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Foreword

The Second International Conference on Advances in Cognitive Radio [COCORA 2012], held
between April 29th and May 4th, 2012 in Chamonix / Mont Blanc, France, continued a series of events
dealing with various aspects, advanced solutions and challenges in cognitive (and collaborative) radio
networks. It covered fundamentals on cognitive and collaborative radio, specific mechanism and
protocols, signal processing and dedicated devices, measurements and applications.

Most of the national and cross-national boards (FCC, European Commission) had/have a series
of activities in the technical, economic, and regulatory domains in searching for better spectrum
management policies and techniques, due to spectrum scarcity and spectrum underutilization issues.
Therefore, dynamic spectrum management via cognition capability can make opportunistic spectrum
access possible (either by knowledge management mechanisms or by spectrum sensing functionality).
The main challenge for a cognitive radio is to detect the existence of primary users reliably in order to
minimize the interference to licensed communications. Optimized collaborative spectrum sensing
schemes give better spectrum sensing performance. Effects as hidden node, shadowing, fading lead to
uncertainties in a channel; collaboration has been proposed as a solution. However, traffic overhead and
other management aspects require enhanced collaboration techniques and mechanisms for a more
realistic cognitive radio networking.

We take here the opportunity to warmly thank all the members of the COCORA 2012 Technical
Program Committee. The creation of such a high quality conference program would not have been
possible without their involvement. We also kindly thank all the authors who dedicated much of their
time and efforts to contribute to COCORA 2012. We truly believe that, thanks to all these efforts, the
final conference program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the COCORA 2012 organizing
committee for their help in handling the logistics and for their work to make this professional meeting a
success.

We hope that COCORA 2012 was a successful international forum for the exchange of ideas and
results between academia and industry and for the promotion of progress in the field of cognitive radio.

We are convinced that the participants found the event useful and communications very open.
We also hope the attendees enjoyed their stay in the French Alps.

COCORA Advisory Committee:

Tomohiko Taniguchi, Fujitsu Laboratories Limited, Japan
Adrian Popescu, Blekinge Institute of Technology - Karlskrona, Sweden
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Dual-Lag Correlation-Based Feature Detection of
OFDM Signals with Cyclic Phase Compensation

Vesa Turunen, Marko Kosunen, Visa Koivunen∗ and Jussi Ryynänen
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Abstract—This paper presents cyclostationarity-based spec-
trum sensing algorithm implementation for detection of OFDM
signals. The detector utilizes two distinct autocorrelation delays
and introduces compensation of the phase difference between
the two cyclic autocorrelation functions. This improves detection
sensitivity (or alternatively reduces detection time) compared to
other similar algorithms while maintaining the constraint on false
alarm rate. The phase compensation can be performed without
requiring any new information about the signal properties.
Furthermore, incorporation of the phase compensation reduces
overall computational complexity of the algorithm and therefore
leads to simpler implementation that uses fewer logic gates and
consumes less power.

Keywords-Autocorrelation, cognitive radio, detection algo-
rithms, OFDM, spectrum sensing.

I. I NTRODUCTION

The objective of spectrum sensing is to identify free
spectrum or detect the presence of communication signals
in certain frequency band quickly and reliably. In general,
detection performance is characterized by the probabilityof
signal detection and the probability of false alarm. The first
determines the detection sensitivity, i.e. the received signal
power level (or SNR) where the signal can still be detected
with desired probability in given detection time. The false
alarm rate, on the other hand, has to be kept sufficiently low
such that the spectrum sensor is able to find the free spectrum.

In most spectrum sensing schemes, increasing the detection
time (i.e. the number of received samples) improves the
sensitivity. However, short detection time is desirable for many
reasons and more powerful algorithms are sought to improve
the detection sensitivity without increasing the detection time.
Usually, using more complex algorithm leads to increased
computational complexity, which translates into higher number
of logic gates and increased power consumption in the actual
implementation.

Cyclostationarity-based spectrum sensing algorithms (CB-
SSA) [1] [2] [3] are a strong candidate for future spectrum
sensing implementations due to their superior detection sensi-
tivity and inherent ability to distinguish among differenttype
of communication signals. They are especially suitable for
detection of orthogonal frequency division multiplex (OFDM)
signals that exhibit strong periodic correlation due to insertion
of the cyclic prefix (CP) in front of each OFDM symbol
(Fig. 1). Well-known tests exist that utilize multiple lags

simultaneously to increase the detection sensitivity while keep-
ing the detection time constant [3]. Detector implementations
that are based on signal’s cyclostationary features have been
reported in [4] [5].

This work introduces a new dual-lag CBSSA implementa-
tion for detection of OFDM signals that is based on spatial sign
cyclic correlation estimator (SSCCE) presented by Lunden
et al. in [3]. We show that the test statistics can be written
in a simpler form by deducing and compensating the phase
difference of the two SSCCE, which are calculated using
distinct lag values. The new test statistics achieves better
detection sensitivity and also leads to a reduced computational
complexity while maintaining the desired false alarm rate.

This paper is organized as follows: Section II is a short
review on spectrum sensing algorithms that can be used to
detect OFDM signals utilizing the cyclostationary properties.
The proposed algorithm is presented in Section III and an ex-
ample implementation is given. Section IV presents simulation
results and a conclusion is given in Section V.

II. REVIEW OF CYCLOSTATIONARITY-BASED SPECTRUM

SENSING ALGORITHMS

A. Statistical Test for Presence of Cyclostationarity

The conventional statistical tests for presence of cyclosta-
tionarity [1] estimate the (conjugate) cyclic autocorrelation
funtion (CAF)

R̂xx(∗)(α, τ) =
1

N

N−1∑

n=0

x[n]x∗[n − τ ]e−j2παn, (1)

where x[n] = xi[n] + ixq[n] is a complex input signal,α
is the cyclic frequency, andτ is the lag parameter in the
autocorrelation.N denotes the number of received samples
that are used for signal detection and therefore, together with
the signal sampling rate, determines the detection time.

In order to test for the presence of cyclostationarity a
hypothesis test is formulated as follows:

H0 : r̂xx(∗) = ǫxx(∗) (2)

H1 : r̂xx(∗) = rxx(∗) + ǫxx(∗), (3)

where

r̂xx(∗) = [ℜ{R̂xx(∗)(α, τ1)}, . . . ,ℜ{R̂xx(∗)(α, τK)},

ℑ{R̂xx(∗)(α, τ1)}, . . . ,ℑ{R̂xx(∗)(α, τK)}] (4)

1Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-197-7
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Fig. 1. OFDM symbol consists of a data block and a cyclic prefix that
containNFFT andNCP samples, respectively.

contains the estimates of conjugate cyclic autocorrelation
functions forK lags,rxx(∗) is the vector of true nonrandom
cyclic autocorrelation functions andǫxx(∗) is the estimation
error of r̂xx(∗). Under the null hypothesis the cyclostationarity
does not exist and (4) contains only the estimation error.

Test statistics for the generalized likelihood ratio test is then
derived [1] and is given as

T = r̂xx(∗)Σ̂
−1

r̂
T

xx(∗), (5)

whereΣ̂
−1 is the inverse covariance matrix ofr̂xx(∗) [1].

Under the null hypothesis the test statistics is chi-square
distributed with 2K degrees of freedom. Consequently, a
Neyman-Pearson test can be performed by comparing the test
statistics (5) to the threshold that is obtained from the inverse
of the chi-square cumulative distribution function (cdf).If
the observed test statistics value exceeds the pre-calculated
threshold, then it is concluded that signal is present.

To extract the cyclostationary features of that are inducedby
the basic modulation schemes, such as amplitude modulation,
the received signal usually needs to be oversampled with
respect to its baseband sample rate. The lag values that are
utilized in test are then in the order of the baseband sample
period. The algorithm can be used to detect cyclostationary
features of the OFDM signal that result from insertion of the
cyclic prefix, but then the cyclostationary features occur at the
OFDM symbol level. Assuming that the signal is sampled at
the baseband sampling rate, the detection can be performed
using autocorrelation delay (lag) valuesτ = ±NFFT and
cyclic frequenciesα = k/(NFFT +NCP ), k = 0,±1,±2 . . . ,
whereNFFT denotes the size of the IFFT that is used to form
the data part of the symbol andNCP is the length of the cyclic
prefix as presented in Fig. 1. Extension of this algorithm that
tests also for multiple cyclic frequencies is presented in [2].

B. Spatial Sign Cyclic Correlation Estimator

Recently, it was shown in [3] that the amplitude of the
received signal samples can be normalized while preserving
the cyclostationary features. Normalization is performedin
order to improve the robustness of the employed detector in
the face of impulsive noise and interference. This is achieved
at the cost of minimal performance loss in AWGN channel.
This also leads to a simpler implementation since the noise
statistics are known a priori and therefore do not need to be
estimated from the received signal samples. The input sample

normalization is denoted in [3] as a spatial sign function

S(x[n]) =

{
x[n]
|x[n]| if x[n] 6= 0

0 if x[n] = 0.
(6)

The spatial sign cyclic correlation estimator (SSCCE) is
then defined as [3]

R̂S(α, τ) =
1

N

N−1∑

n=0

S(x[n])S(x∗[n − τ ])e−j2παn. (7)

Constant alarm rate test similar to what was described in
Sec. II-A is then derived in [3]. The test statistics is

TS,K = N ||rS,K ||2, (8)

where

rS,K = [R̂S(α, τ1), R̂S(α, τ2), . . . , R̂S(α, τK)]. (9)

For AWGN, the test statisticsTS,K is shown to be gamma
distributed with shape factorK and scale factor1 [3] and,
therefore, the threshold for the test is obtained from inverse
of gamma cdf. By comparing Eq. (5) and (8) we see that
the application of the spatial sign function simplifies the test
statistics considerably. Although it does introduce the need for
calculating the spatial sign function, the overall complexity
cost of that is much less than that of calculating the inverse
covariance matrix in (5).

III. CYCLIC PHASE COMPENSATION

Let us start by rewriting (8) for the dual-lag case (K = 2),
which is of special interest for detection of the OFDM signals
using the cyclic frequency of1/(NFFT + NCP ). Equations
(7)-(9) can be combined to yield

TS,2 = N

∣
∣
∣
∣
∣
∣
∣

R̂S(α, τ1)
︸ ︷︷ ︸

C1

∣
∣
∣
∣
∣
∣
∣

2

+ N

∣
∣
∣
∣
∣
∣
∣

R̂S(α, τ2)
︸ ︷︷ ︸

C2

∣
∣
∣
∣
∣
∣
∣

2

. (10)

whereτ1 andτ2 are set to+NFFT and−NFFT , respectively.
The two SSCCE in (10), namelyC1 and C2, present

two complex values that have some magnitude and phase in
complex plane. The stronger the correlation, the larger arethe
magnitudes. The difference in their phase can be written as

φ = arg(C1) − arg(C2). (11)

Fig. 2 presents the time-domain autocorrelation sequences
of C1 andC2 of the OFDM signal, showing the periodically
alternating correlating and non-correlating subsequences. It
follows from the structure of the OFDM symbol stream that
when detecting an OFDM signal with using the two lags
(±NFFT ), then for sequential OFDM symbols the phase
differenceφ is constant and can be expressed as function of
τ andα as

φ = 2πτ1α. (12)

Now if we compensate the phase difference, the two SSCCE
can be combined. We define a new test statistics as

T c
S,2 = 2N

∣
∣
∣R̂S(α, τ1) + R̂φ

S(α, τ2)
∣
∣
∣

2

, (13)

2Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-197-7
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Fig. 2. The time-domain autocorrelation sequences of the OFDMsignal
for lags±NFFT . Cyclic phase offset is deducted from the structure of the
OFDM symbol stream.

where

R̂φ
S(α, τ) =

1

N

N−1∑

n=0

S(x[n])S(x∗[n − τ ])e−j2παn+φ (14)

is the SSCCE with cyclic phase compensation.
The difference between (13) and (10) is the constant phase

shift in the second exponent term. Computationally (13) is
simpler because it does the summation of the two cyclic au-
tocorrelation functions before calculating the absolute square
value. This will halve the number of integrators and multipliers
that are needed in the hardware implementation of the test
statistics calculation. Test statistics in (13) is also gamma-
distributed, but with shape factor 1 as opposed to the shape
factor 2 in (10). Both detectors calculate the test statistics from
a vector ofN received samples.

A. Implementation

Next, an implementation for calculating (13) is proposed.
Implementation is done mostly in angular domain to avoid
complex multiplications [6]. Angular domain representation
suits the algorithm well since the signal magnitude is normal-
ized to one for all non-zero samples (amount of zero samples
are assumed negligible). Next we denote the phase of each
sample as

ϕx[n] = arg(x[n]) (15)

and rewrite (13) as presented in (16). Because additions are
difficult to implement in angular domain, the signal is mapped
back to Cartesian coordinates after finishing the calculation
of the exponents. The calculation of the argument and the
mapping back to the Cartesian coordinates can be effectively
implemented with the well-known CORDIC algorithm [7].

Fig. 3 presents the proposed implementation for calculating
test statistics in (16). First a CORDIC is used to calculate
argument of the input samples. A random access memory
(RAM) block is used to implement the two delays. A simple
integrator is needed to accumulate theϕα[n] term. Five adders
are then used to finish the calculation of the two exponent
terms, including the cyclic phase offsetφ. After the exponen-
tial terms are resolved, signal is mapped back to Cartesian
coordinates using two CORDICs. Finally, the calculation of
the test statistics is finished using two integrators, multipliers
for calculation of the absolute square and a final division.

IV. SIMULATIONS

Performance of the proposed detector is compared to SS-
CCE presented by Lunden in [3] by conducting a series
of Matlab simulations. The simulations utilize OFDM signal
(NFFT = 52, NCP = 12, subcarrier modulation 16-QAM)
and N = 2048 samples per detection. Three detectors are
compared: 1) SSCCE with single lag, 2) SSCCE with two lags
and 3) the proposed SSCCE detector with two lags and the
cyclic phase compensation. The single lag detector uses delay
τ=NFFT , whereas the dual-lag detectors useτ = ±NFFT . All
detectors make the detection from the single cyclic frequency
α = 1/(NFFT + NCP ) (relative to the sampling rate) and
have the probability of false alarm set to 5%.

Fig. 4 presents probability of detection as a function of
signal-to-noise ratio (SNR) for the three detectors in an AWGN
channel. The simulation shows that the proposed detector has
the best detection sensitivity. The improvement over 2-lag
SSCCE is less than 1 dB in SNR and approximately 2 dB
when compared to the single lag SSCCE. The single lag
SSCCE, which is the simplest to implement, would achieve
the same performance than the proposed detector by doubling
the number of samplesN (and thus doubling the detection
time).

Fig. 5 presents average test statistics values from the previ-
ous simulation. The difference in test statistics of the dual-
lag SSCCE and the proposed detector is due to the early
combination of the two SSCCE in (13), which leads to a
reduction in the degrees of freedom of the distribution of
the test statistics under the null hypothesis. Consequently, this
reduction in the degrees of freedom enables more efficient test
which can be seen as an improvement in the sensitivity of the
detector.

Finally, Fig. 6 shows simulated receiver operating character-
istics (ROC) curves for the three detectors. In this simulation
the SNR is set to -5 dB and the other simulation parameters are
identical to the previous simulation. The introduction of the
cyclic phase compensation in the proposed detector provides
a distinctive improvement over the prior work.

V. CONCLUSION

This paper has introduced an improved dual-lag test for the
spatial sign cyclic correlation estimator that can be used for
OFDM signal detection in spectrum sensing applications. The
key idea in this work has been to deduce and compensate the
phase difference between the two SSCCE that are obtained us-
ing two distinct lag values. The proposed detection algorithm
has been shown to achieve improved probability of detection
compared to the prior work while keeping the false alarm
rate constant. Moreover, the algorithm has also been shown
to result in reductions in the computational complexity, which
makes it more suitable for practical implementations.
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T c
S,2 =

1

2N

∣
∣
∣
∣
∣

N−1∑

n=0

(ej(ϕx[n]−ϕx[n−τ1]−ϕα[n]) + ej(ϕx[n]−ϕx[n−τ2]−ϕα[n]+φ))

∣
∣
∣
∣
∣

2

, (16)

Fig. 3. Implementation of the proposed dual-lag SSCCE algorithm with cyclic phase compensation.
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Fig. 4. Probability of detection as a function of SNR. The proposed detector
outperforms the prior work in terms of detection sensitivity while maintaining
the constant false alarm rate.
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Abstract— A theoretical contradiction between the areas of the 
optimal pilot-pattern design and the optimal power loading 
algorithms has been found to exist for proposed Non-
Contiguous Orthogonal Frequency-Division Multiplexing (NC-
OFDM) Cognitive Radio (CR) systems. It has been found that 
the proposed, optimal pilot-patterns specify that the Secondary 
User (SU) should convert the two sub-channels adjacent to a 
Primary User (PU) to pilot sub-channels in order to ensure the 
lowest estimator Mean Squared Error (MSE) attainable. This 
algorithm has been found to contradict with the optimal power 
loading algorithm for CR systems should the Pilot-to-Data 
Power Ratio (PDPR) be greater than unity. The contradiction 
arises in that the optimal power loading algorithms for CR 
systems require that, in order for interference to the PU to be 
kept below an acceptable threshold, the sub-channels of the SU 
should have less power assigned to them the closer they are to 
the PU. In this paper, a proof of concept is demonstrated and 
evaluated such that the lowest MSE possible is achieved while 
maintaining interference threshold constraints in a simplistic 
environment. 

Keywords-Cognitive Radio; Power Loading; Pilot Patterns; 
Orthogonal Frequency Division Multiplexing. 

I.  INTRODUCTION 
Spectrum scarcity is an omnipresent and greatly 

impacting problem which needs to be overcome in order to 
allow new communications technologies to flourish. Due to 
the rapid pace of technological innovation, spectrum has 
become a very valuable and rare commodity. It has been 
noted that even though much of the practically usable 
spectrum has been occupied and licensed, it is only used 
anywhere from 15% to 85% of the time in a wide geographic 
and time dispersion [1]. This can be even lower in certain 
situations such as sub-urban environments where frequency 
utilisation from 100 MHz to 3 GHz can be utilised as little as 
7% of the time [2]. This means that much of the usable 
spectrum is reserved for licensed operation but is only used 
by its licensees a very small percentage of the time or its 
actual licensed use is limited to a relatively small 
geographical area. 

To address the problems of spectrum crowding, cognitive 
radio has been proposed as an attractive, viable solution [3]. 
Cognitive radio proposes to alleviate the problem of 
spectrum crowding by conducting communications in 
licensed bands during the time instances in which they are 
unused. 

It is commonly proposed that a variation of OFDM, non-
contiguous OFDM, be used to implement a CR system. This 
allows the sub-channels of an OFDM system which interfere 
with the primary user to be switched off. This means that the 
NC-OFDM system would comply with one of the principles 
of CR such that any CR-compliant communications are 
transparent to, and need not be considered by, non CR-
compliant systems. 

Much work has been done on power loading for the 
cognitive radio environment. In [4], a power loading 
algorithm was devised where the amount of interference to a 
PU was calculated for each sub-channel based on their power 
and spectral distance to the PU. It was found in [4] that a 
‘step’ profile needs to be applied where the sub-channels 
closest to the PU need to be allocated the least amount of 
power so that the interference to the PU is kept below an 
acceptable threshold. This means that the closer a sub-
channel is to a PU, the less power should be allocated to it. 

Another aspect which has been investigated is the pilot-
pattern algorithms needed for CR systems. Due to the fact 
that narrow and wideband interference from any PUs is not 
known prior to transmission, a PU could possibly take up 
one or several pilot sub-channels. This would greatly 
decrease channel interpolation accuracy due to the loss of 
one or more channel observations. It has been found that the 
optimal way to maximize channel estimation accuracy when 
one or more pilot sub-channels need to be disabled is 
converting the sub-channels adjacent to the interfering PU’s 
signal into pilot-bearing sub-channels [5]. 

If one considers these two aspects, they cannot be 
mutually ignored since it is necessary for the pilot-pattern of 
the system to adapt to changes in the utilised spectrum (such 
as intermittently appearing and disappearing PUs). This is 
because the effect on the bit-error rate (BER), and 
consequently the maximum channel capacity, is severe 
should the channel estimation accuracy (MSE) be degraded 
[8]. When also factoring the criterion for interference to the 
PU, indeed one on which the principles of CR is based, this 
would lead the implementation into placing pilots in the sub-
channels closest to the PU while reducing the power of those 
sub-channels significantly so as not to cause any interference 
to the PU. 

Another area of focus which has been noted is the pilot-
to-data power ratio. In most applications, the pilot symbols 
or sub-channels need to be allocated higher power than the 
data sub-channels so that the instantaneous channel 
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estimation at the pilot symbol is as accurate as possible by 
providing a relatively high signal-to-noise ratio (SNR). This 
holds true especially for conditions where the SNR is low 
and therefore the transmitted pilot symbols are plagued by 
relatively high amounts of noise. The PDPR therefore needs 
to be increased substantially such that the channel estimation 
accuracy remains at a desirable level. 

These three aspects, namely the pilot-pattern, the power 
loading and the pilot-to-data power ratio are then seen to be 
contradictory. While the optimal pilot-patterns for CR 
systems imply that the pilot symbols or sub-channels need 
to be placed adjacent to the PU, the optimal power loading 
algorithms state that the sub-channels need to have their 
assigned power levels reduced such that they do not 
interfere with the PU but the principles of OFDM and PDPR 
research states that the pilot sub-channels should usually be 
assigned more power in order to achieve as high as possible 
channel estimation accuracy. 

