets provide a one-to-one link between
a chip and any one of its six immediate neighbours.

An ideal SpiNNaker network is an isotropic 3D torus with
extra diagonal links to facilitate triangular routing around
problematic links. Due to the scale of the final machine, there
can be no guarantee that all processors and chips will be
functional on start-up. Assigning labels and routes statically is
therefore not viable, nor can any assumptions be made about
the regularity of the structure of the machine.

Other MPSoCs avoid this issue by taking more self-
contained approach, acting as either master- or co-processors.
In the Centip3De [5] MPSoC, a 3D NoC is used to maintain
cache-coherency throughout the chip so that all 64 ARM
Cortex-M3 processors can communicate using shared mem-
ory. A similar approach has been used by Intel in their
prototype data-center-on-a-die, which reserves a small region
of shared memory as a message-passing buffer that allows
the 48 Pentium-class IA-32 processors to communicate [6].
TILE64TM [7] uses several software-controlled networks (one
also being software-routed) to connect a regular grid of 64
VLIW processors to the system RAM, on-chip peripherals, and
each other. PCI-express and Ethernet controllers provide the
inter-chip communications instead of allowing the processor
network to bridge chip boundaries as it does in SpiNNaker.

These devices either assign processor labels statically or are
structured such that they can be derived at runtime. Similarly,
conventional cluster machines assembled from commodity
computer hardware may make use of the vendor-assigned
MAC address of the network interface card as a machine
label. Higher level protocols, such as the Dynamic Host
Configuration Protocol (DHCP), can be used to automatically
assign system-wide labels from a central source.

SpiNNaker chips are, nominally, identical and hence there
is no equivalent of a MAC address available. It follows
that only NN packets may be used during the system boot
because the higher-level networks require both chip labels
and at least partial knowledge of the machine geometry. In
this paper we present a set of algorithms that will discover
missing/malfunctioning inter-chip links, assign each chip a
unique label, and then build the P2P tables. All of these
algorithms have been prototyped in simulations that mimic
the distributed interrupt-driven nature of SpiNNaker.

The rest of this paper is structured as follows: in Section II

36Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



we introduce the bootstrap algorithms that eventually lead
to a constructed P2P table on each chip; Section III briefly
describes some early-stage work towards building the MC
tables; and Section IV concludes with a summary of this paper
and introduces planned future work.

II. BOOTSTRAPPING ALGORITHMS

The SpiNNaker machine does not power up with any
implied knowledge of its structure and must discover this as
part of the bootstrap procedure. Each chip has an integrated
ROM that stores a small boot program capable of initialising
the NN routing mechanism and the Ethernet controller if there
is an active connection. All cores enter the wait-for-interrupt
(WFI) state once these resources are ready, and may only
process interrupts from these sub-systems.

System software, which must be loaded into the machine
from an external host, is then distributed to all chips using
a flood-fill mechanism [8]. Existing algorithms for providing
each SpiNNaker chip with a unique label and building the
point-to-point tables are semi-automatic and require prior
knowledge. The algorithms presented in this paper aim to
remove this constraint and hence provide a more autonomic
self-discovering bootstrap process that may be applied to
arbitrary machine geometries.

A. The α-ping

Malfunctioning links are not detected during the initial
flood-fill process primarily due to the small size of the boot
ROM. After control is passed from the boot-loader to the sys-
tem software, higher-level detection algorithms may be applied
to the machine to detect faults. Completion of the flood-fill
cannot easily be detected without making assumptions about
the machine geometry. We propose the α-ping as a process
that will be incorporated into the system software and then
executed after an appropriate time-out to allow for completion
of the flood-fill.

Two tokens are passed between the monitor processors
of adjacent chips—the request token, αR, and the acknowl-
edgement token, αA. Each chip labels all local ports as
undefined immediately after executing the system soft-
ware. The host machine starts the process by injecting αR

into the Ethernet-connected chip. αR is then broadcast to
all neighbouring chips and every local port is assigned the
requested label. Chips respond to incoming αR with αA

and label the appropriate port as active; further αR are
broadcast to all other unlabelled ports and the requested
label will be attached as before. After a predetermined chip-
local time-out (for the same reasons as with the flood-fill) all
ports that are still labelled requested are assumed to have
malfunctioned and will hence be inactive.

B. Assigning Chip Labels

Each chip of the SpiNNaker machine must be assigned a
unique identifier so that P2P routes can be established. The
existing method assumes a grid topology and requires extents
in X and Y to be specified a priori by the operator [9]. A

chip will be assigned a label from a predecessor (which is an
Ethernet-connected host in the case of the root chip) and then
geometric assumptions and simple arithmetic (x mod X and
y mod Y ) are used to calculate the labels for the surrounding
chips. Two clear pros of this method are that a) chip labels
are entirely deterministic so there cannot be any conflicts
during the set-up; and b) it will operate as a wave front of
parallel computation emanating from the root chip. However,
the geometric assumptions constrain the SpiNNaker machine
to a grid which may not always be an appropriate geometry.

A solution is to build a spanning tree with its root at the
Ethernet-connected chip. The generated tree structure may be
derived from an arbitrary connected graph and provides a
simple method for building hierarchical barrier, scatter and
gather constructs common in parallel computing. Chips can
also be uniquely labelled as part of the traversal process that
builds the tree.

The SpiNNaker programming model is based on events
(i.e., hardware interrupts) that are triggered either by a regular
timer tick or by a packet arrival. Deriving the spanning tree
must be performed within SpiNNaker and can only make use
of NN packets to raise events on neighbouring chips. Only
the monitor processors can take part in this process, and the
algorithm must be defined on a per-node basis rather than on
the machine-graph as a whole.

An interrupt-driven breadth-first search (BFS) is used be-
cause it should extract a wide, shallow tree from the SpiN-
Naker grid. This is desirable as it allows a large volume of the
barrier, scatter and gather communication to occur in parallel.
A sequential BFS is presently used because it ensures that
labels are generated contiguously and will therefore be unique
across the machine as illustrated by Figure 1.

1) General Algorithm Description: A node is represented
as a finite-state machine and will be in one of the following
states during the algorithm: IDLE, LABELLED, PARENT, or
BARRIER. All nodes begin in the IDLE state and enter the
BARRIER state once the tree has been successfully built.
Query-events, Q(L), and reply-events, R(L,A), are used to
transmit labels, L, between parent and child nodes and to
report the number of nodes affected by an operation, A.

For a given node, V , in the IDLE state, a label will be
attached upon the reception of an event, Q(L), containing the
new label value to use. V will then emit a reply-event, R(L, 1),
to the originator of Q to report that the label has been accepted
(i.e., A = 1 because V was the only node affected by Q). V
will then advance to the LABELLED state and hence a parent-
child relationship has been established.

A node in the LABELLED state will receive an event, Q(L),
after the parent, VP , has finished labelling its neighbour nodes.
L will be the first value that may be used as a label. V
will iterate over all neighbouring nodes (except VP ) sending
Q(L+n) where n is initialised to 0 and incremented for each
R(L+n, 1) reply. Neighbours that already have been assigned
a label will respond with R(L+n, 0) and hence n will not be
incremented. This process will continue until all neighbours
of V have been visited, causing V to respond to VP with

37Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



8

7

18

11

6

4

2

121

3

13

19

16

14

0

17

9

10

5

15

(a) Arbitrary machine graph

8

7

18

11

6

4

2

12

1

3

13

19

16

14

0

17

9

10

5

15

(b) Extracted tree

Fig. 1. Input graph and resulting tree for the proposed event-driven breadth-first algorithm.

R(L+n, n) before entering the PARENT state. Using Figure 1
as an example and assuming that node 0 is in the LABELLED
state (i.e., the host machine has assigned it a label of 0), it will
pass Q(1) to one of its neighbours which will then respond
with R(1, 1) to indicate that the label, 1, has been accepted. If
the target neighbour already has a label, the reply will instead
be R(1, 0) because the label has not been accepted. The next
neighbour receives Q(2) and will reply with R(2, 1), and so
on until all neighbours have been labelled.

Once in this state, V performs similar behaviour but instead
computes a running total of affected nodes, nT , which is first
initialised to 0 and then increased by nR for each reply event
R(L + nT + nR, nR) from a child node. V will respond to
its parent, VP , with R(L+nT , nT ) after all child nodes have
been visited. Following from the previous example, node 0
would respond to its parent (the host, in this case) with R(3, 3)
because L = 3 was the highest label assigned to a neighbour
and A = 3 nodes were affected.

A node may, at any time, receive a barrier event, B(L),
which immediately causes the node to perform the following
actions: 1) store L as the number of nodes in the machine
graph, 2) propagate B(L) to all child nodes, and 3) transition
into the BARRIER state. No BFS events will be processed in
this state, hence this marks the completion of the algorithm.

2) Duty of the Root Node: The description in the previous
section is valid for all nodes of the graph and of the derived
tree, but the root node is required to behave slightly differently.
Its parent is the host of the simulation and will not be part of
the machine graph (an Ethernet-connected PC is the host of a
SpiNNaker-based simulation). The host will issue Q(0) to a
node VR of the target system to start the algorithm. VR will
assert itself as the root node of the machine because L = 0.
VR will progress through the states in the same manner as

any other node except that it does not require the permission
of its parent to raise new events. It therefore issues new events,
calculating appropriate values for L, and computes a running
total of the number of affected nodes, AR, for each pass. When
AR = 0, all nodes of the machine graph have been assigned
a unique label and have progressed through all the required
states, which triggers VR to perform the following:

• B(Lmax) is issued to all child nodes of VR;
• R(Lmax, 0) is issued to the host of the simulation;
• VR enters the BARRIER state.
Following the running example one final time with node

0 having labelled its neighbouring nodes and entered the
PARENT state, a random child is chosen (node 3 in the case
of Figure 1) and issued with Q(4). Node 3 follows the same
procedure as before by labelling its neighbours 4, 5 and 6.
Once complete, node 3 replies to node 0 with R(6, 3) because
L = 6 is the highest label used and A = 3 nodes were affected.
Next, node 1 is randomly chosen and issued Q(7); R(11, 5)
is raised in response after each neighbour has been visited.
Finally node 2 is issued Q(12) and responds with R(12, 1).
Node 0 can now calculate the total number of affected nodes
for this pass as AR = 3 + 5 + 1 = 9. As AR 6= 0, a random
child node is passed Q(13) and the process continues until
nodes 1, 2, and 3 all respond with R(Lmax, 0), which causes
node 0 to complete the actions described above. Figure 1a
shows a random graph that has been used as a machine model
for this algorithm. Each node represents a SpiNNaker chip and
each edge is a nearest-neighbour (NN) connection. Figure 1b
is the tree structure that has been built.

C. P2P Table Generation

Building the P2P routing tables currently uses the same
machine geometry assumptions as the labelling process [9],

38Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



and must be replaced to use the BFS-assigned chip labels.
Assuming that all nodes of an arbitrary connected graph

(i.e., all chips of a SpiNNaker machine) are in the BARRIER
state, a node, Vi, transmits its label, i, to all neighbouring
nodes including those that are not child nodes. A receiving
node, Vk, with network ports E(Vk) links the incoming port,
Ej ∈ E(Vk), to Vi by setting the ith entry of its routing table
accordingly (i.e., Pk[i] = Ej). The message is then forwarded
through all ports other than Ej to continue the process.

This bootstrap stage begins with the root node broadcasting
its own label, 0, to its neighbours after all graph nodes have
entered the BARRIER state. Nodes receiving label messages
for the first time update their P2P table, propagate the message
to all neighbours except the source, and then broadcast their
own label. If a P2P table entry is already present then the
node will not broadcast further messages. A wave front of
these messages will propagate across the graph until all nodes
have a complete P2P table, which will contain L entries as
reported by the B(L) message of the labelling stage.

A second barrier condition is required to conclude the
bootstrap. Messages may now be routed between any two
nodes of the machine graph dynamically by following the
appropriate ports mapped in the P2P tables.

III. MAPPING PROBLEM GRAPHS TO MACHINE
GEOMETRIES

A SpiNNaker application is represented as a connected
graph that describes how data flows through a set of be-
haviours. Mapping these problem graphs onto the machine
is essentially a combination of assignment and path-finding
problems. SpiNNaker is optimised for simulating large-scale
neural networks in biological real-time, and hence existing
methods exploit the hierarchy of these problem graphs to
simplify allocation and routing [10][11].

These assumptions do not hold for general-purpose appli-
cations because there can be no guarantee of the structure of
the problem graph. We are developing a physically-inspired
approach that treats each node of the graph as a charged
particle contained within a volume. The field interactions
between nodes will distribute them evenly across the machine
geometry. Additional forces acting in place of the edges will
keep heavily connected areas local. Graph drawing and chip-
layout algorithms have served as two key inspirations.

Our goal is to produce an algorithm that can be solved
locally at each node without requiring any global knowledge of
the machine or problem graphs. This cannot be included in the
bootstrap because the application may change during runtime.
An ongoing supervisory process may be able to adjust node
and edge weights (i.e., their field contributions) to facilitate
dynamic load balancing without requiring global knowledge.

IV. CONCLUSION AND FUTURE WORK

We have presented a brief review of bootstrapping algo-
rithms that we are developing for use on the SpiNNaker
massively parallel computer. A breadth-first search based on
node-local information and event driven interactions is used to

assign unique labels to nodes (chips) and to support a barrier
tree structure. At present, all algorithms have been tested in
a simulation environment that accurately mimics the NN net-
work. The BFS is sequential to guarantee unique labels across
the machine but this leads to a computational complexity of
O(n). This is somewhat wasteful of the massively parallel
resources of SpiNNaker, and further work will be conducted
to parallelise this algorithm as much as is practicable.

Section III presents an idea we aim to develop that will
allow arbitrary problem graphs to be mapped onto arbitrary
machine geometries using only locally available knowledge.
Our longer term goal is to couple these algorithms to design
a system capable of reacting to system-level changes (such
as a processor or chip malfunctioning) without using global
knowledge or a central overseer. Additionally, they will allow
a problem graph to be streamed into SpiNNaker and the
allocation of problem nodes to cores, and the derivation of
network routes, will be an automatic process.

ACKNOWLEDGMENT

This work is supported by the UK Engineering and Phys-
ical Sciences Research Council (EPSRC) through grants
EP/G015775/1 and EP/G015740/1, and with industrial support
from ARM Ltd.

REFERENCES

[1] SpiNNaker home page. University of Manchester. Last Accessed: May
2013. [Online]. Available: http://apt.cs.man.ac.uk/projects/SpiNNaker/

[2] S. Furber and A. Brown, “Biologically-Inspired Massively-Parallel Ar-
chitectures - Computing Beyond a Million Processors,” in Int. Conf. on
Application of Concurrency to System Design. IEEE, 2009, pp. 3–12.

[3] L. Plana, S. Furber, S. Temple, M. Khan, Y. Shi, J. Wu, and S. Yang, “A
GALS Infrastructure for a Massively Parallel Multiprocessor,” Design
& Test of Computers, vol. 24, no. 5, pp. 454–463, Sep. 2007.

[4] S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and
A. Brown, “Overview of the SpiNNaker System Architecture,” IEEE
Transactions on Computers, pp. 1–14, 2012.

[5] D. Fick, R. Dreslinski, B. Giridhar, G. Kim, S. Seo, M. Fojtik,
S. Satpathy, Y. Lee, D. Kim, N. Liu, M. Wieckowski, G. Chen,
T. Mudge, D. Sylvester, and D. Blaauw, “Centip3De: A 3930DMIPS/W
configurable near-threshold 3D stacked system with 64 ARM Cortex-M3
cores,” in ISSCC. IEEE, Feb. 2012, pp. 190–192.

[6] J. Howard, S. Dighe, Y. Hoskote, S. Vangal, D. Finan, G. Ruhl,
D. Jenkins, H. Wilson, N. Borkar, G. Schrom, and Others, “A 48-
core IA-32 message-passing processor with DVFS in 45nm CMOS,”
in ISSCC, vol. 9, no. 2. IEEE, Feb. 2010, pp. 108–109.

[7] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung,
J. MacKay, M. Reif, L. Bao, J. Brown, M. Mattina, C.-c. Miao,
C. Ramey, D. Wentzlaff, W. Anderson, E. Berger, N. Fairbanks, D. Khan,
F. Montenegro, J. Stickney, and J. Zook, “TILE64? Processor: A 64-Core
SoC with Mesh Interconnect,” in ISSCC. IEEE, Feb. 2008, pp. 88–89.

[8] M. Khan, J. Navaridas, A. Rast, X. Jin, L. Plana, M. Lujan, J. Woods,
J. Miguel-Alonso, and S. Furber, “Event-Driven Configuration of a Neu-
ral Network CMP System over a Homogeneous Interconnect Fabric,” in
8th Int. Symp. on Parallel and Distributed Computing. IEEE, 2009,
pp. 54–61.

[9] T. Sharp, C. Patterson, and S. Furber, “Distributed configuration of
massively-parallel simulation on SpiNNaker neuromorphic hardware,”
in Int. Joint Conf. on Neural Networks. IEEE, 2011, pp. 1099–1105.

[10] F. Galluppi, S. Davies, A. Rast, T. Sharp, L. Plana, and S. Furber, “A
hierachical configuration system for a massively parallel neural hardware
platform,” in Computing Frontiers. ACM Press, 2012, pp. 183–192.

[11] S. Davies, J. Navaridas, F. Galluppi, and S. Furber, “Population-based
routing in the SpiNNaker neuromorphic architecture,” in Int. Joint Conf.
on Neural Networks. IEEE, 2012, pp. 1–8.

39Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



A Software Design Pattern Based Approach to Adaptive Video Games 

Muhammad Iftekher Chowdhury, Michael Katchabaw 

Department of Computer Science 

University of Western Ontario 

London, Canada 

{iftekher.chowdhury, katchab}@uwo.ca 

 

 
Abstract—To achieve success, it is becoming increasingly clear 

that modern video games must be adaptive in nature – 

malleable and able to reshape to the needs, expectations, and 

preferences of the player. Failure to adapt results in a game 

that is too inflexible, rigid, and pre-defined; one that is simply 

ineffective, particularly for a large and diverse player 

population.  Developing and supporting adaptive games, 

however, introduces many challenges.  In this paper, we 

describe a set of software design patterns for enabling 

adaptivity in video games to address these challenges. We also 

demonstrate the benefits of our pattern-based approach, in 

terms of software quality factors and process improvements, 

through our experience of applying it to a number of video 

games for enabling a particular type of adaptivity, auto 

dynamic difficulty.      

Keywords-adaptive video game; software design patterns; 

game development process; software quality 

I.  INTRODUCTION 

Building rich and dynamic video games is surprisingly 

complex [1], so much of the existing research and 

development in this area has led to the creation of games 

that are largely deterministic in nature.  What occurs in 

these worlds and how this is presented to the player is for 

the most part fixed, and quite unable to adequately react to 

the interactions of the player [2,3].  While interesting in 

their own ways, these games are often too inflexible and 

rigid to be able to effectively meet the needs and 

expectations of a large and diverse player population 

[2,4,5,6], especially as these needs and expectations change 

as players mature, refine their skills, and form new 

experiences [7].  In the end, this leads to a loss of 

engagement, a break of immersion, and an overall 

disappointing player experience [2,8,9].  The result is a 

game that is unsuccessful critically and commercially. 

As work in this area continues, it is becoming 

increasingly clear that games must be adaptive in nature — 

malleable and able to reshape to the needs, expectations, and 

preferences of the player [2,3].  Adaptive systems are 

designed to excel at situations that cannot be completely or 

singularly modeled prior to development, and so they must 

be able satisfy requirements that arise only after they are put 

in use; this is very much the case in games.  Nearly every 

aspect of a game can be made adaptive in this way: the 

game world (structural elements, composition); the 

population of the world (the agents or characters in the 

world); any narrative elements (story, history, or back-

story); gameplay (challenges, obstacles); the presentation of 

the game to the player (visuals, music, sound); and so on.  

In being adaptive, games can provide more compelling, 

engaging, immersive, and perhaps personalized or 

customized experiences to their player, leading to a 

significantly better outcome for the player, and far more 

success for the game in the end [2,4,5,6,8,9,10]. 
Previous attempts at adaptivity can be characterized as ad 

hoc from a software engineering perspective; lacking rigor, 
structure, and reusability, with custom solutions per game, 
which is not acceptable [11,12].  There is a critical need for 
reusable software infrastructure to enable the construction of 
adaptive games [11,12].  Addressing this problem is the 
broad goal of our research.  While this is a difficult goal to 
achieve [2,13], both from theoretical and practical 
perspectives, we have found success in this area by 
leveraging software design patterns [14]. 

In particular, we study adaptivity in games through an 
exploration of a particular problem in this space, that of auto 
dynamic difficulty. In this case, adaptations are focused on 
adjusting game difficulty to match the expertise of the 
player.  According to the theory of flow or optimal 
experience [15], players who lack the skill to suitably deal 
with the challenges they face will feel anxiety or frustration 
in their experience, while players whose skills are excessive 
for the challenges faced will feel boredom or receive no 
sense of accomplishment from their experience.  A game that 
is properly balanced, on the other hand, will be much better 
received by the player [16].  A single difficulty level has 
little chance of addressing the needs of a broad audience.  
Multiple static difficulty levels in games also fail in this 
context, as they expect the players to judge their ability 
themselves appropriately before playing the game and also 
try to classify them in broad clusters [11,12].  An adaptive 
game supporting auto dynamic difficulty circumvents these 
problems to deliver a more satisfying experience to players 
by providing per-player skill-appropriate challenge. 

In this paper, we discuss our general approach to 
adaptive games and demonstrate the effectiveness of our 
approach by examining auto dynamic difficulty, extending 
our previous work in this area [11,12].  To do so, we 
leverage the benefits of software design patterns, derived 
from self-adaptive system literature [17], to construct an 
adaptive system for video games that is reusable, portable, 
flexible, and maintainable.   

40Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



II. RELATED WORK 

In recent years, adaptive video games and auto dynamic 
difficulty have received notable attention from numerous 
researchers.  In the subsections below, we review key work 
in this area and discuss the research gap that remains.       

A. Adaptive Game Systems 

The study of adaptive systems in a broader sense is not 

new. Unfortunately, it is difficult to directly apply adaptive 

systems work from other domains to video games [11,12].  

Games do more than deliver functionality as in other 

software systems; there is a larger emphasis on engagement, 

immersion, and experience, as well as greater demands on 

interactivity and real-time performance and presence.  These 

factors require careful consideration often not required in 

other domains.  Furthermore, adaptations in games can go 

beyond the tuning found in most other domains; there can 

also be creative or generative aspects to adaptivity.  There 

exists a separation of logic or processing and content in 

games; while both can be tuned, the content aspect can be 

altered in fundamentally different ways that fall outside of 

traditional approaches to adaptive systems.  Consequently, 

there is a need to study adaptivity in the context of games.  

To date, efforts in doing so have been rather scant, with the 

work of Charles et al. [5] one of the few examples.  

Unfortunately, attempts in this area tend not to leverage 

progress from the adaptive systems literature, and so are 

typically too narrow, overly focused, and lack rigor from a 

software engineering perspective. 

That said, while not studying adaptivity in games 

directly, many researchers studying other issues in this 

space have created work that has been adaptive, at least to a 

certain degree.  This includes work on agent and story 

adaptation [18,19,20,21,22,23], varying the structure of the 

game world [10,24,25,26], and difficulty adjustment, as 

discussed at length in the next section.  Unfortunately, this 

work is also quite ad hoc and cannot be readily generalized 

or reused for other purposes.   

B. Auto Dynamic Difficulty 

There have been numerous attempts made towards 
providing auto dynamic difficulty in video games over the 
years.  In this section, we highlight several of these works. 

Bailey and Katchabaw [16] developed an experimental 
testbed based on Epic’s Unreal engine that can be used to 
implement and study auto dynamic difficulty in games. A 
number of mini-game gameplay scenarios were developed in 
the test-bed and these were used in preliminary experiments. 

Rani et al. [27] suggested a method to use real time 
feedback, by measuring the anxiety level of the player using 
wearable biofeedback sensors, to modify game difficulty. 
They conducted an experiment on a Pong-like game to show 
that physiological feedback-based difficulty levels were 
more effective than performance feedback to provide an 
appropriate level of challenge. Physiological signals data 
were collected from 15 participants each spending 6 hours in 

cognitive tasks (i.e., anagram and Pong tasks) and these were 
analyzed offline to train the system. 

Hunicke [28] used a probabilistic model to design 
adaptability in a first person shooter (FPS) game based on 
the Half Life SDK. They used the game in an experiment on 
20 subjects and found that adaptive adjustment increased the 
player’s performance (i.e., the mean number of deaths 
decreased from 6.4 to 4 in the first 15 minutes of play) and 
that players did not notice the adjustments. 

Hao et al. [29] proposed a Monte-Carlo Tree Search 
(MCTS) based algorithm for auto dynamic difficulty to 
generate intelligence of Non Player Characters (NPCs).  
Because of the computational intensiveness of the approach, 
they also provided an alternative based on artificial neural 
networks (ANN) created from the MCTS. They also tested 
the feasibility of their approach using Pac-Man. 

Hocine and Gouaïch [30] described an adaptive approach 
for pointing tasks in therapeutic games. They introduced a 
motivation model based on job satisfaction and activation 
theory to adapt task difficulty. They also conducted 
preliminary validation through a control experiment on eight 
healthy participants using a Wii balance board game. 

C. Research Gap 

It is clear from surveying the literature that a structured, 

formalized study of adaptivity for video games is needed to 

continue advancing the state of the art in this area.  Indeed, 

games could benefit greatly by having an infrastructure of 

frameworks, patterns, libraries, and support tools to enable 

adaptivity, as is the focus of this paper.  In doing so, 

developers can focus on creating their games and choosing 

the adaptations desired, leaving the implementation of these 

adaptations to the provided infrastructure.   
Research on auto dynamic difficulty in games focuses on 

tool building (including frameworks, algorithms, and so on) 
and empirical studies, but they all use an ad hoc approach 
from a software engineering perspective.  Thus, in this paper, 
we discuss a software design patterns based approach for 
enabling adaptivity in games, and explore the application of 
this approach to auto dynamic difficulty in particular. 

III. DESIGN PATTERNS FOR ADAPTIVE GAMES 

In this section, we overview our collection of four design 
patterns for enabling adaptivity in video games.  These 
patterns were derived from the self-adaptive system literature 
[17], and specialized and refined for games in particular.  For 
further details, the reader is encouraged to refer to [11] for 
elaborated discussion and examples. 

A. Sensor Factory 

The sensor factory pattern is used to provide a systematic 
way of collecting data on a game and its players while 
satisfying resource constraints, and provide those data to the 
rest of the adaptive system.  Sensor (please see Figure 1) is 
an abstract class that encapsulates the periodical collection 
and notification mechanism. A concrete sensor realizes the 
Sensor and defines specific data collection and calculations. 
The SensorFactory class  uses  the  “factory method”  pattern  

41Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



 

Figure 1.  Sensor factory design pattern 

to provide a unified way of creating any sensors. It takes the 
sensorName and the object to be monitored as input and 
creates the sensor. Before creating a sensor, the 
SensorFactory checks in the Registry data structure to see 
whether the sensor has already been created. If created, the 
SensorFactory just returns that sensor instead of creating a 
new one. Otherwise, it verifies with a ResourceManager 
whether a new sensor can be created without violating any 
resource constraints. 

 

B. Adaptation  Detector 

With the help of the sensor factory pattern, the 
AdaptationDetector (please see Figure 2) deploys a number 
of sensors in the game and attaches observers to each sensor. 
Observer encapsulates the data collected from sensor, the 
unit of data (i.e., the degree of precision necessary for each 
particular type of sensor data), and whether the data is up-to-
date or not. AdaptationDetector periodically compares the 
updated values found from Observers with specific 
Threshold values with the help of the ThresholdAnalyzer. 
Each Threshold contains one or more boundary values as 
well as the type of the boundary (e.g., less than, greater than, 
not equal to, etc.). Once the ThresholdAnalyzer indicates a 
situation when adaptation might be needed, the 
AdaptationDetector creates a Trigger with the information 
that the rest of the adaptation process might need. 

 

C. Case Based Reasoning 

While the adaptation detector determines the situation 
when an adjustment is required by creating a Trigger, case 
based reasoning (please see Figure 3) formulates the 
Decision     that     contains     the     adjustment    plan.    The 

 

 

Figure 2.  Adaptation detector design pattern 

 

Figure 3.  Case based reasoning design pattern 

 
InferenceEngine has two data structures: the TriggerPool 
and the FixedRules. FixedRules contains a number of Rules. 
Each Rule is a combination of a Trigger and a Decision. The 
Triggers created by the adaptation detector are stored in the 
TriggerPool. To address the triggers in the sequence they 
were raised in, the TriggerPool should be a FIFO data 
structure. The FixedRules data structure should support 
search functionality so that when the InferenceEngine takes a 
Trigger from the TriggerPool, it can scan through the Rules 
held by FixedRules and find a Decision that appropriately 
responds to the Trigger. 
 