These contradictions can then be modelled and solved by 
expressing them in the form of a constrained optimisation 
problem. In this paper, an optimal solution is derived for the 
case of a least squares (LS) estimator using linear 
interpolation. The research demonstrated in this paper is a 
continuation from [11], where an LS-based approach is 
investigated due to its practicality in terms of low-
complexity estimators. 

This paper is organised as follows. Section II describes 
the system model used and Section III derives and explains 
the optimal solution to the outlined problem. In Section IV, 
the simulation parameters are given as well as results of the 
simulations themselves. The results are discussed in this 
section and a conclusion is derived from the findings. This 
is elaborated upon in Section V. 

II. SYSTEM MODEL 
The CR system model considered is that of having a 

contiguous OFDM system interrupted by a PU of a fixed 
bandwidth, this means that the sub-channels of the SU 
which conflict with the PU’s used frequency band are 
disabled by the SU. This allows the spectrum to be fully 
utilised in that there are no guard bands between the PU’s 
and the SU’s signal. 

The CR system is then seen as an OFDM system of N 
sub-channels with certain sub-channels dedicated to 
transmitting pilot symbols meaning that, for simplicity, 1-
dimensional channel estimation is used to obtain the 
instantaneous channel gains. 

As prescribed in [6], the interference in the system is 
differentiated into PU-to-SU and SU-to-PU interference. 

A. Power Density Spectrum of Signals 
The transmitted signals in the system model are assumed, 

for the sake of simplicity, to be shaped by a rectangular pulse 
shaping function. The power density spectrum of the 
rectangular pulse shaping function can be represented as [4]
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In (1), Pi represents the transmit power of the ith sub-carrier 
and Ts represents the symbol duration of that same sub-
carrier. It should be noted that this equation is only 
applicable for a rectangular pulse-shaping function. 
Equations for other pulse-shaping functions can be used as 
well but the problem will remain unchanged since every 
pulse-shaping function will have some form of spectral roll-
off (leakage), and therefore, present interference to non-
orthogonal frequencies. 

B. Interference from PU to SU 
The signals between the PU and the SU are assumed to be 

non-orthogonal, and therefore, the interference imposed by 
the PU on the SU is effectively ‘smeared’ due to the Fast 
Fourier Transform (FFT) processing performed by the SU 
[6]. The expected value of the power density spectrum of 
the PU’s signal after an FFT of size M is performed can be 
described as [6] 
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where   represents the angular frequency which has been 
normalised to the sampling frequency, M is the number of 
samples (FFT size in this case) and )(  j

PU e  represents 
the power density spectrum of the PU’s pulse-shaping filter. 
The interference from the PU to the SU can then be 
described as the integral of the expected value of the power 
spectral density, which may be expressed as  
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In (3), id  represents the spectral distance between the 

considered sub-carrier and the PU, and f  represents the 
width of one sub-channel of the SU (equivalent to the 
inverse of the OFDM symbol duration). 

C. Interference from SU to PU 
The interference from the secondary user to the primary 

user is modelled using simpler mathematics due to the 
assumption that we do not have any information about the 
PU’s modulation scheme and other transmission properties, 
only the bandwidth and signal power. The interference 
caused by spectral roll-off from the SU can then be simply 
modelled as the integration of the power density spectrum of 
the signal, represented as (1) for the rectangular pulse 
shaping filter case. The interference from the SU can be 
modelled as [4]  
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It should be noted that B denotes the bandwidth occupied by 
the PU’s signal such that the integration is performed over 
the PU’s bandwidth with an added frequency ‘offset’ 
introduced by the spectral distance between the considered 
sub-channel and the PU’s signal. 

D. Channel Model 
The multipath channel model used can be described as [7] 
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in the time domain where l  and l  are the complex gain 
and delay for the lth path of a multipath propagation channel 
with a total of L resolvable paths. To model the channel in 
the frequency domain, the discrete Fourier transform (DFT) 
is applied to the time domain response in (5), resulting in 
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In (6), i and fftN  represent the sub-channel index and the 

size of the DFT respectively.  
The probability distribution functions of the parameters 

l  and l  may vary for different types of channels. In this 
case, they are assumed to be Rayleigh distributed such that a 
Rayleigh fading channel is simulated. The channel fading 
model is also used per OFDM symbol and a new frequency-
selective channel frequency response is calculated for each 
OFDM symbol. This allows the simulation of a worst-case, 
fast-fading channel where there is no correlation between 
one OFDM symbol and the next. As such, the coherence 
time of the channel compared to the OFDM frame is 1 
OFDM symbol.  

E. Pilot error 
The pilot error for the least squares estimator can be 

effectively modelled as dependent on the noise to pilot 
power ratio for pilot symbols, namely [7] 

  ppp nPHH 1ˆ  , (7) 

therefore the error can simply be represented as 

  pppp nPHH 1ˆ  . (8) 

where H  represents the vector form of the channel 
frequency response as derived in (6) and pH  is the vector 

subset of H  at the pilot positions such that ip  . 

F. Linear interpolation error bound 
The instantaneous channel gain at the data sub-channels 

needs to be interpolated in either the time or frequency 
direction. Since, for simplicity, it was assumed that sub-
channels were dedicated for pilot symbols, the interpolation 

was therefore done only in the frequency dimension. As the 
interpolation error cannot be known exactly unless the full 
channel frequency response is also known (which renders 
the need for interpolation moot), an error bound is used such 
that a worst-case interpolation error is used. 

The interpolation error bound for a linear interpolator is 
dependent on the second derivative of the function being 
interpolated and the distance between the two interpolation 
points, thus, the more a function varies on a given interval, 
the higher the linear interpolation error will be. The linear 
interpolation error bound can be described as [10] 

  2

22

int
)(max

8 i
iHd i




 . (9) 

G. Optimal power loading 
The optimal power loading algorithm is specified in [4]. 

It is important to note that the same power loading 
algorithm is derived at the boundary level where the 
interference to the PU is equal to the interference threshold 
parameter such that transmission power is maximized and, 
consequently, so is channel capacity. This also then allows 
us to effectively ignore the interference to the PU when 
placing the pilot as the power we may use at each sub-
channel index complies with the optimal power loading 
requirements. 

The interference equation at the threshold was therefore 
used such that the equation is formulated as 
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where λ is the Lagrangian multiplier used to find the 
optimal power level for each sub-channel. 
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Figure 1. Pilot and data sub-channels for an NC-OFDM, CR system 

involving one PU and one SU. The pilots concerned for optimal placement 
is shaded on one diagonal. 

III. OPTIMAL SOLUTION 
In order to derive an optimal solution, the problem is 
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formulated such that the estimation error between the 
concerned sub-channels, namely Liii 0 , is minimized. 
The constrained optimization problem is therefore modelled 
as  

  intmin   p
i

 (12) 
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subject to, 

 

Lii  ,  (15) 

 and 0iP ,  (16) 

where Lii ,1,0 . 

In the context of the optimisation problem, Li  is used to 
represent the upper limit (i.e. adjacent to the nearest, 
original pilot sub-channel) of the possible pilot sub-channel 
placement position and 0i  represents the lower limit (i.e. 
adjacent to the PU). 

The interpolation error only considers the decrease in 
error as the pilot sub-channel approaches the PU since it is 
specified in [5] that a new pilot sub-channel is created 
instead of shifting an existing one and therefore MSE can 
only be decreased, assuming that the power allocated to the 
already existing pilot symbols remains the same.  

The derivative of the optimal power loading function in 
(10) was found to be a transcendental function and therefore 
the error function cannot be optimised using traditional, 
algebraic methods such as the Karush-Kuhn-Tucker (KKT) 
conditions and as such the solution may only be computed 
numerically. The optimal was therefore computed 
numerically by searching for the value of i  where the error 
function is lowest. 

In practice, the value of Li  may not be bigger than the 
pilot spacing and therefore the optimisation problem only 
considers the sub-channels between the PU and the nearest 
pilot sub-channel (before insertion of the extra pilot sub-
channel). 

The provided solution is for a single side of the PU, this 
can be identically applied to the other side of the PU’s 
transmission power remains uniform throughout the PU’s 
bandwidth. 

IV. SIMULATION PARAMETERS AND RESULTS 
A simulation was conducted by setting up an NC-OFDM 

system with parameters as listed in Table I. 

The simulation was run using a Monte Carlo method with 
10000 sample runs such that a statistically significant result 
was obtained and the results were noted. This allows for 
most noise factors to be factored out (specifically from 
AWGN) and an averaged result to be obtained.  

It was found that one of the most significant factors 
contributing to the error function’s variance was the 
interference threshold parameter as specified in the 
simulation. This meant that the interference threshold 
parameter is critical in determining the performance of the 
channel estimator and the optimal placement of the new 
pilot sub-channel. 

This problem was found to be exacerbated for a least 
squares estimator due to the estimation error at the pilot 
symbols being only a product of the inverse of the sub-
channel SNR. Since the LS estimator, unlike the Minimum 
Mean Squared Error (MMSE) estimator, is not dependent 
on the knowledge of noise statistics, therefore the optimal 
positioning for the LS estimator, without considering 
interpolation error, would indeed be where the SNR is 
highest.  

 

TABLE I 
SYSTEM SIMULATION PARAMETERS 

Parameter  Value 
PU bandwidth  768 kHz 

Channel path gain means (dB)  [0 -15 -20] 

Path delay time means (µs)  [0 0.4 0.9] 

OFDM symbol length  333.3 µs 

SU sub-channel bandwidth  3 kHz 

FFT size  1024 

Pilot spacing (frequency, time)  (12,12) 

Maximum Doppler shift  24 Hz 

PU signal power  20 dBm 

Noise floor  -90 dBm 

Interference thresholds (mW)  [1, 3, 5, 7, 9, 10] 
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Figure 2. Error function values of the simulated system for parameters 

as set in table 1. Each curve represents the error function for a different 
threshold value where the lowest point of the curve is the optimal 
placement position for the pilot sub-channel. 

 
In Figure 2, the error function is shown for the applied 

simulation parameters of table 1. The curves shown indicate 
the interference threshold power, this parameter is pre-set to 
define what the maximum amount of interference power 
may be transmitted to the PU by the SU. The first curve 
(squares) therefore shows the highest error function value 
but with a trade-off in that the interference threshold is as 
low as 1 mW. This also means that the pilot is indeed placed 
the farthest for the highest interference threshold (at 18 sub-
channels away). The opposite can be observed for a high 
interference threshold, placing the new pilot sub-channel as 
close as 7 sub-channels away from the PU. An abrupt 
change is noticed for the error function values at sub-
channel distance of 19, this is attributed to the fact that the 
distance component in the interpolation error begins to 
dominate the 2nd order derivative of the channel gain 
component. This is unlike what is noticed in Figure 3 where 
due to the rapidly varying channel gains, the effects are not 
noticed as abruptly. 

In Figure 3, the error function is shown for the same 
simulation parameters as Figure 2 with the exception that a 
fast fading channel was used. This results in a decreased 
channel coherence bandwidth and as such makes the 
channel frequency response represent a more variant 
function. This in turn increases the error contribution of the 
interpolation error to the optimization error function. 

It can be seen that the optimal pilot position has therefore 
moved closer to the PU (such as being placed as low as 5 
sub-channels away for a 10 mW interference threshold). 
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Figure 3. Error function values of the simulated system for parameters 

as set in table 1 but using a fast fading channel instead. Each curve 
represents the error function for a different threshold value where the 
lowest point of the curve is the optimal placement position for the new pilot 
sub-channel. 

 
In Figure 4, the optimal pilot placement is shown for the 

given interference threshold parameters for both the fast 
fading and slow fading channel cases. 
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Figure 4. Optimal pilot placement (expressed as the separation distance 

between the pilot and the PU in number of sub-channels) for the fast-fading 
and slow fading channels. 

V. CONCLUSION 
A hypothesis of contradiction was noted between the 

optimal power loading and the optimal pilot-pattern 
algorithms for NC-OFDM cognitive radio systems. This 
meant that a compromise needed to be found such that the 
two contradictory ideas are implemented in the optimal way 
possible. An optimal solution for the simplified case was 
proposed in this paper as a proof of concept. 

It was found that the interference threshold parameter 
greatly influences the pilot placement and hence the 
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estimation error. This means that there is a trade-off where 
the desired interference threshold from the SU inversely 
affects the estimation error.  

It was also discovered that a great dependency exists 
between the error function and the form of the channel 
frequency response. This was noted from the fact that the 
more variant the channel frequency response is (i.e. the less 
linear it is), the closer the new pilot sub-channels should be 
placed to the PU due to the greater interpolation error 
caused by having them move away. 
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Abstract— This paper considers the problem of secure 
communication in Wireless Sensor Networks in the presence of 
non-colluding passive eavesdroppers. Cognitive networks 
capabilities such as spectrum sensing, share information and 
collaboration to optimize the communications can be used to 
avoid attacks. A collaborative jamming technique is proposed to 
increase Cognitive Wireless Sensor Networks security and a 
counter measurement against eavesdropped attacks. Three types 
of scenarios are defined: attacker location known, attacker 
location unknown, and attacker and relay co-location. Each new 
scenario adds a difficulty to the countermeasure to the previous 
one. Simulations show as Secrecy Outage Probability decreases 
until 10% with a standard number of relay nodes in the network. 
As a result, cooperative jamming strategies are seen to be highly 
effective for increasing the secrecy in Wireless Sensors Networks.  

Keywords-WSN; cognitive; jamming; collaborative; security 

I.  INTRODUCTION  

Wireless Sensor Networks (WSN) is one of the fastest 
growing sectors in recent years. The unlicensed Industrial, 
Scientific and Medical (ISM) spectrum bands, used by these 
networks, are becoming overcrowded. The cognitive paradigm 
has appeared to solve spectrum scarcity, interference and 
reliable connections problems. 

Cognitive Wireless Sensor Networks (CWSN) are based on 
the cycle sensing spectrum monitoring, analyzing for 
environment characterization, reasoning to chose the best 
communication strategy, and sending to provide adaptation and 
collaboration. Cooperation between devices regarding 
information sharing and taking decisions allows better 
spectrum use, lower energy consumption and better data 
reliability. CWSN are used in systems with critical data 
(telecare monitoring, military scenarios) and critical 
applications (safety home system, infrastructure protection, 
etc.). Hence, security is a fundamental challenge to face. 
Cognitive nature of the system introduces an entire new suite of 
threats and attacks that are not easily mitigate. 

 The broadcast characteristic of the wireless medium makes 
difficult to shield transmitted signals form unintended 
recipients. Security in wireless data transmission has 
traditionally been developed using cryptographic techniques at 
the network layer. The main drawback of this approach when 
deployed to WSN consists in limited resources, which cannot 

support the execution of complicated encryption algorithms, 
resulting in shorter keys that are easier to discover. WSN nodes 
can also be captured and attackers use reverse-engineered and 
become an instrument for mounting counterattacks. 

Physical-layer security becomes a very interesting approach 
in the past few years [1]. The main idea behind physical-layer 
security is to limit the amount of information that can be 
extracted at the ‘bit’ level by unauthorized receivers with the 
exploitation of all available Channel State Information (CSI). 
The fundamental problem in WSN is the difficulty to obtain a 
full CSI. Cognitive paradigm allows the spectrum monitoring 
and provides this information to the network.  

In this paper, a selective jam technique to increase physical-
layer security in CWSN using cognitive capabilities is 
presented. This technique can operate independently of the 
higher layers to complement security requirements. 

The organization of this paper is as follows. In Section II, 
works in physical-layer security for WSN are reviewed. In 
Section III, we formulate the technique description. Section IV 
provides its evaluation. Finally, the collusions are drawn in 
Section V. 

II. PHYSICAL-LAYER SECURITY APPROACHES 

In this section, we introduce schemes that could be used to 
achieve physical layer security against different attacks in 
WSN. 

In recent years, the main issues of secure channel capacity 
have drawn much attention in the information theory 
community. Most of the works are focused in schemes to 
obtain the secrecy capacity with different CSI approaches. 
Barros and Rodrigues in [2] developed a secure communication 
protocol to ensure wireless information-theoretic security based 
on: common randomness via opportunistic transmission, 
message reconciliation, common key generation via privacy 
amplification and, finally, message protection with a secret 
key. It was shown that the protocol is effective in secure key 
renewal even the presence of imperfect CSI. 

Other methods have been proposed to avoid attacks based 
on exploitation of channel characteristics. The Radio 
Frequency (RF) fingerprinting system implemented by [3] 
consists of multiple sensor system that captures and extracts RF 
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features from each receiver signal. An intrusion detector 
processes the feature sets and generates a dynamic fingerprint 
for each internal source identifier derived from a few packets. 
This system monitors the temporal evolution and alerts when a 
strange fingerprint is detected. In [4], L. Xiaohua and E.P 
Ratazzi propose a precoding scheme, in which the transmitted 

code vectors are generated by singular value decomposition of 
the correlation matrix, which describes the channel 
characteristic features between the transmitter and the intended 
receiver. Because of the difference in the multipath structure of 
the transmitter-receiver channels, even intruders, which have 

 

Figure 1.  Cooperative Jamming Scenarios 

a perfect knowledge of the transmission code, vectors, cannot 
achieve to acquire the true messages due the difference in the 
locations of the intruders and the legitimate users. 

Code approaches improve resilience against jamming and 
eavesdropping. In [5], a combination of turbo coding and 
Advanced Encryption Standard (AES) cryptosystem is 
proposed. An error in the received ciphertext could cause a 
large number of errors in plaintext after coding. Depending of 
the channel condition, this method can be adopted to choose 
the number of redundant bits required to protect the 
information in order to achieve high efficiency. Another 
technique is Spread Spectrum Coding, which signal is spread 
by a pseudo-noise sequence over a wide frequency bandwidth 
much wider than that contained in the frequency ambit of the 
original information. The main difference between convention 
cryptographic systems and spread-spectrum systems lies in 
their key sizes. Traditional systems can have a very large key 

space. However, in a spread-spectrum system, the key space is 
limited by the range of carrier frequencies and the number of 
different sequences. In [6], a method is proposed to enhance the 
physical layer security of Code Division Multiple Access 
(CDMA) system by using AES operation to generate the 
scrambling sequences.  

Data protection can also be facilitated using power 
approaches. The method proposed in [7] ensures perfectly 
secure communications. This method shows that perfect 
secrecy can be achieved when the intruder’s channel is noisier 
than the receiver’s channel. Artificial noise is generated using 
multiple antennas or the coordination of helping nodes, and is 
injected into the null-subspace of the intended receiver’s 
channel. 

According to the proposal in work [8], discriminatory 
channel estimation is performed by injecting artificial nose to 
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the left null space of the legitimate receiver’s channel to 
degrade the estimation performance of the eavesdropper. By 
exploiting the channel feedback information from the 
legitimate receiver at the beginning of each communication 
stage, a multistage training-based channel estimation scheme is 
proposed [9] to minimize the normalized mean squared error of 
channel estimation at the legitimate receiver subject to a 
constraint on the estimation performance attainable by the non-
legitimate receiver. 

Most of these approaches can be improved using cognitive 
capabilities. Cognitive paradigm provide a new scenario 
because of the spectrum sensing, the protocols to share 
information and the collaboration to optimize the 
communications. In this paper a collaborative jamming 
technique is proposed to increase CWSN security and a counter 
measurement against eavesdropped attacks. 

III. COOPERATIVE JAMMING SCENARIO 

CWSN avoid one of the main constraints to use jamming 
techniques, the knowledge of the CSI. In a cooperative scenario 
there are several network entities. We consider a four-terminal 
system composed of a legitimate source (S), a legitimate 
destination (D), one or more relay nodes (R) and an 
eavesdropper (E). All these agents have cognitive capabilities 
and different radio interfaces. In this approach, the normally 
inactive nodes in the relay network can be used as cooperative 
jamming sources to confuse the eavesdropper and provide 
better performance in terms of security. Depends of the nodes 
nature three types of scenarios are defined (Fig. 1): attacker 
location known, attacker location unknown, and attacker and 
relay co-location. Each new scenario adds a difficulty to the 
countermeasure to the previous one. 

A. Attacker location known 

In the proposed cooperative jamming strategy any available 
jamming power will only be allocation to information 
transmitters, while D and S remain inactive. If E is detected by 
the network, nodes can use the location information to increase 
jamming over the attacker zone.  

Relay pool replay the message to the D and produce a 
jamming with the same communication features over the E 
zone. Closer nodes to the attacker manage the coordinated 
jamming. Thus, E can not listen the transmitted information 
and the communications in the rest of the network is not 
affected.   

B. Attacker location unknown 

In this approach, both the source and the destination nodes 
act as temporary helpers to transmit jamming signals during 
transmission phase in which they are normally inactive. The 
transmitter and the temporary helpers can perform cooperative 
jamming in the jamming subspace, which will allow the 
legitimate receivers to us beamforming to reject interference 
from this subspace. Note that cooperative jamming requires the 
receiver to broadcast the jamming subspace so that the 
interference can be aligned at the desired receiver without a 
loss of information. Although E may also be aware of this 

subspace, it cannot remove the jamming signal since it sees 
different channels from the transmitters and jammers. 

C. Attacker and relay co-located 

A most complicated issue is when E is co-located with the 
helper node. A secure countermeasure in this case is to have the 
destination jam the relay while it is receiving data from the 
source in the first phase. This intentional interference can then 
be subtracted out by the destination from the signal it 
ultimately receives via the relay. 