D. Game Reconfiguration 

Once the adaptive system detects that an adjustment is 
necessary, and decides what and how to adjust the various 
game components, it is the task of the game reconfiguration 
pattern (please see Figure 4) to facilitate smooth execution of 
the decision. The AdaptationDriver receives a Decision 
selected by the InferenceEngine (please see case based 
reasoning in previous subsection) and executes it with the 
help of the Driver. Driver implements the algorithm to make 
any attribute change in an object that implements the State 
interface (i.e., that the object can be in ACTIVE, 
BEING_ACTIVE, BEING_INACTIVE or INACTIVE 
states, and outside objects can request state changes). As the 
name suggests, in the active state, the object shows its usual 
behaviour whereas in the inactive state, the object stops its 
regular tasks and is open to changes.  

 

 

Figure 4.  Game reconfiguration design pattern 

42Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



The Driver takes the object to be reconfigured (default 
object used if not specified), the attribute path (i.e., the 
attribute that needs to be changed, specified according to a 
predefined protocol such as object oriented dot notation) and 
the changed attribute value as inputs. The Driver requests the 
object that needs to be reconfigured to be inactive and waits 
for the inactivation. When the object becomes inactive, it 
reconfigures the object as specified. After that, it requests the 
object to be active and informs the AdaptationDriver when 
the object becomes active. The GameState maintains a 
RequestBuffer data structure to temporarily store the inputs 
received during the inactive state of the game. (If the 
reconfiguration is done efficiently, however, it should be 
completed within a single tick of the main game loop, and 
this buffering should be largely unnecessary.) The 
GameState overrides Game’s event handling methods and 
game loop to implement the State interface. 

E. Integration of Design Patterns 

In [31], Salehie and Tahvildari described integration of 
four generic steps for an adaptation process namely 
monitoring, detecting, deciding, and acting. The four design 
patterns discussed in previous sections work on the same 
process flow. In this Section, we briefly re-discuss how they 
work together to create a complete adaptive system (please 
see Figure 5). The sensor factory pattern uses Sensors to 
collect data from the game so that the player’s state and the 
game’s state can be measured. The adaptation detector 
pattern observes Sensor data using Observers. When the 
adaptation detector finds situations where the game needs to 
be adjusted, because either the player or the game is in a sub-
optimal state, it creates Triggers with appropriate additional 
information. Case based reasoning is then notified about 
required adjustments by means of Triggers. It finds 
appropriate Decisions associated with the Triggers and 
passes them to the adaptation driver. The adaptation driver 
applies the changes specified by each Decision to the game, 
to adjust the functioning of the game accordingly, with the 
help of the Driver. The adaptation driver also makes sure that 
the change process is transparent to the player. In this way, 
all four design patterns work together to create a complete 
adaptive system for a particular game. 

F. Enabling Auto Dynamic Difficulty 

When used together, these software design patterns are 
sufficient to implement a wide range of adaptivity in 
gameplay.    To   demonstrate   their   use,   we   explore   the 

 
 

 

Figure 5.  Four design patterns working together in a game 

particular adaptation of game challenge delivered to the 
player in the form of auto dynamic difficulty. 

In this application, Sensors would be used to collect data 
from the game to assess the player’s perceived level of 
difficulty.  As above, the adaptation detector pattern observes 
Sensor data using Observers. When the adaptation detector 
finds situations where difficulty needs to be adjusted, 
because the game is currently too easy or too hard for the 
player, it creates Triggers with appropriate additional 
information.  This information details the in-game activity 
that gave rise to the Triggers, provides more information on 
the player’s state, and includes anything else needed to assist 
in formulating a Decision or carrying out reconfiguration.  
These Triggers are passed to case based reasoning, which in 
turn finds appropriate Decisions to bring game difficulty 
back in line with player skill and expertise.  These Decisions 
are then passed to the adaptation driver, which applies the 
changes specified by each Decision to the game, to adjust the 
difficulty of the game appropriately, with the help of the 
Driver.  In doing so, the situation is corrected, and game 
difficulty is tuned according to the needs of the player. 

IV. OVERVIEW OF STUDIED GAMES AND ADAPTATIONS 

The software design patterns in Section III have been 
implemented as a Java framework that can be used to enable 
adaptivity in games.  As there is nothing Java-specific to our 
patterns, bringing this framework to other platforms with 
other language bindings is part of on-going work. 

To date, we have used three very different games 
developed in Java for studying our approach to adaptivity, 
with a focus on auto dynamic difficulty. In our earlier work 
([11,12]), two casual prototypical games were used. The first 
game is a variant of Pac-Man and was developed specifically 
for the purposes of our research.  The second game, 
TileGame, is a slightly modified version of a platform game 
described in [32]. Even though we were successful in using 
our approach in these two games, the code for these games 
was either written by ourselves or well documented and 
simple enough to be easily understood and reshaped 
accordingly. Thus, recently we have selected a commercially 
successful sandbox game – Minecraft [33] to extend our 
study. Minecraft is commercially available for several 
platforms, but we focus on the desktop version also 
developed in Java. In the subsections below, we briefly 
describe each of the games and examples of adaptations that 
were implemented using our framework. 

A. Pac-Man 

In this game, the player controls Pac-Man in a maze 
(please see Figure 6). There are pellets, power pellets, and 4 
ghosts in the maze. Pac-Man has 6 lives. Usually, ghosts are 
in a predator mode and touching them will cause the loss of 
one of Pac-Man’s lives. When Pac-Man eats a power-pellet, 
it becomes the predator for a certain amount of time. When 
Pac-Man is in this predator mode and eats a ghost, the ghost 
will go back to the center of the maze and will stay there for 
a certain amount of time. Eating pellets gives points to Pac-
Man. The player tries to eat all the pellets in the maze 
without   losing   all   of   Pac-Man’s   lives.   The   player   is  

43Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



 

 

Figure 6.  Screen captured from the Pac-Man game 

motivated to chase the ghosts while in predator mode, as that 
will benefit them by keeping the ghosts away from the maze 
for a time, allowing Pac-Man to eat pellets more freely. 
Ghosts only change direction when they reach intersections 
in the maze, while Pac-Man can change direction at any 
time. A ghost’s vision is limited to a certain number of cells 
in the maze. Ghosts chase the player if they can see them. If 
the ghosts do not see Pac-Man, they try to roam the cells 
with pellets, as Pac-Man needs to eventually visit those areas 
to collect the pellets. If the ghosts do not see either Pac-Man 
or pellets, they move in a random fashion. 

B. TileGame 

The level structure and gameplay of this game is similar 
to the popular Super Mario game series. In this game, the 
player controls the player character in a platform world 
(please see Figure 7).  There are three levels, each having 
different tile based maps. Each level is more difficult and 
lengthier than the previous level, but has more points to give 
the player a sense of progress and accomplishment.   

 

 

Figure 7.  Screen captured from the TileGame game 

There are power ups and non-player characters (i.e., 
enemies) in each level.  There are three different types of 
power ups: basic power ups, bonus power ups, and a goal 
power up.  Basic power ups and bonus power ups give 
certain points to the player.  In each level there is one goal 
power up that can be found at the end of the level.  The goal 
power up takes the player from one level to another.  There 
are two different types of non-player characters: ants and 
flies.  Ants and flies move in one direction and change 
direction when blocked by the platforms.  The player 
character can run on and jump from platforms.  When the 
player character jumps on (i.e., collides from above) non-
player characters, the non-player character dies.  If the player 
character collides with non-player character in any other 
direction, then the player character dies instead.  The player 
character has 6 lives.  When the player character dies, it loses 
one life and the game restarts from the beginning of that 
level. The player character and ants are affected by gravity; 
flies are not. In this game, three map variants were created 
for each level. For a particular level, the same objects were 
placed in the map but positioned slightly differently.  One 
map variant was the default version and other two were 
easier and harder versions of the default map. 
 

C. Minecraft 

Minecraft [33] is an exceptionally popular sandbox game 
that allows players to explore, gather resources, combat, craft 
and build constructions out of textured cubes in a 
procedurally generated 3D world. The terrain of the game 
world, consisting of plains, mountains, forests, caves, and 
waterways, are composed of rough 3D objects (primarily 
cubes) representing different materials (for example dirt, 
stone, tree trunks, water, and so on) and arranged in a fixed 
grid pattern. Players can break (please see Figure 8) and 
collect these material blocks and craft these blocks to form 
other blocks (for example, furnaces, bricks, and stairs) and 
items (for example sticks, axes, and buckets). Players can 
place collected or crafted blocks and items elsewhere to 
build structures. The world is divided into biomes (such as 
deserts, jungles, and snow fields). The time in the game goes 
through a day-night cycle every 20 real time minutes.  

 

 

Figure 8.  Screen captured from Minecraft 

44Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



There are various NPCs known as mobs (including 
animals, villagers, and hostile creatures). Non hostile animals 
(such as cows, pigs, chickens, and so on) spawn during the 
daytime and can be hunted for food and crafting materials. 
Hostile mobs (such as spiders, zombies, and creepers, a 
Minecraft-unique creature) spawn during nighttime and in 
dark areas. There are two primary game modes: creative and 
survival. In creative mode, players have access to unlimited 
resources, and are not affected by hunger or environmental 
or mob damage. On the other hand, in survival mode, players 
need to collect resources (and craft them) and have both a 
health bar and a hunger bar that must be managed to stay 
alive and continue playing. The game also features single 
player and multiplayer options. For this research, we focused 
on the single player option played in survival mode. 

While Minecraft is not open-source, its source code can 
be readily obtained through the use of a toolchain [34] 
provided by an active and extensive modding community 
that decompiles the game back to its source code.   The 
creators of Minecraft accept this practice while an official 
modding interface is under development.  

D. Adaptations Implemented 

In Table I, we provide examples of different adaptations 
that we have implemented in the above games. The first 
column shows the name of the game. The next three columns 
show the details of the adaptations implemented. Please note 
that these columns: metrics for sensors, attributes for 
modification, and adaptation scenarios also represent the 
questions: when to adapt, what to adapt, and how to adapt 
respectively, which is part of the methodology for eliciting 
essential requirements for adaptive software [31].              

TABLE I.  EXAMPLES OF ADAPTATIONS IMPLEMENTED 

 

Many adaptations that we have implemented focus 
primarily on tuning attributes of the game (please see Pac-
Man and Minecraft examples in Table I), while others focus 
on content modifications (please see the TileGame example 
of usage of different versions of maps in Table I).      

V. DISCUSSION 

In this section, we discuss the benefits of using a 
software design pattern approach for implementing 
adaptivity in video games. 

A. Reusable Source Code 

Reusability refers to the degree to which existing code 
can be reused in new applications. Since design patterns 
provide a reusable solution, it is expected that reusable 
source code can be created for such solutions as well. In 
[12], we reported an empirical investigation involving source 
code analysis of the Pac-Man and TileGame games. In that 
study, we experienced 77.52% and 79.68% code reusability 
in Pac-Man and TileGame respectively while implementing 
the adaptive systems using our software design patterns. 
Recently, we have extended this study to the popular 
commercial game Minecraft [33] and found comparable 
results. In Figure 9, we show a summary of these studies, 
identifying reusable and application-specific logical Source 
Lines of Code (SLOC). As we can see, 600 SLOC (74.26% 
in Minecraft; 79.68% in TileGame; and 77.52% in Pac-Man) 
of the adaptive system remained unchanged across all three 
games. 

 
Reusability of source code reduces implementation time 

and increases the probability that prior testing has eliminated 
defects. 

B. Repeatable Process 

In our design pattern-based approach, since the high level 
structure of the solution is already known, it is possible to 
create a step-by-step method for developing adaptive video 
games. From our experience in implementing adaptivity into 
Pac-Man and TileGame [11,12], we formalized such a 
process and applied it to the Minecraft game. In Table II, we 
provide a generalized description of the process to 
incorporate the concepts of adaptive gameplay discussed in 
the previous section. 

 

 

Figure 9.  Source code reusability found in adaptive games developed 

using our design patterns 

G
a

m
e
 

Metrics for 

Sensors 

Attributes for 

Modification 
Adaptation Scenarios 

P
a

c
-M

a
n

 

Total score, 

Number of 

times player 

dies 

Ghost’s speed, the 

ghost’s vision 

length, duration of 

Pac-Man’s predator 

mode, and so on 

Modify ghost’s speed, duration of 

Pac-Man’s predator mode and so on 

based on how the average score per 

life compared to specific thresholds  

T
il

e
G

a
m

e
 Current level 

number, 

Total score, 

Number of 

times player 

dies 

Load different 

versions of the 

map where default 

objects and 

enemies are placed 

in slightly different 

positions 

Load different versions of the map 

when the player character goes to 

the next level or in the next loading 

of the same level (such as when the 

player character dies) based on 

score and lives lost in last level. 

Which day in 

game, 

Number of  

times player 

dies 

Display hints 

about collecting 

resources and 

building shelters 

If the player is continuously dying 

during the first night, give the 

player some hints to progress 

through the game to make it easier. 

M
in

e
c
r
a

ft
 

Number of 

items of 

particular 

materials in 

player’s 

inventory 

Hardness of those 

particular items 

Modify the hardness of a particular 

resource in the game world as the 

player’s inventory of that particular 

item changes, making it easier or 

harder to collect the resource. 

45Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



TABLE II.  ADAPTIVE GAME IMPLEMENTATION PROCESS 

# Activity Output 

1 
Identify the aspects of the game that will be 

adaptively adjusted. 

 

2 
For each of the aspects identified in step-1 repeat 

step-3 to step-9. 

 

3 Define or reuse available sensors. Sensors 

4 Identify or introduce attributes that can be adjusted.  

5 
Identify adaptation scenarios involving sensors and 

attributes from step-3 and step-4. 

 

6 

Define thresholds based on the scenarios identified 

in step-5 for the sensors defined in step-3, and define 

observers to relate thresholds to sensors. 

Thresholds, 

Observers 

7 
Define triggers to represent each scenario, and 

develop adaptation detector logic from the scenarios. 

Triggers 

8 

Use attributes identified in step-4 to create decisions 

to modify game functionality according to the 

scenarios identified in step-5. 

Decisions 

9 
Define rules to relate triggers to decisions based on 

the adaptation scenarios identified in step-5. 

Rules 

 
A well-defined process for adaptivity is important for 

industrial adoption as it enables progress tracking, planning, 
and automation. Furthermore, it allows developers to focus 
more on gameplay design and adaptive logic design, rather 
than implementation details. Unlike ad hoc approaches, a 
well-defined process is repeatable with consistent results 
across various games. Our study on three different games 
using the process described above is a primary validation of 
consistent repeatability of the process.   Since the process is 
defined in a step-by-step method with specific artifacts 
expected as outputs from each step (please see the third 
column in Table II), it will be possible to define specific 
metrics to estimate project size and later measure progress as 
the project moves forward.  

C. Impact on Quality Factors 

In [12], we examined how different software quality 
factors are impacted by the usage of our design patterns. We 
have already discussed the impact on reusability in 
subsection A, and so we briefly discuss the impact on other 
quality factors below. 

Integrability: Integrability refers to the ability to make 
the separately developed components of a system work 
correctly together. As we can see in Figure 5, the integration 
points among the design patterns and with the game are 
clearly defined. Because of these clearly defined integration 
points, the four design patterns can be integrated with each 
other and a game rather easily. 

Portability: Portability is the ability of a system to run 

under different computing environments. A framework- or 

middleware-based approach for creating a self adaptive-

system is usually specific to a particular programming 

language and or platform, whereas a design pattern-based 

approach is highly portable across different platforms and 

programming languages [17]. These design patterns were 

derived from the self-adaptive system literature in the 

context of adaptivity in video games, with a particular focus 

on auto dynamic difficulty.  This indicates the portability of 

these design patterns across domains.  Also, in our research, 

we managed to port them (as a solution) from one game to 

another within the platform (Java).  This indicates 

portability across systems on the same platform.  In the 

future, we plan to examine the portability of these design 

patterns across platforms as well. 

Maintainability: Maintainability refers to the ease of the 

future maintenance of the system.  As discussed earlier, 

different parts of the design patterns have specific concerns 

(e.g., Sensors will collect data, Drivers will make changes to 

the game, and so on), and so the resulting source code will 

have high traceability and maintainability.  Furthermore, as 

the use of these design patterns provides source code 

reusability (please see Figure 9), this will increase the 

probability that prior testing has eliminated defects while 

being used in a new game. 

D. Automation 

 Using our approach, it is possible to implement tools 

that will guide developers through the process of enabling 

adaptivity in their games. We are currently designing a 

semi-automatic tool to help developers to easily integrate a 

game into the tool and then identify metrics for sensors, 

brainstorm adaptation scenarios, identify attributes to adjust 

in the game, maintain traceability between these artifacts, 

and so on. The benefits of such semi-automatic tools include 

reducing development effort and defects, standardization, 

ease of progress tracking, and improving maintainability. 

VI. CONCLUDING REMARKS 

Adaptivity is becoming increasingly essential to modern 

video games.  Previous attempts at adaptivity in games can 

be characterized as ad hoc from a software engineering 

perspective; lacking rigor, structure, and reusability, with 

custom solutions per game. There is a critical need for 

software frameworks, patterns, libraries, and tools to enable 

adaptive systems for games. Thus, in this paper, we leverage 

the benefits of software design patterns to construct a 

framework for adaptive games. Based on studies of three 

different games, including the large commercial game 

Minecraft, we discussed how the usage of these software 

design patterns results in a reusable approach both in terms 

of source code and process and improves a number of other 

quality aspects.  

There are many possible directions for future work in 

this area.  We plan to extend our work, enabling auto 

dynamic difficulty in additional games, exploring other 

forms of adaptivity, and bringing our framework to other 

platforms.  While our approach is designed to be 

generalizable, and work to date supports this, further work is 

necessary to fully assess this and identify limitations to our 

approach. To further assess the effectiveness and efficiency 

of our approach, we will conduct extensive user testing and 

performance testing.  Since a key goal of adaptivity in 

games is an improved player experience, this user testing is 

essential.  Lastly, to assist developers, we will continue 

developing semi-automatic and automatic tools to enable 

adaptivity with minimal effort on their part.   

46Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



REFERENCES 

[1] G. Dolbier and A. Goldschmidt, The Business of Interactive 

Entertainment. IBM Digital Media Solutions Technical 

Report G565-1461-00, May 2006. 

[2] A. Glassner, Interactive Storytelling:  Techniques for 21
st
 

Century Fiction.  A K Peters, Ltd., 2004. 

[3] P. Sweetser, Emergence in Games. Charles River Media, 

2008. 

[4] G. Andrade, G. Ramalho, H. Santana, and V. Corruble., 

“Challenge-Sensitive Action Selection: An Application to 

Game Balancing”. In the 2005 IEEE/WIC/ACM International 

Conference on Intelligent Agent Technology, Compiègne, 

France, September 2005, pp. 194-200. 

[5] D. Charles, M. McNeill, M. McAlister, M. Black, A. Moore, 

K. Stringer, J. Kücklich, and A. Kerr, “Player-Centred Game 

Design: Player Modelling and Adaptive Digital Games”. 

Proceedings of DiGRA 2005 Conference: Changing Views 

Worlds in Play, June 2005, pp. 285-298. 

[6] P. Langley,  Machine Learning for Adaptive User Interfaces. 

Kunstiche Intellugenz, 1997. 

[7] D. Charles and M. Black, “Dynamic Player Modelling: A 

Framework for Player-Centered Digital Games”. In 

Proceedings of the International Conference on Computer 

Games: Artificial Intelligence, Design and Education, 

Microsoft Campus, 2004, pp. 8-10. 

[8] B. Pfeifer,  “Creating Emergent Gameplay with Autonomous 

Agents”.  Proceedings of the Game AI Workshop at AAAI-

04, San Jose, California, July 2004, pp.20. 

[9] B. Reynolds.  How AI Enables Designers.  Appeared in the 

Proceedings of the 2004 Game Developers Conference, San 

Jose, California, March 2004, pp. 20. 

[10] G.N. Yannakakis and J. Hallam, “Real-time Game Adaptation 

for Optimizing Player Satisfaction”. IEEE Transactions on 

Computational Intelligence and AI in Games, 1(2), 2009, pp. 

121-133. 

[11] M. Chowdhury and M. Katchabaw, “Software Design 

Patterns for Enabling Auto Dynamic Difficulty in Video 

Games”. Proceedings of the 17th International Conference on 

Computer Games: AI, Animation, Mobile, Interactive 

Multimedia, Educational and Serious Games. Louisville, 

Kentucky. July, 2012, pp. 76-80.  

[12] M. Chowdhury and M. Katchabaw, “Improving Software 

Quality Through Design Patterns: A Case Study of Adaptive 

Games and Auto Dynamic Difficulty”. Proceedings of 

GameOn 2012. Magala, Spain. November, 2012, pp. 41-47. 

[13] E. Adams,  Fundamentals of Game Design, Second Edition.  

New Riders, 2010. 

[14] E. Gamma, R. Helm, R. Johnson, and J. Vissides,  Design 

Patterns:  Elements of Reusable Object-Oriented Software.  

Addison-Wesley.  1995. 

[15] M. Csikszentmihalyi., Creativity: Flow and the Psychology of 

Discovery and Invention. New York, NY: Harper Collins 

Publishers. 1996. 

[16] C. Bailey and M. Katchabaw, “An Experimental Testbed to 

Enable Auto-Dynamic Difficulty in Modern Video Games”. 

In Proceedings of the 2005 North American Game-On 

Conference.  Montreal, Canada. August 2005, pp. 18-22. 

[17] A. Ramirez and B. Cheng, “Design Patterns for Developing 

Dynamically Adaptive Systems”. Proceeding of the ICSE 

Workshop on Software Engineering for Adaptive and Self-

Managing Systems. Cape Town, South Africa, May 2010, pp. 

49-58. 

[18] P. Baillie-de Byl, Programming Believable Characters in 

Games.  Charles River Media, 2004. 

[19] J. Dias, S. Mascarenhas, and A. Paiva,  “FAtiMA Modular:  

Towards an Agent Architecture with a Generic Appraisal 

Framework”. Workshop on Standards in Emotion Modeling, 

Leiden, Netherlands, August 2011, pp. 12. 

[20] A. Guye-Vuilleme and D. Thalmann, A High-Level 

Architecture For Believable Social Agents. Virtual Reality, 

Volume 5, Number 2, 2001, pp. 95-106. 

[21] M. Nelson, C. Ashmore, and M. Mateas, “Authoring an 

Interactive Narrative with Declarative Optimization Based 

Drama Management”. Proceedings of the Second Artificial 

Intelligence and Interactive Digital Entertainment 

International Conference (AIIDE). Marina del Rey, 

California, June 2006, pp. 127-129. 

[22] P. Spronck, “A Model for Reliable Adaptive Game 

Intelligence”. IJCAI-05 Workshop on Reasoning, 

Representation, and Learning in Computer Games, 2005, pp. 

95-100. 

[23] R. Zhao, Applying Agent Modeling to Behaviour Patterns of 

Characters in Story Based Games. PhD Thesis, University of 

Alberta, 2010. 

[24] K. Compton and M. Mateas,  “Procedural Level Design for 

Platform Games”. Proceedings of the Second Artificial 

Intelligence and Interactive Digital Entertainment Conference 

(AIIDE). Marina del Rey, California, June 2006, pp. 109-111. 

[25] C. Pedersen, J. Togelius, and G. Yannakakis,  “Optimization 

of Platform Game Levels for Player Experience”. Proceedings 

of the Fifth Artificial Intelligence and Interactive Digital 

Entertainment Conference (AIIDE), Oct., 2009, pp. 191-192. 

[26] J. Togelius, R. De Nardi, and S. M. Lucas,  “Towards 

Automatic Personalised Content Creation in Racing Games”. 

Proceedings of the 2007 IEEE Symposium on Computational 

Intelligence and Games.  April 2007, pp. 252-259. 

[27] P. Rani, N. Sarkar, and C. Liu. “Maintaining Optimal 

Challenge in Computer Games Through Real-time 

Physiological Feedback”. Proceedings of the 11th Intl. Conf. 

on Human-Computer Interaction. Las Vegas, USA, July 2005, 

pp. 184-192. 

[28] R. Hunicke, “The Case for Dynamic Difficulty Adjustment in 

Games”. Proceedings of the 2005 ACM SIGCHI International 

Conf. on Advances in Computer Entertainment Technology. 

Valencia, Spain, June 2005, pp. 429-433. 

[29] Y. Hao, S. He, J. Wang, X. Liu, J. Yang, and W. Huang., 

“Dynamic Difficulty Adjustment of Game AI by MCTS for 

the Game Pac-Man”. Proceedings of the Sixth Int. Conference 

on Natural Computation. Yantai, China, August 2010, pp. 

3918-3922. 

[30] N. Hocine and A. Gouaïch, “Therapeutic Games’ Difficulty 

Adaptation: An Approach Based on Player’s Ability and 

Motivation”. Proceedings of the 16th Intl. Conf. on Computer 

Games. Louisville, Kentucky, USA, July 2011, pp. 257-261. 

[31] M. Salehie and L. Tahvildari, “Self-Adaptive Software: 

Landscape and Research Challenges”. In ACM Transactions 

on Autonomous and Adaptive Systems, Vol. 4, No. 2, Article 

14, May 2009, pp. 1-42. 

[32] D. Brackeen, B. Barker, and L. Vanhelsuwé,  Developing 

Games in Java. New Riders, 2004. 

[33] Mojang, Minecraft. Retrieved from: https://minecraft.net. Last 

accessed: Jan 29, 2013. 

[34] MCP Team, Main Page – Minecraft Coder Pack, Retrieved 

from: http://mcp.ocean-labs.de/. Last accessed: Jan 29, 2013.

47Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



A Gravitational Approach for Enhancing Cluster Visualization in Self-Organizing 
Maps 

 

Leonardo Enzo Brito da Silva, José Alfredo Ferreira Costa 
Departamento de Engenharia Elétrica 

Universidade Federal do Rio Grande do Norte 
Natal, Brazil 

{leonardoenzob, jafcosta}@gmail.com 
 
 

Abstract—This paper presents a modified gravitational 
clustering algorithm applied to the neurons of self-organizing 
maps in order to enhance the visualization of clusters through 
the U-matrix technique. For a given neuron, the proposed 
method considers the attraction among its k nearest neighbors 
in the data space, where k decreases monotonically over time 
and its value may vary according to the local pattern density. 
The attraction between neurons that are considered as not 
belonging to the same close-knit group is penalized. The results 
obtained for some synthetic and real world data sets are 
presented. 

Keywords-self-organizing maps; gravitational clustering; 

visualization techniques  

I.  INTRODUCTION 
Nowadays, a plethora of data from the most diverse 

sources is collected and stored [1]. Data mining is one of the 
fields that aim to transform this information into useful 
knowledge. Among the main problems faced in this field, 
may be cited the data scalability and dimensionality, as well 
as its complexity, heterogeneity and quality (noise and 
outliers). Therefore, the analysis of databases requires 
careful interpretation of the results obtained with the 
mathematical models and the visualization techniques 
applied [2]. Visualization consists of the conversion of the 
data attributes into a visual structure, so as to observe its 
characteristics and properties [3]. 

The self-organizing maps (SOM) [4] are artificial neural 
networks widely used in the data mining field, mainly due 
to the mapping of a high dimensional input space (data 
space) to an output space of lower dimensionality (fixed 
grid of neurons), while preserving data topology. In this 
sense, the SOM network is a nonlinear generalization of 
principal component analysis [5]. It is used for clustering as 
well as for visualization. The U-matrix [6] is a well-known 
visualization technique associated with the SOM network. 
Its main issue concerns its resolution when applied to 
decreasing map sizes, i.e. on small maps the visualization is 
compromised, while on large maps the definition of clusters 
becomes increasingly clear in data sets where distance 
metrics are relevant. 

Recently, gravitational-based clustering algorithms have 
been used to perform the clustering task [7]-[9]. These 
algorithms are hierarchical and agglomerative, i.e. they 
progressively define clusters from a database given a 

similarity metric, while forming a tree structure: in its base, 
each pattern is a cluster, and, at the top, there is only one 
cluster. 

This paper focuses on improving the U-matrix 
visualization through the application of an algorithm based 
on the gravitational principles on the SOM neurons, as a 
way of increasing inter-cluster distances and decreasing 
intra-cluster distances. More specifically, the objective is to 
determine an updating rule for the weights associated with 
the SOM neurons, in order to perform a post-processing and 
provide a visualization in which separation between clusters 
is sharper. 

The remainder of the paper is organized as follows. 
Section II provides general considerations of the SOM 
network, while Section III discusses some of its well-known 
visualization techniques. In Section IV, a brief description of 
some gravitational algorithms is provided. In Section V, the 
proposed method is defined, and, in Section VI, the data sets 
used in the experiments are concisely described. The 
simulation results and discussions are presented in Section 
VII. In Section VIII, some conclusions are drawn. 