Protocol sequence is as follows. Directional jamming is 
produced by D while S sends data to the R-E node. R node 
detects an adding of real data and jamming signal. When replay 
data arrive D, a subtraction of jamming signal is done to 
recover the real sent data. 

IV. RESULTS 

In order to compare the security using this cooperative 
jamming technique with current system metrics are necessary. 
For this propose, secrecy rate and secrecy outage probability 
are defined. The secrecy rate is a reliable transmission rate on 
the main channel, which remains undecodable at the 
eavesdropper. In Gaussian channels, it is represented by the 
different of the mutual information of the source-to-receiver 
information and the source-to-eavesdropper channels, with the 
secrecy capacity being the maximal achievable secrecy rate. 
When larger networks with multiple 
transmitters/receivers/eavesdroppers, as well as additional 
nodes such as relays are considered, we can define the 
corresponding secrecy rate (capacity) regions, or the aggregate 
secrecy sum rate (capacity).  

A performance metric suitable for non-ergodic channels is 
the Secrecy Outage Probability (SOP), which describes the 
probability that a target secrecy rate is not achieved. The SOP 
characterizes the likelihood of simultaneously reliable and 
secure data transmission. 

The efficacy of this scheme for different example scenarios 
using these metrics is presented. In order to simulate the attack 
and the countermeasurements a new CWSN simulator has been 
used. This simulator has been developed over the well known 
Castalia simulator. Modifications improve Castalia and include 
new cognitive features. The CWSN simulator responsibilities 
are: the scenario definition, the simulation of spectrum state, 
the communications between nodes and the implementation of 
cognitive behaviors, attacks and countermeasures.  

Several simulations have been executed in the simulators to 
extract results and to draw conclusions of the work. Attacker 
location known strategy has been selected for these 
simulations. The number of nodes in the simulation is 34 
nodes, including one emitter user, one destination node, one 
attacker (eavesdropper) and a variable number of cooperative 
jammer relays for both scenarios. Both scenarios are 50x50 
meters. In the first scenario the D-E distance is 30 meters while 
in the second scenario D-E distance is 45 meters. Jamming is 
better focalized in the second scenario because the penalty in 
the destination node is less that in the first one. 
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We have developed two graphics that summarize the 
results. In the Fig. 2, the percentage of received packets in the 
destination node and the eavesdropper is showed for the first 
scenario. Number of packets decrease with the number of 
collaborative jammer relay nodes. Using only ten nodes for the 
collaboration strategy, less than 50% of packets are received. 
However, destination node receives fewer packets because of 
the jamming, but this rate is enough for a good communication.  

Figure 2.  Received Packets in the receiver and the attacker 

Figure 3.  Secrecy Outage Probability for different scenarios 

In Fig. 3, the SOP for the two different scenarios depending 
of number of nodes is showed. In both scenarios SOP is very 
similar. We can conclude that attacker location is not a real 
problem using this technique. Using 20 nodes for the 
collaborative jamming technique SOP is less than 25%, 
increasing system security in a significant way. 

V. CONCLUSION AND FUTURE WORK 

In this article, we presented a cooperative jamming strategy 
for physical-layer security in multi-user wireless sensor 
networks as a supplement to encryption at higher layers. 

Depending on the nature of the nodes, three types of 
scenarios are defined: attacker location known, attacker 

location unknown, and attacker and relay co-location. A 
simulation framework has been used to simulate different 
scenarios. From the simulation results, we showed that the SOP 
decreases with a standard number of relay nodes in the 
network. Also, attacker location is not a problem for this kind 
of strategies. 

Cooperative jamming strategies with assistance from 
external helpers or inactive neighboring nodes are seen to be 
highly effective for increasing the secrecy of the transmitted 
data. 
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Abstract—Ultra Wideband (UWB) system is overlapped with
various wireless systems, such as WLAN, WiMax and UMTS,
which limits the use of UWB. Cognitive Radio (CR) enables
UWB systems to efficiently use the overlapped spectrum with-
out causing interference to other wireless systems. In this paper,
we focuses on the low-complexity joint optimization algorithm
design with respect to transmit power allocation and spectrum
sensing time (SST) for maximizing the spectrum efficiency of
the Orthogonal Frequency Division Multiplexing based CR-
UWB system. The SST optimization algorithm minimizes the
spectrum sensing time in order to maximize the time length of
applying the power allocation algorithm for data transmission.
The proposed group power allocation algorithm adaptively
assigns the transmit power to the subcarrier groups according
to the effective signal-to-noise ratio (SNR) of each subcarrier
group based on greedy algorithm. The proposed joint optimiza-
tion algorithm can maximize the CR-UWB systems spectrum
efficiency at a extremely low primary user SNR regime with
low complexity.

Keywords-Ultra Wideband; Cognitive Radio; Spectrum Sens-
ing; Spectrum Management; Orthogonal Frequency Division
Multiplexing.

I. INTRODUCTION

The 3.1-10.6 GHz Ultra Wideband (UWB) operat-
ing spectrum overlaps with narrowband systems, such as
WiMAX, UMTS and 802.11a/n [1]. To protect the in-
cumbent wireless systems from being interfered by UWB
systems, the emission Power Spectral Density (PSD) of
a UWB system is strictly constrained by the Federal
Communications Commission (FCC) regulations (≤ -41.3
dBm/MHz) [2]. With such a limitation, the UWB systems
cannot provide the required Quality of Service (QoS) if
the aggregate interference from the Primary Users (PUs) is
high [3]. Furthermore, a UWB system can cause intolerable
interference to PUs if the transmit (Tx) power of the UWB
system rises within the overlapped spectrum. The spectrum
efficiency is low because the overlapped spectrum is far from
being fully utilized by the PUs [4].

Cognitive Radio (CR) technology [5] enables an Or-
thogonal Frequency Division Multiplexing (OFDM) based
UWB system to efficiently use the overlapped spectrum
by operating within the spectrum according to the CR-
UWB system’s spectrum sensing results. According to the
Multiband OFDM (MB-OFDM) UWB system’s protocol,

the time length for a CR-UWB system’s data transmission
is limited [6]. Thus, the Spectrum Sensing Time (SST)
determines the effective data transmission period in the over-
lapped spectrum. In the data transmission period, the power
allocation algorithm determines the CR-UWB’s spectrum
efficiency. Thus, the power allocation scheme is coupled
with the spectrum sensing time scheduling. To use the spec-
trum as efficient as possible, joint optimization algorithm
design that considers the power allocation and sensing time
simultaneously is needed.

For spectrum efficiency maximization, the joint optimiza-
tion problem is generally nonconvex for nonlinearity of
the formulated objective and constraint functions. Thus, the
power allocation and sensing time are optimized sequen-
tially to obtain an optimal solution in polynomial time.
For capacity-based optimization, the optimal power can be
derived as a function of a given sensing time by using convex
optimization methods (the joint optimization problem can be
transformed into a convex problem with respect to the CR
system’s transmit power), such as water-filling method [7],
subgradient method [8], ellipsoid method [9] and Newton’s
method [10]. Then, one-dimensional exhaustive search or
bisection search method is commonly used to obtain the op-
timal sensing time since it is NP-hard to derive an analytical
form. Using convex optimization method to solve the power
allocation problem requires relaxation of constraints, which
will cause the optimization algorithm cannot be implemented
in practical CR-UWB systems. For example, water-filling
method assumes the number of bits allocated on a frequency
band is non-integer. Furthermore, the convex optimization
algorithm often converges slowly near to the optimum and
needs a large number of iterations to reach the desired
accuracy [7]. For sensing time optimization, the complexity
of the exhaustive search can be high, especially in multiuser
CR networks, since the subsets of users is exponentially
increasing with the number of users. To design a low-
complexity algorithm for more practical spectrum efficiency
optimization, the joint optimization problem can be formed
as a knapsack problem with respect to the power allocation
[11]–[13]. In [11], Zhang and Leung applied the greedy
algorithm by allocating a bit to the subcarrier which has
the maximum efficiency value in each iteration until one
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of the constraints is violated. Since there are multiple PUs
near the signal cognitive OFDM system, there are multiple
interference related efficiency values in each subcarrier.
Hence, in a subcarrier, the minimum interference efficiency
value is chosen to be compared with other subcarriers’ min-
imum interference efficiency values. Choosing the minimum
interference efficiency value is to guarantee the PU with the
minimum interference margin will not be interfered. The
complexity of the optimization algorithm is proportional to
the number of source bits, the number of subcarriers and the
number of the PUs. In [12], Koufos et al. formulated a mul-
tiple choice knapsack problem with respect to the sensing
power and power allocation optimization. The authors used a
greedy-based optimization algorithm to achieve the optimal
tradeoff between the expected throughput over the multiple
spectrum bands and the total power spent for sensing. In
this paper, we formulate the joint optimization problem
into a multi-dimensional knapsack problem with respect to
power allocation and develop a suboptimal greedy algorithm
that significantly reduces the complexity of maximizing the
CR-UWB system’s spectrum efficiency. For sensing time
optimization, we derive a quasi-analytical solution for the
optimal sensing time, which enables the joint optimization
algorithm to quickly compute the value of the optimal
sensing time.

The rest of the paper is organized as follows. Section
II discusses the spectrum sensing model and the trans-
mit power limitation of the CR-UWB system. Next, the
spectrum efficiency maximization problem is formulated in
Section III. The joint optimization algorithm with respect
to group power allocation and quasi-analytical sensing time
optimization algorithm is discussed in Section IV. Then,
simulation results are presented in Section V to compare
the spectrum efficiency enhancement contributed by the
use of the proposed joint optimization algorithm. Finally,
conclusion is given in Section VI.

II. SYSTEM MODEL

We assume that the overlay spectrum sharing mechanism
is used in the CR-UWB system, since the FCC’s power lim-
itation (≤ -41.3 dBm/MHz) on underlay CR-UWB signals
may result in a significantly constrained Quality of Service
(QoS) [14]. The CR-UWB’s spectrum efficiency is defined
as the ratio of the usable information transmitted (in bps)
to the spectrum resource (bandwidth in MHz) used for the
information transmitting, and is expressed as

ηeff =
Bcog

TsW
, (1)

where Bcog represents the number of bits allocated on
the CR-UWB subcarriers that are used for effective data
transmission, W is the bandwidth used by the transmitted
OFDM symbol, and Ts denotes the OFDM symbol period.

A. Channel Gain of UWB Subcarrier

The distribution of the UWB’s subcarrier frequency re-
sponse is given by [15]

Hi =

L−1∑
k=0

h[k]e−j2πki/N , i ∈ [0, N − 1], (2)

where L is the number of the sampled fading path, N − 1
is the number of UWB subcarriers, and h[k] denotes the
discrete-time UWB channel impulse response. Then, h[k] is
derived by [15]

h[k] = X

J∑
j=0

M∑
m=0

αm,jδ(kTs − Tj − τm,j), k ∈ [0, L− 1],

(3)
where αm,j is the multipath gain coefficients (attenuation
factor) which denotes the amplitude of multipath compo-
nents. The amplitude of the multipath components are sub-
jected to log-normal distribution. Furthermore, Ts denotes
the sampling interval, Tj represents the time of arrival of
the j-th cluster, and τm,j is the time of arrival of the m-
th ray in the j-th cluster. Authors in [16] show that Hi

is in good approximation, circularly symmetric complex
Gaussian distributed, which is explained by the fact that Hi

results from the superposition of many time-domain mul-
tipath components. Hence, |Hi| is approximately Rayleigh
distributed, and the probability density function p(|Hi|2) is
approximated by [17]

p(|Hi|2) =
1

E{|Hi|2}
e
− |Hi|

2

E{|Hi|2} , (4)

where E{|Hi|2} = eϕσ2
x, and ϕ is a constant value.

The frequency response for a UWB Non Line-of-Sight
(NLOS) Channel Model (CM) is shown in Fig. 1. It is
seen that the UWB channel is a frequency-selective fading
channel. In OFDM UWB system, the bandwidth of each
UWB subcarrier is set to be smaller than the coherence band-
width of the UWB channel. Hence, each UWB subcarrier
experience non-selective fading.

B. Sensing Model

The spectrum opportunity for a CR-UWB system, i.e.,
the probability that an overlapped spectrum will contain
less than energy threshold power at any instant of time, is
determined by the probability that a PU is operating within
the overlapped spectrum. Since the Poisson distribution
is widely used to model the spectrum occupancy in CR
networks, the probability that a PU is activated following
the Poisson process is written as [18]

P (H1) = p(x;λt) =
e−λt(λt)x

x!
, (5)

where H1 represents the hypothesis that a PU is activated, x
denotes the expected number of PU’s occurrences during the
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Figure 1. UWB Channel Frequency Response of CM3. The communica-
tion distance between the UWB transmitter and UWB receiver is 8 meters.
The Quadrature Phase Shift Keying (QPSK) modulation is used on all the
128 subcarriers in one OFDM symbol. The duration for one frame is set
to 1.875 microseconds according to [6].

period of t, and λ is the average number of PU’s occurrence
per µs.

In MB-OFDM CR-UWB receiver, incoming UWB signals
are demodulated by a Fast Fourier Transform (FFT) engine,
which facilitates the use of Discrete Fourier Transform
(DFT) based energy detection and feature detection for
spectrum sensing. Compared with feature detection, energy
detection requires much lower computational complexity
and less information of PU (the complexity of the feature
detection is Nlog2N times of energy detection [19]). Thus,
we assume the CR-UWB system uses energy detection
method. The proposed algorithms can be extended when
feature detection is applied.

A notch filter is deployed posterior to the Inverse FFT
(IFFT) engine of the CR-UWB’s transmitter. The notch filter
can attenuate the PSD up to 22 dB over 32 UWB subcarriers
and effectively suppress the sidelobes of the subcarriers
which are immediate to PUs’ operating band [20].

For energy detection, the SST that is required for a set
of target probability of detection Pd and probability of false
alarm Pf is determined by [21]

τs =
2

γ2pfs
(Q−1(P̃f )−Q−1(P̃d))

2, (6)

where γp is the received Signal-to-Noise Ratio (SNR) of
PUs’ signal at the CR-UWB receiver, and fs is the CR-
UWB’s sampling frequency. Furthermore, Q−1(·) denotes
the inverse of the Q-function. Thus, Q−1(Pd) and Q−1(Pf )
are expressed as

Q−1(Pd) =
ε(N)/σ2

u −N − γp√
2(2γp +N)

, (7)

Q−1(Pf ) =
ε(N)/σ2

u −N√
2N

, (8)

where ε(N) is the detection threshold with signal samples
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Figure 2. The fraction of time for UWB transmission under the target
Pf = 0.1 and Pf = 0.01. An application with Ttxop = 512 µs (1µs =
10−6s) is activated in the cognitive UWB system.

N = τsfs at the UWB receiver, σ2
u is the power of the

additive white Gaussian noise.

In a CR-UWB system, the length of SST determines the
time ratio for the system to apply the spectrum management
function for useful data transmission, and is given by

α =
Ttxop − τs
Ttxop

, (9)

where Ttxop is a pre-defined transmission period in the MB-
OFDM UWB MAC layer protocol, called transmission op-
portunity (TXOP). In ECMA-368, the value of Ttxop varied
for different Access Categories (ACs) (i.e., applications) [6].
We assume that the CR-UWB system starts sensing the
channel prior to the start of a TXOP.

Fig. 2 shows that the value of α increases exponentially
with the increase of the received SNR γp. When γp is
low (< −17.6 dB) for Pf = 0.01, Pd = 0.99, over
50% of the transmission opportunity is used for spectrum
sensing. Thus, the cognitive UWB system can reach a
higher spectrum efficiency if the UWB system totally use
the TXOP for transmission on the non-overlapped spectrum
(i.e., the remaining 64 subcarriers) than performing the
spectrum sensing first in order to use the 128 subcarrier for
transmission. When the value of γp continues to increase,
the fraction of time differences for UWB’s data transmission
under the two target values of Pf becomes minor.

The effective number of bits that can be allocated on the
CR-UWB system is given by

Bcog = Bα(1− Pf )(1− P (H1)), (10)

where B denotes the total number of bits loaded in the
UWB subcarriers when all the subcarriers are available.
To maximize a CR-UWB system’s spectrum efficiency, an
optimal SST value is needed to maximize α while meet the
target value of Pd and Pf .
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C. Transmit Power

In UWB systems, transmit power is allocated on a per
MHz basis. The FCC set the peak PSD for UWB must
not exceed -41.3 dBm/MHz. Thus, the larger the occupied
bandwidth the more available transmitter power. The total
transmit power can be determined by integrate the average
PSD over the UWB bandwidth while the maximum PSD
does not exceed the regulatory limits. The use of zero
padding in MB-OFDM UWB system can keep the spectral
peak-to-average ratio at a very low level so as to maximize
the total transmit power. The maximum allowable transmit
power Ptx (dBm) for transmitting an OFDM symbol in a
sub-band is expressed as [22]

Ptx = −41.3 dBm/MHz + 10log10(Nsu ·Bsc), (11)

where Bsc = 4.125 MHz denotes the bandwidth of each
OFDM subcarrier, and Nsu is the number of the used UWB
subcarriers in the sub-band.

III. OPTIMIZATION PROBLEM FORMULATION

In this paper, we formulate joint optimization problem
into a multi-dimensional knapsack problem, as

arg maxPi,α ηeff =
1

TsW

I∑
i=1

J∑
j=1

bijxij (12)

subject to,
Pe ≤ P̃e, (13)

Pi ≤ Pmask, (14)

P̃d ≤ Pd ≤ 1, 0 ≤ Pf ≤ P̃f (15)

where Pi is the power allocated to the i-th subcarrier by
the user, bij = 1 represents the profit of allocating the j-th
bit to the user’s i-th subcarrier, and xij indicates whether
the CR-UWB’s j-th bit would be allocated on its i-th
subcarrier. In (13), Pe is the CR-UWB’s uncoded average
BER, and P̃e denotes the average BER threshold. The Pmask
represents the maximum allowable transmit power on each
UWB subcarrier. Furthermore, P̃f is the target probability of
a false alarm, and P̃d is the target probability of detection.

For M -ary Quadrature Amplitude Modulation (QAM), by
assuming the channel state information is perfectly known
at the UWB receiver and the transmitted symbols are inde-
pendent and identically distributed (i.i.d.) with the symbol
energy, Pe for each CR-UWB subcarrier is expressed as [23]

Pb ≈
2(
√
M − 1)√

M log2M

(
1−

√
3γ̄blog2M

2(M − 1) + 3γ̄blog2M

)
,

(16)

where γb represents the average received SNR per bit and
is approximated by [24]

γb =
Pi|Hi|2

2σ2
ulog2M

. (17)

Thus, the minimum required power for a certain BER
threshold to assign log2M bits on a CR-UWB’s subcarrier
can be given by

Pi(m) =
2σ2

u(M − 1)(1− Pe

√
M log2M

2(
√
M−1) )2

3Hilog2(M)[1− (1− Pe

√
M log2M

2(
√
M−1) )2]

, (18)

where m = log2M, M = 2, 4, 8.... Then, the cost of
assigning one more bit to a CR-UWB’s subcarrier can be
derived by

∆Pi = Pi(m)− Pi(m− 1), (19)

where Pi(0) = 0, which means no power will be allocated
to the subcarrier if there is no bit assigned to the subcarrier.

IV. JOINT OPTIMIZATION METHOD

To maximize the spectrum efficiency by adaptive transmit
power allocation (i.e., the spectrum management part of CR-
UWB system data transmission), a greedy algorithm based
method can be applied to assign bits to the subcarrier with
the lowest cost [25]. The complexity of the proposed algo-
rithm in [25] is proportional toO(β·BtotalNusedlog2Nused),
where Nused is the number of the used subcarriers, and
β denotes the proportion of bits that are assigned during
the advance power and bit allocation process. A detailed
discussion of the algorithm can be referred to [25]. Since
Nused contributes to the complexity of the spectrum effi-
ciency maximization algorithm, a new group power alloca-
tion algorithm is proposed based on the previous algorithm
proposed in [25] to lower the computational complexity.

A. Group Power Allocation Algorithm

The group power allocation algorithm consists of three
steps, they are:

1) Grouping a number of adjacent subcarriers into sub-
carrier groups, next

2) Allocating power on subcarrier groups by the algo-
rithm proposed in [25], then

3) Allocating bits on the subcarriers in each subcarrier
group by equal power allocation.

Table I shows that the coherence bandwidth for each UWB
CM are: 53.6 MHz, 28.9 MHz, 20.6 MHz and 12.4 MHz for
CM1, CM2, CM3 and CM4, respectively. Hence, the adja-
cent UWB subcarriers are grouped into blocks whose total
bandwidth is smaller than the coherence bandwidth of the
UWB channel. By evaluating the channel gain of a certain
subcarrier block, the proposed algorithm can modulate the
same amount of bits to each subcarrier in the block using
M -ary QAM modulation.
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Table I
NUMBER OF SUBCARRIERS IN A SUBCARRIER BLOCK IN CM1 TO CM4,

AND THE NUMBER OF SUBCARRIER GROUPS AFTER THE GROUPING
PROCESS WHEN Nused = 128

Channel Model CM1 CM2 CM3 CM4
Nblock 12 7 4 3
Ng 11 19 32 43

The maximum number of subcarriers in a subcarrier block
for each UWB channel model is computed by

Nblock =

⌊
BWc

BWs

⌋
, (20)

where BWc is the coherence bandwidth in a UWB channel
model, and BWs represents the bandwidth of a UWB
subcarrier. Thus, the value of Nblock in each UWB channel
model is listed in Table I. The subcarrier grouping process
is performed by

Ng =

⌈
Nused
Nblock

⌉
, (21)

where Nused is the number of the subcarriers used for the
OFDM symbol, and Ng is the number of subcarrier groups
after the grouping process and is listed in Table I when
Nused = 128. The equation (21) implies that the last sub-
carrier block in an OFDM symbol contains Nblock = (Nused
mod Nblock) subcarriers, where mod represents the modulo
operation [18].

The equivalent single channel SNR of each subcarrier
group equals to the geometric mean of the SNRs on each
of the subcarriers in the group. Hence,

SNRGi
=

Nblock∏
j=1

SNRi(j)

 1
Nblocki

, (22)

where SNRGi is the equivalent single channel SNR of the
i-th subcarrier group, and SNRi(j) represents the channel
SNR of the j-th subcarrier in the i-th subcarrier group. The
value of SNRi(j) is computed by

SNRi(j) =
ε · |Hi(j)|2

σ2
=
|Hi(j)|2

BWi(j)σ2
, (23)

where ε = 1 denotes a unit power allocation on each
subcarrier, Hi(j) is the j-th subcarrier channel gain in the
i-th subcarrier group, σ2 represents the noise PSD of the
AWGN channel, and BWi(j) denotes the bandwidth of each
UWB subcarrier.

Then, the cost of assigning a number of bits to the
subcarrier group can be derived as (18) and (19), and the
optimal power allocation algorithm proposed in [25] can be
applied. Compared with the power allocation algorithm in
[25], the order-of-growth of the proposed spectrum man-
agement algorithm for the joint optimization algorithm is

reduced to O(β ·BtotalNglog2Ng). Since the complexity of
the two algorithms both take linearithmic time, the reduction
of the term N in N · log2N will significantly lower the
complexity of the algorithm when the total number of the
allocated bits Btotal is the same in the two algorithms.

B. Sensing Time Optimization Algorithm

Discussions in Section II indicate that an optimal tradeoff
can be made between the probability of false alarm and the
spectrum efficiency. Thus, by manipulating (7) and (8), Pf
can be expressed as a function of Pd and τs, as

Pf = Q

(
Q−1(Pd)

√
2(2γp +N) + γp√

2N

)
, (24)

Hence, (10) is re-written as

Bcog = B
Ttxop − τs
Ttxop

·[
1−Q

(
Q−1(Pd)

√
2(2γp +N) + γp√

2N

)]
·

(1− P (H1))

(25)

The value of Bcog is a function of τs and Pd.
For a certain target value of P̃d, Fig. 3 shows the

spectrum efficiency as a function of the CR-UWB system’s
spectrum sensing time τs in CM1 with Pe being set to
10−4. Under different γp and P̃d, the spectrum efficiencies
increases exponentially with the increase of τs and reaches
the optimum at different spectrum sensing time spot. The
figure shows that there exists an optimized spectrum sensing
time τs for different target Pd under different γp value. The
optimal value of τs will increase in order to reach a higher
target Pd value at a lower γp. For different Pd and γp,
the spectrum efficiency decreases monotonically when the
τs grows beyond the corresponding optimal time spot. The
long spectrum sensing time degrade the spectrum efficiency
because the corresponding transmission time in an TXOP
for the UWB user’s certain application is shortened.

For a target P̃d, the optimal τs is computed by finding the
root for

fratio(τs) = 0, (26)

where fratio(x) = F ′ratio(x). The differential of Fratio(x)
is expressed as

F ′ratio(τs) = − 1

Ttxop
−[

Q′(τs)−
1

T
(Q(f(τs)) +Q′(f(τs)))

] (27)

where f(τs) is a function of τs and is given by

f(τs) =
Q−1(Pd)

√
2(2γp + τsfs) + γp√

2τsfs
. (28)
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Figure 3. The maximum spectrum efficiency as a function of spectrum
sensing time.

Furthermore, the differential of f(τs) is computed as

f ′(τs) =
Q−1(Pd)fs

2
√

(2γp + τsfs)τsfs
−

√
2fs(Q

−1(Pd)
√

(4γp + 2τsfs) + γp)

4(τsfs)3/2

(29)

However, to find the optimal spectrum sensing time τs by
solving the equation shown above is complex [18]. Hence,
numerical method is used to find a value of τs that is
approximate to the optimum.

V. NUMERICAL RESULTS

The UWB CM1 (Line-of-Sight) and CM3 (NLOS) are
used to simulate the wireless channel environment. We
assume that the PUs are WiMAX systems, the parameter
settings for the PUs can be referred to [25]. As shown
in Fig. 4, the spectrum efficiency performance of the pro-
posed algorithm is analyzed in CM1 and compared with
the Hughes-Hartogs (HHuwb) algorithm. The spectrum effi-
ciency degradation of using group power allocation increases
exponentially with the increase of the BER threshold, and
the performance degradation is higher when more subcar-
riers are included in one subcarrier group. For example,
the spectrum efficiency reached by group power allocation
is 50% lower than that of the HHuwb algorithm when 3
subcarriers are included in each subcarrier group as the
BER threshold approaches 10−4. However, the algorithm
complexity is over 3 times lower in group power allocation
algorithm than that in subcarrier-by-subcarrier the HHuwb
algorithm.

Fig. 5 and Fig. 6 compare the spectrum efficiency
achieved without using the SST optimization algorithm and
the spectrum efficiency obtained when the SST optimization
algorithm is applied. Observations in Fig. 5 and Fig. 6
show that by using the SST optimization algorithm in low
γp regime (i.e., < −12 dB), the spectrum efficiency is
significantly increased. For example, at γp = −19 dB, the
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Figure 4. Spectrum Efficiency of Group Power Allocation in CM1
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Figure 5. The maximum spectrum efficiency as a function of received
SNR γp in CM1.

spectrum efficiency of the CR-UWB system is 0.49 bps/Hz
which is twice of spectrum efficiency that is achieved by the
CR-UWB system without using the SST optimization algo-
rithm. With the increase of the γp, the difference between the
two lines decreases exponentially. At high γp regime (i.e.,
> −10 dB), the spectrum efficiencies of the two CR-UWB
systems are very close because the large γp value becomes
the dominant part of (24), the target Pd is reached at a very
small τs.

Fig. 5 and Fig. 6 indicate that the SST optimization algo-
rithm is more suitable for the situation where the received
γp is low than the situation where the γp is high.

VI. CONCLUSION

In this paper, a new joint optimization algorithm design
with respect to transmit power allocation and SST for
spectrum efficiency maximization is proposed in the OFDM-
based CR-UWB system. The proposed SST algorithm max-
imizes the effective data transmission time for the CR-UWB
system within a limited TXOP under the constraint of the tar-
get probability of detection/false alarm. The proposed group
power allocation algorithm can obtain the optimal spectrum
efficiency by adaptively assigning the transmit power to
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Figure 6. The maximum spectrum efficiency as a function of received
SNR γp in CM3.

the subcarrier groups according to the effective signal-to-
noise ratio of each subcarrier group whose bandwidth is
less than the coherence bandwidth of the UWB channel. By
combining the SST optimization algorithm with the group
power allocation algorithm, the CR-UWB system’s spectrum
efficiency is significantly enhanced with low complexity
when the received PUs’ SNR at the CR-UWB receiver is
low.
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Abstract—With the idea to use the spectrum band efficiently, 

much of the research is being published in the field of cognitive 

radio network to share the licensed spectrum band with 

unlicensed users when licensed users are not active. Cognitive 

Radio Network (CRN) has introduced a lot of new challenges 

in the field of wireless networks. In this research paper, we had 

listed the cognitive radio network issues by conducting a 

survey of MAC protocols for CRNs. We have also developed a 

very simple MAC protocol for learning CRN for the entry level 

researcher. 

Keywords-Cognitive Radio Networks; Dynamic Spectrum Access; 

MAC protocol. 

I. INTRODUCTION 

Recently, authorities are exploring the ways to fully 
utilize the licensed spectrum band, as portions of spectrum 
in 30MHZ to 30GHZ, as shown in Figure 1, are being used 
only 5% [1][17] while unlicensed spectrum is overcrowded. 
As spectrum is rarely used so lot of white and grey space 
areas occurs in licensed spectrum. Grey space areas are the 
portions with medium licensed users’ activity whereas in 
white space areas, activity of licensed users is almost none. 
Black space areas are the portion where spectrum is being 
fully utilized. By sharing the licensed band between licensed 
and unlicensed users with the constraint that unlicensed user 
will only use the band when licensed user is inactive and 
have to vacate on his activity, provides the opportunity that 
spectrum band will be fully utilized and need for searching 
new radio spectrum will be reduced [2]; this is the solution 
provided by cognitive radio networks. For this purpose, a lot 
of research is being conducted in this area and a large 
number of MAC protocols are being published. This paper 
will list out some of the recent protocols. A generic method 
for developing a simple MAC protocol for an entry level 
researcher in the field of CRN will also be described in this 
paper.  

Including this section on Introduction, the paper is 
organized in six sections. Issues related to cognitive radio 
networks will be described in Section II. Section III gives a 
literature survey of MAC protocols. Section IV will give a 
brief overview of how to develop a Simple MAC protocol 
for CRN in NS2. Section V will present simulation 
scenarios and the results. The conclusion of the paper will 
be in Section VI. 

II. ISSUES IN COGNITIVE RADIO NETWORKS 

Several studies have shown the various issues in 
cognitive radio networks. These issues are normally 

categorized into three categories, namely Dynamic 
Spectrum Access, Dynamic Spectrum Sharing and Dynamic 
Spectrum Multi-channel operation. 

 

 
Figure 1. Licensed Spectrum Usage [17] 

A. Dynamic Spectrum Access 

Basic issues of cognitive radio networks lie in the 
Dynamic Spectrum Access (DSA), which separates the 
cognitive radio network from the other wireless networks. 
The main aim of DSA is the co-ordination of primary 
(licensed) user and a secondary (unlicensed) user for a 
channel. The biggest problem here is that primary user 
should not face or face minimum interference in his 
communication.  

As the primary user has more priority for using the 
channel, secondary user must vacate the channel as soon as 
the primary user initiates its activity.  This also creates 
several secondary issues such as security and integrity of 
primary user should not be compromised. How much 
interference is tolerable for the primary user? What are the 
effects of irregular activity of primary users on secondary 
user’s communication and vice versa? 

This category also deals with the issues of channel 
discovery and co-ordination of quiet period by secondary 
user when primary user is active. 

B. Dynamic Spectrum Sharing 

This category deals with the issues of co-ordination 
between different secondary users. Efficient channel sharing 
is the ultimate goal. Issues of neighbor nodes discovery and 
channel sharing comes into this category.  

C. Dynamic Spectrum Multi-channel operation 

Issues dealing with multichannel communication come 
under this category. Quality of service and integrity of 
communication are the primary goals here.  
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TABLE I.  MAC PROTOCOLS WITH ISSUES 

Mac Protocol Type 
Access 

Method 

Multi-

Radio 

Hidden 

Terminal 

Problem 

Efficient 

Utilization 

of Band 

Common 

Control 

Channel 

Problem 

Primary 

User's 

Protection 

Energy 

Consumption 

CSMA-MAC Infrastructure  
Random 

Access 
No      

IEEE 802.22 Infrastructure  Time Slotted No      

DSA driven 

MAC protocol 
Cluster  Hybrid No      

(DOSS) MAC Ad hoc 
Random 

Access 
Yes No No Yes  High 

(DCA) MAC Ad hoc 
Random 

Access 
Yes  No   High 

(SRAC) Mac Ad hoc 
Random 

Access 
No  No No   

(HC) MAC Ad hoc 
Random 

Access 
No Yes No Yes   

C-MAC Ad hoc Time Slotted Yes  No Yes  High 

Full Duplex CR-

MAC 
Ad hoc  Yes     High 

OS-MAC Cluster Hybrid No No  Yes No  

SYN-MAC Ad hoc Hybrid Yes No No No No High 

 

III. LITERATURE SURVEY 

MAC protocol plays an important role in cognitive radio 
network as it allows the user to co-ordinate with other users 
to effectively use the broadcast domain/ channel. In normal 
wireless networks, all the users have equal rights and 
priorities whereas CRN divide the users into two groups 
‘Primary’ (licensed) and ‘Secondary’ (unlicensed) users. 
Secondary users use the vacant frequency spectrum 
(frequency holes) for communication among different 
secondary users by creating a secondary network under a 
primary network.  

A. MAC protocols in CR Environment 

There are two basic approaches for designing MAC 
protocol in a CRN environment, namely, Infrastructure-
based and Ad hoc-based.  

1) MAC protocols for Infrastructure-based networks 

 In an Infrastructure-based CRN environment, base 

station collects the information of the spectrum in its 

coverage area from all the CR users. Based on its 

information, it determines the scheme for the CR users to 

share the vacant spectrum. MAC protocols for the 

Infrastructure-based networks have been categorized into 

three major categories, random access, time slotted and 

hybrid protocols. 

Contention-based CSMA-MAC [3] protocol is a random 
access protocol based on classical CSMA with longer 

sensing time for cognitive users. It has been designed for 
both the primary and secondary users. Based on the distance 
of CR user from its base station and noise power, base 
station allows it to send data.  

IEEE 802.22 [3] is a time slotted MAC protocol for 
infrastructure-based CRNs. In this standard, base station 
uses a hierarchy of frames to sense the vacant spectrum, 
inform CR users of it and knowledge of active primary users 
in the area to the CR users. The key features of the 802.22 
are extensive sensing, channel recovery and co-existence of 
different users. 

A game theoretic dynamic spectrum access DSA driven 
MAC protocol [4] is a hybrid protocol as it random access 
scheme for control signals where as time slots for data 
transmission. This MAC is cluster based and game policy or 
access rights for channel utilization are controlled by the 
cluster head. There are four main parts of this MAC 
protocol, namely, DSA algorithm, clustering algorithm, 
negotiation mechanism and collision avoidance mechanism. 

2) MAC protocols for ad hoc-based networks 
These protocols are also divided into three main 

categories, i.e., random access, time slotted and hybrid 
protocols. 

Dynamic open spectrum sharing (DOSS) MAC [6] is a 
random access MAC protocol. Multiple radio transceivers 
are used for data, control and busy tone transmission. This 
protocol solves the hidden node and exposed node problem. 
The drawback of this protocol is that most of the band is 
utilized for control and busy tone information.  
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Distributed channel Assignment (DCA) MAC [7] 
protocol is an extension of 802.11 CSMA/CA protocol. It is 
a random access MAC protocol. The main drawback with 
this protocol is the dedicated common control channel 
which results in the wastage of spectrum. 

The single radio adaptive channel (SRAC) Mac [8] 
protocol can use and combine the spectrum band depending 
upon the need of the user. This is a random access MAC 
protocol and in this protocol, a single radio is used for 
sending and receiving data but using cross channel 
communication, data is send on one spectrum band and 
received on the other. The drawback is the unnecessary 
overhead.  

Time slotted Cognitive MAC (C-MAC) [10] uses 
multiple radios to achieve high throughput. This protocol 
aims at two channels one is rendezvous channel RC, which 
is the freest channel on the network and is used for nodes 
co-ordination and primary users’ detection and other is the 
backup channel. The problem with this protocol is also the 
RC itself. Availability of a channel for a longer period is 
quite difficult.  

A full duplex Multichannel MAC protocol for Multi 
Hop CRN [14] is also a multi radio MAC protocol. It uses 
two radios, one for transmitting and second for receiving 
packets. This protocol reduces the communication delays by 
allowing node transmit and receive packet simultaneously at 
different radios. 

Synchronized MAC (SYN-MAC) [12] is a multi radio 
hybrid protocol. This protocol allocates each channel a time 
slot. In the beginning of a time slot, nodes tune to a 
particular channel and the node who wish to communicate, 
can exchange control packets. On negotiation, one of the 
free channels among both nodes is selected for data 
transmission. Problem with this protocol is that primary user 
protection and efficient channel utilization is not taken into 
account in this protocol.  

IV. SIMPLE SEQUENTIAL MAC FOR CRN 

LEARNING 

This section describes the development of a simple 
sequential MAC for Cognitive Radio networks which can 
serve as a demonstrative example for an entry level 
researcher in the field of CRN. Although they are number of 
example available in CRN extension of NS2 like MACng 
and MACngenhanced [13], but they create lot of confusion 
for the starter. They do not provide clear distinction of 
primary and secondary users and random assignment of 
channels to the primary user during runtime (simulation 
time) creates lot of confusion in reading of the results from 
the trace file. Apart from this, they send strategy packets 
(Control packet) to let the receiver know that on which 
channel they will send the packets at the start of simulation 
that violates the basic rule that cognitive user should search 
the channel during runtime. All other MAC protocols, as 
described in section III contains too much complexity for a 
new researcher to understand. So a new MAC protocol was 
developed which can serve the following purposes 

 
• Primary Focus on DSA 

• Same MAC for Both primary and secondary users 

• Should have clear distinction of Primary and Secondary Users 

• Primary User should remain on One assigned channel 

• Only Secondary User should search the available channels 

during run time 

• Number of Total channels should be known to every node 

• Channel should be visible to MAC as numbers and not as a 

range of frequencies, that should be handled by Physical layer 

• Primary user can be detected on reception of the packet from 

primary user 

• On detection of primary user, secondary user should vacate the 

channel and shift to next channel, after last channel, it should 

jump to first channel. 

• Primary user on reception of packet from the secondary user, 

just drop the packet and ignore the secondary user. 

A. Modifications in NS2 to Support Simple Sequential MAC 

for CRN 

Numbers of changes were carried out in NS2 to support 
this MAC protocol. Decision that node is primary user or 
not and if it is primary then which channel it will be going 
to use, was done in TCL simulation file. 

 
$node_(5) set isprimaryuser 1 

$node_(4) set isprimaryuser 1 

$node_(5) set chanis 2 

$node_(4) set chanis 2 

 
In the above example, node 5 and node 4 were made 

primary users and channel 2 was assigned to both of them to 
be used as sender and receiver. 

Values coming from TCL file were bind in 
common/mobilenode.cc with two variables which were 
declared in common/mobilenode.h isprimaryuser and 
chanis, in constructor function  

 
bind("isprimaryuser",&isprimaryuser);         

bind("chanis",&chanis); 

 

To access these variables in MAC, two more functions 
were developed in common/mobilenode.h 

  
int IsPrimaryUser() { return isprimaryuser;} 

int ChanIs() { return chanis;} 

 
First function will let the MAC of node know that it is 

primary user or not and second will describe the channel 
being used by that node. In order to detect that packet has 
come from primary user or cognitive user; new fields were 
added in the common/packet.h file in header field, 
fromprimaryuser and fromCRuser. Purpose of both the 
fields are self explanatory that the sender of primary will set 
the fromprimaryuser field and cognitive user will set the 
fromCRuser field in the packet header and receiver will 
identify the sender by these fields in the received packet. 

Another field that is very important added by CRN 
extention is channelindex_; it was used to send the channel 
number with the packet and also helps to tune the physical 
layer (MAC/phy.cc) with the corresponding channel. 
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 nchannel= hdr->channelindex_; 
 

As the primary channels had one fixed channel so they 
were tuned statically  

 

 

 

if(node()->nodeid()==5  || node()->nodeid()== 4) 

{ 

nchannel=2; 

} 

B. MAC Modification 

Flow of our MAC protocol is shown in Figure 2. In 
order to implement this, we had chosen the Simple MAC 
protocol for wireless networks, already available in NS2, to 
be modified. This is a very simple protocol without control 
frames and send packet whenever it finds the channel free. 

As all the working depends upon the detection of 

primary user on reception of the packet so firstly ‘send’ 

function was modified that if the node is primary or 

secondary, it should send its information in packet header. 

 

if(((MobileNode*)(netif_->node())) -> 

IsPrimaryUser()==0) 

{ 

ch->fromCRuser=1; 

ch->fromprimaryuser=-1; 

ch->channelindex_=recvchan; 

} 

else 

{ 

ch-> channelindex_=((MobileNode*)(netif_-> 

node()))->ChanIs(); 

ch->fromCRuser=0; 

ch->fromprimaryuser= ch-> channelindex_; 

} 

 

A variable named recvchan was added in the mac-
simple.h file to be used as a channel number in the MAC 
Cognitive user sends channel number in channelindex_ 
whereas primary user sends its fixed channel number in 
fromprimaryuser header field.  

At the start of the ‘receive’ function, all the primary 
nodes are tuned to their corresponding channel where as 
cognitive users are tuned on the basis of recvchan. 

 
if (index_==4 || index_==5) 

{ 

chan=2; 

recvchan=chan; 

} 

 

In the above example, node 4 and node 5 are tuned to 
channel 2 and its recvchan is also modified 

In ‘receive’ function, modifications were made to detect 
if the current node is primary and packet is coming from 
secondary user, if this is so, packet should be dropped in the 
receive function. 

 
int isprimaryuser = ((MobileNode*)(netif_-> 

node()))-> IsPrimaryUser; 

if(isprimaryuser==1 && hdr->fromCRuser==1) 

{ 

Packet::free(p); 

return; 

} 

 

In case if the current node is secondary and above 
condition does not execute, then packet is either coming 
from primary user or any other cognitive user. If packet is 
from primary user, then recvchan that is carrying the current 
channel number of the node is incremented. After 
increment, if channel number goes beyond the total number 
of channels then it is tuned to first channel again. 

 
if(isprimaryuser==0 && hdr-> fromprimaryuser !=-1) 

{ 

Totalchannels = ((MobileNode*)(netif_-> 

node()))-> number_of_channel; 

 

recvchan++; 

recvchan= recvchan % Totalchannels;  

} 

 

This portion of code can be modified to a better channel 
selection scheme, but we had chosen it to be simple 
sequential for understanding and learning purpose. If this 
portion of the code doesn’t execute, it means two cognitive 
users are trying to use a single channel, rest of the receive 
function code was not modified to use the functionality of 
simple MAC i.e., adding jitter time in case of collision of 
CR users.  