II. SELF-ORGANIZING MAPS 
Self-organizing maps consist of a set of topologically 

ordered neurons situated in a static lattice (output space). 
The neuron grid can be either rectangular or hexagonal, 
differing in the number of immediate neighbors - four or six 
respectively. In general, the network grids are 1-D or 2-D. 
Although higher dimensionalities are possible, they 
generally are not used, since visualization becomes more 
difficult or not even feasible. Each neuron has an associated 
weight vector in the data space (input space), so a projection 
from a higher to a lower dimensional space is obtained. The 
SOM network can be seen as an adaptive vector 
quantization algorithm. The learning process involved is 
unsupervised and encloses the following three principles: 
competition, cooperation and adaptation. For each pattern 
presented to the network, the neurons compete with each 
other, so that a winner (best matching unit - BMU) is 
defined as the one with the minimum Euclidean distance to 
this pattern: 

 
                  ‖     ‖  ‖     ‖          (1) 
 

where ‖ ‖  is the Euclidean norm,        is a weight 

48Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



vector (   is the BMU),        is a pattern from the data 
set, and   is the dimension of the data space. However, not 
only the winner neuron, but its neighborhood also 
participates in the learning process. The adaptation rule is 
given by (2) [4] 

 
             (   )    ( )   ( )    ( )[     ( )] (2) 

 
where   is time,   ( ) is the weight vector associated with 
the jth neuron,    is the ith pattern from the data set 
presented to the network,  ( ) is the learning rate,     ( ) is 
the neighborhood kernel. The neighborhood kernel (which 
is centered on the BMU and is usually Gaussian) and the 
learning rate must be monotonically decreasing as the 
training algorithm progresses [4].  

During the training stage, the SOM network behaves as 
an elastic net that molds itself to the intrinsic shape formed 
by the patterns. The neuron’s placement reflects the data set 
density distribution: the number of neurons in a certain 
region of the input space is related to the number of patterns 
in that region, what is known as the magnification factor. 

The quality of a given trained SOM can be measured by 
the following figures of merit: the quantization error (3) [4] 
and the topographic error (4) [10], 

 

                      
 

 
∑‖       

  ‖

 

   

 (3) 

 

                         
 

 
∑  (  )

 

   

 (4) 

 
where   is the number of patterns of the data set,    is the 
kth pattern from the data set,     

   is the BMU of the 
pattern   . The function  (  ) is equal to zero if the first 
and second BMU of the pattern    are adjacent. Otherwise 
the function  (  ) is equal to one. 

The quantization error discloses the network resolution, 
while the topographic error depicts when there is a 
divergence between the neighborhood of neurons in the 
input and output spaces. An extensive discussion of 
topology in neural networks based on vector encoding can 
be found in [11]. 

III. VISUALIZATION TECHNIQUES 
In order to suitably view clusters in a given trained SOM 

network, visualization techniques must be applied. That is, a 
post-processing stage using its prototypes is needed so as to 
infer characteristics of the dataset. Typically, visualization 
techniques take into account not more than one metric 
within its definition, for example, distances between 
prototypes, as the U-matrix, component planes [12], 
component gradients matrix [13], or pattern density, as in 
the hit histogram,  P-matrix [14], CONNvis [15] and 
Smoothed Data Histogram (SDH) [16]. There are methods 
that take into consideration both distance among prototypes 
and pattern density associated with them, such as the 
CONNDISTvis [17] and the U*-matrix [18]. 

The U-matrix is one of the most popular visualization 
techniques, and consists of a matrix whose positions are 
filled with the Euclidean distances between the neurons in 
the data space. Consider that a map has a rectangular grid of 
size    , then the U-matrix has the size (    )  (   
 ). The relative positions of the neurons themselves in the 
matrix are obtained by a function   of the neighboring 
distances in the grid, where generally   is a mean or a 
median function of neighboring values. The Euclidean 
distances in the U-matrix can be calculated on the basis of 
all attributes or specific ones with the use of masks. The 
particular case where a U-matrix is calculated for each 
attribute of data form the component planes. 

The P-matrix aims to estimate the probability density of 
the data [19]-[20]. It has a structure that is the same size as 
the map grid. In the P-matrix, the value at the position 
related to the neuron    consists of the number of patterns 
inside a hypersphere of radius    centered on that neuron. 
The radius is a fixed parameter for all neurons and is called 
Pareto radius. The U*-matrix is an enhanced visualization 
method that is generated by using information provided by 
both the U-matrix and the P-matrix. It has the same size of 
the latter. Its value    for the relative position of each 
neuron    in the grid is obtained by (5) [18] 

 

                     (  )   (  ) [
 (  )   ̅

 ̅      

  ] (5) 

 
where  (  ) and  (  ) are the values of the P-matrix and 
U-matrix associated with the neuron   ,  ̅ and      are the 
mean and maximum values of the P-matrix, respectively.  

IV. GRAVITATIONAL CLUSTERING ALGORITHMS 
The gravitational algorithm and its application to the 

clustering task were first proposed by Wright [21] and rely 
on the law of universal gravitation. It may be classified as 
an agglomerative hierarchical algorithm, as it begins with a 
set of N objects and ends with only one. However, contrary 
to classic hierarchical agglomerative algorithms where 
patterns are static, in the gravitational algorithm all patterns 
are considered as mobile particles subjected to the 
gravitational fields of one another. The results obtained 
using such method can be seen as a dendrogram. The 
strength of a given cluster structure is greater the larger the 
interval of time during which the system remains in that 
clustering state. 

A variant of the clustering algorithm was proposed by 
Gomez et al. [7], in order to automatically determine the 
number of clusters, remove noise and generate prototypes 
representing the database. This approach differs from the 
latter in the sense that the particles are always considered 
with unitary mass (as opposed to the original algorithm 
where the mass changes when there is a mergence), and the 
stopping criterion is the number of iteration. The algorithm 
is very sensitive to the gravitational constant and its decay 
function, which may lead to a generation of only one cluster 
or none at all. According to the model, the particles move as 
described in (6)-(7) [7] 

 

49Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



 (   )   ( )  (
 

‖ ( ( )  ( ))‖
 ) ( ( )  ( )) (6) 

 
                     ( ( )  ( ))      ( )   ( ) (7) 

 
where   is the gravitational constant that decreases 
monotonically over time,   and   are patterns randomly 
chosen from the dataset, and ‖ ‖  is the Euclidean norm. 
Particles are merged when separated by a minimum distance 
which is an input parameter. 

It is also stated that a good performance of the algorithm 
does not necessarily need the entire database to be used, 
which thereby opens the possibility to use vector 
quantization techniques, such as the SOM network, before 
its application. Therefore, recently, a gravitational clustering 
of the SOM (gSOM) [8] based on the work of Gomez et al. 
[7] was proposed. It consists of two steps: in the first phase, 
a SOM network is trained with the data set. In the second 
phase, the interpolating neurons, that is, those neurons that 
are not associated with any pattern are eliminated, as well as 
their connections. The gravitational algorithm is then 
applied to the remaining neurons. 

Each time a random pair of objects is selected, according 
to predefined probability functions, the gravitational 
algorithm is applied. The stopping criterion can be either the 
number of iterations or the maximum number of clusters to 
be found. The gSOM has also been used in a clustering 
ensemble [9], in which the different partitions obtained, due 
to its stochastic nature, are analyzed in a consensus function 
in order to define the final partition. Other variants of the 
gravitational algorithms and applications were proposed in 
the literature, such as [22]-[23]. 

V. PROPOSED APPROACH 
The proposed method, the k-gSOM algorithm, is 

concerned with distance information between close neurons 
on the map as well as pattern density in their vicinity. It is 
assumed that due to the attraction exerted by the patterns to 
the neurons in the network, the overwhelming majority of 
neurons are located in high density places, while a minority 
make the connection between these groups (interpolating 
neurons).  The proposed method relates to the work of Ilc 
and Dobnikar [8], consisting of two stages: in the first stage, 
a SOM network is trained using its standard algorithm, and, 
in the second stage, the proposed method is applied to the 
network neurons.  

The technique is based on gravitational principle and on 
a hit histogram variant. It is a gravitational clustering 
algorithm as the neurons are subjected to attraction forces of 
one another, and they all tend to gather at the same position 
when time becomes sufficiently large. The information of 
pattern density and distance among close neurons is used to 
adapt their weights and collapse them in order to obtain an 
improved U-matrix visualization.  

The hit histogram consists of an accumulation array of 
the same size as the map, where each bin is associated with 
the position of a neuron in the SOM grid. The hit histogram 
depicts the number of patterns that each neuron is the BMU. 

As opposed to the U-matrix, the information provided by a 
hit histogram is more useful when dealing with small sized 
maps, in which the pattern to neuron ratio is usually greater 
than 1. Otherwise, due to the dissolution phenomenon, the 
matrix associated with the hit histogram becomes very 
sparse, which impedes the proper display of the data 
characteristics. The P-matrix and SDH are examples of 
visualization techniques that surpass this issue by using 
hyperspheres with Pareto radius and considering more than 
one BMU for each pattern, respectively. In this work, the 
values of the hit histogram consist of how many patterns are 
within a hypersphere centered on each neuron. The radius of 
the hypersphere is regarded as the minimum for which all 
the neurons have at least one associated pattern. By doing 
this the division by zero in (9) is avoided (the neuron 
masses are associated with the hit histogram) as there are no 
neurons without a pattern associated.  

Therefore, a neuron    at time   will be moved 
according to the attraction forces among its    neighbors   . 
The pairwise force between neurons    and    is related to 
their proximity in the input space and the ratio of patterns 
shared by their associated hyperspheres. The overall number 
of neighbors    depends on whether    is in a denser region 
or not. The direction and magnitude of the movement is 
given by the resultant of all the attraction forces between    
and its neighbors. The movement will occur until the 
stopping criterion is reached, which is the number of 
iterations. The equations governing the adaptation are as 
follows 

 
                      (   )     ( )     ( ) (8) 

 

   ( )  
 

  ( )  ( )
∑ {

[       ( )][      ( )]

    ( )

  ( )

   

 [  ( )    ( )]}  

(9) 

 
                      ( )      ( )  ( ) (10) 

 
                       ( )  ‖  ( )    ( )‖ (11) 

 
where    is the jth neuron,    is the effective number of 
neighbors of neuron   . The parameter    is proportional to 
the pattern density where    is located, and its maximum 
possible value is predetermined at time   as     . The ‖ ‖ is 
the Euclidean norm,    is the mass of the neuron    and 
corresponds to the number of patterns inside the 
hypersphere centered on    at time  . The distance      is 
normalized in the interval       regarding all pairwise 
distances between neurons, and also negated in (9) so as to 
be transformed from a dissimilarity to a similarity measure. 

The parameter       is the Jaccard coefficient [24] 
defined by the ratio of the intersection and union 
cardinalities of the sets containing the patterns covered by 
the hyperspheres of the neurons    and    at time   

50Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



                         ( )   
|     |

|     |
 (12) 

 
where | | is the set cardinality,    and    are the number of 
patterns inside the hyperspheres centered on the neurons    
and   , respectively. The parameter      is defined as 
 

                  ( )  {

 

 
∑   

 

   

        ( )   

            

 (13) 

 
where    corresponds to the mass of one of the    neurons 
whose distance to    is less or equal to the parameter   at 
time   (Fig. 1). The attraction force is penalized by the 
parameter      if a neuron    is very far regarding a close 
group of neurons around    that is defined by  . Thus, a 
neuron    cannot attract a single neuron from within this 
group, but in fact, the whole group, thereby diminishing the 
attraction force and compensating    if it is overly 
estimated. 

The attraction among a decreasing number of 
neighboring neurons in the input space is considered as the 
algorithm progresses. For each neuron   , at each iteration, 
the effective number of neighbors is a fraction of      that 
is proportional to the density of patterns in the region that 
the neuron is currently situated:    is the value of the hit 
histogram generated at time   and associated with neuron 
  . The values of    are normalized in the range [0.1;1] so 
   is a nonzero percentage of     . By doing this we 
prevent that neurons in small clusters have the same 
neighborhood size as neurons in large clusters, and therefore 
reducing the influence of the latter over the first. The role of 
the parameter   consists of defining the minimum distance 
for which a set of neurons should be considered as a group. 
It relates to the minimum distance of mergence in the 
traditional gravitational algorithms. However, in the 
proposed method neurons are not merged nor eliminated: 
the number of neurons is constant throughout the algorithm 
steps, there is only an update to their position in the input 
space. 

The Jaccard coefficient is included so as to add a second 
term of attraction between neuron    and a given neighbor 
  : if they have patterns in common while considering a 
given hypersphere, they should be brought together 
proportionally to the intersection divided by the overall 
patterns associated with them. At each iteration of the 
algorithm, the pairwise distances between all prototypes are 
calculated, as well as the hypersphere radius, the neuron 
masses, the Jaccard coefficients and the effective number of 
neighbors for each neuron, before using their respective 
values in (9). The parameters      ,    and    are ultimately 
dependent on the radius of the hypersphere, which is 
calculated at each iteration of the algorithm. The attraction 
among a decreasing number of neighboring neurons in the 
input   space   is   considered  since        is  monotonically 

   
Figure 1. Illustrative case where the attraction between    (red dot) 

and    (green dot) is penalized by      (mean mass of the group of neurons 
inside the circle of radius α). All neurons whose distances to    are less or 
equal to   are considered as belonging to the same close-knit group (black 
dots), and therefore the parameter      related to their attraction forces is 
equal to unity. 

 
decreasing while the algorithm progresses, as well as the 
parameter  . In this work, both       and   were set to 
decrease linearly with time   according to (14)-(15) 

 

                ( )  (     ) (  
 

 
)     (14) 

 

               ( )  (     ) (  
 

 
)     (15) 

 
where   is the total number of iterations,    and    are the 
initial and final values of  , respectively. The parameters    
and    are the initial and final values of      , respectively. 

The summary of the algorithm is presented in Table I: 

TABLE I.  K-GSOM ALGORITHM 

1. Initialize kmax and α as well as their 

decreasing functions.  

2. Determine the hypersphere radius, calculate 

the masses of each neuron and generate the 

normalized hit histogram H. 

3. Calculate and normalize the pairwise 

distance between all neurons. 

4. For each prototype wj 

a. Find kj nearest neighbors by multiplying 

the current kmax by the value of Hj in the position 

associated to wj. 

b. Calculate Δwj. If a neuron wi is not close 

enough to wj (distance defined by the parameter α) 

their attraction is penalized by dividing it by 

pi,j, otherwise pi,j is equal to unity. 

5. Update wj (sequential algorithm). 

6. If the stopping criterion was not met, 

return to step 2. 
  

VI. DATA SETS 
The proposed method was applied to the following 

synthetic data sets from the Fundamental Clustering 
Problem Suite [25]: Hepta and Tetra. Another artificial 
dataset consisting of two Gaussian clusters mixed with noise 
was considered. The Wine data set [26] was also used in the 
experiments. All datasets were normalized in the hypercube 
       as a pre-processing stage. The Tetra data set consists 
of 400 patterns that form four very close clusters in    so 
that density information is more relevant than distance 
among prototypes. The Hepta data set consists of 212 
patterns that form seven well defined clusters in   , each 



w
i

w
j

51Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



one with different variances. The Noisy Gaussian data set 
consists of two Gaussian clusters with 400 patterns and 100 
patterns that represent noise. The Wine data set is a real 
world database that consists of 178 patterns that forms three 
clusters in a 13 dimensional space. All previously 
mentioned data sets are depicted in Fig. 2. 

VII. RESULTS AND DISCUSSION 
The experiments were carried out with SOM networks 

whose grid sizes were all 10x10, and were trained in the 
first stage using the SOM Toolbox [27]. For the second 
stage, the initial value of      was set to 80% of the total 
number of neurons and it was decreased linearly over the 
iterations until it reaches 1. The parameter  was also 
decreased linearly over the iterations from 10-1 to 10-3. 

The SOM network trained with the Noisy Gaussian 
dataset is depicted in Fig. 3, along with the distances to the 
closest pattern to each neuron. The maximum pairwise 
distance between a neuron and its closest pattern is then 
used as the hypersphere radius; therefore the least populated 
hypersphere will have 1 pattern. This information is used in 
order to generate the hit histogram and to calculate the 
Jaccard coefficient (Fig. 4). The steps of the algorithm 
shown in Figs. 3 and 4 are repeated continuously. The 
movement of neurons as the proposed algorithm progresses 
is depicted in Fig. 5. After 250 iterations, the final 
placement of the neurons is depicted in Fig. 6, as well as the 
values over time for: the hypersphere radius, the parameters 
     and  . The effective neighbor number for each neuron 
at each iteration is shown in Fig. 7. 

It is perceptible in Fig. 6(d) that the radius tends to a 
permanent regime, that is, after a certain number of 
iterations it remains in a specific value with small 
fluctuations. Therefore, the computational cost may be 
reduced by setting the stop criterion as the sum of the radii 
differences between one iteration to the next: if it remains 
within a certain range ε for a fixed number of iterations then 
the algorithm stops. In Fig. 8, the trained SOM network and 
the best results of the proposed algorithm are shown. They 
were obtained for the Tetra, Hepta, Noisy Gaussian, and 
Wine data sets after 85, 125, 250 and 190 iterations, 
respectively. The Fig. 9 (a) and (b) depict the U-matrix and 
the U*-matrix (generated using the SOMVIS Package) 
obtained from the original SOM, respectively. In Fig. 9 (c) 
the U-matrix of the SOM network resulting from the 
application of the proposed method is shown.  

As depicted in Fig. 9, the borders of the clusters are 
visually sharper than the original U-matrix and the U*-
matrix. Albeit the final positions of the neurons do not 
correspond to the positions of the clusters’ centroids 
(phenomenon resulting from the gravitational effect) a 
repositioning may be achieved by relating the neurons that 
converged to a centroid to their original map positions in the 
input space. 

In order to measure the performance of the method, first 
the MBSAS [28] was applied so as to obtain the centroids 
resulting from the neurons’ movement. The radius 
parameter was set to αf. The number of centroids found and 
the prototypes they represent were stored and separated  into  

(a) (b) 

  
(c) (d) 

  
Figure 2. (a) Elements of the Noisy Gaussian data set. (b) Elements of 

the Hepta data set. (c) Elements of the Tetra data set. (d) Elements of the 
Wine data set using a 2-D PCA (principal component analysis) projection. 
Each class in each data set is depicted in a specific color. 

 
(a) (b) 

  
Figure 3.  (a) The red and yellow dots correspond to the Noisy 

Gaussian data set patterns and the SOM neurons, respectively. The blue 
lines indicate which is the closest pattern to each neuron. (b) Stem plot 
regarding the Euclidean distances of the closest pattern to each neuron. 

 
(a) (b) (c) 

  
 

(d) (e) (f) 

  
 

Figure 4.  (a) The red and black dots correspond to the data set patterns 
and neurons, respectively. The yellow dot is a neuron which is the center of 
its correspondent hypersphere, which is depicted as the blue circle. All 
patterns inside this circle are linked to the neuron by blue lines. (b) Stem 
plot of the number of pattern inside each neuron hypersphere. (c) Hit 
histogram generated with the number of patterns inside the hyperspheres. 
(d) The red and black dots correspond to the data set patterns and neurons, 
respectively. The green dots are the intersection between the circles around 
two neighboring neurons. (b) Stem plot of the number of patterns in the 
intersection of neurons    and   . (f) Jaccard coefficient matrix whose 
values are calculated among neurons that are 4-neighbor on the lattice 
(output space). 

 

 

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10

20

40

60

80

100

120

 

 

5 10 15

2

4

6

8

10

12

14

16

18

0.2

0.4

0.6

0.8

52Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



 
Figure 5.  Positions of the neurons at epochs 5 to 30. The neurons are 

gathering in the densest regions of the Noisy Gaussian data set. 
 

(a) (b) 

  
(c) (d) 

  
Figure 6.  (a) The red and black dots corresponds to the initial and final 

positions of the neurons, respectively. The evolution of each parameter 
over time is shown in: (b) maximum possible number of neighbors (c) 
maximum distance for which neurons are considered as belonging to the 
same group (d) hypersphere radius for a given neuron   . 

 
(a) (b) 

  
Figure 7.  (a) Matrix plot of the effective number of neighbors for each 

neuron over time (b) Surface plot of ‘a’. Neurons in regions with fewer 
patterns are seen as streaks or valleys, as it is expected. The effective 
number of neighbors is a fraction of      that is proportional to the density 
of the region the neuron is located. 

 
classes, that is, which neurons converged to each position 
(see the representative colors depicted in Fig. 8). Then a 
cross tabulation was performed with the datasets’ man given 
groundtruth so as to appropriately compare the classes. The 
classification accuracies were then calculated (see Table II) 
in order to evaluate the partitions visible in the new U-
matrix. The classification accuracy is defined as (16) [29] 
  

                       
                             

          
 (16) 

 (a.1) (b.1) (c.1) 

   
(a.2) (b.2) (c.2) 

   
Figure 8.  Neurons of the 10x10 SOM network trained with the Tetra 

(a.1), Hepta (b1) and Noisy Gaussian (a.1) data sets. Neurons resulting 
from the application of the proposed method in ‘a.1’, ‘b.1’ and ‘c.1’ are 
depicted in (a.2), (b.2) and (c.2), respectively. Neurons with the same color 
in the plots with indexes ‘1’ converged to the same point in their associated 
plots with indexes ‘2’. 

 
(a.1) (b.1) (c.1) 

   
(a.2) (b.2) (c.2) 

   
(a.3) (b.3) (c.3) 

   
(a.4) (b.4) (c.4) 

   
Figure 9. U-matrix (a) and U*-matrix (b) of the 10x10 trained self-

organizing maps. U-matrix (c) of the SOM network whose neurons result 
from the application of the proposed method. The indexes 1 to 4 
correspond to the following data sets: Tetra (1), Hepta (2), Noisy Gaussian 
(3) and Wine (4).   

 

TABLE II.  PERFORMANCE SUMMARY 

Data set Number of centroids found Classification accuracy 

Tetra 4 0.9775 
Hepta 7 1 
Noisy Gaussian 2 1 
Wine 3 0.9719 

Epochs

N
e

u
ro

n
s

 

 

50 100 150 200 250

10

20

30

40

50

60

70

80

90

100

10

20

30

40

50

60

70

80

50
100

150
200

250

10
20

30
40

50
60

70
80

90
100

0
20
40
60
80

Epochs
Neurons

k
e
fe

c
ti

v
e

 

 

5 10 15

2

4

6

8

10

12

14

16

18 0.05

0.1

0.15

0.2

 

 

2 4 6 8 10

1

2

3

4

5

6

7

8

9

10
0

0.05

0.1

0.15

0.2

0.25

0.3

 

 

5 10 15

2

4

6

8

10

12

14

16

18

0.1

0.2

0.3

0.4

 

 

5 10 15

5

10

15
0.05

0.1

0.15

0.2

 

 

2 4 6 8 10

2

4

6

8

10

0.05

0.1

0.15

0.2

 

 

5 10 15

5

10

15

0

0.1

0.2

0.3

0.4

 

 

5 10 15

5

10

15
0.05

0.1

0.15

0.2

 

 

2 4 6 8 10

2

4

6

8

10
0

0.05

0.1

0.15

0.2

0.25

 

 

5 10 15

5

10

15
0.1

0.2

0.3

0.4

0.5

 

 

5 10 15

5

10

15

0.1

0.2

0.3

0.4

0.5

 

 

2 4 6 8 10

2

4

6

8

10
0

0.2

0.4

0.6

0.8

 

 

5 10 15

5

10

15

0

0.1

0.2

0.3

0.4

0.5

0.6

53Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



The proposed algorithm is dependent of the iteration 
number, since the quantity of neighbors was defined as a 
function of it. In the experiments no universal value for the 
iteration number was suitable for all datasets as it affects the 
parameters       and  , and therefore, it must be set for 
each database. 

VIII. CONCLUSIONS AND FUTURE WORK 
A gravitational approach for enhancing the cluster 

visualization through the U-matrix technique was presented. 
It takes advantage of the U-matrix increasingly higher 
resolution while using larger SOM grid sizes and the 
neurons concentration achieved with the gravitational 
algorithm. The main concern is to define the neighborhood 
size and number of iterations as they directly influence the 
quality of the final map. The experiment parameters were 
kept equal for all data sets, except for the number of 
iterations. As the latter becomes larger, the neurons tend to 
converge to the same point, as it is expected from a 
gravitational algorithm. In all cases, the proposed approach 
was able to provide an improved visualization of the clusters 
using the U-matrix that was generated with the repositioned 
neurons. 

The final result of the proposed algorithm does not 
represent the real position of the cluster centers due to the 
tendency of all particles to collapse at the same point, 
however as the interest consists primarily in visualizing and 
defining the number of clusters, it is not considered an issue, 
as the geometry relations are preserved and the 
visualizations obtained are sharper while remaining 
coherent. 

Future works will focus on an heuristic for automatic 
selection of the total number of iterations, the parameters 
     and  , as well as their decreasing functions based on 
information from the data and SOM network, in order to 
achieve a suitable combination regarding the tradeoff 
between results and the computational cost. 

REFERENCES 
[1] D. T. Larose, Discovering Knowledge In Data, John Wiley & Sons, 

2005. 
[2] R. Xu and D. C. Wunsch II, “Survey of clustering algorithms,” IEEE 

Transactions on Neural Networks, vol. 16, no. 3, May 2005, pp. 645–
678. 

[3] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining. 
Addison Wesley, 2006. 

[4] T. Kohonen, Self-Organizing Maps, 3rd ed., Springer-Verlag, 2001. 
[5] H. Ritter, “Self-organizing feature maps: Kohonen maps,” The 

Handbook of Brain Theory and Neural Networks, 1995, pp. 846–851. 
[6] A. Ultsch and H. P. Siemon, “Kohonen’s self organizing feature maps 

for exploratory data analysis,” Proc. of the International Neural 
Networks Conference (INNC 90), 1990, pp. 305–308. 

[7] J. Gomez, D. Dasgupta, and O. Nasraoui, “A New Gravitational 
Clustering Algorithm,” Proc. of the third SIAM International 
Conference on Data Mining, 2003. 

[8] N. Ilc and A. Dobnikar, “Gravitational clustering of the self-
organizing map,” Adaptive and Neural Computing Algorithms, 
Lecture Notes in Computer Science, vol. 6594, 2011, pp 11–20.  

[9] N. Ilc and A. Dobnikar, “Generation of a clustering ensemble based 
on a gravitational self-organising map,” Neurocomputing, vol. 96, 
Nov. 2012, pp. 47–56. 

[10] K. Kiviluoto, “Topology Preservation in Self-Organizing Maps”, 
Proc. of the IEEE International Conference on Neural Networks, vol. 
1, 1996, pp. 294–299. 

[11] H.-U. Bauer, J. M. Herrmann, and T. Villmann, “Neural maps and 
topographic vector quantization,” Neural Networks, vol. 12, no. 4–5, 
Jun. 1999, pp. 659–676. 

[12] J. Vesanto, “SOM-based data visualization methods,” Intelligent Data 
Analysis, vol. 3, no. 2, Aug. 1999, pp. 111–126. 

[13] J. A. F. Costa, “Uma nova abordagem para visualização e detecção de 
agrupamentos em mapas de Kohonen baseado em gradientes das 
componentes,” Learning and NonLinear Models, vol. 9, no. 1, 2011, 
pp. 20–31.  

[14] A. Ultsch, “Maps for the visualization of high-dimensional data 
spaces,” Proc. of the Workshop on Self-Organizing Maps (WSOM 
03), 2003, pp. 225–230. 

[15] K. Taşdemir and E. Merényi, “Exploiting Data Topology in 
Visualization and Clustering of Self-Organizing Maps,” IEEE 
Transactions on Neural Networks, vol. 20, no. 4, Apr. 2009, pp. 549–
562.  

[16] E. Pampalk, A. Rauber, and D. Merkl, “Using Smoothed Data 
Histograms for Cluster Visualization in Self-Organizing Maps,” Proc. 
of the International Conference on Artificial Neural Networks 
(ICANN 02), 2002, pp 871–876. 

[17] K. Taşdemir, “Graph Based Representations of Density Distribution 
and Distances for Self-Organizing Maps,” IEEE Transactions on 
Neural Networks, vol. 21, no. 3, Mar. 2010, pp. 520–526.  

[18] A. Ultsch, “U*-Matrix : a Tool to visualize Clusters in high 
dimensional Data,” Technical Report no. 36, Dept. of Mathematics 
and Computer Science, University of Marburg, Germany, 2003. 

[19] A. Ultsch, “Proof of Pareto’s 80/20 Law and Precise Limits for ABC-
Analysis,” Technical Report no. 02 / c, University of Marburg, 
Germany, 2002. 

[20] A. Ultsch, “Pareto Density Estimation: A Density Estimation for 
Knowledge Discovery,” Proc. of the 27th Annual Conference of the 
German Classification Siciety (GfKl 03), 2003, pp. 91–100. 

[21] W. E. Wright, “Gravitational clustering,” Pattern Recognition, vol. 9, 
no. 3, Oct. 1977, pp. 151–166. 

[22] T. Long and L.-W. Jin, “A New Simplified Gravitational Clustering 
Method for Multi-prototype Learning Based on Minimum 
Classification Error Training,” Advances in Machine Vision, Image 
Processing, and Pattern Analysis, Lecture Notes in Computer 
Science, vol. 4153, 2006, pp. 168–175. 

[23] J. Lange and H. Freiesleben, “A parameter-free non-growing self-
organizing map based upon gravitational principles: Algorithm and 
applications,” Artificial Neural Networks — ICANN 96, Lecture 
Notes in Computer Science, vol. 1112, 1996, pp. 827–832. 

[24] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Prentice 
Hall, 1988. 

[25] A. Ultsch, “Clustering with SOM: U*C,” Proc. of the Workshop on 
Self-Organizing Maps (WSOM 05), 2005, pp. 75–82. 

[26] A. Frank and A. Asuncion, “UCI Machine Learning Repository,” 
2010. 

[27] J. Vesanto, J. Himberg, E. Alhoniemi, and J. Parhankangas, “Self-
Organizing Map in Matlab: the SOM Toolbox,”  Proc. of the Matlab 
DSP Conference, 2000, pp. 35–40. 

[28] S. Theodoridis and K. Koutroumbas, Pattern Recognition, 4th ed., 
Academic Press, 2008. 

[29] M. Meila and D. Heckerman, “An experimental comparison of 
model-based clustering methods,” Machine Learning, vol. 42, no. 1–
2, 2001, pp. 9–29. 

54Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Model-driven Self-optimization Using Integer Linear Programming and
Pseudo-Boolean Optimization

Sebastian Götz, Claas Wilke, Sebastian Richly, Christian Piechnick, Georg Püschel and Uwe Aßmann
Technische Universität Dresden, Software Engineering Group

Dresden, Germany
Email: {sebastian.goetz1,claas.wilke,sebastian.richly,christian.piechnick,goerg.pueschel,uwe.assmann}@tu-dresden.de

Abstract—The development of self-optimizing software
systems usually requires developers to apply optimization
techniques manually, which is time consuming and prone to
error. The application of model-driven software development
combined with models at runtime takes this burden from
developers by generating optimization problems using model
transformations. In this paper, we present two such ap-
proaches applying integer linear programming and pseudo-
boolean optimization. Furthermore, we provide a scalability
analysis of both approaches showing their feasibility for pipe-
and-filter applications.

Keywords—self-adaptive systems; integer linear program-
ming; pseudo-boolean optimization; MDSD

I. Introduction

The future of software systems is predicted to be
characterized by ubiquitous, interconnected software com-
ponents, running on several heterogenous resources that
are subject to frequent changes and optimize themselves
w.r.t. their non-functional behavior [1], [2].

In this paper, we address a particular problem of such
self-optimizing software systems: the burden of developers
to apply optimization techniques manually, which is time
consuming and prone to error. We propose to generate
optimization problems from models, being more natural to
the developers. Thus, we propose the application of model-
driven software development, especially model transforma-
tions, and the models at runtime paradigm [3] to develop
self-optimizing software systems.

We present two approaches: an Integer Linear Program-
ming (ILP)-based and a Pseudo-Boolean Optimization
(PBO) [4]-based solution. Both techniques belong to com-
binatorial optimization [5]. They are suited, because the
system configurations, amongst which the best is searched,
are combinations of decisions (e.g., which implementation
to choose). We compare both approaches and evaluate
them w.r.t. scalability, showing their applicability despite
their high complexity.

The core contributions of this paper are:

• A runtime optimization approach using ILP.

• A runtime optimization approach using PBO.

• A scalability analysis of both approaches.

The remainder of this paper is structured as follows.
In Sect. II a model-driven architecture for self-optimizing
software systems is presented being the basis for both the
ILP-based solution discussed in in Sect. III and the PBO-
based solution discussed in Sect. IV. The scalability of both

VideoPlayer Decoder DataProvider
playVideo getStream loadData

VLC QT Free Com. File URL

framerate : FPS dataRate : KB/s dataRate : MB/s

ComponentType

non-functional propertiesImpl.

provided port

required port

Fig. 1. VideoPlayer SW components and implementations.

approaches is examined in Sect. V. Finally, in Sect. VI we
outline related work and conclude the paper in Sect. VII.

II. A Contract-based Architecture for
Self-Optimizing Systems

To design and model self-optimizing systems, we de-
veloped the non-functional property (NFP)-aware Cool
Component Model (CCM) [6] and the Quality Contract
Language (QCL) [7]. The CCM provides concepts to model
hierarchical system architectures, covering both software
components and hardware resources, because most NFPs
base on the software’s interaction with hardware resources
(e.g., execution time and energy consumption). QCL pro-
vides concepts to express dependencies between CCM
components based on NFPs. This implies dependencies
between software components as well as software and
hardware components. In the following, we introduce CCM
and QCL, by means of a video application scenario.

A. Capturing Software and Hardware Components

The CCM distinguishes between modeling the system
structure of hardware resource types, software components
and variants of both. In the scope of this paper, variants
of resource types are concrete hardware resources; variants
of software components are concrete implementations. The
system structure defines how a system looks like and,
thus, represents type declarations for specific variants. For
instance, consider the upper part of Figure 1 showing
the types for a video application. It consists of three
software components, namely a Player, a Decoder and
a DataProvider. Each component may have one or more
port types representing interfaces of the component. Port
types can be used to connect different components. A set
of connected components describes a software system.

Concrete implementations of software components
(cf. Figure 1) have to correspond to their type. In the
given example two variants of Players, the VLC (Video
LAN Client) and Quicktime (QT) implementation exist.

55Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



2-Server-Infrastructure

Server 1

Net_S1CPU_S1

RAM_S1 HDD_S1

frequency = 3 GHz
performance = 45 GFLOPS

free = 402 MB
used = 110 MB
total = 512 MB
throughput = 3 GB/s

bandwidth = 100 Mb/s

free = 170 GB
used = 150 GB
total = 320 GB
throughput = 20 MB/s

Server 2

Net_S2 CPU_S2

RAM_S2 HDD_S2

frequency = 1,5 GHz
performance = 24 GFLOPS

free = 1500 MB
used = 512 MB
total = 2048 MB
throughput = 4 GB/s

bandwidth = 54 Mb/s

free = 170 GB
used = 150 GB
total = 320 GB
throughput = 20 MB/s

Infrastructure

Server

NetCPU RAM HDD

frequency : GHz
performance : GFLOPS
cpuLoad : percent

free : MB = total – used
used : MB
total : MB
throughput : GB/s

bandwidth : Mb/s free : GB = total – used
used : GB
total : GB
throughput : MB/s

1..*

1..* 1..* 1..* 1..*

1

Fig. 2. Top: CCM Structure Model for hardware landscapes. Bottom:
CCM Variant Model for a hardware landscape of 2 servers.

For Decoders, a free (Free) and a commercial (Com.)
implementation are available. Finally, the DataProvider
is implemented as a local file reader (File) and a remote
URL reader (URL).

To capture types available in the hardware landscape,
resource types are specified. The upper part of Figure 2
defines resource types, on which our video application shall
be executed. The Infrastructure consist of one or more
Servers, whereas each server contains one or more CPUs,
network interfaces (Net), RAM chips and hard disks (HDD).
For reasons of simplicity, we omit port types of resource
types in the given example.

For each component type (software and hardware),
NFPs can be defined. For instance, the Player type defines
a property framerate in fps (frames per second) whereas
the HDD type defines a property used (disk space) in GByte.

The lower part of Figure 2 shows a hardware instan-
tiation of the resource type system mentioned above. It
consists of two servers with specific resources according
to the definitions at the type level. NFPs defined at type
level, are available at variant level with concrete values.
Each resource variant can provide behavior models to
further specify its NFPs (e.g., the correlation of energy
consumption and CPU utilization).

B. Specification of QCL contracts

QCL is used to define dependencies between CCM com-
ponents as contracts, specified for each variant. Therefore,
a QCL contract represents a specific view on a variant
regarding its dependencies to other types. A contract
defines one or more modes, whereas each mode indepently
(from other modes) defines dependencies to other com-
ponents. Software components can depend on other soft-
ware components as well as hardware resources, whereas
resources can depend on other hardware resources only.
Each dependency relates to a component type and defines
bounds for required values of NFPs at runtime. In addition
to property requirement constraints, provided NFPs are
specified as well.

Figure 3 shows a contract for the VLC video player as a
concrete implementation of the VideoPlayer component.
As defined, the player can be used in two modes: high-

1 contract VLC implements VideoPlayer {
2 mode highQuality {
3 //required resources
4 requires resource CPU {
5 max cpuLoad = 50 percent
6 min frequency = 2 GHz
7 }
8 requires resource Net {
9 min bandwidth = 10 MBit/s

10 }
11 //dependencies on other SW components
12 requires component Decoder {
13 min dataRate = 50 KB/s
14 }
15 //what is provided in turn
16 provides min frameRate 25 Frame/s
17 provides min resolution 1080 p
18 }
19 mode lowQuality { ... }
20 }

Fig. 3. Example Contract for VLC Video Player.

and lowQuality. For highQuality the contract specifies
requirements for a CPU and a Net device. The CPU needs
to be utilized at most to 50% and to have a frequency
of at least 2GHz. The Net device has to offer at least a
10 MBit/s bandwidth. Furthermore, another component
is required—a Decoder. Any implementation of this type,
which is able to provide a data rate of at least 50 KB/s
can be used. Finally, the contract defines that in the
highQuality mode a minimum framerate of 25 fps and
a resolution of 1080p is provided.

To determine the hardware requirements, micro-
benchmarks written by the component developer, evalu-
ating the non-functional properties of interest, are used. A
more detailed discussion on how to create these contracts
has been published in [8].

In summary, a system modeled with CCM and QCL
is highly variable in terms of multiple implementations of
component types, multiple quality modes per implementa-
tion and, according to resource requirements of each qual-
ity mode, multiple possible mappings of implementations
to hardware resources.

III. Self-Optimization with ILP

The central task of self-optimizing systems is to de-
termine optimal system configurations. In this section, a
model-based approach using an exact optimization tech-
nique called ILP is shown. In contrast to many existing
approaches to self-optimization, the presented approach
does not require the developer to apply the optimiza-
tion technique itself, but generates the formulation of
the optimization problem using the existing development
artifacts. In this work, a system configuration denotes a
set of software component implementations deployed on
component-containers, which run on servers (or, more gen-
eral, computing entities). Thus, the optimization problem
is, which implementations of which component types need
to be mapped onto which containers in order to reach the
optimal trade off between user satisfaction and execution
costs.

To solve this problem, a variety of information is re-

56Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



quired. Namely, variant models of hard- and software rep-
resenting the currently running system, structure models
of hard- and software representing the architecture of the
system, QCL contracts characterizing the non-functional
behavior of the software and a user request with the user’s
Quality of Service (QoS) demands.

As ILP is a mathematical formalism with its own
language, a transformation from the structure and variant
models as well as the contracts and the request to ILP
is required. Figure 4 depicts the general approach of this
ILP generation, which can be characterized as a model-to-
text transformation in terms of Model-Driven Architecture
(MDA) [9].

On the left upper side of Figure 4, the structure of the
optimization problem formulated as an ILP is shown. An
ILP comprises a set of objective functions, a set of decision
variables and a set of constraints (as highlighted by the
dashed lines). The objective functions depend on the user
request (declaring objectives important for the user, e.g.,
response time) and on the variant (i.e., runtime) model.
Decision variables depend on QoS contracts and variant
models, too. Finally, the constraints of the ILP depend
on all available input information. In the following, the
generation of decision variables, objective functions and
constraints is discussed in more detail.

A. The Rational of Decision Variables

In this work, the decision variables directly follow
the characterization of system configurations: they denote
which implementation is to be run in which quality mode
on which container. They encompass a selection problem
(i.e., which implementations to select) and a mapping
problem (i.e., to which container the selected implementa-
tions shall be mapped). This information is comprised by
the name of the variable seperated by hashtags, whereas
the type of the decision variables is of boolean nature
(meaning each of these variable being solved having the
value 1 denotes the deployment of a specific component
implementation in a specific mode on a specific resource).
Equation 1 shows the general form of decision variables as
used in the presented approach. The prefix b# is meant to
highlight the boolean type of this variable.

b#implementation#mode#container ∈ B (1)

Additional variables express the resource utilization
and resulting NFP values implied by a certain implementa-
tion (as specified in QCL contracts). These variables have
a real value (i.e., are in R) and have the prefix u# for
utilization. The naming of these variables fully qualifies
an NFP of a certain resource of a component container
(i.e., server). As resources are hierarchically structured,
subresources, subsubresources, etc. can be specified. For
example, a resource CPU1 can comprises the subresources
Core1, Core2 and so on. Equations 2 and 3 denote the
general forms of these variables.

u#container#resource#subres.#...#NFP ∈ R (2)

implementation#NFP ∈ R (3)

Solving an ILP working on these variables, leads to an
assignment of values, representing the optimal system con-
figuration. Thus, the solution provides information about
the optimal selection of implementations, modes, their
mapping to containers and additional information on the
resulting NFPs of the participating components.

B. Generation of Objective Functions

All objective functions in the context of this work, base
on assessment functions of system configurations. That
is, an objective function assesses system configurations in
terms of the respective objective (e.g., energy, performance
or reliability) and aims to determine that configuration,
which is assessed to be minimal or maximal w.r.t. the
current objective.

A straightforward objective function based on the vari-
ables explained in the previous subsection is resource min-
imization as shown in Equation 4. However, this objective
function does not consider the interplay between selected
components instances there, required and provided NFPs
and the available resources. Thus, constraints are used to
restrict the ILP to correct solutions. Anyhow, the objective
function of Equation 4 does not lead to the intended result
(i.e., minimum resource consumption), because the units
and the semantics of each resource usage variable are not
considered. For example, the formula does not differentiate
between utilizing 10 MB of main memory in contrast to
utilizing 10 MB of hard disk drive (HDD) space.

min :
∑

u#container#res.#subres.#...#NFP (4)

A practical solution towards more sophisticated objec-
tive functions is the application of utility theory to map
each variable to a utility expressed as a real value between
zero and one. In the case of resource usage the utility func-
tions can reflect the difference between using space of main
memory and an HDD by putting the requested amount of
space in relation to the totally available space. The general
form of objective functions according to utility theory is
shown in Equation 5. The objective is to maximize the
overall utility.

max :
∑

utility(vardecision) (5)

An even more sophisticated objective is the combi-
nation of the previous two types of objectives (i.e., cost
minimization and utility maximization): efficiency max-
imization. The general form of this type of objective is
depicted in Equation 6.

max : η(vardecision) =
utility(vardecision)

cost(vardecision)
(6)

Finally, an important aspect of objective functions in
the context of reconfigurable systems is the need to con-
sider the reconfiguration and decision making itself.

57Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



CCM Variant Model 
Runtime Description of
Hard- & Software 
Infrastructure

CCM Structure Model 
Architecture of
Hard- & Software
System

QCL Contracts
Characterizing Non-
functional Behavior
of Implementations

1 contract VLC implements VideoPlayer.play {

2   mode highQuality {

3     requires component Decoder {

4       min dataRate: 9 MB/s

5     }

6     requires resource Net {

7       min bandwidth: 10 MB/s

8     }

9 provides min frameRate: 25 FPS

10   }

11   mode lowQuality {

12 ...

Decision Variables

Select ImplMap to HW

Constraints

NFP Provisions

NFP Requirements

Resource Provisions

Resource Requirements

fixed

K
n
a
p
s
a
c
k

Knapsack

Architectural
Constraints

Objective Functions Requests + QoS Demands

ILP CCM Behavior Models

Fig. 4. Overview of ILP Generation.

This is, because both processes require time and resources
and, thus, effect the objective functions. Hence, a general
objective function should look as depicted in Equation 7,
which aims for maximum efficiency. Notably, the costs
implied by reconfiguration and decision making need to
be assessed w.r.t. the quality of interest for the respective
objective function.

max :

n∑
i=1

utili
costi

∗ utilreconf + utildecide
costreconf + costdecide

(7)

The assessment of costreconf as well as costdecide (and
the negative utilities) is a non-trivial task, which has to be
investigated for each NFP individually. A closer discussion
exceeds the scope of this paper.

C. Constraint Generation

As mentioned above, the ILP must be constrained by
a set of constraints to allow the computation of sensible
solutions only. In general, three classes of constraints are
generated in the presented ILP approach: constraints ne-
gotiating software NFPs, constraints negotiating resource
requirements, and architectural constraints. In the follow-
ing each class is explained in more detail.

Software NFP Negotiation: The negotiation of software
NFPs covers the interdependencies between NFPs of dif-
ferent software components expressed by their provisions
and requirements in QCL contracts. The selection of an
implementation of a software component type in a certain

quality mode induces a set of NFP provisions (by the
implementation) and requirements (to other components).
To determine an optimal selection includes to find a bal-
ance between provided NFPs and required NFPs across
all required components to fulfill the user’s request. This
problem is reflected in the ILP by two types of constraint
clauses, which are generated for each NFP. First, NFP
provisions are expressed as equality constraints as depicted
in Equation 8. Depending on the assignment of the decision
variables, the available amount of the respective NFP
results.

NFPi =

c∑
provba ∗ b#impla#modeb#container (8)

Second, the NFP requirements implied by selecting a
certain implementation in a quality mode are expressed as
inequality constraint as depicted in Equation 9. Notably,
the relation between NFPi and the aggregated NFP re-
quirements is only ”less or equal”, if the respective NFP
is of ascending order. For example, the NFP memory is
of ascending order, whereas the NFP response_time is of
descending order. Thus, for response_time, the inequality
is of ”greater or equal than” type.

NFPi ≤
c∑
reqba ∗ b#impla#modeb#container (9)

58Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Resource Negotiation: Besides NFPs provided and re-
quired by implementation, the selection of implementa-
tions implies resource requirements, too. In contrast to
software NFPs, the provision of resources is fixed by the
available hardware. Similar to software NFP negotiation,
two types of constraints are generated for resource ne-
gotiation. First, the provision of resources as depicted
in Equation 10. The provided property naturally needs
to be greater or equal than zero and less or equal than
the maximum offered by the resource. In addition, the
granularity of the resource can be restricted. For example,
the amount of disk space can only be utilized in blocks of a
certain size (e.g., 4KB). In the constraints of Equation 10,
the terms maximum and granularity are replaced by
the respective concrete values. The term x remains a
free variable, which is to be found by the solver of the
optimization problem. The restriction of x to be binary
(i.e., ∈ B) enforces the restriction of the resource property
to be a multiple of granularity.

ResourcePropertyi ≥ 0 (10)

ResourcePropertyi ≤ max

ResourcePropertyi = granularity ∗ x
x ∈ B

The second type of constraint covers the resource re-
quirements by selecting an implementation. The resulting
constraint is depicted in Equation 11.

ResourcePropertyi ≤ (11)
c∑
reqba ∗ b#impla#modeb#container

For each resource property, constraints of these types
are generated, whereby the search for valid assignments to
the decision variables is further restricted.

Architectural Constraints: Finally, constraints based on
the knowledge about the software’s architecture and the re-
quested software component are translated into constraints
of the ILP. The simplest possible constraint of this type
is the necessity to select exactly one implementation of a
component type whose port is requested by the user. The
corresponding constraint is depicted in Equation 12.

∑
b#impla#modeb#container = 1 (12)

∀a ∈ T ∧ b ∈ modesof(a)

For all modes b of all implementations available for
the component type T , the sum of the corresponding
decision variables needs to be exactly one. This constraint
suffices, if no other component types exist or the requested
component type does not use any other component type.
If another component type is used, the need to select an
implementation of this type needs to be expressed, too. In
the general case, constraints have to be generated, which

express that the selection of an implementation of compo-
nent type T1 implies the need to select an implementation
of type T2. Equation 13 depicts this kind of constraint.

∑
b#impla#modeb#container = (13)∑
b#implc#moded#container

∀a ∈ T1 ∧ b ∈ modes of(a) ∧ c ∈ T2 ∧
d ∈ modes of(c) ∧ depends(T1, T2)

The above described three types of constraints, restrict-
ing the possible assignments to the decision variables, so
only valid configurations are investigated for their optimal-
ity. In addition, corresponding to the decisions, values are
assigned to the resource usage and NFP variables. In the
next section we describe a lean variant of this approach,
which avoids the use of resource and NFP variables.

IV. Self-Optimization with PBO

The key aspect of the configuration problem expressed
for the ILP-based solution presented above, is denoted
by boolean decision variables, encompassing the decision
to select certain implementations and their mapping to
certain resources. The remaining variables used in the ILP-
based solution comprise resource usage and resulting NFP
values. In this section, the ability to omit non-boolean vari-
ables is shown. The intended goal is to apply more efficient
solving techniques to the generated optimization problems,
which leverage on the restriction to use boolean variables
only. Due to the exclusive use of boolean variables in an
ILP a special type of ILP results: a 0-1 ILP. This type of
ILP can be handled by PBO, which applies techniques used
to solve satisfiability problems in propositional logics (e.g.,
DPLL [10]). These techniques have polynomial complexity,
whereas algorithms used to solve ILPs (e.g., simplex) have
exponential complexity. Hence, we investigate PBO for
self-optimization.

A. Reformulation of the Configuration Problem in PBO

To apply techniques of PBO to the configuration prob-
lem to be generated, all non-boolean variables from the
ILP solution need to be expressed in a different way.
Namely, a new way to express resource negotiation, NFP
negotiation including user requirements and the objective
function is required. Notably, the architectural constraints
defined for the ILP solution can remain unchanged, be-
cause they only refer to decision variables. In the following,
a solution for each of the constraints subject to adjustment
is given.

Resource Negotiation without Usage Variables: The
expression of resource negotiation in ILP with usage
variables has been shown in the previous section. All
these constraints, except for the granularity restriction,
can be expressed by a single PBO constraint, which im-
plicitly represents the respective resource property (i.e.,
ResourcePropertyi) as shown in Equation 14. The term
creqba denotes the implied resource requirements by the
respective implementation a in the specified mode b on
a given container c.

59Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



∑
creqba ∗ b#impla#modeb#containerc ≤ max (14)

NFP negotiation: Alongside with the restriction of
resource usage, the dependencies between offered and re-
quired NFPs has to be expressed by constraints. In the
ILP solution explicit variables for each NFP have been
used to connect separate constraints for their provisions
and requirements. The same principle, as for resource
usage negotiation can be applied for NFP negotiation,
too. Namely, the implicit expression of each NFP variable.
Thus, for PBO, the provision and requirement constraints
are merged into a single constraint which implicitly rep-
resents the possible expressions of the NFP. For the gen-
eration of these constraints the user request needs to be
considered, too. This can be accomplished by incorporating
the respective NFP requirements expressed by the user in
his request as minimum value of the respective NFP. The
resulting constraint is shown in Equation 15.

∑
(requser +c reqba ∗ b#impla#modeb#containerc) (15)

≤
∑

cprovba ∗ b#impla#modeb#containerc

Reformulation of Objective Function: The objective
function in PBO can only rely on decision variables,
because only these variables exist. In contrast, the ILP
solution allowed for the application of resource usage and
NFP variables. Thus, the minimization or maximization of
resource usage and NFPs cannot be directly expressed in
PBO. The general form of the objective function in PBO
is shown in Equation 16.

min :
∑

weight ∗ b#impla#modeb#containerc (16)

Thus, the major issue to generate meaningful objec-
tive functions in PBO is the computation of the weight
constants for each decision variable. This weight has to
express the impact the decision represented by the decision
variable on the overall objective.

V. Evaluation

The above described approach, applying generated
ILP- or PBO-based optimization for self-adaptive systems,
is not likely to scale. This is, because solving an ILP or
PBO is known to be an NP-hard problem, where the
processing time required by the solver grows exponentially
with number of decision variables of the ILP/PBO. In
the following, we show how ILP/PBO generation and
solving perform and that both approaches are feasible
for typical pipes-and-filter applications. We compare the
performance of both approaches, showing that the ILP
solution outperforms the PBO solution.

A. Generation of Test Systems for Empirical Evaluation

To empirically evaluate the performance of the ap-
proaches, a set of test systems has been generated. As
the ILP/PBO generation relies on the models of the
system only (and not the system itself), it is possible to
evaluate the approaches against a variety of system types
without the need for their physical presence. Thus, we
developed a parameterizable system generator, which is
capable of generating models as usually derived by the
runtime environment. This includes hard- and software
structure models, hardware and software variant models
and QoS contracts.

The generator is configured with several parameters:

• Number of servers S,

• Number of resources per server Nres,

• Number of properties per resource NresProp.

• Number of component types, C

• Maximum depth of dependency chains δ,

• Number of NFPs defined per component type
Nnfp,

• Number of implementations per component type
Nimpl,

• Number of modes per implementation Nmode,

• Number of hardware requirements per mode,

• Number of NFPs required per software dependency
per mode and

• Number of provided NFPs per mode.

Note that it is impossible to generate systems leading
to worst case execution times of the solver as the solvers
internally use heuristics. But, for proper evaluation results
using generated systems, each generated system should
allow at least one valid configuration. Randomly gener-
ating NFP provisions and requirements obviously leads to
infeasible systems in most cases. To ensure the existence of
at least on feasible system configuration, a random request
is generated, which serves as reference request for which a
feasible system configuration is to be ensured. The process
of system generation keeps track of how the random re-
quest transforms between dependent software component
types. For the directly requested component type at least
one (randomly chosen) quality mode Q1 is selected to fulfill
the request. Then, for all dependent component types at
least one quality mode is chosen to fulfill the requirements
of Q1. The same process is performed for all dependent
types of the dependent types and so on. The generated user
request to ensure feasibility is reusedlater as test request
for evaluation.

B. Measurements for Pipe-and-Filter Style Systems

The pipes-and-filter architectural style is common
across many data processing applications. For example,
in early detection of Alzheimer’s disease, magnetic res-
onance tomography (MRT) pictures are processed by a

60Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



pipes-and-filter architecture comprising data preparation,
Alzheimer’s indicator search and data postprocessing. An-
other example is audio processing as performed, e.g., by
auphonic (http://auphonic.com/), where audio files are
processed by a chain of processing steps. In general, the
pipes-and-filter style is characterized by a chain of compo-
nent types. There are n component types, where the first
component type requires the second, which in turn requires
the third component type and so on. For this architectural
style the parameter n, denoting the number of component
types or the depth of the chain is of interest. In addition,
the number of containers c is to be considered, because the
number of possible configurations grows exponentially with
the number of available containers. Thus, a test system in
pipes-and-filter style is characterized as an n × c system
having n component types and c containers.

For the server landscape, we assume each server (i.e.,
container) to have one central processing unit (CPU), one
random access memory (RAM) module, on HDD and a
network device. Each software component type has one
provided and one required port type, except the last
component type in the chain, which only has a provided
port type. Moreover, each software component type has
two NFPs and two implementations, having two modes,
which each have four resource requirements, two software
requirements and two provisions.

To assess pipes-and-filter type applications, all variants
of C x S systems for C = [2..100] and S = [2..100] have
been generated and the generation and solving time of the
respective ILPs and PBO formulations has been measured.
For each generated system, two measurements were taken.
First, the time required to generate the respective ILP
or PBO problem. Second, the time required to solve the
problem using a standard solver. For the ILP solution the
solver LP Solve [11] (version 5.5.20) has been used. For
PBO the OBPDB [12] solver (v. 1.1.3) has been used.
All measurements were taken on a DELL Alienware X51
desktop PC running Windows 7 64bit and containing a
solid state disk, 8 GB DDR1600 RAM and an Intel Core
i7-2600 CPU running at 3.4 GHz having 4 physical cores
and 8 virtual cores by hyperthreading.

Analysis of the ILP Solution: Figure 5(a) shows a
boxplot of the ILP generation time and Figure 6 depicts
this generation time in relation to the number of soft-
ware components. The median generation time is 156 ms
and 75% of all ILPs were generated in at most 260 ms.
The longest generation took 2028 ms. Notably, the 99%-
quantile is 437 ms, meaning that in 99% of all cases, the
maximum generation time is less or equal to 468 ms. A
natural hypothesis is that the number of components and
servers correlates to the generation time; which indeed
exists: Tgen(C) = 0.0291C2 + 1.4429C + 5.3851 with an
R2 of 0.8956.

Figure 5(b) depicts a boxplot of the ILP solving time. It
reveals the random nature of worst and best case runtime
of ILP solving, depicted by the vast amount of outliers.
For only 121 out of 9801 generated ILPs the solver was
not able to return any solution within two minutes for all
measurements taken (i.e., in 1.2% of all cases). Please note,
that the solving time had an upper limit at 2 minutes, as

0
50

0
10

00
15

00
20

00

ILP generation

(a) Generation time

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

ILP solving

(b) Solving time

Fig. 5. ILP generation and solving time in milliseconds.

for a some ILPs the solving time can increase to multiple
hours or even days, which is the worst case, where the
complete problem space has to be explored. Surprisingly,
the median solving time is only 478.5 ms. Thus, half of
the ILPs could be solved in less than a second. The third
quantile (i.e., 75%-quantile) is at 26.58 s. 79% of all ILPs
were solved in less than a minute. Notably, if the (manually
configured) timeout of two minutes was reached, the ILP
solver returned the best solution found so far.

In the following, a closer investigation of the solving
time is presented. The aim is to investigate if and how

0 20 40 60 80 100

0
50

0
10

00
15

00
20

00

Number of Software Components

G
en

er
at

io
n 

T
im

e 
[m

s]

Fig. 6. ILP generation time in relation to number of components.

61Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



0 20 40 60 80 100

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

Number of Software Components

S
ol

vi
ng

 T
im

e 
[m

s]

Fig. 7. ILP solving time in relation to number of components.

the system parameters correlate with the solving time
of the generated ILP. The hypothesis is, that there is a
correlation between the number of component types and
the solving time. Figure 7 depicts this correlation. On each
axis a boxplot of the corresponding variable is shown to
highlight the high density of solutions in low solving times.
An interesting conclusion from this figure is, that the
predictability of solving time decreases at approximately
25 component types. Most ILPs are solved in a few seconds,
though the more component types, the more likely are
longer solving times.