 

 
Figure 2. Flow of Simple Sequential MAC for CRN 

 

V. SIMULATION AND RESULTS 

We had taken the scenario presented in [16] and 
compare the average throughput result of Simple Sequential 
MAC with IEEE 802.11 [15] and FD-CR MAC [14] at 
single node. There was a total number of 30 nodes. Among 
them two nodes were taken as cognitive where as all of the 
rest were primary nodes. At least a Pair of primary nodes 
was on each channel among total of 12 channels. Simulation 
Time was taken as 100 sec with varying number of active 
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(sender) nodes; initially the number was 5 including one 
cognitive, which increases as 10, 15, 20, 25 and 30. 

 
 

TABLE II.   SCENARIO 1 

Parameter  Value  

Data rate  11Mbps  

Transport protocol  UDP (Random option ON) 

Simulation time  100Sec  

# of data channels  12 

TABLE III.  SCENARIO 2 

Parameter  Value  

Data rate  1,10,50,100,500, 1000 Kbps  

Transport protocol  UDP (Random option ON) 

# of data channels  12 

Packet Size 512 bytes 

  
  

 
Results (see Figure 3) have shown that Simple 

Sequential MAC has produced average result and this is due 
to the fact that we had compensated the efficiency for 
simplicity in channel selection scheme. Average throughput 
of Simple Sequential MAC was reasonable until the number 
of active nodes were 11 because MAC was able to find the 
free channel but afterward on each channel there was at 
least one primary user which had high priority then 
cognitive user so he had to leave the channel and as a result 
throughput decreases sharply. As compared to it, throughput 
of FD-CR had remained almost constant due to Multi-Radio 
usability and better channel selection scheme. 

In scenario 2, we had tested the effect of primary user 
traffic on cognitive user throughput. We had deployed 24 
primary nodes on 12 channels, one pair on each channel and 
one pair of cognitive nodes, i.e., total of 26 nodes. Data rate 
of cognitive sender node was set to 11 Mbps where as it is 
varied from 1, 10, 50,100, 500 and 1000 Kbps among 
primary nodes. 

Results (see Figure 4) have shown that throughput of 
secondary user node decreases sharply as the primary users’ 
activity increases. As there were no free channels, cognitive 
users find really hard to carry out their communication.  
 

 

 

 

 
Figure 4. Effect of Primary User’s Traffic load on Secondary User’s 

Throughput 

VI. CONCLUSION 

Cognitive Radio networks recently have become an 
active topic among wireless network researcher as it 
promises to solve the issue of ever growing demand of new 
spectrum. By sharing the unused portion of the licensed 
band with the unlicensed users, the entire spectrum can be 
fully utilized. In this paper, we have surveyed the MAC 
protocols for CRNs and listed out the issues among them. 
As the idea of CRN is complex and not easily 
understandable for an early researcher, we had developed a 
Simple Sequential MAC protocol which can be taken as 
demonstrative example for CRN. Results of this MAC 
protocols were not as good in terms of efficiency as of 
earlier published MAC protocols and the reason is that we 
had compromised efficiency for simplicity.  
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Abstract—The application of frequency-agile communica-
tions techniques, or Dynamic Spectrum Allocation (DSA), have
proven to be effective for adaptive communication in many
scenarios. In particular, DSA finds primary application in
wireless systems, such as cognitive or software-defined radio.
In this work, we implement a form of DSA which uses weighted
statistical analysis of channel parameters and a heuristic
decision process. This algorithm selects and prioritizes the
most favorable subcarriers for multicarrier, frequency-division
transmission while avoiding arbitrary spectral obstructions in
occupied channels. We validate this technique in the context
of “Smart Grid” communication, which provides a very useful
means of exercising the capability of the algorithm.

Keywords-Dynamic spectrum allocation, DSA, cognitive ra-
dio, power line communcations, Smart Grid, Frequency Divi-
sion Multiplexing, FDM

I. INTRODUCTION

This paper presents an algorithm designed to analyze a
transmission channel and prioritize appropriate subcarriers
for use in subsequent transmissions. The algorithm forms
a subset of the processing required to achieve “Dynamic
Spectrum Allocation” (DSA) in a communication system.
The collection of DSA techniques ranges from simple,
efficient, and non-robust energy measurements [1]–[4] to so-
phisticated, resource-intensive, and robust pattern matching
algorithms [5]–[7]. In most cases, DSA algorithms are used
in wireless communications systems where spectrum is over-
used, or has been allocated by regulatory means [8].

In this work, we use a combination of subband energy
measurements, statistical characterizations, and heuristic de-
cision making to produce a robust channel selection al-
gorithm which can be used for DSA in cognitive radio
or other transmission schemes where bandwidth is scarce,
such as power line communications (PLC). The algorithm
selects and prioritizes the subcarriers while avoiding spec-
tral obstructions in occupied channels. Since the approach
uses particular statistical metrics to sort and rank channel
parameters, we use the description “Mean-based Spectral
Moment Algorithm”, or MSMA. The MSMA algorithm is
intended to be a component of a larger, more complicated
multicarrier communication system. As a result, discussion
of specific modulation schemes, access control algorithms,
protocol structures, or other higher-layer topics is beyond the

scope of this paper. However, we refer to basic modulation
techniques during the evaluation of the algorithm.

A particularly interesting use of MSMA may include
application in a “Smart Grid” communication system, com-
prising a low-bandwidth management network for metering,
utility monitoring and pay-per-use electrical power [9]. To
clearly distinguish this application, we present MSMA in the
context of low-bandwidth, low-frequency communication on
a power line channel.

The remaining sections of this paper discuss various as-
pects of adaptive channel allocation, the MSMA algorithm,
and the power line as a communications channel. Section II
discusses challenges and features of the power line channel
which can be leveraged by MSMA. Section III describes
the MSMA algorithm, and Section IV presents simulation
results for the MSMA algorithm in a power line channel.
Finally, Section V discusses conclusions and proposes future
work on the MSMA algorithm.

II. CHALLENGES OF POWER LINE COMMUNICATIONS

The concept of communicating over existing power in-
frastructure is not new. Several well-known systems and
technologies allow local, home based communication be-
tween devices and so on [10]. There is a clear distinction,
however, between these existing systems and the appli-
cation of the MSMA algorithm in a PLC scenario. The
main objective of the MSMA algorithm is to facilitate
one-way, upstream communication between end hardware
(meters, charging stations), grid hardware (transformers,
troubleshooting equipment) and the serving substation. In
this scenario, attenuation and noise constraints in the channel
are important concerns, but effective navigation around
established power quality regulations are perhaps more
significant. Power quality requirements can be found in
national and international standards [11], [12] which impose
limits on parameters related to voltage/current fluctuations,
harmonic distortion, transients, and noise. Most of these
limits focus on measurements at the “point of common
coupling,” or the intersection between utility and consumer
terminals [13]. In addition to these regulatory limitations,
the natural characteristics of the power line channel offer a
very interesting and difficult challenge.
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This application focuses on transmitting data “upstream”
in the distribution grid, from end-user applications to the
substation, without relays or amplifiers or transformer by-
passes. The network properties of the distribution grid
severely limit the frequency range that may be used. The
main factor contributing to the frequency limitation seems
to be related to the frequency response or admittance of the
transformers used in power distribution. A simple model of
this admittance characteristic shows a sharp notch passband
around the fundamental (50-60Hz) and a “high admittance
lobe” from approximately 200 Hz to 2 kHz [14]. This
high-admittance lobe varies depending on the quantity, type,
and even the brand of the transformers present in the
distribution grid, and the band-edges of the lobe are time
variant. Thus, for a communication signal to effectively
transit the distribution grid and not interfere directly with
the fundamental, it must be within this high-admittance lobe.
This limitation reduces the methods of modulation and the
effective bandwidth of low-frequency PLC.

Power line systems also experience varying attenuations
and phase distortions for signals within them. Upon inves-
tigating the conditions of the power line it can be seen
that it has constantly changing topology and, in fact, is
a time variant system. This makes it exceedingly difficult
to deal with the many changes that can occur in order to
locate a suitable frequency band for communication. Further
increasing the complexity of the problem is the fact that
there are a large number of connected devices which cause
interference, and which present time-varying loads. This
complex channel topology creates a unique challenge and
a good proving ground for frequency-agile communication
schemes.

III. THE MSMA ALGORITHM

The goal of any adaptive communication algorithm is to
analyze channel conditions and send data as efficiently as
possible while minimizing error. Depending on conditions
in the channel, techniques to maximize transmission quality
vary widely, but most methods attempt to exploit consistent,
unique characteristics of the channel to maximize desirable
output. In the case of the power line, the presence of a
large amount of energy at the fundamental frequency (60Hz
in the U.S., for example) is well-known. The remaining
frequency space of the channel is cluttered by reduced-
amplitude harmonics of the fundamental (typically odd), as
well as a significant amount of transient noise. This noise
can be temporal or pseudo-stationary as well as broadband
and relatively uncorrelated [15].

The concepts behind policy based cognitive radio systems
can be leveraged for adaptive powerline communication
[16]. Constant monitoring of the channel and continuous
adaptation to avoid interference with the primary channel
user is very important, as powerline conditions are extremely

dynamic. Additionally, routing aware channel selection al-
gorithms, such as those proposed for IEEE 802.11s mesh
networks [17] can be leveraged effectively for powerline
communications. As in cognitive radio, such active selection
algorithms constantly scan and monitor channel conditions,
but the mesh algorithm uses uplink and downlink airtime
cost as a key decision making factor.

Similar to cognitive radio systems or mesh network rout-
ing algorithms, the MSMA algorithm is a technique for
analyzing a given frequency spectrum, discovering a number
of potential transmit channels, using calculated statistics
to rank these potential transmit channels, and producing a
vector of suggested transmission carrier frequencies to be
used by the transmission subsystem(s).

To achieve this outcome, the MSMA algorithm attempts
to exploit the regulated nature of power-line harmonic peaks,
transmitting inside the low interference areas of the power-
line spectrum. The MSMA algorithm also places high values
on potential transmit bands inside the “high admittance lobe”
of the distribution grid, ranking potential channels with
a weighted combination of mean, variance, and fit within
transformer admittance limits. After calculating appropriate
ranking values for subcarriers, potential channels can be
sorted, and carrier frequencies and amplitude values selected
to transmit in the “best” areas of the channel. Figure 1 shows
a high-level flow diagram of the processing implemented by
the MSMA algorithm.

There are several important conditions that must be met
for this application of the MSMA algorithm. The most im-
portant condition is that transmission must not interfere with
any powerline harmonics. The location of these harmonic
frequencies is loosely defined by Eqn. 1 for positive integer
values of n.

Fh(n) = (60Hz)(2n− 1) (1)

Using the values from a Fast Fourier Transform (FFT)
of the channel activity, statistically favorable areas in the
spectrum are found. To accomplish this, the fact that power-
line harmonics are generally well regulated and stand far
above the noise levels in the channel is utilized. The index
values of these spikes are used as markers, and statistical
data is computed related to the areas between harmonics.
This data, weighted using application specific weighting
factors, allows for quantification of the transmit channel
decision making process, and channel ranking based on
mean and variance. To avoid false positives, it is imperative
to remove values near the peak. Once the index values of
the spikes are found, it is relatively simple to calculate mean
and variance of the “nulls” between spike indices.

IV. IMPLEMENTATION AND TESTING

The MSMA algorithm utilizes several statistics taken from
spectral analysis of an input waveform. Specifically, the
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Figure 1. MSMA decision-making process.

mean and variance about mean of particular sections of the
input waveform are utilized to create a detailed ranking of
potential transmit channels. To calculate these statistics, an
FFT of 2048 points is used to transform a time domain input,
sampled at 8 kHz, into a frequency domain representation.
In accordance with Eqn. 2, this means that each FFT bin
represents 3.9063 Hz.

Hz
bin

=
sampling frequency

FFT length
(2)

Stepping through the input spectrum, maximum values
and their corresponding indices are stored in an array. The
number of maxima stored depends on user specifications.
For this implementation, the 15 largest maxima were more
than sufficient. Once a harmonic maximum is found, the
usual sample mean (3), sample variance (4), minimum val-
ued bin index, and allowable bitmask is stored in the array,
alongside the peak bin index and maximum bin value. In
this case, the allowable bitmask is a binary value indicating
whether the candidate subcarrier lies inside the channel’s
admittance profile.

x̄ =
1

N

N∑
i=1

x(i) (3)

s2n =
1

N − 1

N∑
i=1

(x̄− x(i))2 (4)

Finding these maxima is not a trivial task. To find accurate
maxima for this particular implementation of the MSMA
algorithm, a bitmask is shifted to center about the index
of the spectrum’s current maximum bin. This bitmask is
then multiplied by the input spectrum to annihilate the local
maximum and neighboring elevated values. This action is
repeated as many times as necessary to find the remove the
requisite number of peaks and associated potential transmit
channels. When sufficient maxima are found and associated
statistics calculated, a weighted “ranking index” is computed
which combines x̄, s2n, and admissibility parameters, as
shown in Eqn. 5.

Ri = km
x̄

AVG(x̄)
+ kv

s2n
AVG(s2n)

(5)

The set of “ranking indices” is used to prioritize sub-
carriers using a two-stage, masked sorting process. First,
the admissible subcarriers are ranked above non-admissible
subcarriers. Then these two groups are sorted in ascending
order based on ranking index.

A variable width bit mask is used to center on the index
of the maximum frequency. The input spectrum is then
multiplied by the bit mask, eliminating the found maximum
and surrounding high values. A new maximum value is
then found and the elimination process repeated. This “find
maximum, then annihilate” process is repeated until the req-
uisite number of peaks is found. Once these peak indices is
established, it is assumed that these values correspond with
the regulated odd-harmonic peaks of the supplied power.
The minimum valued bin index within the potential transmit
channel is then located and stored in an array. This potential
transmission frequency remains linked to the corresponding
channel during the ranking process. By calculating the mean
and variance of the following spectrum, the transmission
potential of these transmit channels is quantified and used
to rank the channels from best to worst.

This method is classified as O(n), where n corresponds to
the spectrum array length to be analyzed. Once the number
of potential transmit channels is specified, the speed of
the algorithm itself will only vary based on input length.
The only thing that may affect this categorization is the
construction of the max() operation, which may scale
differently depending on input array length. It is assumed
here that the max() operation is O(n), and is the primary
limiting factor in algorithm decision speed.

Obviously, this technique would need adjustment in order
to accommodate multiple users, but the mean and variance
based ranking concepts behind transmit channel choice
should remain valid.
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Admissible region

Admissible region

Figure 2. Frequency domain representations of MSMA transmitter output
with admittance windows of 400 Hz to 800 Hz and 400 Hz to 1400
Hz, respectively. The admittance window restricts admissible subcarrier
frequencies.

All of the following graphical samples were taken by
applying a Hanning window to the input, followed by a
2048 length FFT. The channel denoted by CH1 in red in
the graphic legend of each figure, represents the result of
feeding the MSMA algorithm output into a low-rate BPSK
transmitter. The channel denoted as CH2 in blue, shows the
spectral content of the input data.

A. Transmit Channel Ranking

Figure 2 shows transmit peaks shifting upward in fre-
quency, to the spectral regions with lower average power
and activity. This is a natural tendency of the algorithm, as
the transformer filtering reduces both noise and harmonic
presence. For these same reasons, correct adjustment of the
high-admittance window is vital in order to avoid losses in
transmitted signals. The effect of the admittance window
is evident in Figure 2 where subcarrier frequencies are
restricted to particular spectral regions.

B. Transmit Channel Noise Avoidance

Figure 3 shows the micro-adjustment of transmit fre-
quency, based on centering the transmission frequency at
the minimum valued bin index. The top graph has no delay,
while the middle graph has a 1 buffer sample delay (1600
input samples), and the bottom graph has a 2 buffer sample
delay (3200 input samples). In the figure, vertical dotted
lines denote the original positioning of subcarriers (top plot),
and arrows indicate micro-adjusted subcarriers (subsequent
plots). Micro adjustment of the carrier frequency is used to
center transmission over low power areas of the transmit
channel. By using the minimum valued index from the
chosen channel, interference is minimized, producing a
superior bit error rate.

C. Reaction to Changes in Channel Conditions

Figure 4 shows a clear example of channel adaptation
based on changing input conditions. All channels are shifted
downwards in response to increased noise in the upper
region of the spectrum.

V. CONCLUSIONS AND FUTURE WORK

Future enhancement of the MSMA algorithm may include
using different approaches to scan the incoming FFT data
or may include alternative approaches to spectral estimation.
For example a sliding discrete Fourier transform (DFT) or
a sliding Goertzel algorithm [18] could work through the
input spectrum in small blocks, find areas with the lowest
power, and send data out to transmit at these points. The
Goertzel algorithm is mentioned here because of its use
in telecommunications networks for Dual Tone Multiple
Frequency (DTMF) tone detection which could be extended
for detecting signaling tones that would act as control
indicators in PLC.

Additionally, advanced statistics such as curve fitting,
elimination of outliers, and specialized metrics could be used
to find a more exact center for transmission as well as more
effective analysis of channel superiority.

Overall, the MSMA algorithm has potential application
in “Smart Grid” communication systems to enable direct
adaptation of channels or subcarriers. The key concept for
this algorithm is dynamic adaptation. As in cognitive radio
and mesh networking systems, the MSMA algorithm is
adaptable, able to quickly and effectively make decisions
about the location of optimal transmission regions in a
given spectrum, as long as the spectral characteristics of
the channel are well defined. This could be valuable for
audio processing, statistical data-mining, and transmissions
in other channels with well defined spectral tendencies.
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Figure 3. Micro-adjustment of transmit peaks to maximize SNR. The top plot shows initial positioning of subcarriers. Subsequent plots show subcarrier
micro-adjustment relative to the initial positioning (vertical dotted lines).

Broadband noise in
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Figure 4. Example of transmit channels adapting in response to wideband noise interference above 1 kHz.
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Abstract— Cognitive Wireless Sensor Networks is an emerging 
technology with great potential to avoid traditional wireless 
problems such as reliability, interferences and spectrum 
scarcity. Because of the Wireless Sensor Network fast growth 
and the use of batteries, current rate of power consumption 
per unit of data cannot be sustained. Therefore, one of the 
major challenges face today is low power consumption in 
Wireless Sensor Networks.Cognitive Wireless Sensor Networks 
framework is a key issue in green communications because of 
many protocols, strategies and optimization algorithms could 
be tested. In this paper a framework composed of a network 
simulator with cognitive capabilities and low power Cognitive 
Wireless Sensor Networks real devices with a feedback relation 
is presented. The benefits of the proposed framework are 
demonstrated with three different scenarios and simple 
cognitive green communications strategies. Results show how 
new concepts have been integrated in the framework with good 
results and as simple cognitive radio strategies can reduce 
large amount of power. 

Keywords-cognitive; framework; low power design; 
wireless sensor networks 

I.  INTRODUCTION  

Wireless network power consumption has not been an 
important research issue because it has been insignificant in 
comparison with wired network consumption. Over the 
recent years, wireless and mobile communications have 
increasingly become popular with consumer. According to 
[1], global mobile data traffic will increase 26-fold between 
2010 and 2015 (in 2010 global mobile data traffic grew 2.6-
fold). Mobile data traffic will grow at a compound annual 
growth rate of 92 percent from 2010 to 2015, reaching 6.3 
exabytes per month by 2015. Taking into account this 
prediction, the current rate of power consumption per unit of 
data cannot be sustained. 

In regards to wireless networks, one of the fastest 
growing sectors in recent years was undoubtedly Wireless 
Sensor Networks (WSN). According to the report [2], WSN 
market will grow rapidly from $0.45 billion in 2011 to $2 
billion in 2021. WSN are increasingly introduced into our 
daily lives. Potential fields of applications are from home 
control to military scenarios or critical information 
infrastructure protection. In this kind of scenarios, lifetime of 
the nodes typically ranges from 2 to 5 years, making power 
consumption a dramatic requirement to establish. Thus, 

reducing energy consumption is one of the most important 
challenges to face when designing WSN. 

Recently, to increase lifetime (as well as other very 
important problems like spectrum scarcity, interferences or 
reliable connections), most WSN rely on the new cognitive 
paradigm. Cognitive Network is an intelligent wireless 
communication system that is aware of its surrounding 
environment, and with the possibility to adapt its internal 
parameters to achieve reliable and efficient communications 
(in terms of power consumption too) [3]. This solution 
benefits from “free” environmental energy according to the 
“green” philosophy, which is to reduce the carbon footprint 
and to improve reliability of power supply automations.  

In order to enable design and development of new green 
protocols and power reduction techniques for Cognitive 
Wireless Sensor Networks (CWSN) and evaluate their 
performance, simulation and emulation environments are 
necessary. The challenge in simulators is to determine if 
these simulations provide us a good enough correspondence 
with real deployments. In this paper, a complete simulation 
and emulation framework for CWSN using regular standards 
is presented. The simulator is based on the Castalia simulator 
including all the cognitive modules. The simulations are fed 
with real CWSN devices to provide a more realistic 
approach.  