The correlation between the number of component
types and the solving time for scenarios is statisti-
cally poor. The linear regression has an adjusted R2

of only 0.4286. Exponential regression (i.e., Tsolve =
f(Components) = a · ex) reveals a residual standard error
of 1.911 · 1013. Thus, there is no statistically significant
correlation between the number of components and the
solving time. The reason is the random nature of ILP
solving, i.e., solving random ILPs can randomly lead to
worst and best case situations.

Analysis of the PBO in Comparison to the ILP Solution:
The same measurements have been done for the PBO
solution. Figure 8 depicts the PBO generation and solving
times. In addition, Figure 9 depicts the generation time in
relation to the number of components. Please note that for
the PBO solution only systems with up to 30 component
types have been measured, because the approach does not
scale beyond this number of component types.

In comparison to the ILP solution, the generation of

0
50

0
10

00
15

00
20

00

PBO Generation

(a) Generation time

0
20

00
0

40
00

0
60

00
0

80
00

0
10

00
00

12
00

00

PBO Solving

(b) Solving time

Fig. 8. PBO generation and solving time in milliseconds.

PBOs looks comparably performant at a first glance. ILPs
for systems of up to 100 component types are generated
in up to 2 seconds. PBOs for systems of only up to 30
component types require up to 2 s, too. But, whilst the
median for ILP generation was at 156 ms, for PBO gen-
eration it is at 31 ms. Also for the 99%-quantile, the ILP
solution looks worse than the PBO solution, as for ILP the
99%-quantile is at 468 ms, whereas for PBO it is at 94 ms.

5 10 15 20 25 30

0
50

0
10

00
15

00
20

00
25

00

Number of Software Components

G
en

er
at

io
n 

T
im

e 
[m

s]

Fig. 9. PBO generation time in relation to number of components.

62Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



5 10 15 20 25 30

0
20

40
60

80
10

0
12

0

Number of Components

S
ol

vi
ng

 T
im

e 
[m

s]

Fig. 10. PBO solving time in relation to number of components.

But, because for the PBO solution only systems of up to
30 component types have been used, the ILP generation
times for up to 100 components cannot be used as a
reference. An investigation of ILP generation for systems
of up to 30 component types reveals a median of 32 ms
and a 99%-quantile of 78 ms. Thus, PBO generation is
even slower than ILP generation, although less constraints
and less variables have to be generated. The reason for
the better performance of ILP generation is the required
program format for the applied solvers. The ILP solution
can use long variables names to encode information (i.e.,
the decision variables encode their meaning in their name),
whereas the PBO solution has to use enumerated variables
(i.e., xn). In consequence, the PBO generation has to
handle the mapping of decision variables to their short
versions, which consumes time and, hence, leads to the
measured performance loss.

An investigation of the solving time of the PBO solu-
tion reveals surprising results. The rational for using PBO
instead of ILP was the hypothesis that PBO performs
better in many cases as it has polynomial complexity only.
But, for the optimization problem discussed in this paper
it apparently does not as Figure 10 depicts. The solving
time has been limited to two minutes, too. But, in contrast
to the ILP solution, the PBO solver does not deliver a
suboptimal solution if the timeout is reached. Starting at
15 component types (compared to 25 in the ILP solution)
the predictability of the solving time drastically decreases.
Most interesting is the lack of fast solutions starting at
25 component types. In comparison, the ILP solution was
able to deliver solutions in a few milliseconds even for

0 20 40 60 80 100

0.
90

0.
92

0.
94

0.
96

0.
98

1.
00

Number of Components

P
er

ce
nt

ag
e 

of
 F

ou
nd

 S
ol

ut
io

ns

(a) ILP approach

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Number of Components

P
er

ce
nt

ag
e 

of
 F

ou
nd

 S
ol

ut
io

ns

(b) PBO approach

Fig. 11. Percentage of found solutions for ILP and PBO within 2
minutes of solving time.

systems with more than 80 component types. Moreover,
the number of determined solutions in a timeframe of less
than 2 minutes significantly reduces starting already at 20
component types. For example, the measurements taken
for 28 component types and 2 to 100 servers (i.e., 99
measurements) only lead to 4 solutions. For the remaining
95 systems the PBO solver could not find a configuration.
For this reason, only measurements for up to 30 component
types have been collected.

The measurements of the solving time indeed bench-
mark the used solver. Unfortunately, for PBO only one
solver could be investigated, because all other solvers do
not support the specification of equalities with variables
on both sides of the equation. Therefore, OPBDP [12] was
the only publicly available, working solver which could be
investigated.

Thus, in conclusion, the PBO solution performs much
worse than the ILP solution for the optimization problem
at hand. This is because, in the average case the algorithms
used to solve ILPs perform better than those used for
PBO. Whereas the ILP solution is feasible for systems of
up to 100 component types, the PBO solution can handle
at most 25 component types. The generation of ILPs is
below 437 ms for up to 100 component types and PBO
generation takes less than 100 ms in 99% of all cases for
systems of up to 30 component types. Solving of ILPs
is below 500 ms in 50% of all cases and below 27 s in
75% of all cases. PBO solving is below 2.6 s in 50% of all
cases, but reaches the timeout of 2 minutes already in 70%
of all cases. Most notably, the PBO solution is not able
to find configurations starting already at 25 component
types in most of the cases, whereas the ILP solution is
able to determine configurations even for 100 component
types. Figure 11 depicts the percentage of solutions found
by the ILP and PBO approach in correlation with the
number of component types. The execution time of the ILP
solution is predictable up to 25 component types, whereas
the execution time of the PBO solution only up to 15
component types.

The reason for the decreasing predictability in the ILP
solution is the growing span between best and worst case
execution time of the solver. The best case execution time
grows linearly with the number of variables, whereas the

63Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



worst case execution time grows exponentially. Both curves
are very near to each other in the beginning, but depart
more and more (exponentially) from each other the bigger
the systems are. Notably, the numbers presented above are
specific to the machine used for measurements. Thus, also
the number of component types where predictability starts
to worsen has to be determined for each machine.

VI. Related Work

The application of model-driven software development
to self-adaptive systems has been studied by various groups
throughout the last years.

In [13], Zeller et al. address the problem of determining
a valid mapping of software components to electronic con-
trol units (ECU) by SAT solving and simulated annealing.
The solving techniques do not guarantee optimality, but
ensure the determination of a valid system configuration.
The SAT problem is generated from the system’s models.
Zeller et al. evaluated their approach and showed that the
runtime of their SAT solving approach is below 4s for
40 ECUs, 60 Sensors, 60 Actuators and 2000 Functions.
For less than 1600 functions SAT solving takes less than
2 seconds. The biggest setup evaluated by Zeller et al.
comprised 100 ECUs, 120 Sensors, 120 Actuators, 2500
Functions and took 18 seconds [13].

Another approach using model-driven software devel-
opment for self-adaptive systems has been developed in
the DiVA research project and presented in [14], where
Fleurey and Solberg introduce a quality grading framework
for software variants. The developer rates available imple-
mentations in different quality dimensions (e.g., energy or
performance) using a model-based framework. To identify
valid system configurations these models are transformed
to Alloy [15]. Unfortunately, no empirical study of the
approach’s scalability has been published.

In contrast to the approaches presented in this paper,
the previously discussed approaches do not search for
optimal configurations, the constraints of the optimization
problem are not generated, the notion of contracts is
not utilized and only the mapping [13] or the selection
problem [14] is considered, respectively.

VII. Conclusion and Future Work

In this paper, we propose the application of model-
driven software engineering and generation of optimization
problems to automatically compute optimal system config-
urations for self-adaptive software systems. We presented
two approaches, an ILP-based and a PBO-based solution.
The rational for investigating the applicability of PBO
was the hypothesis that PBO could perform better than
ILP for the investigated optimization problem. However,
based on a large set of systems to be optimized, our
scalability analysis rejected this hypothesis and revealed
the feasibility of the ILP solution for systems of up to
100 component types to be distributed on 100 servers. As
typical data processing applications like audio processing
usually comprise a few tens of processing steps, the ILP-
based approach has been shown to be applicable. For
future work, we plan to investigate the feasibility and
scalability of further optimization techniques.

Acknowledgment

This research has been funded by the ESF and
Federal State of Saxony within the project ZESSY
#080951806, and within the Collaborative Research Cen-
ter 912 (HAEC), funded by the DFG.

References

[1] J. Kramer and J. Magee, “Self-managed systems: an architec-
tural challenge,” in Future of Software Systems, 2007, pp. 259–
268.

[2] B. H. Cheng, R. Lemos, and H. Giese et al., “Software engineer-
ing for self-adaptive systems: A research roadmap,” in Software
Engineering for Self-Adaptive Systems, ser. LNCS. Springer,
2009, vol. 5525, pp. 1–26.

[3] B. Morin, O. Barais, J.-M. Jezequel, F. Fleurey, and A. Solberg,
“Models@Run.time to Support Dynamic Adaptation,” Com-
puter, vol. 42, no. 10, 2009, pp. 44–51.

[4] E. Boros and P. L. Hammer, “Pseudo-Boolean Optimization,”
Discrete Applied Mathematics, vol. 123, no. 1–3, November
2002, pp. 155–225.

[5] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial
Optimization. Wiley Interscience, 1999.

[6] S. Götz, C. Wilke, M. Schmidt, S. Cech, and U. Aßmann,
“Towards Energy Auto Tuning,” in GREEN IT 2010. GSTF,
2010, pp. 122–129.

[7] S. Götz, C. Wilke, S. Cech, and U. Aßmann, Sustainable ICTs
and Management Systems for Green Computing. IGI Global,
2012, ch. Architecture and Mechanisms for Energy Auto Tun-
ing, pp. 45–73.

[8] S. Götz, C. Wilke, S. Richly, and U. Aßmann, “Approximating
quality contracts for energy auto-tuning software,” in GREENS
2012. IEEE, 2012, pp. 8–14.

[9] J. Miller and J. Mukerji, “MDA Guide Version 1.0.1,” OMG
Document, 2003.

[10] M. Davis, G. Logemann, and D. Loveland,“A machine program
for theorem-proving,” CACM, vol. 5, no. 7, Jul. 1962, pp. 394–
397.

[11] K. Eikland and P. Notebaert, “LP Solve 5.5 Reference Guide,”
http://lpsolve.sourceforge.net/5.5/ (access in Nov. 2012).

[12] P. Barth, “A Davis-Putnam based enumeration algorithm for
linear pseudo-Boolean optimization,” Max-Planck-Institut für
Informatik, Research Report MPI-I-95-2-003, 1995.

[13] M. Zeller, C. Prehofer, G. Weiss, D. Eilers, and R. Knorr,
“Towards Self-Adaptation in Real-time, Networked Systems:
Efficient Solving of System Constraints for Automotive Em-
bedded Systems,” in SASO 2011, 2011, pp. 79–88.

[14] F. Fleurey and A. Solberg, “A Domain Specific Modeling Lan-
guage Supporting Specification, Simulation and Execution of
Dynamic Adaptive Systems,” in MODELS 2009, ser. LNCS,
vol. 5795. Springer, 2009, pp. 606–621.

[15] D. Jackson, Software Abstractions – Logic, Language, and
Analysis. MIT Press, 2012.

64Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Towards Systematic Model-based Testing of Self-adaptive Software

Georg Püschel, Sebastian Götz, Claas Wilke, Uwe Aßmann
Software Technology Group, Technische Universität Dresden

Email: {georg.pueschel, sebastian.goetz, claas.wilke, uwe.assmann}@tu-dresden.de

Abstract—Self-adaptive software reconfigures automatically at run-
time to environment changes in order to fulfill its specified goals. Thereby,
the system runs in a control loop which includes monitoring, analysis,
adaptation planning, and execution. To assure functional correctness and
non-functional adequacy, testing is required. When defining test cases, the
control loop’s tasks have to be validated as well as the adapted system
behavior that spans a much more complex decision space than in static
software. To reduce the complexity for testers, models can be employed
and later be used to generate test cases automatically—an approach called
Model-based Testing. Thereby, a test modeler has to specify test models
expressing the system’s externally perceivable behavior. In this paper, we
perform a Failure Mode and Effects Analysis on a generic perspective
on self-adaptive software to figure out the additional requirements to be
coped with in test modeling.

Keywords—self-adaptive software; problem statement; model-based test-
ing; failure mode and effects analysis

I. INTRODUCTION

Self-adaptive software (SAS) reconfigures automatically at
run-time according to sensed environment changes. Thus, it
is able to effectively and efficiently fulfill its specified goals
in the changed conditions. SAS runs in a control loop that
frequently operates four tasks: monitoring, analysis, planning,
and execution (MAPE, [1]).

Quality assurance for SAS includes validation or verification
of the control loop’s tasks. While, for instance, run-time self-
testing of SAS was researched (e.g., in [2]), there still is a
lack of black box testing approaches. However, such concepts
are or will be required by the software industry, e.g., due to
the need for certification. Systems are delivered and left to the
customer and have to be reliable and evaluated in advance as
far as possible under the respective project conditions. Hence,
not only fault-tolerance but also fault-prevention is desirable.

The crucial challenge of SAS black box testing [3, p. 17]
is to handle its complexity. The behavioral decision space
is extensively expanded due to the impact of adaptation on
adapted system structures and interacting running processes. A
further problem is error propagation: errors produced in one
component can be transformed into errors which manifest in
other components [4] and—due to the looped control flow—as a
permanent inner system state. Thus, manifold information have
to be considered by testers, injected into the tested system,
monitored, and evaluated for determination of behavioral
correctness. In consequence, manual test case definition for an
SAS is mostly hard to manage for test engineers.

In constructive phases of SAS engineering, this complexity
is dealt with by using models. Modeling takes advantage of
abstraction and convention (i.e., implicit information) to hide
details from designers. For testing, an equivalent concept was
developed: in model-based testing (MBT, [5]) the system under
test’s (SUT) interfaces are structually and behaviorally modeled
and later test cases are automatically generated. For limitation

and measurement of actually tested parts of the behavioral
space, a test coverage criterion can be specified. Due to the
focus on the SUT’s interface, MBT is a black box approach.

As we previously constructed test models for run-time vari-
able mobile systems [6], we are now focusing on generalization
of our experience and provide reasonable test models for SAS.
A prerequisite for the application of MBT methods is to gather
the following information:

1) Scenarios, how failures can occur, have to be found
such that the progress of system validation be can
estimated, effort predicted, and testers are aware of
the potential complexity of their task.

2) Properties that failures can comprise have to be
identified to provide meaningful verdicts.

3) Potential error propagation has to be investigated to
identify causal chains.

While the above points fit on arbitrary system types, it becomes
necessary to find more specific test modeling requirements for
SAS. To bypass the intuitive formulation of these requirements
we decided to perform a systematic analysis of critical failure
properties and scenarios based on Failure Mode and Effects
Analysis (FMEA, [7]), which was developed to investigate
potential failures in systems. The results of its analytic methods
provide a solid foundation for our formulation of MBT
requirements.

The contribution of this paper is twofold:

1) Failure analysis: We analyze which properties fail-
ures in adaptive systems can encompass and which
scenarios may occur by performing a FMEA-based
investigation process.

2) Requirements identification: We derive requirements
for test models based on the discovered failure
scenarios. The result is a reasonable foundation for
test research concerning adaptive systems.

The remainder of this paper is structured as follows: We
start with related work in Section II. In Section III, we perform
our FMEA-based investigation for SAS and in Section IV,
we state the resulting modeling requirements. We finish in
Section V and outline future work.

II. RELATED WORK

In this section, we present related approaches concerning
testing adaptive systems from the perspectives of different
research directions. On the one hand, Self-adaptive Soft-
ware (SAS) [3] and Models@run-time (MRT) communities
have to be considered as sources of adaptation concepts; on
the other hand Dynamic Software Product Lines (DSPLs) [8]
are an intersecting approach based on means like variability

65Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



management and features. Furthermore, context-adaptivity
has been a long-term research field. In all these directions,
several testing methods were established. In the following, we
concentrate on approaches with models which can help to build
up a reasonable information base for testing and on those which
propose fitting coverage concepts.

A conceptional discussion on challenges concerning veri-
fication and validation of SAS was done in [3]. The authors
proposed to focus on adaptive requirement engineering and run-
time validation to assure adaptive software’s quality. However,
they also constructed an abstract model of adaptive software’s
states consisting of an inner system state plus a mode or phase.
The latter ones describe in which variation/adaptation a system
works. Each transition concerning either mode or state changes
the overall configuration of the system and hast to maintain
certain local or global properties. It is also discussed that a
steady model as behavioral specification is insufficient such that
the configurations have to conform to a dynamic selection of
associated models. While these proposals are general enough to
abstract from specific self-adaptive systems, several problems
remain. Due to the enormous complexity in the behavioral
space of adaptive software, an exact limitation of possible
transitions to such which are correct and relevant for testing is
a very hard task. In consequence, a much more expressive and
usable model should be applied in test modeling.

Another approach by Munoz and Baudry is presented
in [9]. The authors formalize context and variant models and
generate sequences of context instances by using Artificial
Shake Table Testing (ASTT). Thus, an adequate set of dynamic
environment changes can be simulated. The case study’s
adaptation is designed by so-called policies, which also serve
as an oracle (i.e., a mapping between inputs and outputs) in
testing. Hence, with this approach testers are able to validate
the correctness of the adaptation decision and to produce a
sequence of re-configurations. While being a reasonable and
basic approach to testing adaptive software, it lacks the means
to deal with the discussed interaction challenge due to its
exclusive consideration of environment changes.

An advanced research framework for adaptive software
is provided by the DiVA project. DiVA had impact on both
SAS and DSPL research. It also includes a methodology
for testing [10][11]. DiVA’s validation process is split into
two phases: (1) The early validation is based on design time
models (adaptation logic and context model) and executed
as a simulation. A main focus in DiVA’s test method is to
generate reasonable context instances and associate ”partial”
solutions (using a test oracle), which can be used to find a
set of valid configurations. The following coverage criteria are
named: Simple (test each value of a variable), pair-wise (test
each two-wise combination of variable values), dependency-
based (reduce effort through constraints on variable values) and
compound (composition of all). (2) Additionally, an operational
validation method is proposed that also deals with context
changes/transitions. Therefore, DiVA uses Multi-dimensional
Covering Arrays (MDCA) including a temporal dimension.
These describe multiple context instances that are scheduled
as test sequences and provide a means for the definition of
coverage criteria on sequences of adaptations. There are also
fitness functions that help to minimize the test cases while
sustaining a good coverage. While DiVA contributes many

ideas for testing, it still does not consider interactions with the
application’s control flow.

Besides approaches from the DSPL and SAS research
field, other work focuses on context-awareness and test data
generation from context models [12][13]. For instance, Wang et
al. construct in [13] control flow graphs of context changes and
associate them by using point of high impact (Context-Aware
Program Points, CAPPS) with the core control flow. They also
provide three context-adequacy criteria. However, the proposed
models of this approach are not extensive enough to express
the behavior such that additional test coding is required.

III. FAILURE ANALYSIS

In this section, we analyze relevant failure characteristics
and scenarios. For this purpose, we use Failure Mode and
Effects Analysis (FMEA) [7]. FMEA is used in engineering
of safety-critical systems to find relevant failure sources.
The method was first applied for electrical and mechanical
systems and later extended for the usage in software engi-
neering [14][15]. Based on these experiences, our analysis is
separated into three steps:

1) identification of SAS-specific failure dimensions and
properties (presented as Failure Domain Model)

2) investigation of SAS-specific failure scenarios
3) visualization of error propagation among the found

scenarios as Fault Dependency Graph

Step (3) is not an actual part of FMEA, but usually a Fault Tree
analysis (FTA) [16] is performed to visualize the scenarios’
dependencies. As our system runs a control loop, we customize
the analysis process in this step by constructing a fault
dependency graph instead.

A. A Common Process of Self-adaptation: MAPE-K

Before starting the analysis, a level of detail has to be
specified to have a fix abstraction perspective on SAS and a
well-defined system boundary. FMEA is designed to be run
against an existing architecture, which we cannot assume to be
widely similar in all existing or future developed SAS. Hence,
we leave the strict understanding of FMEA by analyzing the
MAPE-K process as common concept of minimal necessary
data flows with the means of this investigation method. As seen
in the previous section, there are several intersecting research
directions coping with self-adaptivity. They have in common
that the process of information gathering and utilization can
be described in a known schema, mostly referred to as
the MAPE-K (Monitor/Analyze/Plan/Execute–Knowledge) [1]
control loop.

As illustrated in Figure 1, this process consists of four tasks
to be fulfilled by any self-adaptive system framework. The
system monitors a certain data source such as a sensor. The
captured information is then forwarded to the analysis part
where the system reasons about the necessity of adaptation.
After these first two process tasks the system is able to
determine if an adaption should be performed.

In the subsequent plan section, an adaptation plan is
generated and later applied in the following execute task.
Effectors may also manipulate external entities. The control

66Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Analyze 

Plan 

Execute 

Monitor 
Know-
ledge 

Sensors 

Effectors 

Fig. 1. MAPE-K control loop (cf. [1]).

cycle is re-run from this point periodically such that a self-
adaptive system always has an optimal state (according to the
supposed utility or goal function, and available knowledge)
to fulfill its task. Analysis, planning, and execution interact
through data organized as a central knowledge model.

MAPE-K encompasses the adaptation according to environ-
ment changes such as context, user input and system utilization.
The sources of processed information can be abstracted by
leaving out the concrete objects sensors and effectors work
on. Hence, we use MAPE-K as common view point on SAS
architectures.

B. Step 1) Failure Domain Model (FDM)

In this section, we provide a set of properties that failures in
adaptive systems can comprise. As there are several classes of
adaptive software [17], we cannot assume that each property is
reasonable in every concrete system. Furthermore, we exclude
failures, which originate in sensors and effectors to create a
fixed boundary around the software’s scope.

Each of an SAS’ components provides a service (i.e., a
perceivable behavior) through its interface. In the system’s
specification an expected behavior is defined. According
to [4], a failure is an event of service deviation from this
expectation. An error is the inconsistent part of the total system
state (internal state plus perceivable external state) which lead
to this failure. The cause of an error is a fault. Error propagation
occurs if a failure causes a fault in another component.

The result is the fault-error-failure causal chain as presented
in the FDM in Figure 2. Each concept has up to three variable
dimensions. Although, in [4] several dimensions are listed,
here we limit our investigation on those which are relevant
to a development-independent tester who is not in charge of
repairing the system. In consequence, concerning faults, the
only relevant property is their persistence which may either be
permanent or transient. For instance, intent or objective play no
role when testers uncover and report defects. While persistence
is a rather general dimension, this classification has an extended
significance due to the cyclic nature of SAS. The source of a
fault can be in one of the control loop’s tasks and, additionally,
originate in the system’s knowledge. The latter case produces a
cyclic failure propagation: If a failure manifests in the system’s
knowledge model, it may have harmful influence on future
decisions such that the failure becomes a fault in following
cycles.

For errors we propose the dimensions type and localization.
Types may be one of three: The caused error either manifests

Failure

Fault

Error

Persistence

Type

functional

qualitative

internal

external

Type

transient

permanent

inner model

process-related

Appearance

false-positive

false-negative

semantical

Location
local

global

pr
op

ag
at

io
n

Manifestation

Fig. 2. Failure domain model.

as an inconsistency in (1) the knowledge representation of
the perceived environment does not reflect its physical nature,
(2) the model itself (e.g., it violates the model’s constraints), or
(3) as incorrect intermediate state in the computation process
(process-related). Furthermore, errors can localize either locally
or globally in the potentially distributed SAS.

Concerning failures, [4] distinguishes between content and
timing (early/late) correctness. In contrast, an SAS’ goal
definition may aim on other non-functional properties like
energy-usage. Thus, we alter the original distinction to qualita-
tive (the system performs non-optimal) or functional (incorrect
system behavior). Furthermore, failures in SAS can either
manifest internally or externally (e.g., by using the effectors).
The last dimension comprises the event-driven nature of
the system. The sensed and analyzed information may lead
to un-intentional (false-positive), missed (false-negative), or
semantically wrong adaptation attempts.

This FDM is a valuable source when classifying failures
in concrete adaptive systems. It describes abstract properties
of failures that can be instanciated for real world systems.
Verdicts (the classification of test results, for instance Pass,
Fail or Inconclusive) can be parameterized by these
information.

C. Step 2) Failure Scenarios

After defining all dimensions of failures, it is required to
identify scenarios of failure occurrence in adaptive software. We
cannot give a general method of priorization, as usually done in
FMEA. For testing one of these scenarios, this strongly depends
on domain specific conditions. As only general valuation
standard, criticality can serve. In this case, according to [17],
each adaptation operation can be either harmless, mission-
critical, or safety-critical.

We decompose the MAPE-K control loop in five com-
ponents: Monitor, Analyzer, Executor, Planner and
Scheduler. The latter two are separated to enable the
consideration of interaction between adaptation and running
processes. After the Analyzer found that the system has
to be adapted, the Planner decides how the adaptation is

67Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



processed. The Scheduler has the task to fill an Action
queue (however it may be implemented in concrete systems)
by arranging system process actions with adaptation actions.
An adaptive system designer has to be aware of how he
maintains consistency either through an actual implemented
scheduler component or a transaction-like behavior. This issue
also breaks the straight MAPE-K data flow because a scheduler
requires information about the system actions (retrieved from
the Executor) and composes them with adaptation intents.

All components are considered as black boxes. Components
are connected by data flow edges (black arrows). Additionally,
the process contains Sensors, Effectors and the central
knowledge Models. The latter one contains information about
the system structure adaptation logic and further knowledge
relevant for adaptation decisions. Sensors and Effectors
communicate with the external world (e.g., other systems or
the physical reality).

Based on this structure, we list our found failure scenarios
in Table I. It comprises Failure Identifier (FID), Component
Identifier (CID), Fault, Error, Failure, and a Propagation
column. All FIDs can be found in the architecture visualization
in Figure 3 as well. In the following, each scenario is described
in detail.

SENS: The first scenario comprises test input received
from the Sensors and misinterpreted by the Monitor
component (i.e., it does not produce corresponding events or
produces events without being indicated by sensor inputs). For
instance, a context reasoner could output an physically causeless
temperature change due to a poorly designed interference rule.

TRIG: An event produced by Monitor does not or
unintentionally lead to a corresponding adaptation initiation
or to a wrong one. Unintended initiations let the situation
appear (cf. appearance dimension of failures in the FDM,
Figure 2) as if an adaptation is necessary. TRIG may also
be caused by a propagated failure from SENS or EVENT in
integration testing. Here an example is a wrong implemented
adaptation rule condition.

PRE: Though the set of operated Models contains infor-
mation which (according to the adaptation logic) either leads to
a specific adaptation or prohibits one, the Analyzer decides
differently. At this point, potential failures in the adaptation
logic itself have to be considered—either due to a wrong
specification or adaptation (cf. POST scenario below). For
instance, consider a recorded sound level which is taken into
account while reasoning about rising a sound output of the
system itself. If the recorded information is erroneous, non-
intended adaptions may be initiated. Such failures can also be
observed while testing the Analyzer.

Both TRIG and PRE scenarios may interact, because we
did not decompose the analyzer in more detailed components.
Hence, these scenarios have to be tested together as both data
sources are required for each test case and just a probabilistic
estimation can be stated which one is actually defective.

ADAPT: The adaptation initiation may again be of false-
positive, wrong or missing appearance. Like TRIG and PRE,
this scenario relies on the assumption that the adaptation logic is
correct. Such an scenario may occur if the adaptation reasoning
mechanism misses to execute a rule’s adaptation directive.

PLAN: The Analyzer determines if an adaptation is
required but not how to perform it. This task is operated in
the planning phase. A Planner reasons over the variability
and the current system state. Its output have to be a correct
adaptation plan that can be applied in the system and leads to
a consistent state. The PLAN scenario encompasses that the
compiled plan is incorrect, e.g., its order.

SCHED: Reconfiguration actions potentially interact with
the system’s control flow. Such problems arise because vari-
ability cannot be completely orthogonal to the system’s inner
behavior. For instance, if the system is a database, there could
be a potential conflict when adapting to a situation where a
speedup is required by deactivating the transaction feature in
exactly the same time period when running a transaction. We
get an active SCHED scenario if the compiled action sequence
of the Scheduler is inconsistent.

The Executor is a complex interpretation engine that
produces multiple outputs and thus, has multiple potential
failure scenarios. All Executor-related scenarios may also
be the outcome of a propagated SCHED failure.

RECONF: The reconfiguration may run into a failure
itself. If any reconfiguration mechanism fails without being
recognized, the actual system structure is out of synchronization
with its model representation. Here failures can be constituted
that can be of both types: functional or qualitative (cf. FDM).

POST: On the other hand, the Model’s part that represents
the reconfigured systems may be inconsistent after the execution
because a model manipulation was performed erroneously by
the the Executor. For, instance if for further adaptation
decisions knowledge about past ones is required, a missed
recording causes problems. POST can have complex conse-
quences because the manipulated model is assumed to be correct
in PRE and PLAN. Hence, POST may propagate faults to these
two scenarios. Additionally, this scenario can also be a ”starting
point” failure because its semantics also resemble a defective
Model at the system’s start-up.

EFFECT: Another output of the Executor can be actions
that have to be run in external systems by physical Effectors.
If actions are not generated correctly and forwarded to the
effectors (e.g., due to corrupt drivers), the representation of these
externals lose synchronization with potential internal model
representations. As the Sensors may perceive data from the
manipulated system, we produce a possible propagation of this
failure to the SENS scenario.

EVENT: The last failure scenario is related to events that
are produced in the system (e.g., user interactions) and are
propagated to the Analyzer component. In this case, the
generated events can be erroneous.

D. Step 3) Failure Dependency Graph

As final FMEA artifact we construct a failure dependency
graph as depicted in Figure 4. The visualization illustrates the
potential cyclic failure propagation through inner system events,
model manipulation, or physical Effectors/Sensors cor-
relations (the latter one is visualized by the dashed edge).
Furthermore the PRE and TRIG scenarios may influence each
other in both directions, which makes them hard to test in
isolation.

68Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



check 

System 

Knowlege 

Monitor Plan 

Scheduler 

Configuration 
planner 

(Planner) 

Adaptation logic 

Adaptation 
logic execution 

(Analyzer) 

Event monitoring 
& processing 

(Monitor) 

Analyse 

Action queue 

Abstract reconfiguration 
actions 

Concrete 
reconf. 
actions 

synch 

System actions 

PRE 

PLAN 

SCHED 

Sensors Effectors 

SENS 

EFFECT 

POST 

ADAPT 

Execute 

Executor 
RECONF 

TRIG 

EVENT 

Models 

Fig. 3. Conceptional architecture of an adaptive system.

TABLE I. ADAPTIVE SOFTWARE’S FAILURE SCENARIOS.

FID CID Fault Error Failure Propagation
SENS Monitor corrupt sensor interpreter misinterpreted sensor data no/wrong/unintended event TRIG
TRIG Analyzer corrupt event interpreter misinterpreted event no/wrong/unintended adapt. PRE—ADAPT
PRE Analyzer corrupt model interpreter misinterpreted model no/wrong/unintended adapt. TRIG—ADAPT
ADAPT Analyzer corrupt reasoning wrong adaptation derived no/wrong/unintended adapt. PLAN
PLAN Planer corrupt planner inconsistent planning inconsistent plan SCHED
SCHED Scheduler corrupt scheduler inconsistent scheduling wrong order of actions POST—EVENT—

EFFECT—RECONF
POST Executor corrupt model manipulator corrupt model construction model inconsistent PRE—PLAN
RECONF Executor corrupt configurator reconfiguration fails configuration↔model unsynch –
EVENT Monitor corrupt event producer wrong event production no/wrong/unintended event TRIG
EFFECT Executor corrupt forwarding processing wrong effector oper-

ations
model↔externals unsynched (SENS)

TRIG

POST

PRE

SENS EFFECT

PLAN

SCHED

EVENT

ADAPT

RECONF

Fig. 4. Interdependencies of failure scenarios.

IV. REQUIREMENTS TO MODELS FOR SAS TESTING

All following requirements for adaptation correctness test
methods are based on one or more of the presented failure
scenarios. In the following, we list these mapped requirements
and give each one a name for later reference. The requirements
are formulated as assurance tasks that have to be fulfilled by
employing MBT methods.

1) Correct sensor interpretation: Assure that the sen-
sor data is correctly interpreted and transformed into
system events. Potential sensor data has to be specified

together with context identifications.(7→SENS)
2) Correct adaptation initiation: Assure that events

initiate the correct adaptation if all preconditions
in the model hold. Events, conditions, and adapta-
tion decisions (goals) have to be associated in the
models.(7→TRIG/PRE/ADAPT)

3) Correct adaptation planning: Assure that the genera-
ted adaptation plan is consistent w.r.t. target configura-
tion and action order. Build a model to map adaptation
goals to possible plans.(7→PLAN)

4) Consistent interaction between adaptation and
system behavior: Assure that the generated adap-
tation plan is correctly scheduled with the systems’
control flow. A model is required to define which
adaptation is allowed in which state of application
control.(7→SCHED)

5) Consistent adaptation execution: Assure that (1) the
generated adaptation schedule is applied to system
structure and (2) the synchronization between system
and models is consistent after adaptation. Thus, we
need a set of assertions to be checked after the
adaptation execution.(7→POST/RECONF)

6) Correct system behavior: Assure that the system
correctly commits events or actions to the effectors. As
in the previous requirement, here we need to specify
events to be observed in the system when running any
operation.(7→EVENT/EFFECT)

69Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Additionally, in testing, coverage criteria are required to
restrict the combinatorial search space of the system under
test and, nevertheless, have a reasonable and meaningful test
result. For less-complex systems, many criteria for test coverage
were found. Mostly, they refer to a graph representation like
a state machine. Known criteria are statement, branch or path
coverage. However, as we have seen, there is a complex set
of requirements and aspects to be tested in the context of
SAS. In consequence, we have to use multiple models which
are more expressive then state machines (as assumed in the
mentioned coverage criteria) to represent all testable aspects.
In consequence, the known criteria cannot be applied directly.
Hence, the last requirement is to find a set of proper coverage
criteria for adaptation mechanisms which can be composed:

7. Adaptive coverage criteria: Find constructive cover-
age criteria metamodels/languages to describe which,
when (in relation to system behavior), and in which
order adaptation scenarios have to be tested and
analytic coverage criteria to measure how adequate a
test suite is.

V. CONCLUSION AND FUTURE WORK

In this paper, we applied a customized Failure Mode
and Effects Analysis (FMEA) to a conceptional self-adaptive
software system based on the minimal structural assumptions
of MAPE-K. We derived a failure domain model to provide
a system in which faults, errors and failures can be classified.
Subsequently, we derived ten distinct failure scenarios that
occur in the process of adaptation. By building a fault
dependency graph we visualized potential cyclic propagation
of failures in such systems. In consequence, six founded
modeling requirements were stated that all can be mapped
to one or more of the described failure scenarios. A seventh
requirement is established by the coverage question. Based on
these foundations a systematic analysis of SAS is possible
comprising failure properties, occurrence, and propagation.
A well-designed MBT framework is comprehensive if all
presented requirements are fulfilled and the all respective
assurances are considered.

For further investigation, it is necessary to instantiate
the found requirements for a real-world adaptive software
infrastructure. If we can map this implementation to several
adaptivity frameworks and express the majority of necessary
test cases, our approach can be attested substantial and generic.
Despite our work on mobile software testing, we recently
started several research projects coping with adaptivity, namely
SMAGS[18] and VICCI[19]. SMAGS (Smart Application
Grids) proposes a role-based architecture, which is able of
adaptive composition. VICCI searches for approaches to build
adaptive Cyber-physical Systems (CPS) like Smart Homes
or robots to improve our daily live in an intelligent manner.
Both projects are possible test targets to our MBT strategy.
Furthermore, from our experience in software testing, we should
thereby sustain usability of used modeling concepts despite
the complexity of the process. Especially in adaptive software
this task is crucial due to the potentially huge complexity and
variability in configurability and behavior.

ACKNOWLEDGMENTS

This research has received funding within the
project #100084131 by the European Social Fund (ESF)
and the German Federal State of Saxony, by Deutsche
Forschungsgemeinschaft (DFG) within CRC 912 (HAEC) as
well as T-Systems Multimedia Solutions GmbH.

REFERENCES

[1] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, Jan. 2003, pp. 41–50.

[2] T. M. King, D. Babich, J. Alava, P. J. Clarke, and R. Stevens, “Towards
self-testing in autonomic computing systems,” in Proceedings of the
Eighth International Symposium on Autonomous Decentralized Systems,
ser. ISADS ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 51–58.

[3] B. H. C. Cheng, D. Lemos, H. Giese, P. Inverardi, and J. M. et al.,
“Software engineering for self-adaptive systems: A research roadmap,”
in Dagstuhl Seminar 08031 on Software Engineering for Self-Adaptive
Systems, 2008.

[4] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” Dependable and
Secure Computing, IEEE Transactions on, vol. 1, no. 1, 2004, pp. 11–33.

[5] M. Utting, Practical model-based testing: a tools approach. Morgan
Kaufmann, 2007.

[6] G. Püschel, R. Seiger, and T. Schlegel, “Test Modeling for Context-
aware Ubiquitous Applications with Feature Petri Nets,” in Modiquitous
workshop, 2012.

[7] H. E. Roland and B. Moriarty, System Safety Egnineering and Man-
agemnent, 2nd edn. John Wiley & Sons, Chichester, 1990, ch. Failure
Mode and Effect Analysis.

[8] S. Hallsteinsen, M. Hichey, S. Park, and K. Schmid, “Dynamic software
product lines,” IEEE Computer, 2008, pp. 93–95.

[9] F. Munoz and B. Baudry, “Artificial table testing dynamically adaptive
systems,” 2009.

[10] V. Dehlen and A. Solberg, “DiVA methodology (DiVA deliverable D2.3),”
2010.

[11] A. Maaß, D. Beucho, and A. Solberg, “Adaptation model and validation
framework final version (DiVA deliverable D4.3),” 2010.

[12] T. Tse, S. Yau, W. Chan, H. Lu, and T. Chen, “Testing context-sensitive
middleware-based software applications,” 28th Annual International
Computer Software and Applications Conference, 2004, pp. 458–466.

[13] Z. Wang, S. Elbaum, and D. S. Rosenblum, “Automated generation
of context-aware tests,” 29th International Conference on Software
Engineering (ICSE), 2007, pp. 406–415.

[14] H. Sozer, B. Tekinerdogan, and M. Aksit, Archtitecting dependable
systems IV. Springer, 2007, ch. Extending failure models and effects
analysis approach for reliability analysis at the software architecture
design level.

[15] B. Tekinerdogan, H. Sozer, and M. Aksit, “Software architecture
reliability analysis using failure scenarios,” Journal of Systems and
Software, vol. 81 (4), 2008, pp. 558–575.

[16] J. Dugan, Handbook on Software Reliability Engineering. McGraw-Hill,
New York, 1996, ch. 15. Software System Analysis Using Fault Trees,
pp. 615–659.

[17] J. Andersson, R. Lemos, S. Malek, and D. Weyns, “Software engineering
for self-adaptive systems,” B. H. Cheng, R. Lemos, H. Giese, P. Inverardi,
and J. Magee, Eds. Berlin, Heidelberg: Springer-Verlag, 2009, ch.
Modeling Dimensions of Self-Adaptive Software Systems, pp. 27–47.

[18] C. Piechnick, S. Richly, S. Götz, C. Wilke, and U. Aßmann, “Using
Role-Based Composition to Support Unanticipated, Dynamic Adaptation
– Smart Application Grids,” in Proceedings of ADAPTIVE 2012, The
Fourth International Conference on Adaptive and Self-adaptive Systems
and Applications, 2012, pp. 93–102.

[19] D. B. Martin Franke and T. Schlegel, “Towards a flexible control center
for cyber-physical systems,” in Modiquitous workshop, 2012.

70Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



StaCo: Stackelberg-based Coverage Approach in
Robotic Swarms

Kateřina Staňková, Bijan Ranjbar-Sahraei, Gerhard Weiss, Karl Tuyls
Department of Knowledge Engineering

Maastricht University
Email: {k.stankova,b.ranjbarsahraei,gerhard.weiss,k.tuyls}@maastrichtuniversity.nl

Abstract—The Lloyd algorithm is a key concept in multi-robot
Voronoi coverage applications. Its advantages are its simplicity
of implementation and asymptotic convergence to the robots’
optimal position. However, the speed of this convergence cannot
be guaranteed and therefore reaching the optimal position may
be very slow. Moreover, in order to ensure the convergence, the
Hessian of the corresponding cost function has to be positive
definite all the time. Validation of this condition is mostly
impossible and, as a consequence, for some problems the standard
approach fails and leads to a non-optimal positioning. In such
situations more advanced optimization tools have to be adopted.
This paper introduces Stackelberg games as such a tool. The
key assumption is that at least one robot can predict short-
term behavior of other robots. We introduce the Stackelberg
games, apply them to the multi-robot coverage problem, and
show both theoretically and by means of case studies how the
Stackelberg-based coverage approach outperforms the standard
Lloyd algorithm.

Keywords—Swarm robots; Coverage control; Lloyd algorithm;
Game theory; Stackelberg games

I. I NTRODUCTION

In recent years many researchers in robotics, control, and
computer science have focused on swarm robotics and have
developed solutions of fundamentalswarm roboticproblems
(see [1] for solving flocking control problem, [2] for aggre-
gation, [3] for multi-robot coverage, and [4] for formation).
However, most of the proposed solution methods encounter
difficulties in real-world applications, such as finding only sub-
optimal solutions and the inability of the algorithms to account
for non-convex environments. Subsequently, despite the wide
range of existing works in the domain of multi-robot coverage
[3], [5]–[9], there are still only very few in-field deployments,
due to a wide gap between the theory of multi-robot coverage
systems and the practice.

The Stackelberg Coverage (StaCo) approach proposed in
this paper addresses the deficiencies of the existing works
in multi-robot coverage, by adding one or more relatively
advanced robots, called leaders, to the swarm. In other words,
we assume a priori a heterogeneous robotic swarm, similar to
that shown in Figure 1. In this figure, two intelligent robotsact
as the leaders, which can perceive the environment globally,
and a large swarm of simple robots following simple local
rules. The main advantage of such a heterogeneous approach
is preserving the simplicity of the major population of the
robotic swarm, while a small group of robots can predict
behavior of the others and act so that the desired behavior is
achieved faster and with a higher precision. The main building

block of our approach is the so-calledStackelberg game theory
[10], [11], which belongs to the more general noncooperative
game theory [10], [12]. Game theory has been successfully
applied in various fields; its known applications in the robotic
field relate to pursuit-evasion and search problems [13], [14].
However, application of the Stackelberg games in the multi-
robot coverage is new.

The remainder of the paper is structured as follows: A
motivation example of classical coverage limitations willbe
presented in Section II. In Section III we will briefly review
the game-theoretic preliminaries and introduce Stackelberg
games. In Section IV the Voronoi-based coverage problem
will be defined as a Stackelberg game and its properties
will be discussed. The simulation setup and the results of
applying the proposed approach will be presented in SectionV.
In Section VI we will discuss the advantages of the StaCo
approach and give concluding remarks.

II. M OTIVATION

A motivaton example, which illustrates the limitations of
classical approaches in mutli-robot coverage, is shown in
Figure 2. The group of robots, initiated in the position depicted
in Figure 2a, moves based on the standard coverage approach
suggested in [3]. With this approach, the robots are driven to
the final configuration shown in Figure 2b. However, this con-
figuration is sub-optimal (The globally optimal solution will
be found adopting the StaCo approach proposed in this paper
in Section V, Figure 7c). The problem of being enmeshed

Figure 1. A heterogeneous robotic swarm with 2 leading robots and
34 following robots. The followers can collect informationonly from their
neighbors, while the leaders are capable of collecting information from the
entire robotic swarm. The leaders may be able to predict possible future
reactions of the followers and to enforce their own decisions on the followers.

71Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



0 2 4 6 8
0

1

2

3

4

5

6

7

8

x(m)

y(
m

)

Initial Configuration

0 2 4 6 8
0

1

2

3

4

5

6

7

8

x(m)

y(
m

)

Final Configuration

(a) (b)

Figure 2. Example of the problem in which the standard coverage approach
leads to only a locally optimal but not the globally optimal configuration (dots
denote robot locations and lines denote boundaries of the Voronoi regions): (a)
initial configuration, (b) final configuration achieved by approach suggested
in [3]; this final configuration is suboptimal

in a local optimum can also be seen in non-convex environ-
ments (e.g. in presence of obstacles). With the motivation to
avoid such complications and to speed up the procedure of
finding the global optimum, we introduce the StaCo approach.
Adopting this approach, the majority of the swarm consists
of simple robots following local rules introduced in [3], while
one or two more advanced robots (leaders) improve the system
performance by taking different actions, taking the decisions
of the others into account. Consequently, the decentralized
behavior of the swarm and the simplicity of most robots is
preserved, while overall system performance is significantly
improved.

III. B ASICS OFSTACKELBERG GAMES

Let us explain basics of Stackelberg games by the following
static example.

Example III.1. (Two-player static game) Let two playersL
andF have decision variablesuL ∈ R and uF ∈ R, respec-
tively. Let functionsJL : R2 → R andJF : R2 → R be smooth
and strictly convex onR2. PlayerL choosesuL ∈ R in order
to minimize her costJL(uL, uF ), while playerF minimizes
JF (uL, uF ) by choosinguF ∈ R. Illustration of this situation
is given in Figure 3, where level curves (contours) ofJL and
JF are depicted in(uL, uF )-plane. If there is no hierarchy be-
tweenL andF (i.e., if they either act simultaneously or if they
do not know how the other player acts), the Nash equilibrium
applies [15]. In such a situation,L and F would picku(N)

L

and u
(N)
F , respectively, whereu(N)

L = argmin
uL

JL
(

uL, u
(N)
F

)

,

u
(N)
F = argmin

uF

JF
(

u
(N)
L , uF

)

. The outcome of the game

would beJL
(

u
(N)
L , u

(N)
F

)

and JF
(

u
(N)
L , u

(N)
F

)

for L and F ,
respectively (i.e., the values ofJL and JF evaluated at point
N =

(

u
(N)
L , u

(N)
F

)

, which is theNash solution (equilibrium)of

the game. Note that in Figure 3, pointN =
(

u
(N)
L , u

(N)
F

)

lies
on the intersection of the curvesRL(uF ) andRF (uL) defined
by ∂ JL

∂ uL
= 0 (bold dotted curve) and∂ JF

∂ uF
= 0 (bold dashed

curve), respectively.

Let us now consider a different situation: PlayerL (in
this new situation referred to asleader) knows RF (uL)
(bold dashed curve) in advance and can act first. In such
a situation it is better for the leader to chooseu(S)

L =

argmin
uL

JL
(

uL, RF (uL)
)

instead ofu(N)
L . Subsequently, fol-

lower F choosesu(S)
F (there is no otheruF for which

JF
(

u
(S)
L , uF

)

< JF
(

u
(S)
L , u

(S)
F

)

). Point S =
(

u
(S)
L , u

(S)
F

)

is
then theStackelberg solution (equilibrium)of the game and
JL
(

u
(S)
L , u

(S)
F

)

, JF
(

u
(S)
L , u

(S)
F

)

are Stackelberg outcomes of
this game for the leader and the follower, respectively [10],
[11].

We will now generalize the example. Let us state first the
assumptions that we raise on the cost functions and decision
spaces in the static game:

(A1) Let ΓL andΓF be convex compact sets, referred
to as decision spaces for the leader and follower,
respectively.

(A2) Let JL : ΓL×ΓF → ΓL andJF : ΓL×ΓF → ΓF

be strictly convex smooth functions onΓL × ΓF ,
referred to as costs for the leader and follower,
respectively.

Imposing assumptions (A1) and (A2), we provide following
definitions:

Definition III.2. (Optimal response set in the static game)
Under assumptions (A1) and (A2), the setR(uL) ⊂ ΓF

defined for each strategyuL ∈ ΓL of L by R(uL) = {ξ ∈
ΓF : JF

(

uL, ξ
)

≤ JF
(

uL, uF

)

, ∀uF ∈ ΓF } is the optimal
response setfor F.

Definition III.3. (Stackelberg strategy in the static game)
Under assumptions (A1) and (A2) and withR(uL) unique
for each uL ∈ ΓL, strategyu(S)

L ∈ ΓL is called a Stack-
elberg equilibrium strategy forL if JL

(

u
(S)
L , R(u

(S)
L )
)

=
minuL∈ΓL

JL
(

uL, R(uL)
)

.

The existence and uniqueness of Stackelberg strategy is
discussed in following lemma:

JL = constJF = const

S

N

uL

uFu
(S)
F

u
(N)
F

u
(S)
L

u
(N)
L

Figure 3. Illustration of the difference between Stackelberg (S) and Nash
(N) equilibrium solutions. When compared to the Nash equilibrium, under
the same conditions of the game the Stackelberg equilibriumnever leads to
higher costs for the leader (provided that they both exist).Moreover, there
are situations in which the Stackelberg equilibrium concept might be more
profitable for the follower as well, as this figure illustrates.

72Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Lemma III.4. (Existence and uniqueness of Stackelberg strat-
egy) Every two-person static game with leaderL and follower
F , where (A1) and (A2) hold, admits a unique Stackelberg
strategy for the leader.

Proof. If ΓL and ΓF are convex compact sets andJL :
ΓL × ΓF → ΓL and JF : ΓL × ΓF → ΓF are strictly convex
smooth cost functions, thenR(uL) ⊂ ΓF by Definition III.2.
Existence and uniqueness of the Stackelberg strategy directly
follow from Definition III.3.

To conclude this short introduction, we state the obvious
property of the Stackelberg outcome.

Lemma III.5. (Stackelberg outcome versus Nash outcome
in a static game) For a two-person static game with leader
L and follower F , where assumptions (A1) and (A2) hold,
JL
(

u
(S)
L , u

(S)
F

)

≤ JL
(

u
(N)
L , u

(N)
F

)

.

If the decisions of the players and the state of the system
evolve in time, while each of these decisions and the state
of the system influence (also future) decisions and states, we
refer to the game as thedynamicgame. Without going into
too much detail, we state that theory introduced in this section
for static games can be extended into the dynamic setting,
in both discrete-time dynamic and continuous dynamic cases,
under additional assumptions on the system dynamics. For
an overview of theory of Stackelberg games with varying
information each of the players might know, see [10], [11],
[16], [17]. Moreover, a Stackelberg game can also be played
among one leaderL and multiple followersF1, . . . , FM ,
where the leader, having complete information about the state,
cost functions, and dynamics of the followers can impose her
decision on the followers at each time stepk ∈ {1, . . . , N}
(resp. each timet ∈ [0, T ]) in the discrete and continuous case,
respectively.

IV. STACO APPROACH

In this section we formulate multi-robot coverage problem
as a dynamic Stackelberg game with one leader and multiple
followers. The approach proposed in this section will be
referred to as StaCo: Stackelberg-based Coverage Approach.

Let us considerM robots (players) positioned at timet = 0
in convex polytopeΩ ⊂ R

2. One of the players, denoted
for the sake of simplicity as player1, is the leader, other
players, denoted by2, . . . , M, are thefollowers. Let x(t)

def
=

{x1(t), x2(t), . . . , xM (t)} be the configuration of the robots
at time t, with t ∈ [0, T ], x(0) = {x1(0), x2(0), . . . , xM (0)}
being the a priori given initial configuration of the robots
and x(T ) = {x1(T ), x2(T ), . . . , xM (T )} being their final
configuration at final timeT, with xi(t) 6= xj(t) if i 6= j. Let
Vi(t) indicate the Voronoi region (cell) in whichi-th robot is
located at timet. For eachx(t) the Voronoi regions are defined
by the Voronoi partition of Ω, V(t) = {V1(t), . . . , VM (t)}
generated by the pointsx(t) =

(

x1(t), . . . , xM (t)
)

: Vi(t) =
{ω ∈ Ω : ‖ω − xi(t)‖ ≤ ‖ω − xj(t)‖, ∀j 6= i}. System
dynamics (with state variablex) are given by the following
system of ordinary differential equations:

ẋi(t) = ui(t), i = 1, . . . ,M (1)

whereui(t) is the control (decision) of thei-th robot at timet.
The cost functions for the leader (robot 1) at timet is given
by

C1(t) =
∑

i∈{1,...,M}

∫

Vi(t)

‖ω − xi(t)‖
2dω. (2)

Let T be the stopping time, i.e. the minimal time such that
for eachτ > T the costC1(τ) does not change:T = min{t :
C1(τ) = C1(T ) for ∀ τ > T }. Then the leader minimizes
C1(T ). The cost function for the followerj ∈ {2, . . . ,M} at
time t is

Cj(t) =

∫

Vj(t)

‖ω − xj(t)‖
2dω. (3)

The problem of the leader (robot 1) can be then defined as

(PStaCo)



















Find u
(S)
1 (t) = argmin

u1(t)

C1(T ), w.r.t.

uj(t) = argmin
uj(t)

∫

Vj(t)
‖ω − xj(t)‖

2dω.

ẋi(t) = ui(t),

with j = 2, . . . , N, i = 1, . . . , N.

The solution strongly depends on the so-called information
pattern, i.e., on the amount of information that each player
knows and recalls over her own state, state of the others, and
action made by herself and the others during the game.

Proposition IV.1. Let at time t each playeri know only
statexi(t) and correspondingVi(t) and let Hessian of(2) be
positive definite at eacht. Then the so-called continuous-time
Lloyd descent [3]

u∗
i (t) = κ

(∫

Vi(t)
xdxi

∫

Vi(t)
dxi

− xi(t)

)

, (4)

κ > 0, asymptotically converges to minimalC1(T ) for player
1 and to minimalCj(T ) for j = 2, . . . ,M.

Proof: As shown in [3],u∗
i (t) defined by (4) with respect

to żi(t) = ui(t) converges asymptotically to the set of critical
points of (2). The critical points of (2) coincide with critical
points of (3). If correspondingVi is finite, this solution is
global due to positive definiteness of (2) [18].

Remark IV.2. Note that validating the positive definiteness of
(2) is an open problem [3] and even if the convergence to the
global optimum is guaranteed, in general no guarantees on the
speed of this convergence exist. This leads us to the question
whether there exist algorithms that perform better than the
classical Lloyd algorithm if we allow the leader (robot 1) to
have more information about the state and decisions of the
followers.

Proposition IV.3. Let player 1 knowxj(τ) anduj(τ) (for all
j 6= 1) for τ ∈ [t, t+∆], with ∆ > 0, whereuj(t) is defined by
(4). Letu(S)

1 (t) denote the optimal control of player1, possibly
dependentent onuj(τ), τ ∈ [t, t+∆]. Let T∆, andC∆

1 (T∆)
denote the corresponding stopping time and the final payoff
for player 1 in such a situation, respectively. ThenT∆ ≤ T
andC∆

1 (T∆) ≤ C1(T ).

Proof: The leader’s decision is not bounded by any
restrictions. Setting this decision to (4) leads toT∆ = T ,

73Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



C∆
1 (T∆) = C1(T ). Note that the Hessian of (2) might not be

positive definite with the leader’s decision defined by (4). Thus,
u
∗,S
1 (t) either coincides with (4) or, if this choice would lead

to only sub-optimal solution,u∗,S
1 (t) differs from (4) and leads

to a better outcome. This result also follows from extensionof
Lemma III.5 into dynamic setting with the state equation (1).

Giving more information to the leader almost always leads
to the better outcome for the leader also in a very general
setting [10], [11], while the StaCo approach never leads to
the outcome worse than that reached by standard methods [3].
In the next section we will illustrate that when the classical
Lloyd algorithm fails and leads to only a local optimum, the
StaCo approach can find the global solution. For the case
studies in the next section, the time and space are discretized
and therefore the leader can choose from a limited number of
decisions at each time stepk.

V. CASE STUDIES

In this section, we will study the performance of the
proposed StaCo approach in comparison with the classical
Voronoi-based coverage approach.

A. Simulation Setup

To simulate StaCo and compare it with the standard
approach, we have developed a 2D robot simulator. This
simulator is written in Java and supports simple massless robot
motion. The environmentΩ to be covered in all simulations
is a 8 m × 8 m square and the speed of each robot is limited
to 4 cm/s. The time discretization of the system is0.4 s.

The designed simulator supports Voronoi cell computation
for each robot. In each time step, firstly the locations of robots
x are used to compute the Voronoi cell of each robot and
subsequently the centroid of each cell is computed and used
by the robots to find the gradient descent direction (4). With
the StaCo approach the robot closest to the center ofΩ is
considered as the leader. In each time step, instead of following
the gradient descent direction (4), the leader first discretizes its
surrounding space into a limited number of accessible locations
(in our simulations 8 points on a circle of radius1.5 cm, with
equal distances to each other). Then for moving to each of
these locations, the leader predicts the possible moves of other
robots, in one or two time steps, and chooses the movement,
which minimizesC1 (i.e. the best possible response to the
other robots).

In order to measure the performance of the StaCo approach
and to compare it with the performance of the classical
coverage techniques, we introduce theSettling Timeas the
time required for the cost function (2) of the whole swarm to
enter and remain within a prespecified error boundary. More
precisely, we define the settling timeTs as

Ts
def
= min

{

Ts ∈ [0, Tf ]
∣

∣

∣
∀t > Ts :

∣

∣

∣

C1(Tf )−C1(t)
C1(Tf )−C1(0)

∣

∣

∣
< ǫ
}

(5)

whereǫ = 0.05, C1 is defined by (2), andTf is the simulation
stopping time, i.e. the minimal time such that the costC1(.)
doesn’t change.

As an example of the simulation setup, Figure 4a shows
an initial configuration of a robotic swarm of8 robots. Both

0 2 4 6 8
0

1

2

3

4

5

6

7

8

x(m)

y(
m

)

Initial Configuration

0 2 4 6 8
0

1

2

3

4

5

6

7

8

x(m)

y(
m

)

Final Configuration

(a) (b)

0 50 100 150
50

100

150

200

250

300

350

Time(s)
C

os
t F

un
ct

io
n

 

 
Classical Coverage
StaCo

0 50 100 150

500

1000

1500

2000

2500

3000

Time(s)

S
um

 o
f C

os
t F

un
ct

io
n 

O
ve

r 
T

im
e

 

 
Classical Coverage
StaCo

(c) (d)

Figure 4. Comparison of performance of the proposed StaCo approach and
the standard approach for a particular configuration: (a) initial configuration
(b) final configuration (c) coverage cost function (d) cost function summed up
over time.

the StaCo and the classical coverage approaches are appliedto
this configuration; with the StaCo approach the leader makes
a prediction of the swarm behavior for one subsequent time
step. The final configuration after170 s is shown in Figure 4b.
Clearly, both methods reach the same final configuration;
however, as shown in Figure 4c, StaCo reaches the final
configuration faster than the classical approach. Finally,in
Figure 4d, the cost functions for both techniques are summed
up over the time. This figure shows that the StaCo approach
converges to the optimal configuration faster than the classical
approach. The settling time of both approaches can be easily
measured via the horizontal lines in Figure 4c (The upper and
lower lines refer respectively toC1(Ts) and C1(Tf ), which
denote the0.05 error bound). Therefore, in this particular case
study, the settling time for the StaCo approach is75 s, and for
the classical coverage approach it is105 s.