The organization of this paper is as follows. In Section 2, 
works in CWSN simulator and emulator frameworks are 
reviewed. In Section 3, new CWSN framework is described. 
In Section 4, a proof of concept is shown. Finally, the 
conclusions are drawn in Section 5. 

II. RELATED WORK 

Because of the novel research field, there are not many 
specific frameworks for green communications design over 
CWSN. It is natural that most of works are based on WSN 
simulators.  

There are several WSN simulators used by researchers to 
develop their works. For example, NS-2 [4] is one of the 
most well-known simulators. Most of the WSN research 
society uses this simulator, although the latest release was in 
2008. NS-3 will be its substitute, but it is still in the early 
stages. OMNET++ [5] is another framework very well-
known among researchers. It proposes a modular library 
which could be used to develop network simulators. Only by 
composing different modules, the developer can create its 
own simulator or scenario. 
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Several other simulators have been developed for WSN. 
TOSSIM based on the TinyOS operative system, COOJA, 
OPNET, GloMoSim, JSim, NetSIm, QualNet, etc. are more 
WSN simulators without cognitive features.  

In [6], Vijay, et al. show different approaches to CWSN, 
like architectures or techniques. Inside the techniques 
section, an implementation of cognitive solutions over 
OPNET simulator is mentioned [7]. They implement a 
comparison between standard ZigBee protocol and a new 
one with a CR mode, which can detect incumbent users. 
However cognitive features are basic. 

In SEnsor Network for Dynamic and cOgnitive Radio 
Access (SENDORA) FP7 project simulator platforms have 
been developed. In [8], the SENDORA system level 
simulator is described. The simulator is based on the network 
simulator NS2, enhanced with the Miracle extension, which 
provides the support of multi-layer, multistack architecture, 
and a more realistic propagation model to simulate different 
network protocols over the same physical channel. The 
Miracle modules are: 

 Sengine: manages the sensing information 
coming from the Sensing module. Optionally it 
manages the cooperative sensing 
communications. 

 WSNNet: takes care of routing issues. It fills 
the packet field related to the next hop for the 
communication. 

 WSNMAC: implements the S-TDMA based 
access scheme. Sensors are synchronized to a 
timeframe. 

 WSNPhy: manages the transmission power. 
Sensors use the minimum transmission power 
that allows them to receive and decode 
correctly all the packets with a given 
probability.  

 Sensing: implements the sensing process and all 
sensing algorithms.  

 Channels: simulates the transmission over a 
channel and enables the sensing process. 

Others, even more important aspects, such as 
collaborative spectrum sensing, information sharing or 
output data obtaining are not yet implemented in any CWSN 
simulator. 

A lot of work on CWSN simulation should be done in 
order to get the next step in the development cycle: the 
implementation. Only few works could be found on CWSN 
implementation. An example of implementation is [9]. The 
AUTOMAN system is used as a platform to create a 
monitoring application. The system controls power 
consumption and voltage fluctuation in a WSN. This is one 
of the first real systems that use cognitive capabilities to 
improve some network parameters.  

After the simulation stage, researchers usually use a test-
bed, before the real implementation. There are multiple test-
beds for specific developments. Two are the most important 
test-beds nowadays: TWIST [10] and VT-CORNET [11] 
because of their general purpose features and their quality.  

The TKN Wireless Indoor Sensor Network Test-bed 
(TWIST) is a multiplatform, hierarchical test-bed 
architecture developed at the Technische Universität Berlin. 
The self-configuration capability, the use of hardware with 
standardized interfaces and open source software make the 
TWIST architecture scalable, affordable, and easily 
replicable. The TWIST instance at the TKN office building 
is one of the largest remotely accessible test-beds with 204 
SUT (system under test) sockets, currently populated with 
102 eyesIFX and 102 Tmote Sky nodes. The nodes are 
deployed in a 3D grid spanning 3 floors of an office building 
at the TUB campus, resulting in more than 1500 m^2 of 
instrumented office space.  

The Virginia Tech COgnitive Radio NEtwork Testbed 
(VT-CORNET) is a collection of Cognitive Radio nodes 
deployed throughout a building at the Virginia Tech main 
campus. The test-bed consists of a total of 48 Software-
Defined Radio nodes. Test-bed is implemented with a 
combination of a highly flexible RF front end, and an openly 
available Cognitive Radio Open Source System framework. 

Research on CWSN simulators is emerging, but it is in a 
primary state. The simulation with a high number of nodes is 
necessary in WSN scenarios. It is very expensive to build a 
lot of real devices to test a concrete low power strategy. The 
integration of real data devices and a high number of nodes 
is only possible using a feedback relation. Currently, there is 
not a CWSN simulator with standard protocols and real 
devices feedback that uses cognitive characteristics for 
intelligent energy management in order to test new policies, 
to assess collaboration schemes or to validate different 
optimization mechanisms. SENDORA, the only simulator 
with cognitive capabilities does not use real device data for 
the power model. Therefore, an implementation of a new 
completely cognitive module over a WSN simulator, 
specifically Castalia Simulator [12], based on OMNET++ 
framework and a new CWSN device with three different 
radio standard interfaces is proposed. 

 

III. CWSN FRAMEWORK 

 Most common network simulators have tested energy 
models, but these are theoretical models covering general 
cases. So, it is necessary to introduce real measured data by a 
cognitive radio prototype developed to make these 
simulations become more realistic. Thus, it is also possible to 
find differences in commercial solutions using the same 
technology. 

Moreover, the deployment of a network of real devices is 
very difficult and expensive, especially a network with large 
number of devices. This is the great advantage of the 
introduction of simulators. By adding data taken from 
functional prototypes to simulation results, the accuracy of 
simulations is better. 

Thus, the combination of both elements results in a 
complete and useful framework to validate optimization 
mechanisms for energy consumption. 

 As seen in Section 1, cognitive characteristics are 
applicable to intelligent energy management. Thus, it is 
important to provide a CWSN Framework to test new 

35Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-197-7

COCORA 2012 : The Second International Conference on Advances in Cognitive Radio

                            40 / 71



policies, to assess collaboration schemes and to validate 
different optimization mechanisms.  

CWSN framework is composed of two fundamental 
elements: a network simulator and low power cognitive radio 
real devices.  

A. CWSN Simulator 

The CWSN simulator described in this section is based 
on the Castalia simulator. This base simulator has been 
chosen because it is focused on WSN, is based on 
OMNET++, which has a modular and simple 
implementation, and its physical layer and radio models are 
most realistic. For a good intelligent energy management 
mechanism simulation, the new simulator has to provide 
spectrum sensing capabilities, multiple frequencies, channels 
and modulations, Virtual Control Channel (VCC) to share 
cognitive information, primary and secondary users, an 
optimizer, and results and data graphical representation. 

Although Castalia simulator physical layer is one of the 
best ones compared with other simulators, a sensing block is 
critical for simulating cognitive networks. Castalia simulator 
supports most common modulations and is also prepared to 
include new ones. Moreover, some typical radios for WSN 
are included, such as CC1010 or CC2430. Interference is 
another important aspect of the sensing module. Detected 
noise in the spectrum is very important for the behaviour of 
the network. For this reason, the interference model should 
be very precise. 

It is mandatory to implement real different wireless 
radios in each node allowing changes in all the interesting 
parameters: modulation, transmission power, consumption, 
etc. Each wireless interface is associated with a power 
consumption model. The consumptions model are described 
in a file where reception modes, transmission power levels, 
delay transition between different power mode matrix, power 
transition matrix, and different sleep levels power are 
defined. Researchers can easily add new features (sleep 
mode, transmission parameter). 

Cognitive networks can be distinguished from others due 
to the adaptation of their parameters according to 
information gathered about the environment. It is very 
important that the information could be shared between 
nodes. A Virtual Control Channel (VCC) has been 
implemented for that purpose. The low power protocol-based 
mechanisms need all the network information for a correct 
optimization. 

Normally, WSN simulators make differences in the 
nodes only when the technology implements it. For example, 
coordinators and end nodes on ZigBee protocol. In a CWSN 
simulator, a new difference between nodes should be 
implemented: primary users (PU) and secondary users (SU). 

Finally, when the simulator executes an application or 
scenario, the developer needs a simple way to extract the 
results. For that requirement, changes in the resource 
manager module are necessary. 

Once the requirements have been explained, the CWSN 
simulator will be described on detail. 

Castalia structure has been modified in order to provide 
the simulator with Cognitive power manager support. Fig. 1 
and Fig. 2 show the new simulator structure. 

Fig. 1 shows the Castalia node internals. There are 
several radio interfaces, one resource manager and one CR 
module. The communication between nodes is through 
Virtual Control Channel (VCC). Application uses sensor 
manager as physical interface. 

In Fig. 2, the CRModule internals are showed. There are 
four main components: repository, optimizer, policy, and 
executor. Access is the VCC interface.   

 

 
Figure 1.  Castalia node internals adapted to cognitive radio 

 

Figure 2.  Castalia cognitive radio module (CRModule) internals 

Radio of the communication modules provides new API 
methods for changing the active channel. This change 
enables developers perform spectrum scans and hops among 
channels.  

These changes transform Castalia into a simulator 
capable of running cognitive experiments for green 
management design. The simulator is equipped with a new 
module which includes all these cognitive features, the 
CRModule. This module structure is composed of the 
following elements [13]: 
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 Repository: Which retrieves information about 
the local and/or remote nodes: information 
learned, decisions made or current state. The 
kind of information stored depends on the 
context and the requirements of the system. 
Some of the modules which feed the repository 
with information are: communication modules, 
applications, the resource manager and the 
optimizer. 

 Access: This module allows a local repository 
access to the repository of remote nodes. At the 
same time, it exports a subset of the local 
repository to remote nodes. 

 Policy: Enforces the requirements for the global 
system depending on several factors, not only 
power consumption, but interferences or noise, 
quality of service, etc. 

 Optimizer: It processes the repository 
information bearing in mind the requirements 
imposed by the policy module. Decisions 
regarding the behaviour of the local node are the 
results of these processes. They are stored in the 
repository and evaluated by the executor. 

 Executor: This module performs the decisions 
made by the optimizer. 

Since all the elements are developed as Castalia modules, 
they communicate and access each other via the OMNET++ 
message system. Besides, it provides the Virtual Control 
Channel (VCC), a new method for sharing cognitive 
information among the CR modules of the nodes. CR 
modules can access to exported information of remote 
repositories through this channel. It allows CR modules to be 
aware of their surroundings and, even, the whole network. 

Power model can be fed from real device measures. This 
framework uses real devices implementations to measure 
different power characteristics that are included in the power 
model. That feedback provides better accuracy and the 
simulation is closer to a real scenario. There are other 
features that are interesting, but very difficult to integrate in 
the simulator like fading or blocking. We are planning to 
continue integrating real features in the simulator to improve 
the accuracy. 

B. CWSN devices 

A test-bed platform to develop cognitive radio 
communications for WSN and to obtain power model data 
has been implemented (Fig. 3). 

CWSN device is looking for optimizing communications 
in real time according to different application needs. 
Therefore, the device design has to consider power 
consumption, data rate, reliability, and security in order to be 
useful for a large number of applications. 

For our goal, power consumption is a very important 
challenge. It is necessary to control the consumption of each 
separate component, and to implement shared strategies that 
try to reduce the overall consumption of the network. 

Interference with other wireless devices or noise 
problems has to be avoided, which implies that nodes have to 
change their frequency and modulation as fast as possible. 

For this reason the prototype has three different network 
interfaces. The reduction of interference can be an important 
factor to reduce the consumption of the network. 

CWSN need to connect to different kinds of standard 
commercial devices or internet gateways. Consequently a 
much extended-use wireless solution as an interface has to be 
implemented. 

This prototype has to be capable of collecting data about 
the state of the network and of sharing the information with 
other nodes. In addition, each node will be able to change 
protocol parameters, the entire protocol and wireless 
interfaces in real time. Thus, it is mandatory to coordinate all 
the network devices. 

Figure 3.  Cognitive Wireless Sensor Network Device prototype 

The control function is made by a Microchip 
PIC32MX795F512H, which is a 32-bit flash microcontroller. 
This is a high performance processor with low consumption 
and low cost. In addition, Microchip provides a lot of  

CWSN platform has three radio interfaces: 
 A WiFi Microchip device which can handle data 

rates of 2Mbps and uses a band operation between 
2.412 GHz - 2.484 GHz. WiFi is based on the IEEE 
802.11 standards.  

 MiWi interface, a Microchip protocol which can 
handle data rates about 250kbps and uses a band 
operation between 2.405-2.48 GHz. This is a 
proprietary wireless protocol designed by 
Microchip Technology that uses small, low-power 
digital radios based on the IEEE 802.15.4 standard 
for WPAN.  

 Last interface is based on Texas Instruments 
CC1010. It can handle data rate of 76.8kbps and 
uses a band operation around 868 Mhz. This 
interface provides a new communications band in 
an ISM frequency. 

Software has to discover other nodes, sense the radio-
electric environment, exchange configuration information, 
establish communication channels, and switch on or off the 
radio interfaces and sleep or wake up the node. The network 
manages data routes optimizing consumption, data rate, 
reliability and security. 

Three wireless interfaces have been used in this device, 
with different standards and protocols. The integration of a 
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new interface or device in the consumption model of the 
simulator is very easy. The real device measures and fill the 
file are only necessary 

IV. DEMOSTRATIVE USE OF THE FRAMEWORK 

In this section, the results of simulations related to green 
communications design are presented. The goal is not the 
algorithm or mechanism itself. The goal is to check that 
several new policies, collaboration schemes or optimization 
mechanisms can be implemented in this framework. 

The reduction of power consumption is a task that 
involves the overall design across all layers of the 
communication protocol. Focusing layer by layer, several 
strategies for optimizing the consumption can be listed for 
each level, but due to cognitive characteristics, address the 
problem of consumption holistically has more advantages. 

The opportunities to optimize energy consumption can be 
divided in three blocks: that get through the sensing of the 
spectrum, those related to the capability to change 
transmission parameters and those that depend on the ability 
to share knowledge of the network. Each scenario uses a 
strategy of a different block. 

First scenario is related to the capability to change 
transmission parameters. It is composed by five nodes with 
802.11 and 802.15.4 radio interfaces. Four nodes are sending 
data to the central node. In this scenario nodes simulate two 
different applications. The first one is a multimedia 
application where both bit rate and packet size are high. The 
transmission rate needs a WiFi interface while WPAN has 
not the capacity for multimedia applications. However, in a 
WSN, general applications have only sensing functions 
(temperature, light, etc.) where the bit rate and the amount of 
information are very low. In this case, the low-power 
optimization strategy consists on using the interface with less 
power consumption for a specific data rate. When the data 
rate is high only 802.11 is possible, but for a specific data 
rate 802.15.4, is better because of its less power 
consumption. This algorithm could be dynamically changed 
according to other constraints as battery life, distance 
between nodes or quality of service. Real data is used in the 
power model from a MRF24J40MA-based device for 
802.15.4 protocol and MRF24WB based device for WiFi 
transmissions. In the simulation the power measures over the 
CWSN device are included (Wi-Fi transmission 74.8 mW 
and WPAN transmission 3.6 mW). As shown in Fig. 4, when 
the data rate is high 802.11 is used for transmission, but 
when data rate decreases 802.15.4, is better because of its 
less power consumption. The second part of this figure 
(zoomed in Fig. 5) shows the consumption with WiFi and 
WPAN common sensing application with the same packet 
size and the same interval between messages.  

 
  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Power consumption for the Cognitive algorithm and WiFi 

Figure 5.  Detail of power consumption for the Cognitive algorithm and 
WiFi 

Using a low power protocol system saves the 94% of 
energy (Fig. 4). Only in the commutation period, where the 
nodes need to communicate the interface change, the 
consumption is similar to WiFi. After that, the energy saving 
is considerable. The second scenario simulates an application 
whose nodes send packets with the maximum payload 
allowed by the simulator (1000 bytes with 802.11 and 100 
bytes with our implementation of the WPAN protocol). The 
application starts sending a package every 10ms and the time 
is increased until the bit rate reached by 802.11 is supported 
by the WPAN protocol (reached at time 600). Fig. 6 shows 
how the consumption of WPAN in the first period of the 
simulation time is greater than WiFi because WPAN needs 
more transmissions for the same data. It means that 802.15.4 
does not reduce the consumption of every application with a 
low bit rate but a cognitive module choosing the right 
protocol in every time can achieve that goal. 
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Figure 6.  Power consumption for the Cognitive algorithm and WiFi 
(Scenario 2) 

The third scenario shows optimization through the 
sensing of the spectrum. It consists of two nodes with 
802.15.4 radio interfaces. One of them (the receiver node) 
moves through space and the other (transmitter node) is fixed 
(Fig. 7). Within the path of movement experienced by the 
mobile node, sometimes node B will be closer to the node A 
than others. In a common network design, the node A will 
transmit information with a power fixed. That makes that 
certain packets will lost (by distance between nodes) and 
others were transmitted with more power than necessary. 
Adding cognitive capabilities to this scenario, the network 
could be aware of the minimum power necessary to ensure 
the reception of packets while minimizing energy 
consumption. For this simulation, a power model real data 
from a MRF24J40MA-based device for 802.15.4 protocol 
has been used. 

Figure 7.  Mobile node scenario 

In Fig. 8, power consumption of transmission node (node 
A in Fig. 7) is shown. Dotted line represents the 
consumption of node A in a network without cognitive 
capabilities and the solid line shows the consumption of the 
same node when the low power consumption algorithm is 
added. Hanging power transmission in relation to distance 
between nodes can reduce power consumption. Using this 
simple algorithm implies a reduction of up to 60% in some 
sections.  

Increasing the complexity of algorithms or dealing with 
the problem of consumption in a holistic way (combining 
several techniques), it will be possible to obtain higher 
reductions. 

 
 

Figure 8.  Power consumption for the Cognitive algorithm and 802.15.4 
(Scenario 3)  

V. CONCLUSION AND FUTURE WORK 

WSN power consumption became an important problem 
to face because of the use of batteries and their fast growth. 
The new cognitive paradigm has appeared to cope with very 
important network problems like spectrum scarcity, 
interference or reliable connections. Cognitive network 
features open up new interesting research challenges. 
Cognitive capabilities have to be applied to green 
communication design in WSN.   

At this moment, it is important to provide a CWSN 
Framework to test new policies, to assess collaboration 
schemes and to validate different optimization mechanisms. 
In this article CWSN framework is presented. The 
framework is composed of a network simulator and low 
power CWSN real device. A new cognitive module has been 
developed over Castalia simulator and different real 
interfaces and power models have been integrated. CWSN 
platform has been build using a microcontroller and three 
different radio interfaces (IEEE 802.11, IEEE 802.15.4, and 
CC1010-based interface in 868 MHz band) because it is 
necessary to face different situations. This framework uses 
real devices implementations to measure different power 
characteristics that are included in the power model. This 
feedback achieves simulation results closer to a real scenario 
than regular simulator ones. 

The benefits of the proposed CWSN framework have 
been demonstrated by implementing three scenarios. Very 
simple low power optimization strategies have been 
implemented using this framework. Results show how new 
concepts have been integrated in the simulator with good 
results and how a simple cognitive radio strategy can reduce 
large amount of power.  

In conclusion, this framework represents a good 
opportunity for the development of new green wireless 
communications strategies for the new paradigm of CWSN. 
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Abstract—This paper deals with description of software
defined radio test-bed based on USRP2/N200 modules available
from ETTUS research. The aim of this test-bed is to develop
and test the algorithms for cognitive radio mobile networks.
The primary focus is on the spectrum sensing in moving
secondary users scenario, adaptation of the radio resource
parameters and evaluation of sensitivity to security threats in
the mobile cognitive radio networks. Besides the overall archi-
tecture description, the paper presents used way to emulate the
signals of various communication and broadcasting systems -
designed incumbent system simulator and describes the basic
implemented blocks - simple OFDM modem, spectrum sensing
based on the cyclic prefix correlation and modified method for
OFDM subcarrier allocation adaptation.

Keywords-cognitive networks; sensing; resource allocation,
attacks.

I. INTRODUCTION

The Cognitive radio (CR) idea was introduced by J. Mitola
[1] as a promising concept bringing more personalized,
reliable and inteligent way of data transmission. The key
component of the nowadays cognitive radios is the dynamic
spectrum access to improve the spectrum utilization in wire-
less communications. In such concept, all the cognitive radio
users are divided into the primary (PU) and the secondary
(SU) users. The primary users hold the rights to access
the spectrum resources, while the secondary users scan the
frequency spectrum (try to detect a spectrum holes in time
or frequency domain) and adapt transmission parameters to
actual available communication channel.

The application of cognitive radio principles are currently
being included into several standards. As the examples, it
is possible to mention the IEEE 802.22 [2], IEEE 802.11af
standards or recently started standardization process of IEEE
1900.7.

The critical technical problem of CR is the reliable detec-
tion of the primary user’s signals. Two main approaches can
be considered - spectrum sensing or geolocation. High reli-
ability is required even in case of low signal to noise ratios
in order to prevent the interference to incumbent (licensed,
primary) users. The spectrum sensing algorithms [10], [3]
are often unfortunately not able to provide the required
reliability and the decission result is always known with
some probability of detection and false alarm probability.
The interference of secondary users to primary system has

been studied in detail in [9]. Note that up to now, the research
of cognitive radio has been primarily oriented to static
primary and secondary users. An example of more recent
work oriented to mobile scenario is [6]. Besides the theo-
retical concepts and analysis, the experimental evaluation of
cognitive radio principles is in progress on specialized test-
beds or on the test-beds created using commercialy available
radio modules, like the one using USRP’s described in [8].