B. Effect of Swarm Size

In order to compare both techniques in a more generic way,
we have applied our simulation to groups of2 – 20 robots,20
times for each swarm size, with random starting configurations.
The convergence settling times for both techniques were accu-
rately measured based on (5). Their statistical representation
is illustrated in Figure 5. In this figure, the average value,the
minimum, and the maximum of the settling time over20 runs
are plotted with respect to the swarm size. From Figure 5
we can conclude that the StaCo approach performs better
compared to the classical coverage approach. For certain initial
configurations both methods achieve the final configuration
with the same settling time, while for the majority of possible
initial configurations the StaCo approach performs better.Such
behavior is observed in simulations and is also supported by
the theoretical arguments in Sections III and IV.

74Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



2 4 6 8 10 12 14 16 18 20
0

20

40

60

80

100

120

140

160

180

200

Swarm Size

S
et

tli
ng

 T
im

e 
(s

)

 

 
Classical Coverage
StaCo

Figure 5. Comparison of the coverage settling time between the proposed
StaCo approach and the classical coverage approach for robotic swarms of
different sizes.

C. Effects of Leader’s Speed and Prediction Horizon

Firstly, we examine the effect of the leader’s speed on the
performance of StaCo. Secondly, we will investigate how the
number of prediction steps influences the performance.

We employ a robotic swarm with eight robots. For each
initial configuration, we increase the speed of the leader from
4 cm/s up to16 cm/s in steps of2 cm/s, while the followers’
maximum speed remains4 cm/s. Each simulation is repeated
20 times from random initial configurations. Afterwards, the
simulations are repeated with the leader’s prediction horizon
being increased to up to2 subsequent time steps, with varying
leader’s speed.

The results presented in Figure 6 show that increase of
the leader’s speed and prediction horizon can improve the
convergence performance of the StaCo approach.

1:1 1.5:1 2:1 2.5:1 3:1 3.5:1 4:1
0

10

20

30

40

50

60

70

80

90

Ratio of Max. Leader Speed to Max. Followers Speed

S
et

tli
ng

 T
im

e 
(s

)

 

 
One Prediction Step
Two Prediction Steps

Figure 6. Coverage settling time of a robotic swarm of one leading robot and
seven following robots for different leader’s speeds, while the leader makes
predictions for one or two future time steps.

0 2 4 6 8
0

1

2

3

4

5

6

7

8

x(m)

y(
m

)

Initial Configuration

0 2 4 6 8
0

1

2

3

4

5

6

7

8

x(m)

y(
m

)

Final Configuration

(a) (b)

0 2 4 6 8
0

1

2

3

4

5

6

7

8

x(m)
y(

m
)

Final Configuration

0 50 100 150
0

100

200

300

400

500

Time(s)

C
os

t F
un

ct
io

n

 

 
Classical Coverage
StaCo

(c) (d)

Figure 7. Comparison of coverage performance between the proposed StaCo
approach and the standard coverage approach for an initial configuration close
to a sub-optimal configuration: (a) initial configuration; (b) final configuration
for standard coverage approach; (c) final configuration for the StaCo approach;
(d) comparison of the cost functions.

D. Escaping sub-optimal configurations

In StaCo approach the leader is able to perceive global
information about the position of all swarm robots. This ability
may help the swarm to escape from sub-optimal configurations.
A sample initial configuration, already discussed in Section II,
is shown in Figure 7a.

This initial configuration is very close to a suboptimal
case, which is achieved if each robot moves a bit up or
down and settles in the center of its rectangular Voronoi cell.
Although the classical coverage approach terminates in this
local minimum immediately (see Figure 7b), it is very easy
for the StaCo approach to escape from this local minimum.
The final configuration achieved by the StaCo is shown in
Figure 7c. Comparison of costs over the time are illustratedin
Figure 7d. Clearly, the StaCo approach performs much better.

Similarly to the results depicted in Figure 7, starting
from any other initial configuration close to a sub-optimal
configuration, the standard coverage approach will result in this
sub-optimal position. The perception capabilities of the leader
in StaCo allow for finding the globally optimal configuration.

VI. D ISCUSSIONS ANDCONCLUSIONS

This article addressed the multi-robot coverage problem
and presented a new approach called StaCo, which is based
on the game-theoretic concept of Stackelberg games. StaCo
takes advantage of the high perception capabilities of a small
group of robots (leaders) among a large group of simple
robots (followers) and allows for a very efficient coverage
performance. No communication among the robots takes place.
The leader(s) choose(s) a position in such a way that the other
robots will, by optimizing their own objectives, improve the

75Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



overall configuration of the system. Therefore, this approach is
a non-intrusive way to steer the system into a desirable direc-
tion and leads to fast and effective coverage of an environment.

StaCo always performs at least as well as the classical
approach, mostly StaCo performs better. This outcome was
shown both theoretically and by means of case studies. More-
over, StaCo is able to escape from sub-optimal configurations
when the classical approach is doomed to fail.

A possible limitation of the StaCo approach is that cur-
rently there is no explicit form of the optimal Stackelberg
solution of the game due to the complexity of the cost function
of the leader; however, its derivation is a subject of our ongoing
research.

StaCo opens a promising new research avenue: Using het-
erogenous robotic swarms for coverage in complex scenarios
such as those with non-convex environments (environments
with obstacles or with non-convex boundaries). As described in
many existing works, accomplishing a swarm robotic mission
in a non-convex environment is a difficult task. However, the
authors believe that the StaCo approach can be very successful
in such scenarios.

REFERENCES

[1] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,”IEEE Transactions on Automatic Control, vol. 51, no. 3,
pp. 401–420, 2006.

[2] A. Martinoli, A. Ijspeert, and L. Gambardella, “A probabilistic model
for understanding and comparing collective aggregation mechanisms,”
in Proceedings of the Fifth European Conference on Artificial Life
(ECAL99), pp. 575–584, 1999.

[3] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,”IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[4] W. Ren and N. Sorensen, “Distributed coordination architecture for
multi-robot formation control,” Robotics and Autonomous Systems,
vol. 56, no. 4, pp. 324–333, 2008.

[5] Z. Butler and D. Rus, “Controlling mobile sensors for monitoring
events with coverage constraints,” inProceedings of IEEE International
Conference on Robotics and Automation (ICRA), pp. 1568 – 1573, 2004.

[6] L. C. A. Pimenta, M. Schwager, Q. Lindsey, V. Kumar, D. Rus, R. C.
Mesquita, and G. A. S. Pereira, “Simultaneous coverage and tracking
(SCAT) of moving targets with robot networks,” inProceedings of
the Eighth International Workshop on the Algorithmic Foundations of
Robotics (WAFR 08), pp. 85–99, 2009.

[7] M. Schwager, D. Rus, and J. J. Slotine, “Decentralized, adaptive cov-
erage control for networked robots,”International Journal of Robotics
Research, vol. 28, no. 3, pp. 357–375, 2009.

[8] A. Breitenmoser, M. Schwager, J. Metzger, R. Siegwart, and D. Rus,
“Voronoi coverage of non-convex environments with a group of net-
worked robots,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 4982–4989, 2010.

[9] B. Ranjbar-Sahraei, G. Weiss, and A. Nakisaee, “A multi-robot coverage
approach based on stigmergic communication,” inMultiagent System
Technologies, vol. 7598 ofLecture Notes in Computer Science, pp. 126–
138, Springer, 2012.

[10] T. Başar and G. J. Olsder,Dynamic Noncooperative Game Theory.
Philadelphia, Pennsylvania: SIAM, 1999.

[11] K. Staňková,On Stackelberg and Inverse Stackelberg Games & Their
Applications in the Optimal Toll Design Problem, the EnergyMarket
Liberalization Problem, and in the Theory of Incentives. PhD thesis,
Delft University of Technology, Delft, The Netherlands, 2009.

[12] M. Osborne,An Introduction to Game Theory. New York: Oxford
University Press, 2004.

[13] E. Raboin, D. Nau, U. Kuter, S. K. Gupta, and P. Svec, “Strategy
generation in multi-agent imperfect-information pursuitgames,” in
Proceedings of the 9th International Conference on Autonomous Agents
and Multiagent Systems, pp. 947–954, 2010.

[14] Y. Meng, “A game-theory based multi-robot search approach for mul-
tiple targets,” IEEE Robotics & Automation Magazine, vol. 5, no. 4,
pp. 341–350, 2008.

[15] J. Nash, “Noncooperative games,”Annals of Mathematics, vol. 54,
pp. 286–295, 1951.

[16] K. Staňková and B. De Schutter, “Stackelberg equilibria for discrete-
time dynamic games – Part I: Deterministic games,” inProceedings of
the 2011 IEEE International Conference on Networking, Sensing and
Control, (Delft, The Netherlands), pp. 249–254, Apr. 2011.

[17] K. Staňková and B. De Schutter, “Stackelberg equilibria for discrete-
time dynamic games – Part II: Stochastic games with deterministic
information structure,” inProceedings of the 2011 IEEE International
Conference on Networking, Sensing and Control, (Delft, The Nether-
lands), pp. 255–260, Apr. 2011.

[18] Q. Du, V. Faber, and M. Gunzburger, “Centroidal Voronoitessellations:
applications and algorithms,”SIAM Review, vol. 41, no. 4, pp. 637–676,
1999.

76Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



EvoRoF: A Framework for On-line and On-board
Evolutionary Robotics

Florian Schlachter, Patrick Alschbach and Katja Deuschl
Institute for Parallel and Distributed Systems

University of Stuttgart
Stuttgart, Germany

{Florian.Schlachter, Patrick.Alschbach, Katja.Deuschl}@ipvs.uni-stuttgart.de

Abstract—In this paper, we present an evolutionary robotics
framework (EvoRoF) for on-line and off-line evolution, as well as
on-board and off-board evolution for swarm and reconfigurable
robotics. It enables both, the use of artificial neural networks
and spiking neural networks and combines both with structural
evolution of recurrent networks. It is evaluated with benchmark
tests and several use cases are outlined.

Keywords-on-line evolution; recurrent neural networks; recon-
figurable robotics; evolutionary robotics.

I. INTRODUCTION

In swarm robotics, a group of autonomous robots with
limited sensors and actuators performs in a cooperative way.
These robots often have only limited power resources and local
information. Therefore, these robots are forced to take care of
power recharging and efficient task allocation to ensure the
correct processing of the desired task.

In reconfigurable robotics, a group of robots is able to recon-
figure or aggregate into various configurations to generate new
functionalities and thus gain a high degree of versatility [1],
[2]. New functionalities can arise and the robotic system adapts
to different operational demands to solve advanced tasks.

While the swarm and reconfigurable robotics describe a
class of robotic systems, Evolutionary Robotics is a way to
obtain a desired controller by applying Darwinian mecha-
nisms [3] to the controller of those robots. The artificial evo-

Fig. 1. The three robots developed in the Symbrion and Replicator projects.
Top left: Backbone robot. Top right: Scout robot. Bottom: Active Wheel.

Fig. 2. An aggregated hexapod organisms of Backbone robots in the
simulation to demonstrate the capabilities of the reconfigurable mobile robot
platform.

lution of robot controllers enables a swarm or reconfigurable
robots to evolve over time in order to adapt to a specific task
or to survive in a dynamic environment.

Combining all three topics into one platform like in the
Symbrion [4] and Replicator [5] projects, delivers a powerful
robotic system for dynamic environments and unforeseen
situations. Autonomous individual robots can aggregate on
demand to artificial organisms with new functionaity and thus
extend its operational scope. The automatic design by artificial
evolution can be followed by lifelong on-line adaptation.

Thereby, the evolvability of a platform directly affects the
level of adaptation and learning in robotic control. Without
evolvability, a technical system is not able to change the
underlying structure of control for adaptation and learning
reasons. In a former paper [6], we showed the different levels
of evolvability in the Symbrion and Replicator projects.

We outlined how the mechanical design has to be and the
requirements of the embedded software, which we presented
in [7], called Symbricator Robot API. Beside the supporting
electronics, mechanics and basic software design, the platform
itself extends the system by the capability of aggregation. By
self-assembling, an artificial robot organism can generate new
functionality in order to adapt to a changing environment or
task. Figure 1 shows the heterogeneous robots in the Symbrion
and Replicator projects. A detailed description can be found
in [8], [9]. An aggregated multi-robot organism in simulation
can be seen in Figure 2.

77Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



In the following we will demonstrate a framework for
evolvable robot control, which enables the evolutionary de-
sign of robot controllers in individual robots as well as
for cooperating robots and artificial organisms. The paper
is organized as follow: Section II gives an overview about
existing frameworks and related work. Section III outlines the
requirements for such a framework and Section IV lines out
the actual implementation of the framework, while section VI
demonstrates use-cases and experiments. In Section VII, we
summarize and conclude the paper.

II. RELATED WORK

One of the earliest approaches is the Generalized Acquisi-
tion of Recurrent Links (GNARL) from Angeline et al. [10].
In this framework, the first time an algorithm is enabled to
evolve the parameters and the structure of a neural network at
the same time without any constraints to the topology of the
network. New links are introduced with zero weight to avoid
a radical change in the behaviour of a network. New neurons
are introduced without any incident links, later mutations are
connecting those neurons then in an appropriate manner.

The NeuroEvolution of Augmenting Topologies (NEAT),
developed by Stanley et al. [11] is a generation-based frame-
work which allows the evolution of recurrent networks from a
minimal initial network by parametric and structural mutation.
Beside this so called complexification, the key features of
NEAT are the historical marking of new mutational inno-
vations. With this mechanism crossover can be enabled by
aligning the genomes and comparing the innovation history.
Furthermore, to protect new structures, a niching mechanism,
respectively speciation, is introduced. Again, the historical
marking allows to calculate the distance between two different
genomes and allows the classification of all members of the
population with a configurable parameter into species.

The Evolutionary Acquisition of Neural Topologies
(EANT) [12] also enables to evolve recurrent networks by
parametric and structural mutation. The algorithm is based
on the Common Genetic Encoding (CGE) [13] on which the
mutation and a NEAT-like crossover operate. This genome
encoding enables direct and indirect encoding, is complete,
compact and closed. Additionally, they introduced the differen-
tiation between an exploitation phase and an exploration phase.
The exploitation phase only optimizes the existing structure
by adapting the weights, without changing the structure of the
network itself. The exploration phase allows the introduction
of new genes by means of structural mutations. These two
phases are alternating, starting with several exploitation steps
followed by an exploration step so that networks with optimal
structures, can adapt the weights of the links.

In Schlachter et al. [14] and Schwarzer et al. [15], we
already demonstrated a neural network controller which incor-
porated structural evolution as well as the possibility to adapt
incrementally to a dynamic environment. The advantages and
the experiences are compared to all approaches and brought
into the new framework.

III. REQUIREMENTS

In order to evolve controllers for swarm and modular
robots, some key issues, which should be fulfilled have to
be addressed:
• On-line and on-board evolution: In addition to off-

board and off-line evolution, the framework should be
able to enable on-line and on-board evolution to met the
requirements in the projects and allow a broad application
scope.

• Flexible Controller Types: In order to enable the best
choice for a certain scenario, the framework should
support different types of control. Beside artificial neural
networks it should allow to use spiking neural networks.
Additional, other kinds of controllers should be easily
integrable by a modular abstraction level.

• Parametric and Structural Evolution: Both the weights
of links as well as the structure of a network need to be
subject to mutational operators to allow complexification
from a minimal initial network to the structure which
is required by the task to fulfil and adjust the present
weights.

• Simple and flexible use: The usability should be as
simple as possible. The choices of controller type and
parameters should be transparent and well organized.

• Powerful interfaces: The interfaces to required tools,
simulations and the robot itself should be well suited to
allow a complete use of the functionalities.

• Application Range: The evolutionary framework has to
run on individual robots in a swarm, on reconfigurable
robots in an artificial organism in a centralized as well as
decentralized manner.

IV. ARCHITECTURE AND COMPONENTS

The framework is designed modular in object-oriented C++.
It was carefully designed regarding reusability and extendibil-
ity. It supports dynamical changes of controllers during run-
time, different network types, mutation operators, selection
and fitness functions. An overview of the different modules
can be seen in Figure 3. All modules are grouped into five
associated groups, which are explained in more detail in the
following.

A. Evolutionary Engine

The core of the framework is built by the evolutionary
engine. This engine handles the population and the correct
evaluation of it. It triggers the generation of the initial popu-
lation and links the evolvable controllers with the modules for
selection and fitness evaluation. Depending on the selection
mode, it either processes generation by generation or allows
for continuous tournament selection. Each population island
consists of a configurable number of individual controllers,
derived from the evolvable superclass.

B. EvoRoFConfig and Logger

The EvoRoFConfig module is responsible for the configu-
ration files. In the initial phase, it reads in the files and sets

78Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Fig. 3. Overview over the EvoRoF architecture. Central part is the
evolutionary engine with the four surrounding blocks.

the configuration. During runtime, this module provides other
modules with necessary information about the parameters
required.

The logger gives a configurable interface to set the level of
detail for logging. The complete framework is distributed in
different log levels which can independently be switched on
or off. In addition to program information and error states, this
module takes care of logging of fitness values and genomes
into files for later use or comparison.

C. Fitness and Selection

The modules for fitness and selection can be configured
via the configuration file. The evolutionary engine coordinates
their activities. The fitness module takes care of the correct
evaluation of the fitness of the current running controller and
stores the values. The selection mechanism, is responsible for
the creation of the next generation, respectively of the next
selected individual for evaluation. In generation based mode,
this module generates depending on the selection scheme the
next generation and delivers it back to the evolutionary engine.
In tournament mode, the next individual will be generated and
given back to the evolutionary engine.

D. Evolvables, Genes and Factories

Each controller is a subclass of the evolvable superclass.
This class delivers the template to be implemented in order
to be used by the evolutionary engine in the right way.
All controllers have to implement the same interfaces like
initialize() or mutate().

Every controller encapsulates its own genome, which genes
are derived from the genes class. Figure 4 shows an exemplary
class hierarchy for the CGE genome.

To separate the creation of new controllers from the logic of
a controller, several modules following the factory pattern are
available. Those factories generate depending on the desired
configuration the individual controllers and push them into the
island population of the evolutionary engine.

E. Interface to Simulation and Real Robots

The EvoRoF framework should be able to address the
relevant robots and simulation environments of the directly
linked projects, thus be extendible to several platforms. For the
ongoing experiments, we support interfaces, called wrappers,
for the use with different simulators and the three available
robot types in the Symbrion and Replicator projects. The
used simulators are PlayerStage and the Robot3D simulator of
the projects (see also VI Applications). The robot interfaces
use the Symbricator Robot API [7]. For generic use, the
evolutionary engine can be accessed with a plain wrapper.

Based on the interface functions a common worldmodel
is implemented. This worldmodel serves as a container for
all relevant sensor data and information from both internal
and external sensors and states. In addition, the worldmodel
takes care of the message processing of incoming and outgoing
messages from and to other robots.

V. IMPLEMENTED CONCEPTS

A. Controller Types

A straight forward choice of the controller type for this kind
of application is the use of neural networks. Following the defi-
nition of Maass [16] there are three classes of neural networks.
The first generation is based on McCulloch-Pitts neurons
(only digital output). These models can give digital output
and are universal for every boolean function. The second
generation is weighting the inputs and calculating the output
via an activation function which delivers a continuous output
value. The activation functions can vary from piecewise linear
to sigmoid or even more complex functions. The network
structure can be either a perceptron or a recurrent network.
They can cope with analogue input and are universal for
analogue computation. The third class of neural networks are
the spiking neural networks. While in the second generation
of networks, the output can be interpreted biologically as the
current firing rate (number of spikes per period), the timing of
spikes is in the foreground for spiking neural networks. The
information can be encoded in the timing of spikes.

Fig. 4. The class hierarchy of the CGE gene classes.

79Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



In this framework, we implemented support for all types
of networks in order to allow a higher flexibility in choice.
Depending on the scenario and computational demands, the
hidden layers can be disabled and even so recurrent connec-
tions can be switched off. Thus, the complete range from
simple perceptrons to complex recurrent neural networks is
feasible.

B. Genotype and Phenotype Representation
For the genotype we adopted the idea of the common

genetic encoding (CGE) [13] which is also used in the EANT
framework, described by Kassahun et al. [12]. The CGE
is a linear genome representation and is in comparison to
other approaches like GNARL or NEAT, complete, closed and
modular. It further supports direct and indirect encoding and
allows for direct evaluation of the genotype without decoding
it to a phenotype. The structure of the network is implicitly
given and due to its linear nature it is simple to serialize for
transmission in order to exchange genomes.

The initial population can be selected as proposed in NEAT
without hidden nodes and all inputs connected to all outputs
or with an additional initial hidden layer. It is mandatory to
start with a minimal configuration in order to find a minimal
solution by continuous complexification. Alternatively, the
EANT approach, starting with the same minimal network, but
increasing the diversity of the start population by some random
initial mutations, can be chosen.

C. Evolutionary Operators
The evolutionary operators allow to mutate both the weight

parameters of links and the structural complexification by
adding new links and nodes. Due to the nature of the CGE,
either a forward jumper, a recurrent jumper or a complete
subgenome with an arbitrary number of incident input con-
nections can be inserted. The recombination is as described by
Stanley et al. [11] in the NEAT framework. The genomes are
aligned and combined to generate a new structure containing
the common parts as well as the differing parts of both parents.
Instead of the global tracking numbers for innovations, the
identifiers can be used.

D. Evolutionary process, Fitness and Selection
To better support the on-line and on-board capabilities of

the evolutionary framework, we adopted the idea of island
evolution from [17]. Each robot represents an island with its
own population. The population consists of configurable size
of genomes. In the tournament selection mode, one or two
genomes, depending if mating is enabled, are taken to generate
new offspring. This new individual is then evaluated for a
certain time and the fitness value is compared to the existing
members of the island. If the fitness is higher as the worst
member, this one will be replaced by the new genome. In the
generation based mode, all genomes on an island are evaluated.
Afterwards, the new offspring is generated. Depending on the
configuration this could be for example elitism selection which
allows only the children of the best 50 per cent to create the
offspring for the next generation.

Fig. 5. An Active Wheel robot controlled by EvoRoF performing collision
avoidance in a maze-like arena.

VI. APPLICATIONS

The described framework is used in several application
scenarios. It has been shown, that it is powerful enough, to be
used in coevolution as well as in distributed on-line evolution
for organisms control.

A. Evolution of Collision Avoidance

In this scenario, we used a prototype of the Active Wheel
developed in the Symbrion and Replicator projects. We only
used the IR sensors on the front and back side. The IR sensors
on the back have to be taken into account, because the Active
Wheel can collide with the back when turning due to the
omnidirectional locomotion.

The population size was 15, the controller type a standard
artificial network. There were six IR sensor inputs from the
front and additional six sensors at the back extended by bias
neuron. In all test runs, the Active Wheel evolved a collision
free locomotion and walked randomly through the maze 5.

B. Coevolution of Coordinated Behavior

In a further experiment, we wanted to see the capabilities
of the evolution of coordinated behaviour of robots [18]. For
this reason, we set up a scenario with two target zones, in
which both robots have to be at the same time to gain fitness.
Beside a collision free locomotion, the robots have to develop
a coordinated locomotion strategy in order to be in this target
zones at the same time. Figure 6 shows the two robots, both
the blue and red one, and the two yellow target zones in
PlayerStage [19].

Fig. 6. The scenario: Two robots (blue and red) shall move in a coordinated
manner from the left yellow power source to the one on the right upper side.
Once a power source is “harvested” the robots have to move to the opposite
target. Only when both robots are there, they gain power, respectively can
increase their fitness.

80Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Fig. 7. The sequence shows the final behaviour of a run in alphabetical
order in time. The red and blue robots start in the bottom left corner, reach
the upper right corner and go back in a coordinated fashion.

Fig. 8. Fitness development in the scenario. The graphs show the average
fitness of both robots (doted lines) and the best individual per generation
(solid line).

An evolved behaviour can be seen in Figure 7 where
the position tracking of the two robots is depicted. In (a)
they approach the upper target, in (b) they reached it and
turn around in (c) to approach the lower yellow target in a
coordinated way (d).

The used controller type was a recurrent neural network
of class two using a cubical robot imitating the Backbone,
respectively the Scout robot, of the Symbrion and Replicator
projects. The input sensors were two front and two rear IR
sensors and eight virtual sensors measuring the distance to
the other robot and target zones. The population size was
10 in a generation-based run with different settings regarding
the use of hidden neurons and the use of structural mutation.
Figure 8 shows an average fitness development in a treatment
with structural mutation enabled.

Fig. 9. Different types of multi-robot organisms tested in simulation.

C. Evolution of CPG control

In [20], locomotion for a multi-robot based on a spiking
neural network was evolved. By distributed evolution, the
organism should be able to emerge a global organism loco-
motion, by evolution of local control on each individual robot.
The basic concept was a central pattern generator scheme, in
which the parameters of a sine wave are modified in order to
incorporate the sensor input and status messages from other
modules. The individual robots have to learn considering the
sensor input, which phase shift and amplitude to perform the
necessary local behaviour.

In Figure 9, three exemplary organisms in the Robot3D
simulator [21] are shown. Beside a caterpillar, we evolved
central pattern generated behaviour for several different organ-
ism morphologies. The population size of each robot was ten
and spiking neural networks are structurally mutated over 30
generations for 800 ticks evaluation time. Figure 11 shows the
individual hinge positions of the five robots in the caterpillar-
like configuration in one of the evaluation phases. The result-
ing behaviour, emerged by the individual hinge movement, is
depicted in the sequence of Figure 10. A caterpillar is moving
from the centre towards the left side in order to leave the sight
of view.

Fig. 10. The sequence shows the final behaviour of a caterpillar-like evolved
locomotion.

81Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



-1

-0.5

 0

 0.5

 1

 8000  8100  8200  8300  8400  8500  8600  8700  8800

robot0 expected
robot0 real

-1

-0.5

 0

 0.5

 1

 8000  8100  8200  8300  8400  8500  8600  8700  8800

robot1 expected
robot1 real

-1

-0.5

 0

 0.5

 1

 8000  8100  8200  8300  8400  8500  8600  8700  8800

robot2 expected
robot2 real

-1

-0.5

 0

 0.5

 1

 8000  8100  8200  8300  8400  8500  8600  8700  8800

robot3 expected
robot3 real

-1

-0.5

 0

 0.5

 1

 8000  8100  8200  8300  8400  8500  8600  8700  8800

robot4 expected
robot4 real

Fig. 11. The hinge positions in the evolved caterpillar-like robot organism.

VII. CONCLUSION

In this paper, we presented a framework for evolutionary
robotics with the special focus on structural on-line and on-
board evolution of neural network controllers. This framework
supports standard neural networks as well as spiking neural
networks in both generation based and tournament selection
based evolutionary design processes. We have applied the
framework to different scenarios in simulation and real robots
to proof the feasibility. In future work, we will investigate the
influence of structural mutation in more detail and will focus
on the comparison of standard neural networks and spiking
networks.

ACKNOWLEDGMENT

The “SYMBRION” project is funded by the European
Commission within the work programme “Future and Emer-
gent Technologies Proactive” under the grant agreement no.
216342. The “REPLICATOR” project is funded within the
work programme “Cognitive Systems, Interaction, Robotics”
under the grant agreement no. 216240.

REFERENCES

[1] S. Murata and H. Kurokawa, “Self-reconfigurable robots,” Robotics
Automation Magazine, IEEE, vol. 14, no. 1, pp. 71–78, 2007.

[2] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. Chirikjian, “Modular self-reconfigurable robot systems [grand
challenges of robotics],” Robotics Automation Magazine, IEEE, vol. 14,
no. 1, pp. 43–52, 2007.

[3] S. Nolfi and D. Floreano, Evolutionary Robotics: The Biology, Intelli-
gence, and Technology. MIT Press, 2000.

[4] Symbrion: Symbiotic evolutionary robot organisms, 7th
framework programme project no fp7-ict-2007.8.2, 2008-2013.
http://www.symbrion.eu , visited on May 17th 2013.

[5] Replicator: Robotic evolutionary self-programming and self-assembling
organisms, 7th framework programme project no fp7-ict-2007.2.1, 2008-
2013. http://www.replicators.eu , visited on May 17th 2013.

[6] F. Schlachter, E. Meister, S. Kernbach, and P. Levi, “Evolve-ability of
the robot platform in the symbrion project,” in SASOW: Conference on
Self-Adaptive and Self-Organizing Systems Workshops. IEEE Computer
Society, 2008, pp. 144–149.

[7] F. Schlachter, C. Schwarzer, B. Girault, and P. Levi, “A Modular
Software Framework for Heterogeneous Reconfigurable Robots ,” in P.
Levi et al. (eds.), Autonomous Mobile Systems, AMS, 2012.

[8] S. Kernbach, O. Scholz, K. Harada, S. Popesku, J. Liedke, R. Humza,
W. Liu, F. Caparrelli, J. Jemai, J. Havlik, E. Meister, and P. Levi, “Multi-
robot organisms: State of the art,” CoRR, vol. abs/1108.5543, 2011.

[9] S. Kernbach, F. Schlachter, R. Humza, J. Liedke, S. Popesku, S. Russo,
T. Ranzani, L. Manfredi, C. Stefanini, R. Matthias, C. Schwarzer,
B. Girault, P. Alschbach, E. Meister, and O. Scholz, “Heterogeneity for
increasing performance and reliability of self-reconfigurable multi-robot
organisms,” CoRR, vol. abs/1109.2288, 2011.

[10] P. J. Angeline, G. M. Saunders, and J. P. Pollack, “An evolutionary
algorithm that constructs recurrent neural networks,” IEEE Transactions
on Neural Networks, vol. 5, no. 1, pp. 54–65, January 1994.

[11] K. O. Stanley and R. Miikkulainen, “Evolving neural network through
augmenting topologies,” Evolutionary Computation, vol. 10, no. 2, pp.
99–127, 2002.

[12] Y. Kassahun, J. Metzen, M. Edgington, and F. Kirchner, “Incremental
acquisition of neural structures through evolution,” in Design and
Control of Intelligent Robotic Systems, ser. Studies in Computational
Intelligence. Springer, 2009, pp. 187–208.

[13] Y. Kassahun, M. Edgington, J. H. Metzen, G. Sommer, and F. Kirchner,
“A common genetic encoding for both direct and indirect encodings of
networks,” in Proceedings of the 9th annual conference on Genetic and
evolutionary computation, ser. GECCO ’07. New York, NY, USA:
ACM, 2007, pp. 1029–1036.

[14] F. Schlachter, C. Schwarzer, S. Kernbach, N. K. Michiels, and P. Levi,
“Incremental online evolution and adaptation of neural networks for
robot control in dynamic environments,” in ADAPTIVE: Conference on
Adaptive and Self-Adaptive Systems and Applications, 2010, pp. 111–
116.

[15] C. Schwarzer, F. Schlachter, and N. K. Michiels, “Online evolution in
dynamic environments using neural networks in autonomous robots,”
Internation Journal on Advances in Intelligent Systems, vol. 4, no. 3&4,
2011.

[16] W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” Neural Networks, vol. 10, pp. 1659–1671, 1996.

[17] N. Bredeche, E. Haasdijk, and A. Eiben, “On-line, on-board evolution
of robot controllers,” in Proceedings of the 9th international conference
on Artificial Evolution (Evolution Artificielle - EA’09), 2009.

[18] K. Deuschl, “Evolution of coordinated behavior in a heterogenous robot
swarm,” Diploma Thesis, University of Stuttgart, 2012.

[19] “Playerstage,” Website, 2013, available online at
https://launchpad.net/robot3d; visited on May 17th 2013.

[20] P. Alschbach, “Online evolution and adaptation of central pattern genera-
tors for multi-robot organisms,” Diploma Thesis, University of Stuttgart,
2012.

[21] “Robot3d, open source modular swarm robot simulation engine,” Web-
site, 2013, available online at https://launchpad.net/robot3d; visited on
May 17th 2013.

82Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



An Experimental Framework for
Exploiting Vision in Swarm Robotics

Sjriek Alers, Bijan Ranjbar-Sahraei, Stefan May, Karl Tuyls and Gerhard Weiss
Department of Knowledge Engineering

Maastricht University
Email: {sjriek.alers,b.ranjbarsahraei}@maastrichtuniversity.nl,

stefan.may@student.maastrichtuniversity.nl,{k.tuyls, gerhard.weiss}@maastrichtuniversity.nl

Abstract—This paper studies the requirements of a successful
vision-based approach in swarm robotic settings. Requiredfea-
tures such as landmarks and different patterns are introduced,
and appropriate feature detection algorithms are described in
detail. The features are designed to be very simple, and providing
enough information, while the proposed detection algorithms
have considered the very limited resources (i.e., limited storage
memory, and limited computational power) of swarm robots.
In order to evaluate the performance of the proposed vision
approaches and the defined features for the environment, the
whole approach is verified by implementation on e-puck robots
in a real-world setting.

Keywords—Robot vision systems; Multirobot systems.

I. I NTRODUCTION

Natural phenomena have always fascinated and inspired
scientists, not only the biologists but also others such as
computer scientists. One of the interesting phenomena in
nature is the behavior seen in colonies of social insects such
as ants and bees. These insects have evolved over a long
period of time and display a behavior that is highly suitablefor
addressing the complex tasks that they face. Therefore, over the
recent years an increasing interest is seen among researchers
for creating artificial systems that mimic such behavior for
accomplishing the complex tasks that humans face in their life
[1], [2], [3].

The phenomenon that intelligent behavior emerges from
a collection of simple interactions among agents which are
relative simple as well, is generally referred with the term
Swarm Intelligence (SI) [4]. The best known example for
emergence of Swarm Intelligence among social insects is
the foraging behavior of ants. In ant foraging, ants deposit
pheromones on their path during traveling. Using this path
they are able to navigate between the nest and food [5].
A slightly different foraging behavior can be seen among
honeybees. Instead of using pheromones to navigate through
an unknown environment, honeybees use a strategy calledPath
Integration, in combination with landmark navigation [6]. With
the aim to transfer such social behaviors to embodied systems,
many researchers are investigating the foraging behavior of
ants and bees, by using robots in real environments. However,
Foraging is the task of locating and acquiring resources in an
unknown environment, which is quite a difficult task, in terms
of localization and detection of environmental localization,
specially for simple robots in a distributed swarm. The foraging
task can be seen as an abstract representation for many other
advanced tasks, such as patrolling and routing. Therefore,a

successful embodied implementation of distributed foraging
can result in promising applications in, e.g., security patrolling,
monitoring of environments, exploration of hazardous environ-
ments, search and rescue, and crisis management situations.

Getting motivation from the mentioned potential applica-
tions of distributed coordination and following the previous
work [7], [8], in which we mainly relied on random exploration
methods and infrared sensor data for obstacle detection, this
paper is focusing on using vision for detecting key environ-
mental features. These features then can be used as waypoints
to navigate in an unknown environment, locate other entities,
and detect modifications made in the environment.

For this purpose, we explore several visual features that can
be used for acquiring information from the environment by a
robot with limited computation abilities, and equipped with a
simple camera. For detecting key locations in the environment
(e.g., corners in a maze), we investigate the usage of specific
landmarks for these locations. Each landmark consists of an
upper ring with a solid color, so that it can be detected
from a distance, and on the lower part a unique barcode
for keeping track of the landmark numbers. Furthermore we
explore the possibility to detect markers with an even higher
data density: QR-codes. The challenge in the detection of
these two-dimensional codes, lies in analyzing and processing
the camera data with the limited processing and memory
resources that are available in our robotic platform. Finally,
the most common feature already available in every robotic
swarm setting is the robot itself. It’s always favorable to detect
the relative location and orientation of other robots in respect
of one’s position. Therefore, the available LEDs on the robot
provide a very good feature for robot detection from a distance.
Moreover, we have designed specific gradient patterns for
nearby robot detection, which can conclude to a very accurate
orientation detection.

Authors believe that the proposed environmental features
defined in this paper, in combination with the detection algo-
rithms which are included as well, can provide an experimental
framework for any kind of swarm robotic experiment with
simple robots (e.g., [9], [7], [8], [10], [11]) as illustrated in
Fig. 1.

The remainder of the paper is structured as follows: The
physical setup and designed software are described in Section
II. The main features used in this paper are defined in Section
III, and the techniques for detection of each feature is described
in Section IV. A real-world demonstration of this work is

83Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



(a) (b)

(c) (d)

Figure 1. Different swarm robotic applications which require visual feature
detection: (a) Flocking in multi-agent systems [9]. (b) Bee-inspire foraging
[7]. (c) Formation control in multi-agent systems [10]. (d)StiCo: Stigmergic
coverage in complex environments [11].

described in Section V and can also be found in [12]. Finally,
in Section VI we will give the concluding remarks and future
work.

II. PHYSICAL SETUP AND DESIGNEDSOFTWARE

The e-puck robot is a small platform for educational and
research purposes, developed by the EPFL University [13].
This robot is efficiently used in numerous projects in the
domain of swarm robotics and swarm intelligence (e.g., [7],
[8], [14], [13]).

The main features of the e-puck robot include, but are not
limited to; a robust design, flexibility for a large spectrum
of educational activities, compact size, and rich on-board
accessibilities (e.g., microphones, accelerometer, camera).

In this section, first the hardware specifications of the e-
puck are briefly introduced, then the developed software which
is designed for monitoring the e-puck camera during its image
processing and feature detection tasks is described.

A. Hardware Specifications

The e-puck hardware consists of different sensor types for
detecting visible or Infra Red (IR) light, sound, acceleration, et
cetera. The motors are the only actuators which are available
in e-puck. A microprocessor of PIC family with8 KB RAM
memory, assist the robot to get data from it’s sensors, analyze
it, and perform actions. The main hardware elements, which
are involved in our experiments are listed in Table I.

As listed in the table, the on-board camera of the e-puck
has a resolution of640×480 pixels. It is placed at the front of
the e-puck, 2.7 cm above the floor. With this camera, objects
that are placed on the floor can be detected at a minimum
distance of7.4 cm. The camera angle is approximately40◦,

TABLE I. E-PUCK TECHNICAL SPECIFICATION

Element Technical information
Processor dsPIC30F6014A @ 60 MHz ( 15 MIPS),

16-bit microcontroller with DSP core

Memory RAM: 8KB Flash: 144 KB

Motors 2 stepper motors with a 50:1 reduction gear

Camera VGA color camera with resolution of 640x480 pixels

LEDs 8 red LEDs on the ring, green LEDs on the body,
1 high intensity red LED in the front

Wireless Bluetooth for robot-computer and
Communication robot-robot communications

Infrared for robot-robot communication

and at this minimum distance, objects of5.1 cm width can be
fully seen.

Remark 1: Although, we have a VGA camera, the on-
board processing and storage of the e-puck robot is not
adequate for dealing with all of the camera data. A gray-scale
image of size640× 480 needs at least307.2 KB to store the
image. However, based on the technical details of Table I, the
e-puck robot has a RAM of size8 KB. Analysis, and storage
of sub-parts of the image helps to overcome this limitation.In
following sections of this paper, we address the issue of how
to split an image into informative sub-parts.

B. Software

In order to monitor the e-puck in real-time, and for debug-
ging the image-processing algorithms, a Java-based software
application is developed. This software, shown in Fig. 2,
communicates with the e-puck via Bluetooth. It receives text
messages from the e-puck, which are reports of intermediate
statuses of the e-puck (e.g., ”found something”, ”driving to
the landmark”, ”code read”, ”searching”). At the same time,
the program also receives the captured image from the robot.
Logging all of the data, storing the text messages and captured
images, as well as the filtered and segmented images, makes
both real-time and offline debugging very easy. Finally, it
should be mentioned that time stamps are always attached both
to the captured images, and stored text messages.

Figure 2. Developed software for monitoring the e-puck: (1)The required
controls to establish the connection with the e-puck. (2) The real-time captured
image. (3) Log statements (4) Archive of the last 20 capturedpictures.

84Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



III. F EATURE DEFINITION

Defining a collection of detectable features is, due to the
limited resources of a simple robot, an important task that
is a part of the main scope in this paper. Different objects
in the environment (e.g., pieces of wood, balls, walls, floor,
and robots) and many available patterns (e.g., different colors,
checkerboard and barcodes) can be considered as environmen-
tal features, however their detection via a robot with limited
capabilities might be computationally complex, and or not
adequately robust to environmental disturbances (e.g., light
variations and distance variations).

Generally, we define the required environmental features
into two main categories:far features, and close features.
For the far features bright lights (e.g., from a red LED)
or specific relative large areas with solid colors, should be
considered. Moreover, these features should be recognizable
from different directions, which makes cylindrical shapesmore
favorable. However, for nearby features, the patterns which can
store higher amount of information are required (e.g., a one-
dimensional barcode or two-dimensional codes which can store
digital information). By considering the mentioned constraints,
a collection of the most appropriate environmental features will
be introduced in this section.

A. Landmark

Most important features for an environment are the land-
marks. Robots can use landmarks in many various missions,
like localization, mapping, exploration, etc cetera. These fea-
tures should be recognizable from different directions, and also
from a distance. Landmarks should provide useful information
to the robots (e.g., their exact location), therefore, we introduce
a cylindrical tube, as shown in Fig. 3, which is a combination
of a colored ring and a barcode.

At the top of the cylinder a colored ring is denoted which
is easily detectable from a distance. For our setup, purple is
chosen as ring color, as purple is a color that does not exist
in any other objects in our environment. To differentiate the
landmarks, an EAN-8 (European Article Number) barcode was
selected, containing an ID consisting of 8 digits, including a
control number. The EAN-8 barcode is printed vertically below
the purple block, surrounding the whole cylinder.

B. QR-Code

Although, landmarks are very useful in terms of being
detectable from a distance, we need a smaller pattern which
can be mounted on walls, and also directly on robots for
providing more dense information (e.g., specific ID of a robot,

Figure 3. Example for a landmark

wall orders). Therefore, we use a two-dimensional Quick
Response code (QR) which is developed as a universal data
storage standard. These QR-codes can store a higher data
density, then the EAN-8 barcode.

The only disadvantage of the QR-code is the complexity
of its pattern. In general, the pattern is comprised of several
parts: At the top left, the top right and the lower left corneran
orientation pattern is placed. It is a square of size9×9 modules.
The fourth corner does not contain this pattern, which makes
detection of QR-code angle easier. In most swarm robotic
applications, the orientation of the QR-code can be fixed, so
the orientation check can be ignored during image-processing,
decreasing the computational complexity drastically.

Different versions of QR-codes have different sizes. The
smallest size is Version 1, which has a size of21 × 21
modules. For each version, the size is increased by4 modules
in each direction. Between the three orientation patterns there
are timing pattern lines with strict changing modules of black
and white at row 6 and column 6. Every QR-code from Version
2 and higher, contain position adjustment patterns at specific
points. In Fig. 4 the structure for QR-code Version 3 is given,
in which the black and white parts are fixed.

C. Robot Detection

A very important feature which will be available in the
environment of any swarm robotic application, is the robot
itself. Inherently, the robots contain various information, like
their position, orientation, and their identifier, which can be
very useful for the other individuals to know. Therefore, the
ability to detect other robots relative orientation and location,
is very convenient for implementation of many complex swarm
algorithms (e.g., [7], [8]).

In practice, a good way for detecting other robots with a
camera, is detecting the robots light sources (e.g., on-board
LEDs). As such a light source has a good contrast to the other
parts of the environment, it can be detected from a far distance
even on low resolution captured images.

To determine the orientation of the robots, based on it’s
visual features (e.g., the wheels and body of the robots) is a
really complex task. Therefore, we propose to add a black-
white pattern comprised of two slopes as shown in Fig. 5.
Computing the exact orientation of a robot by using this pattern
is easily implementable.

Based on the standard size of an e-puck robot, the pattern
should have a total height of33 mm and consists of two black
bars separated by a white bar on top. All the bars are3 mm

Figure 4. Structure of a QR-code Version 3, displaying orientation and timing
patterns

85Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Figure 5. Body pattern of e-puck for orientation detection

in height. A sloped pattern, in the form of a black triangle is
added to the bottom of the pattern.

Finally it should be mentioned that, in addition to ori-
entation measurement, distance measurement also becomes
possible by using this specific pattern.

IV. FEATURE DETECTION

In the previous section, we introduced four main features:
landmark, QR-code, Robot LED, andRobot body pattern. The
main approach for detection of these features is to first use
basic filters for highlighting the required information (e.g.,
purple color or edges in the image) and then zooming into the
informative part of the image for reading it in more details.The
most important factor in designing each detection algorithm,
is to use the least possible memory and computation power.
In the following subsections, these techniques for detection of
each feature will be described.

Remark 2: It should be mentioned that all of the required
thresholds which will be used in following subsections are
computed based on practical experiments and with real-time
calibrations. However, describing these experiments in detail
is beyond the scope of this paper.

A. Landmark

The landmark contains a purple ring and an EAN-8 code.
The landmarks are designed to be taller than robots. Therefore,
finding the purple ring of each landmark, limits the scanning
area of the image to the upper half of the camera view.

Detection of an area with a specific color is a basic task.
In the first step a color filter with the specific color is applied
on the image. Resulting in a grayscale image with bright
values for the colors which match the color the best. To avoid
errors where single pixels fit to the color, the image is blurred
with a Gaussian algorithm [15]. Afterward the image is split
into a binary black/white image with a fixed threshold. This
procedure is illustrated in Fig. 6.

Figure 6. The required pre-processing procedure for detection of a specific
color (e.g., purple).

After this pre-processing phase, a group-finding algorithm
[15] is applied on the image, and the largest group, is consid-
ered as the purple ring.

Consequently, the exact position of purple ring in the image
can help to estimate its distance to the robot. The higher the
purple ring is, the further the distance should be. This estimated
distance is used to find the appropriate distance to start reading
the barcode. As soon as the required distance, in which the
barcode is readable is reached, the required scanning area is
determined (i.e., the area under the purple ring).

Barcodes are one-dimensional, this simplifies the scanning
process and makes the whole procedure faster. Therefore,
addressing the issue described in Remark 1, the robot prepares
a grayscale image with low resolution in width but high
resolution in height (i.e., zooming into an area of4 pixels
in width and80 pixels in height).

The pre-processing for the EAN-8 barcode is done by using
a halftone filter [15] with a threshold calculated by an average
of the pixels intensity. Afterward, all patterns of form black-
white-black, as shown in Fig. 7 are located. Based on the EAN-
8 standards, at least three occurrences should be detected for
the start, center and end of barcode.

After this validation check, the part of the image containing
the code is transformed into the 67 bits representing the
barcode. Each bit is defined by the average of the pixels it
represented. For each seven bits the best corresponding match
to a data character is determined. As a last step, the control-
character is calculated out of the seven data-characters.

B. QR-Code

Detection of QR-codes is more complex than detection of
one-dimensional barcodes. We assume that the QR-code is
fully visible in the camera frame, as a partial QR-code cannot
be decoded. As the QR-code needs a resolution as high as
possible, first a black-white image is filtered out of the initial
captured image. For finding the three orientation markers ofthe
QR-code, a pattern finding algorithm is used, which looks for
a black-white-3×black-white-black transition on each column.
The detectable pattern looks like the center line in Fig. 8a.As
soon as the pattern is found, the same pattern is located in the
rows. The results should be similar to Fig. 8b. The orientation
marker validation is passed, if both found regions have nearly
the same size and center.

A QR-code is comprised of a collection of modules, each
black or white. In order to determine the number of pixels
which construct a single module, the size of the orientation
modules, and their distance to each other can be used. For
example, the pattern shown in Fig. 8 consists of7 modules,
so we can divide the number of pixels in this pattern by7 to
compute the size of a single module. Moreover, to improve

Figure 7. Structure of EAN-8 barcode, with the black-white-black pattern in
the beginning, middle, and end.

86Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



(a) (b)

Figure 8. Detection of QR-code orientation markers: (a) pattern detected in
vertical alignment. (b) pattern detected in horizontal alignment.

the estimation of the module size, the distance between two
patterns can also be used. Each version has a size of21+n ·4
modules, wheren is the version of QR-code. Therefore we
can calculate the version and get a more exact value for the
module size. The decoding process of the QR-code after its
structure has been extracted is described in [16].

The most challenging problem with an QR-code image, is
that the image has to be stored in a high enough resolution,
for being decodable. However, addressing the issue mentioned
in Remark 1, the memory on the e-puck is limited for storing
additional information to4 KB for which each bit can store
one pixel, as the rest of the memory is used for running the
algorithms. To have some error tolerance, there should be at
least four pixels describing one module. Therefore, we can
find the biggest detectable size for QR-code with following
equation:

4000× 8 = modules
2 + (4 ·modules)2 (1)

in which the left side shows number of available bits, and on
the right side, the first and second terms show the number of
required bits for storing the QR-code and image itself. This
equation concludes to the fact that width and height of the
QR-code should not exceed43 × 43 modules. The QR-code
version which fits into43 × 43 modules is Version 6, which
is 41× 41. In practice we also need memory for the detection
algorithms and internal calculations, so the QR-code Version
5 which contains37×37 modules, is used in our experiments.

C. Robot Detection

An other robot is generally detected in two different steps.
First, the detection from a distance is done by searching forthe
red LEDS, and second, when nearby, the body pattern (Fig. 5)
which consists of two black ramps around the robot, is scanned
for measuring the exact orientation of robot.

1) LED Detection: The LEDs are mounted above the
camera on the e-puck. Therefore only the upper half of the
image has to be scanned, which results in a higher usable
resolution of the relevant parts of20 × 80 gray-scale pixels.
First, a black-white filter with a fixed threshold is used. The
threshold is chosen to be higher that ambient light, and less
that the brightness of an LED. The next filter is a Gaussian
blur filter, which is used to combine light groups that are very
close to each other, and dismisses single pixels that are falsely

(a) (b) (c) (d) (e) (f)

Figure 9. Different steps of pre-processing for LED detection.

recognized. Afterwards, a black-white filter is used, this time
with an average threshold. All LEDs are now highlighted.

As it is not possible with this simple detection technique to
really determine between a red LED, and LEDs from another
color, some improvements should be applied. Therefore, after
detecting the light sources, the camera zooms in on each group
center (zooming is a built-in feature of the e-puck camera).The
zooming ratio depends on the amount of pixels that belong to
each group. In Fig. 9 an image of a zoomed in LED is shown.
There is a bright center visible with red at the left and the right,
but not at top or bottom. This is a result of the surrounding
border of the e-puck. To verify that the LED is a red one, both
sides of the detected light source, starting from the centerare
scanned for a red color. The color is checked, by converting
the image into the HSL color space and comparing the Hue
value, as the lightness and saturation are very unstable. We
consider a light source as an LED, if more than 50% of the
height of the bright center contains a red surrounding.

2) Body Pattern Detection:If the robot is located close
enough to the camera, the body pattern detection can be
activated. To get the highest probability to detect the e-puck,
the image should have a high resolution, but still work fast.
The maximum image size which fits into memory and leaves
enough space for the other required operations, is80×40 pixels
in gray-scale. As pre-processing step, a black-white filterwith
average threshold is applied on the image.

Subsequently, for each column of the image a pattern with
one white, and one black module is located. For all locations
where the pattern fits, a check is performed if the repetitive
white and black modules have approximately a size of 5. If
this holds, the column is stored as a part of the pattern. Fig.
10a shows a captured image from an epuck, and Fig. 10b
highlights the parts of image which are extracted as body
pattern according to this technique.

For rejecting wrong detections, only modules with at least
three detected neighboring results are accepted. Afterward, the
center of the e-puck is determined by searching the location
where most left and right results are found and dividing their
x-coordinates by 2. The orientation of robot can be easily
measured by computing the length of middle white module,
and comparing this size, with the size of the whole pattern.

(a) (b)

Figure 10. Body patter detection (a) Initial image. (b) the detected pattern
is highlighted.

87Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications



Figure 11. Designed scenario for validation of proposed approach

V. REAL WORLD DEMONSTRATION

To examine the proposed approach in a real scenario, an
environment as shown in Fig. 11 is set up: A white floor of
40× 40 cm2 is surrounded with white walls. Three landmarks
are placed in three corners, and in the fourth corner a QR-
Code is attached to the wall. Two e-pucks are placed in this
environment. One is stationary, with all of the red LEDs on,
and a body pattern around it. The second robot uses the vision-
based detection algorithms for detecting the features of the
environment.

In this scenario, the robot has to first located landmark #1,
continue to #2 and then drive to #3 in the correct order. For
each landmark it has to approach it, read the barcode, and after
validating the number find the other robot. By using the other
robots orientation, it should move in the environment till both
robots are facing each other from the front. Finally, the QR-
code mounted on the wall is detected, and the code will be
extracted.

A video of this performed experiment can be found in [12],
including the preprocessed image data sent from the robot.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper, we proposed a feature detection approach
based on robot vision, which can be useful for swarm robotic
experiments. The e-puck robot was chosen as the main plat-
form for doing experiments. This robot is equipped with a
VGA camera, but has limited resources for storing data, and
also in performing computations. Therefore, different possible
environmental features were introduced, and described accu-
rately. Afterward, required image processing techniques for
detection of each feature were described in detail. Finally, a
general demonstration was set up to show the applicability of
the proposed approach in a real-world robotic experiments.

The feature detection approaches developed in this paper,
provided a framework for exploiting vision in various multi-
robot scenarios. However, the performance of this framework
was not sufficiently evaluated. Therefore, as a future work,
authors will examine the introduced techniques accurately, by
applying them in different experimental conditions (e.g.,light
or observation distance variations). Besides, the framework
will be applied to a real swarm of robots (e.g., 7 e-puck
robots). Finally, extending the framework by introducing other
environmental features such as glowing artificial pheromones
is a part of this project.

REFERENCES

[1] F. Dressler and O. B. Akan, “A survey on bio-inspired networking,”
Computer Networks, vol. 54, no. 6, pp. 881 – 900, 2010.

[2] D. Floreano and C. Mattiussi,Bio-inspired artificial intelligence: theo-
ries, methods, and technologies. The MIT Press, 2008.

[3] N. Franceschini, F. Ruffier, and J. Serres, “A bio-inspired flying robot
sheds light on insect piloting abilities,”Current Biology, vol. 17, no. 4,
pp. 329–335, 2007.

[4] J. Kennedy, “Swarm intelligence,”Handbook of nature-inspired and
innovative computing, pp. 187–219, 2006.

[5] M. Dorigo, E. Bonabeau, and G. Theraulaz, “Ant algorithms and stig-
mergy,” Future Generation Computer Systems, vol. 16, no. 8, pp. 851–
871, 2000.

[6] N. P.-P. M. Lemmens,Bee-inspired Distributed Optimization. Maas-
tricht University, 2011.

[7] S. Alers, D. Bloembergen, D. Hennes, S. de Jong, M. Kaisers, N. Lem-
mens, K. Tuyls, and G. Weiss, “Bee-inspired foraging in an embodied
swarm (demonstration),” inProceedings of the Tenth International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS
2011), pp. 1311–1312, 2011.

[8] N. Lemmens, S. Alers, and K. Tuyls, “Bee-inspired foraging in a real-
life autonomous robot collective,” inProceedings of the 23rd Benelux
Conference on Artificial Intelligence (BNAIC 2011), pp. 459–460, 2011.

[9] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms
and theory,”IEEE Transactions on Automatic Control, vol. 51, no. 3,
pp. 401–420, 2006.

[10] B. Ranjbar-Sahraei, F. Shabaninia, A. Nemati, and S. Stan, “A novel
robust decentralized adaptive fuzzy control for swarm formation of
multiagent systems,”Industrial Electronics, IEEE Transactions on,
vol. 59, no. 8, pp. 3124–3134, 2012.

[11] B. Ranjbar-Sahraei, G. Weiss, and A. Nakisaee, “A multi-robot coverage
approach based on stigmergic communication,” inMultiagent System
Technologies, vol. 7598 ofLecture Notes in Computer Science, pp. 126–
138, Springer, 2012.

[12] Swarmlab, Maastricht University, “Demonstration of an exper-
imental framework for exploiting vision in swarm robotics.”
http://swarmlab.unimaas.nl/papers/adaptive-2013-demo/.

[13] F. Mondada, M. Bonani,et al., “The e-puck, a robot designed for
education in engineering,” in9th Conference on Autonomous Robot
Systems and Competitions, vol. 1, pp. 59–65, IPCB: Instituto Politcnico
de Castelo Branco, 2009.

[14] A. Breitenmoser, M. Schwager, J. Metzger, R. Siegwart,and D. Rus,
“Voronoi coverage of non-convex environments with a group of net-
worked robots,” in IEEE International Conference on Robotics and
Automation (ICRA), pp. 4982–4989, 2010.

[15] R. Gonzalez and R. Woods,Digital image processing. Prentice Hall
Upper Saddle River, NJ, 2002.

[16] “ISO/IEC 18004:2000, information technology, automatic identification
and data capture techniques, bar code symbology, QR code,” 2000.

88Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-274-5

ADAPTIVE 2013 : The Fifth International Conference on Adaptive and Self-Adaptive Systems and Applications

http://swarmlab.unimaas.nl/papers/adaptive-2013-demo/

	I Introduction
	II Related Work
	III Failure Analysis
	III-A A Common Process of Self-adaptation: MAPE-K
	III-B Step 1) Failure Domain Model (FDM)
	III-C Step 2) Failure Scenarios
	III-D Step 3) Failure Dependency Graph

	IV Requirements to Models for SAS Testing
	V Conclusion and Future Work
	References
	Introduction
	Physical Setup and Designed Software
	Hardware Specifications
	Software

	Feature Definition
	Landmark
	QR-Code
	Robot Detection

	Feature Detection
	Landmark
	QR-Code
	Robot Detection
	LED Detection
	Body Pattern Detection


	Real World Demonstration
	Conclusions and Future Work
	References