This paper is structured as follows. Section II describes
the HW architecture, Section III presents the SW archi-
tecture and the basic security threats are described in the
Section IV. The paper is summarized in Section V.

II. HW AND ARCHITECTURAL DESCRIPTION

A. General description

Similarly to paper [8], the test-bed under development
makes use of commercially available Universal Software
Radio Peripheral (USRP) modules, in their current version
USRP N200 (eventually we use USRP2). The USRP’s can be
programmed through a GNU radio, a MATLAB environment
or with the use of UHD drivers. As the alternative, it
is also possible to use a LabView software produced by
National Instruments. The later will be also considered for
the future implementation, our current work is made in
Simulink/Matlab environment.

According to the general idea, several primary users (PU)
share the geographical area with the secondary users. The
cellular configuration is assumed. Due to the PU user’s
mobility, the PU can change its current cell. The secondary
users are created using USRPN200 (N210/2) hardware
equipped with radio frequency daughtercards. The primary
users are created using either the USRP (in its original
version) transmitting the signals stored in the memory or
FPGA based system is used. Moreover, due to the same
OFDM technique used for PU’s and SU’s, each secondary
user can be reconfigured to primary user mode simulating
OFDM user defined signals.

Three modes of operation will be possible:
• Non-cooperative cognitive radio network (Fig. 1 top)

All SU’s perform their own spectrum sensing and
corresponding channel allocation and OFDM parameter
optimization
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• Cooperative cognitive radio network with centralized
fusion center (Fig. 1 middle part)
The SU’s perform the spectrum sensing operation and
send the results to the fusion center that makes decision
on the channel assignment. This fusion center could be
either one for the whole network of secondary users
or several fusion centers will be used - each for one
cognitive radio cell.

• Cooperative cognitive radio network with decentralized
information sharing (Fig. 1 bottom)
The SU’s perform the spectrum sensing and share the
information within their geographical neighbors.

Figure 1. Modes of operation

For the practical experiments, two possible cases are
expected. Prior to the wireless implementation, the wired
implementation using the basic LFRx and LFTx daughter-
boards is developed, according to the Fig. 2. Its advantage
is that all the signals are connected via the coaxial cables
and thus it is possible to achieve perfectly controlled system
behavior. Moreover, the two channels - communication
between the secondary users and the fusion center (dashed
lines) and data channel (solid lines) are perfectly separated
and thus there is no need to switch between the channels
by mean of the time division duplexing. The channels A of
the LFTx/LFRx boards are reserved for the communication
between the nodes and the fusion center, while the channels
B are used for the data transfer and spectrum sensing of

the incumbent users. The data transmission is monitored
by the Rohde & Schwarz spectrum analyzer FSQ3. After
the tests with this first setup, the system is going to be
changed to the completely wireless solution. For such setup,
the USRP daughterboards LFRx, LFTx will be replaced
by the SBX (400MHz-4.4GHz) or RFX2400 (2.3-2.9GHz)
daughterboards and the operation will be in the 2.4GHz
ISM band. In such a case, both the data transfer and
communication between the nodes and the fusion center is
going to proceed through the radio channel according to the
schematic on Fig. 4.

B. Incumbent system simulator

In order to check the functionality of system behavior and
especially sensing methods for various primary user signals,
the FPGA-based incumbent simulator has been created with
the use of the Xtreme DSP Starter kit - a Spartan 3A-
DSP board from Xilinx. According to the selected standard,
the FPGA continualy loads the data from the memory and
converts the samples with the D/A converter to the analog
domain. These signals were generated using the vector signal
generator SMU200 as a data source, see Fig. 3. The data
were captured with the CompuScope 12400 high-speed sam-
pling card into the MATLAB environment. Subsequently,
data were converted to the Q15 format suitable for the FPGA
implementation.

Figure 2. First experiment use-case: wired experimental solution

Figure 3. Incumbent signals capture setup
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Figure 4. Second experiment use-case: wireless experimental solution

III. SW ARCHITECTURE AND ALGORITHMS

A. PHY layer parameters

The selected approach allows the use of OFDM/OFDMA
in both PU and SU network. The principle of an Orthogonal
Frequency Division Multiplexing (OFDM), belonging to the
family of multicarrier transmission is currently widely used
in Local Area Networks (WiFI 802.11.a,g), digital broad-
casting (DVB-T, DAB) or wireless mobile communication
systems (LTE/LTE-A). Moreover it is also a candidate for
cognitive radio defined by the IEEE 802.22 standard [2].
The reason lies in its immunity to multipath propagation
and high flexibility of the physical layer. On the contrary,
the OFDM suffers from high Peak to Average Power Ratio
or sensitivity to transceiver imperfections. The use of OFDM
in primary user networks well corresponds with the future
deployment of LTE network.

1) Secondary user signals: The OFDM is supposed for
the secondary user data transmission. The maximum signal
bandwidth is limited to Btot = 8MHz (initially motivated by
the one TV channel bandwidth), divided into ten Bsb =750
kHz wide subblocks. In each subblock, N =12 subcarriers
(with the FFT length of 16) can be loaded with BPSK
or QPSK data, that results in the subcarrier separation
∆f = 62.5 kHz and the useful OFDM symbol duration
Tu = 1/∆f = 16µs. A cyclic prefix of the length Tcp = 4µ
s. is added resulting to the total OFDM symbol duration of
20 µs. The bit-rate for one subblock is then 1.25 Mbit/s
in QPSK mode. Prior to the OFDM data transmission, a
quiet period of duration Tquiet = 20µs. (period within the
spectrum sensing, decision and radio resource allocation re-
configuration is done) preceeds. During the tests, the variable
number of OFDM symbols can be sent in successive way as
shown in the timing structure on Fig. 5. The schematics of
the implemented basic OFDM modulator and demodulator
are shown in Fig. 6. In the modulator, the input of the IFFT
block is first created from the data and zero subcarriers.
Subsequently, the cyclic prefix is added. The operations of
the demodulator are performed in the inverse order.

2) Incumbent signals: As mentioned above, addition-
ally to the OFDM based primary user signals, other in-

cumbent signal types can be used for the test purposes
including DVB-T (8 MHz bandwidth), WiMax (1.75MHz
bandwidth), GSM/GSM-EDGE (200 kHz bandwidth) and
custom-defined single-carrier (BPSK, QPSK, M-QAM) and
custom-defined multicarrier OFDM signals (both up to 8
MHz bandwidth).

Figure 5. Timing structure for the OFDM communication and sensing

Figure 6. The schematic of basic implementation of OFDM modulator
(top) and demodulator (bottom)

B. Resource allocation

In order to increase the Quality of Service, the adaptive
OFDM has been proposed in the past [5]. Several methods
have been proposed in order to optimize the OFDM pa-
rameters. The most straightforward method is to optimize
the modulation order on the individual OFDM subcarri-
ers - called adaptive bit-loading. Several waterfilling-based
methods exist and were used with slight modifications [12].
Their application in wireless communications results in the
effective channel use, but at the expense of the complexity
and need for either channel estimation or bit error rate
estimation. In our architecture, a modification of basic bit-
filling greedy algorithm [11] that iteratively assigns one bit
at a time to the selected subcarrier has been implemented
with the use of Simulink environment. If the n-th subcarrier
already carries bn bits, the power ∆P+

n needed to transmit
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one additional bit is given by:

∆P+
n =

2bn

gn
, (1)

where gn is the channel gain to noise ratio of the n-th
subcarrier defined by:

gn =
|Hn|2

Nn
. (2)

Here Hn denotes the channel frequency response and Nn

is the noise power. The Error Vector Magnitude parameter
(EVM, [14]) measurement is used in order to eliminate the
channel estimation part in eq. 2 as it holds that SNRn =
|Hn|2
Nn

Pn, where Pn is the power allocated to the n-th
subcarrier. In condition of the equal allocated power on all
subcarriers (Pn = P, ∀n), the SNR is equivalent to the
channel gain to noise ratio from eq. 2 and the value of EVM
on the n-th subcarrier EVMn could approximate the channel
gain to noise ratio:

gn ≈
1

EVM2 . (3)

C. Spectrum sensing

The spectrum sensing can be understood as the detec-
tion problem with two hypothesis. The first hypothesis
H0 assumes the presence of noise only, while the second
hypothesis H1 assumes the reception of primary user’s signal
corrupted by the additive noise component. Many methods
have been already investigated as:
• energy detector
• cyclostationary detector
• cyclic prefix correlation for OFDM
• matched filter detector
• eigenvalue detector
• statistical tests like Kolmogorov-Smirnov etc.
The simplest method of spectrum sensing is the energy

detector that we implemented in Simulink environment
and that will be used in the test-bed as the first choice
of detectors for the detection of presence of non-OFDM
signals. Performance of other, more complex, detectors
depends on the properties of detected primary signals. As
the OFDM/OFDMA is planned to be used for both PU
and SU, the cyclic prefix correlation can be used, or al-
ternatively a cyclostationarity detector can be employed.
These approaches can be effectively used in both DVB-T
whitespaces or in the LTE band. The results of previous
experiments can be found e.g. in our previous paper [13]. For
the primary users transmitting with the OFDM signals, we
implemented in Matlab the simple cyclic prefix correlation
method for signal detection. As shown in Fig. 7, two sliding
windows of the width Tcp separated by Tu−Tcp are moved
along the time and the correlation among them is computed.
This principle is the same as for the initial phase of OFDM
symbol synchronization so the HW parts can be reused.

Unlike in the case of fixed cognitive radio network, the
spectrum sensing (or equivalently database access) has to
be repeated regularly by the secondary user nodes in order
to get the realistic overview on spectrum usage situation.
This is the reason for the quiet period we defined above.

Figure 7. Sliding window correlation for OFDM signals spectrum sensing

The principle of secondary user operation will be as follows.
In the first part of operation (quiet period as required for
IEEE 1900.7 standard call), the secondary users scan the
channel situation using an sensing frontend (in the future
an alternative approach - geolocation will be also used or
combined with sensing). After the analysis by the signal
processing methods, the total bandwidth allocated to the
secondary users will be distributed among all SU nodes in
order to minimize the interferences to PU’s and required
total transmitted power. The OFDM resource allocation will
subsequently be performed according to the EVM parameter
as in [12].

IV. COGNITIVE RADIO ATTACKS

It is expected that in future cognitive radio network,
security will be an important issue as a result of attacks
specific to dynamic spectrum access and resource adaptation.
Several possible attacks have been identified in the literature
(see [4] as example) as the PU emulation attacks, spectrum
honeypots, spectrum handoff attacks, objective function at-
tacks, byzantine failure in distributed spectrum sensing, etc.
The basic technique to attack the cognitive radio network
is the PU emulation, when the malicious unlicensed user
emulates the characteristics of primary users.

The defense against the objective function attacks has
been proposed in [15]. One of the simplest approaches
to mitigate the PU emulation problem is to consider the
stationary character of primary users, often being a static TV
towers, [4]. Another approach is the usage of so called helper
nodes - devices geographically spread over the PU area
responsible for the authentication process [7] transmitting
the spectrum status information. In future networks, the
mobility of users (both primary, but at least secondary users)
will be required. Thus, some more advanced methods have
to be investigated that will be important part of future
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research. The proposed test-bed will be used for the practical
experiments with the cognitive radio networks security -
including the attacks to helper nodes or primary signal
emulation attacks.

V. SUMMARY AND PERSPECTIVES

In this paper, we described a cognitive radio test-bed that
is currently under development for test of cognitive radio
physical layer algorithms, access techniques and emulation
of cognitive radio network under attacks of malicious users.
Both the primary and secondary users are going to employ
an OFDM transmission scheme and the mobility of the sec-
ondary users (in future also of the primary) will be expected
in the final version. The main parameters of the designed
OFDM system, the implementation of basic modem and
description of the blocks used for spectrum sensing and
resource allocation is presented in the paper.
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Abstract—This paper analyzes the noise–linearity breakdown 

in direct conversion multi-standard radio receivers embedding 

analog signal conditioning. The paper’s main goal is to develop 

a systematic noise–linearity partitioning methodology to be 

used in splitting the multi-standard receiver noise and linearity 

budget between its high frequency (HF) part and its low 

frequency (LF) baseband part. To this aim, a new and efficient 

design methodology tailored towards multi-standard receivers, 

and based on manual analysis, is developed. By using the 

developed methodology, power saving is enabled in the HF 
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While for the LF part, the analysis revealed the performance 

can be kept the same to allow power optimization through 

dedicated circuit design. 
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I.  INTRODUCTION 

The latest trends in wireless communications reveal 
standards tend to use multiple frequency plans, RF and IF 
bandwidths and different modulation schemes and 
techniques (e. g., IEEE 802.11n, IEEE 802.16e). On top of it, 
the wireless medium is packed with different standards. 
Thus, there is a strong need for reconfigurable hardware that 
can handle a diverse range of wireless signals, [1]. 

For a multi-standard receiver front-end the homodyne 
quadrature down-converter is the optimum choice, [2]. This 
has been validated through several circuit implementations in 
CMOS processes, [1, 3-5]. The multi-standard receiver front-
end principle block schematic is shown in Fig. 1, redrawn 
from [1]. 

To mitigate the different frequency plans specific to a 
multi-standard implementation, the receiver is assumed to 
have multiple RF inputs and hence, multiple Low Noise 
Amplifiers (LNAs), [6]. Through the multiplexer, the wanted 
RF path is fed to the complex down-conversion mixer driven 
by a quadrature LO signal having the same frequency with 
the RF carrier. These blocks represent the receiver’s High 
Frequency (HF) part. Following the mixer, the receiver Low 
Frequency (LF) part is comprised by the analog signal  
 

 

Figure 1.  Quadrature homodyne multi-standard receiver 

block schematic, [1]. 

conditioning blocks: the Low Pass Filter (LPF) and the 
Variable Gain Amplifier (VGA). 

This paper analyzes the noise–linearity breakdown in 
direct conversion multi-standard radio receivers embedding 
analog signal calibration. The paper introduces a new design 
methodology, stemming from a first order system level 
analysis based on manual analysis that enables a systematic 
approach of the noise–linearity partitioning that splits the 
multi-standard receiver noise and linearity budget between 
its HF and LF parts. 

To this aim, firstly, Section II presents the need for smart 

gain partitioning in multi-standard wireless receivers. 

Secondly, Section III presents the smart noise partitioning 

strategy for multi-standard homodyne receivers based on the 

key tradeoff between the receiver HF part power 

consumption and its LF part area. In Section IV, the smart 

linearity partitioning strategy is revealed to complete the 

receiver electrical specifications breakdown. Finally, 

Section V wraps up the paper by presenting the conclusions. 

II. THE NEED FOR SMART GAIN PARTITIONING 

The wireless environment is an extreme one with respect 
to the signal reception. Generally, three generic receive 
scenarios are possible, as derived from the analysis in [7]. 

First of all, the received signal is very weak. In this case, 
the receiver noise performance is critical. 

Secondly, the received signal is weak and surrounded by 
blockers and interferers, as specified by the receiver blockers 
diagram. 
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Figure 2.  a. NFLF and b. Rn HF and Rn LF vs. NFHF 

(NFRX = 3 dB and AHF = 40 dB) 

In [8], a generic receiver blockers diagram has been 
introduced to allow mapping of all blockers and interferers 
of the envisaged standards. Under these conditions, the 
proper signal demodulation is constraint by both the 
receiver’s noise and linearity performance. 

Thirdly, the received signal is strong, and, thus, a high 
linearity is required from the receiver. 

Hence, in order to mitigate all the received scenarios, the 
authors introduce in [7] the smart gain partitioning strategy 
tailored towards multi-standard radio receivers. Basically, 
the smart gain partitioning foresees (i) the receiver gain is 
programmable depending on the input signal level and is 
split in between its HF and LF part (i. e., between the LNA 
and the VGA) and (ii) the receiver noise and linearity 
performance (i. e., NFRX and IIP3RX) adjust with its HF part 
gain, AHF. 

In [7], four gain settings are foreseen for AHF to increase 
the receiver robustness to blockers and interferers. The 
maximum receiver gain, AHF max, is limited to 40 dB due to 
linearity reasons. The chosen gain step is 12 dB. Thus, the 
receiver will have four different NFRX and IIP3RX, depending 
on the AHF gain settings (i. e., 4, 16, 28 and 40 dB). 

Given the derivation of the key electrical specifications 
for a multi-standard radio receiver from [6], it resulted (i) the 
minimum receiver NFRX is 3 dB (i. e., at maximum receiver 
gain, when the signal is at the receiver sensitivity level), 
while (ii) the maximum IIP3RX is +12 dBm (i. e., at 
minimum receiver gain, when the received signal is at its 
maximum level). 

Further on in this paper, we are accounting a degradation 
of 1 dB / dB with AHF gain change of both NFRX and IIP3RX. 

III. NOISE PARTITIONING STRATEGY 

The overall receiver noise budget, represented by the 
receiver NF, NFRX, is partitioned between the receiver LF 
and HF parts. 

According to Friis equation the receiver global NF, 
NFRX, can be calculated from the individual contributions of 
HF and LF parts: 


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where FHF, respectively FLF, represent the noise factors of the 
HF part, respectively LF part, and AHF = ALNA·AMIX is the 
receiver’s HF front-end gain and it is equal to the product 
between the LNA gain, ALNA, and the mixer gain, AMIX. 

Equation (1) shows that the LF part noise contribution is 
reduced by the RF front-end gain. Thus, knowing 
NFHF = 10 lg(FHF), the LF part noise figure, NFLF, results as: 

   10102
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Both, the receiver HF and LF parts noise figures can be 
expressed as a function of their equivalent noise resistance, 
[1]: 
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where Rn HF is the receiver RF front-end equivalent noise 
resistance, Rn LF is the receiver baseband chain equivalent 
noise resistance and RS is the antenna’s resistance. 

The noise partitioning is most critical when the receiver 
input signal is at its lowest value. Hence, AHF is at its highest 
value AHF max = 40 dB to keep NFRX = 3 dB. For this case, 
Fig. 2 plots the NFLF, Rn HF and Rn LF versus NFHF.
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Figure 3.  a. NFHF and NFLF vs. AHF and b. Rn HF and Rn LF vs. AHF 

The Rn HF, respectively Rn LF, calculated by (3) and shown 
in Fig. 2, represent the link between the receiver HF part 
power consumption, respectively LF part area, and its noise 
performance. Because of the large AHF max, Rn LF is much 
larger than Rn HF (i. e., a few orders in magnitude), as shown 
in Fig. 2.b. Hence, the receiver HF part consumes more 
power than its LF part to achieve the same noise when 
referred at the receiver input. 

Therefore, in order to reduce the receiver power 
consumption, the smart noise partitioning allows the receiver 
HF part to contribute more to the overall NFRX. This 
translates to choosing a larger Rn HF, while allowing a bit 
smaller Rn LF. But, a smaller Rn LF translates to a larger 
receiver area, as larger capacitances must be chosen to keep 
the same IF bandwidth, [1, 9]. 

Therefore the plot from is Fig. 2.b shows the key trade-
off that shapes the noise partitioning: the trade-off between 
the receiver power consumption, represented by Rn HF, and its 
area, set by Rn LF. 

Hence, in the case where the minimum receiver NF is 
required, NFHF is accounting 2 dB, while the baseband chain 
and the ADC, share the remaining 1 dB from the 3 dB global 
NFRX. This translates to a NFLF of about 33 dB. 

As mentioned, for the other receiver gain settings, the 
gain partitioning foresees the NFRX reduction at a rate of 
1 dB/dB with the AHF decrease. The smart noise partitioning 
of the noise budget between NFHF and NFLF, accounts the 
degradation of only NFHF, while keeping the same NFLF. 
This potentially allows power saving in the front-end RF 
part, since its noise requirements are relaxed with the AHF 
decrease. While for the baseband part the same NFLF is 
foreseen regardless of the RF front-end gain setting, since 
power reduction would affect the LF part building blocks 
linearity. 

Thus, the baseband blocks design is simplified and their 
power optimization is enabled though dedicated designs (e. 

g., by using low power optimized fully differential amplifiers 
as the building brick of all baseband blocks, [10]). 

Fig. 3.a plots the NFHF and NFLF for versus the AHF gain 
settings. Equivalently, by reverting (2), and knowing NFHF 
and NFLF, both Rn HF and Rn LF can be calculated. Fig. 3.b 
reveals Rn HF and Rn LF for the four AHF settings. 

IV. LINEARITY PARITITIONING STRATEGY 

The linearity partitioning strategy tackles the receiver 
overall IIP3, IIP3RX, budget split between its HF and LF 
parts. Hence, it calculates IIP3RX as a function of the RF 
front-end IIP3, IIP3HF, and of the baseband chain IIP3, 
IIP3LF: 



2
LF

2
HF

2
HF

2
RX 33

1

3

1

IIP

A

IIPIIP
  

Linearity constraints are important at high signal levels, 
when AHF is small. For this case (i. e., AHF = 4 dB), by using 
eq. (4), Fig. 4.a plots IIP3LF vs. IIP3HF for IIP3RX = 12 dBm. 

As expected, the plot reveals that for a more linear RF 
front-end we can tolerate more non-linearity from the LF 
chain. But, given the high operation frequency, a more linear 
RF front-end burns more power to achieve the same linearity 
when compared with the LF part blocks. Moreover given the 
low baseband signal bandwidth (i. e., maximum 20 MHz for 
W-LAN 802.11n amongst envisaged standards), the LF part 
circuits can very efficiently make use of negative feedback 
based on low power feedback amplifiers to achieve a high 
linearity (e. g., [9, 11, 12]). 

Hence, the smart linearity partitioning accounts equal 
contributions from the receiver HF part and from its LF part 
when referred to the input (i. e., IIP3LF / AHF). Thus, it results: 

 2333 RXHFLFHF  IIPAIIPIIP  
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Figure 4.  a. IIP3HF vs. IIP3LF and b. IIP3HF and IIP3LF vs. AHF. 

The smart gain partitioning foresees the IIP3RX reduction 
at a rate of 1 dB/dB with the AHF increase. Similarly to the 
noise partitioning, the smart linearity partitioning allows the 
degradation of only the RF front-end linearity performance 
(i. e., IIP3HF). Hence, given the smart linearity partitioning 
from eq. (5), Fig. 4.b reveals IIP3HF and IIP3LF for the four 
AHF settings. And again the same conclusion arises: since the 
LF part linearity performance is the same regardless of AHF 
(i. e., IIP3LF = +19 dBm), the LF part blocks design is 
simplified and it can optimized by designing dedicated 
building blocks. 

V. CONCLUSIONS 

This paper analyzed the noise–linearity breakdown 
between the HF part and LF part of a direct conversion 
multi-standard radio receivers embedding analog signal 
conditioning. In order to enable a systematic approach of the 
noise–linearity partitioning, the paper introduces a new 
design methodology tailored towards multi-standard 
receivers, stemming from a first order system level analysis 
based on manual analysis. 

By using the developed methodology, power saving is 
enabled in the HF part through changing the multi-standard 
receiver HF part noise and linearity performance with its RF 
front-end gain. While for the LF part, the analysis revealed 
the performance can be kept the same to allow power 
optimization through dedicated circuit design. 

The paper emphasizes the general characteristic of the 
proposed smart noise–linearity partitioning methodology, as 
it fits best a true re-configurable multi-standard receiver 
implementation. 
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Abstract—In this paper, an optimal algorithm of spectrum 
decision making is presented for a real cognitive radio network 
with tree-based topology. All nodes of a subnet in such network 
have the capability in being aware of spectrum information by 
both energy detector based sensing and centralized cooperative 
sensing. After gathering sensed information, the master node 
will decide which frequency can be used by the subnet and 
which slave nodes should leave the subnet if there is no 
common frequency among all nodes. The problem is how to 
keep nodes staying in the subnet as many as possible. 
Traditionally, this is a combination-optimization problem. By 
mapping the node set and frequency set to be both parts of a 
bipartite graph respectively, the problem can be turned into a 
special case of searching for maximal bicliques. Based on a 
well-known LCM (Linear time Closed itemset Miner) 
algorithm, and using some new techniques in terms of dynamic 
thresholds and efficient management of closeness states, we 
have solved this problem for our application requiring real-
time performance. For some special cases where nodes in a 
subnet may have different weights, our algorithm can also find 
an optimal solution with maximal weights in real time.  

Keywords-cognitive radio network; spectrum decision 
making; maximal biclique; dynamic threshold. 

I. INTRODUCTION 
In this paper, we propose a new application in CRAHNs 

(Cognitive Radio Ad Hoc Networks) [1]. Suppose that there 
is a simple network consisting of a master node and several 
slave nodes. The constraint in such network is that the slave 
nodes only communicate with the master node directly and 
they must use the same channel parameters decided by the 
master node, such as frequency and power. There are two 
main steps for the network to complete its spectrum sensing 
process. According to a dedicated energy threshold, the first 
step is that all nodes begin a search for idle channels of local 
electromagnetic environment through energy detection 
method [2]. Then the idle information will be sent to the 
master by a control channel. The master then selects the most 
reliable channels for further examination by a waveform 
based bidirectional channel test with each slave. This test is a 
process of centralized cooperative sensing [3] to identify 
channels of false usefulness and capture truly useable 
channels. By a channel quality threshold, the master gathers 
all useful frequency (channel) sets from slave nodes, and 
then decides to use which frequency for communication and 
to backup several frequencies for use in future because of 
high cost of the sensing process. Certainly, the master does 
not need to backup too many frequencies as these selected 

frequencies will become stale over a certain long period. 
However, maybe there is no common frequency to be useful 
for all nodes since the electromagnetic surroundings, 
especially in variant terrains, are different here and there. 
Under this condition, how to choose the slave nodes and the 
frequency set is the problem called CSDM (Cognitive 
Spectrum Decision Making). It is obvious that we need solve 
CSDM twice during spectrum sensing process in our 
application.  

Traditionally, CSDM is a combination-optimization 
problem. We can adopt an exhausting algorithm of 
enumerating all combinations of nodes. If there are n nodes 
and each slave node have at most m useful frequencies with 
the mast node, then the algorithm may take time complexity 
of O(2n*m) to run. For bigger n or m, such algorithms have 
no chance to meet real-time requirements of applications.  

We can model CSDM by enumerating maximal bicliques 
from a bipartite graph in which one part represents a node set 
while the other part represents a frequency set useful for the 
node set to communicate [4]. 

Let G = <V, E> be a graph with vertex set V and edge set 
E. A pair of disjoint nonempty subsets V1 and V2 of V is 
called a biclique if (u, v)∈E for all u∈V1 and v∈V2. Define 
β(v) as the set of all vertices in G that are adjacent to v, i.e., 
β(v) = {u|(u, v)∈E }. For a nonempty subset X of vertices of 
a graph, β(X) is the set of common neighborhoods of all 
vertices in X. For an existing biclique sub-graph H = < V1∪
V2, E >, the biclique is a maximal biclique if β(V1) = V2 and 
β(V2) = V1. 

Enumerating maximal bicliques from a graph can be one-
to-one correspondence with the enumeration of closed 
pattern pairs [5]. A closed pattern pair is composed of two 
parts: a frequent closed item set and its support set. Many 
real-life applications can be modeled by the both conceptions 
such as associating rule mining, life science data analysis and 
inductive database [6]. One example is given here. For social 
relation, common characters of persons can be modeled by 
maximal bicliques which is useful in commercial activities. 
Surprisingly this idea has similar scenario in wireless 
communication filed. 

Either enumerating frequent closed item sets or 
enumerating maximal bicliques are long studied. There are 
several algorithms for these problems at present, such as 
CLOSED+ [7], LCM [8][9][10] and [11]. However, all these 
algorithms are enumerating all either maximal bicliques or 
closed pattern pairs. For CSDM problem, we are only 
interested in the best solution defined later in this paper. 
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Considering good performance of LCM, we choose it as the 
base of our algorithm.  

What discussed above is based on a hypothesis that all 
nodes have the same importance or that all items are 
interchangeable. But in real applications, some nodes may 
play more important role in the network. Some importance is 
originated from the fact that different nodes have different 
functions in a concrete application context. Also in a view of 
a tree-formed network, some node inherently has more 
importance than other nodes.  

Take a two-layer network shown in Figure 1 for example. 
All nodes in the network have the same importance. Both 
node B and C want to connect node A, while B has three sub 
nodes at this time. After a cognitive process, A and B have 
found two common frequencies available, and A, C have 
three useful frequencies. But there are no common 
frequencies among A, B, C. Therefore, the master node A 
has two options to make: select either B or C. Obviously A 
will make a decision of deleting B and only keep C in its 
network, because it choose larger amount of common 
frequencies when the both options have the same number of 
node. Now the whole network has only two nodes, A and C. 
Certainly, this is not the best solution for the two-layer 
network as a whole. And by keeping B and deleting C, the 
whole network can have five nodes, which is larger. In this 
paper we solve this problem through adding a weight 
property to each node. 

 
Figure 1.  Two-layer network 

The remainder of this paper is organized as follows. In 
Section II, we describe the details of CSDM. In Section III 
and Section IV, we introduce the algorithm LCM and our 
algorithm EMBS (Extreme Maximal Biclique Searcher). In 
Section V, we talk about how to process the case of weighted 
nodes. The experiments and results are listed in Section VI. 
The last section will conclude this paper. 

II. CSDM PROBLEM 
Let Net=<N ∪ F, EN> be a network with a node set N, a 

frequency set F and a relationship E between both nodes. A 
pair (n, f) ∈ E if and only if a node n can use the frequency f 
to communicate with the master node. Any frequency by a 
node is detected by a bidirectional wave detection process 
between the node and the master node. A subset <Ni ⊆ N, Fi 
⊆ F, Ei> is a solution to CSDM if all conditions below are 
satisfied. The condition (2) declares that each node that can 
use all frequencies in Fi should be in the solution. (3) 
expresses a similar meaning: each frequency that can be used 
by all nodes in Ni should be in the solution.  

 Ni×Fi = Ει ⊆ EΝ (1) 

  ((∀f ∈ Fi) (n, f) ∈ Ει) →n ∈ Ni (2) 

 ((∀n ∈ Ni) (n, f) ∈ Ει) →f ∈ Fi (3) 

Let G = < V1 ∪ V2, EG > be a bipartite graph with vertex 
set V1, V2 and edge set EG. To model the network, let the 
node set N be V1 and the frequency set F be V2. If there is a 
pair of (n, f) in EN, add a corresponding edge into EG. 
Therefore, the graph can be modified to G = < N ∪ F, EN > 
and each solution to CSDM is a maximal biclique in G 
because the conditions satisfied by the solution are the same 
as to those satisfied by maximal bicliques. 

Proof. 
First, a maximal biclique <Ni ⊆ N, Fi ⊆ F, Ei> must be a 

solution to CSDM. 
If (n, f) ∈ Ei for ∀f ∈ Fi, then n∈β(Fi), by β(Fi) =Ni, n∈ 

Ni follows.  
If (n, f) ∈ Ei for ∀n ∈ Ni, then f∈β(Ni), by β(Ni) =Fi, f∈ 

Fi follows.  
Second, a solution to CSDM <Ni ⊆ N, Fi ⊆ F, Ei> must 

be a maximal biclique. 
If f∈β(Ni), then ∀n ∈ Ni, (n, f) ∈ Ei, f∈ Fi follows. 
If f∈ Fi, by Ni×Fi = Ei, then ∀n ∈ Ni, (n, f) ∈ Ei, f∈β(Ni). 
So β(Ni)= Fi. 
Similarly, β(Fi)= Ni.□ 

However, we are only interested in the best solution 
BBm=<Nm ∪ Fm, EBB >, i.e., the best maximal biclique (also 
called extreme maximal biclique), satisfying (4) and (5). 
The condition (4) is a condition to restrict the size of a 
solution. It states that the solution should have at least nm 
nodes and each node should have at least fm frequencies for 
communication with the master node. An optimal solution is 
defined by (5). Naturally, we hope that more nodes can be 
kept in the network. If two solutions have the same number 
of nodes, then the solution with more common frequencies is 
much better.  

 |Ni| ≥ Tn, |Fi| ≥ Tf (4) 

 ∀<Ni, Fi>, |Ni|<|Nm| ∨ (|Ni|=|Nm| ∧ |Fi|≤|Fm|) (5) 

III. LCM ALGORITHM 
In this section, LCM algorithm is described in graph 

format while it is described in the database format in original 
paper [8]. This work has been done in detail by [5] and here 
we only list the information needed.  

Let G=<V1∪V2, EG> be a bipartite graph. For a biclique 
sub-graph B = < X∪Y , EB>, the set X and Y are called closed 
sets if and only if B is a maximal biclique, or else they are 
called unclosed sets. For a vertex v ∈ V

B

1, id(v) is the index of 
v in V1 which is sorted by |β(v)| in decreasing order. 

Algorithm LCM()  
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Global: 
 a bipartite graph G with vertex set V1 and V2  
 p is the threshold of one part in a maximal biclique 
 q is the threshold of the other part in the biclique 
Description: 
1: sort {v ∈ V1}, {v ∈ V2} by |β(v)| in decreasing order 
2: for each v ∈ V1, set flag(v)=0 
3: T ← Ф 
4: for each v ∈V1 
5:     X← Ф 
6:     if β(v) ≥ q and LCM_CLOSED(X, v) = 0 
7:          then LCM_Iter(X, V2, v) /* β(Ф)= V2 */ 
 

Algorithm LCM_Iter() 
Input: 
 a vertex set X and β(X) 
 a vertex v to be added to X 
Description: 
1: Y ← X ∪ {v} 
2: for each u ∈ {ω|ω ∈ V1 ∧ ω∉Y ∧ id(ω) < id(v)}  
3:     if β(u) ⊇β(Y)   then Y←Y ∪ {u} 
4: Z←{ω|ω∈V1–Y ∧id(ω)<id(v) ∧ |β(ω) ∩ β(Y)| ≥q} 
5: if |Y |≥ p    then output (Y, β(Y)) 
6: if |Y| + |Z| < p   then return 
7: for each ω∈Z 
8:     if flag(ω)=0  then r←LCM_CLOSED(Y, ω)  
9:         if r = 0    then LCM_Iter(Y, β(Y), ω) 
10:         else flag(ω) ←r 

Algorithm LCM_CLOSED() 
Input: 
 X is a vertex set and v is a vertex to be added to X 
Description: 
1: for each u∈V1, u∉X, u≠v 
2:    if β({u}) ⊇β(X ∪ {v}) then return id(u) 
3: return 0 
 
The pseudo code of LCM is rebuilt from a program [12]. 

For the bipartite graph G, LCM algorithm will recursively 
list all size-qualified maximal bicliques in G. 

IV. OUR ALGORITHM: EMBS 
In this section, we transform LCM into a new algorithm 

EMBS to search extreme maximal bicliques in a bipartite 
graph.  

A. Dynamic thresholds 
In our algorithm, we introduce two new parameters pm 

and qm representing the best maximal biclique to be found 
currently. In LCM, the thresholds are constant and the 
algorithm enumerates all maximal biclique not less than the 
thresholds. In EMBS, only the best maximal biclique will be 
saved and the thresholds will be dynamically updated 
according to the maximal biclique found. Figure 2 will show 
this difference. 

In Figure 2, M is a matrix sorted, and m and n are the 
amount of rows and columns of M respectively. An element 
at column j of row i means that a node i can use the 

frequency j to communicate with the master node. (a) of 
Figure 2 is the pruning tree of LCM and (b) is that of EMBS. 
The sets in an italic style are the leaves or pruned branches 
while the boldfaced sets are maximal bicliques found. 

From Figure 2 we can see that the enumeration tree of 
EMBS is smaller than that of LCM. The difference is caused 
by dynamic thresholds (pm, qm). The pair (pm, qm) is always 
(2, 2) in (a) of Figure 2. But in (b) of Figure 2 from EMBS, 
(pm, qm) is changed to (2, 3) when the first maximal biclique 
is found and it is changed to (3, 3) when the second one is 
found. Because of the increasing thresholds, more nodes are 
pruned in (b). 

 
Figure 2.  Different pruning tree of LCM and that of EMBS 

B. Improve the judgment of closed state  
Let X be the first parameter of the function LCM_Iter. 

According to the pseudo code, |X| is increasing continuously 
in recursive process while |β(X)| is decreasing. For parameter 
v, if there is a vertex u not included by X, id(u) > id(v) and 
β(X∪{u}) ⊇β(X∪{v}), then X∪{v} is not closed. If id(u) < 
id(v) and β(X∪{u}) ⊇β(X∪{v}), the vertex will be inserted 
to X with v together. So we do not iterate on vertices with id 
less than that of v. For each step S’ iterated from a step S, let 
Y be the set of the vertices selected from S to S’ and let u be 
the vertex making X unclosed in S. If u∉Y, X∪Y∪{v} is 
also not closed because β(X∪Y∪{u}) = β(X∪{u})∩β(Y), 
β(X∪{v})∩β(Y) = β(X∪Y∪{v}) and β(X∪{u}) ⊇β(X∪
{v}). So at step S, we can record the vertex making v 
unclosed and keep this information valid for S’ to skip some 
evaluations on closed states until S returned. But if the vertex 
u has been inserted into Y, X∪Y∪{v} may be closed. At this 
condition, the closeness state of X∪Y∪ {v} should be 
recomputed. 
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LCM algorithm uses two arrays unclosed_u and 
unclosed_v to manage the closeness states. If u makes v 
unclosed at step S, set unclosed_u[v] = u and 
unclosed_v[length] = v while a variable length is used to 
indicate the length of unclosed_v. All elements put to 
unclosed_v by step S will be sorted by the corresponding 
values in unclosed_u. When iterating on a vertex i at step S’, 
LCM deletes all values which are not bigger than i from the 
tail of unclosed_v and clear the corresponding values in 
unclosed_u also.  

Figure 3 is an example to show this clearly. In Figure 3, 
M is the input graph and p, q are two thresholds. From S0 to 
S7 is the recursion starting from set {5}.The sets marked 
italic are unclosed sets. Table in Figure 2 shows the process 
of transformation of unclosed_u and unclosed_v. 
unclosed_u[0] is set to 3 at step S1 and is cleared at step S3. 
But at step S5, unclosed_u[1] is recomputed and reset. In fact, 
the value 3 of unclosed_u[1] should be ignored only when 
the vertex 3 has been in the selected set. 

 
Figure 3.  An example of the recursion process 

In EMBS algorithm, each vertex in V1 has a stack to 
manage closed states. Firstly zero is pushed into every stack 
and supposes that u is the vertex making v unclosed in Si, u 
will be pushed into stack of v and it will be valid until u is 
selected or Si returns. If Sj is an offspring step iterated from Si 
and only if u is selected in Sj, closed state of v will be 
recomputed, or else there is no any calculation on closed 
state about v in step Sj. When step Si returns, every stack 
changed in Si will pop the top element. While using stacks to 
manage closed states, each operation except computing 
closed state can be completed in O(1) time and the result of 
computation can be used more effectively. After optimizing, 

the process of sorting for unclosed_v is cut while all 
redundant recomputation of closed states is reduced. 

C. Reduce the size circularly 
In LCM algorithm, only the vertices in one part of the 

graph are reduced by the relationship of the neighborhoods. 
In EMBS algorithm, all vertices in both parts of the graph 

are reduced. After reducing the vertices in one part, the 
neighborhoods of the vertices in the other part are changed 
simultaneity. So we should reduce the other part again until 
all the two parts can not be reduced any more. 

Figure 4 shows two matrices reduced by LCM and 
EMBS. M is the original matrix. M1 is the matrix reduced by 
LCM and M2 is the matrix reduced by EMBS. It shows that 
the matrix reduced by EMBS is much smaller than the 
matrix done by LCM. The sixth column of M is eliminated 
by LCM while the last two columns and the last two rows of 
M are removed by EMBS. 

 
Figure 4.  Matrices processed by LCM and EMBS 

D. The algorithm 
Detailed algorithm is described below. 

Global variables:  
 R is one part of the result biclique. 
 β(R) is the other part of the result biclique. 
 pm is the current threshold of R(main threshold),  
corresponding to Tn in Section II.  
 qm is the current threshold of β(R),  
corresponding to Tf in Section II.  
 p is the initial threshold of R(main threshold) 
 q is the initial threshold of β(R) 

Algorithm EMBS() 
Input: 
 A bipartite graph G with vertex sets V1, V2
Description: 
1: pm ← p , qm ← q  

/* reduce matrix circularly */ 
2: while ∃v∈ V1 →|β(v)|< pm ∨ ∃v’∈ V2 →|β(v)|< qm 
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3:           then V1 ← V1 – {v}, V2 ← V2 – {v’} 
4: sort {v ∈ V1}, {v ∈ V2} by |β(v)| in decreasing order 
5: initialize a stack for every v ∈ V1, stack[v].push(0) 
6: for each v ∈ V1 
7:     X← Ф 
8:     if β(v) ≥ qm and LCM_CLOSED(X, v) = 0 
9:     then EMBS_Iter(X, V2, v) /* β(Ф)= V2 */ 
10: return <R, β(R)> 

Algorithm EMBS_Iter() 
Input: 
 X is a vertex set 
 β(X) is the neighbourhood of X 
 v is the vertex to be added to X 
Description: 
1: Y←X ∪ {v} 
2: for each u ∈ {ω|ω∈V1–Y ∧ id(ω) < id (v)}  
3:       if  β(u) ⊇ β(Y)   then Y←Y ∪ {u} 
4: Z←{ω|ω∈V1–Y ∧ id(ω)<id(v) ∧ |β(ω) ∩β(Y)| ≥qm} 
5: if |Y| + |Z| < pm    then return 
6: if (|Y|> pm) ∨ (|Y|= pm ∧ |β(Y)| ≥qm) /* see (5) */ 

/* Dynamic thresholds */ 
7: then <R,β(R)>←<Y,β(Y)>, <pm,qm>←<|Y|,|β(Y)|+1> 
8: T← Ф 
9: for each ω∈ Z 
10:    if stack[ω].peek() = 0 ∨ stack[ω].peek()∈ Y 
11:       then r ← LCM_CLOSED(Y, ω) 
12:            if r = 0  then EMBS_Iter(Y, β(Y), ω) 
13:            else stack[ω].push(r), T← T∪{ω} 
14: for each ω∈ T   stack[ω].pop() 

The 7th line of function EMBS_Iter is to update 
thresholds dynamically. In EMBS algorithm, the both line 2 
and 3 are to reduce the size of the matrix circularly, and lines 
between 9th and 14th of function EMBS_Iter represent the 
improvement for judgment of closed state. 

V. WEIGHTED CASE OF CSDM 
In this section, we talk about how to process the case of 

weighted nodes in CSDM problem. We call such case 
wCSDM (weighted CSDM). 

A. Description of wCSDM 
In the Net=<N ∪ F, EN>, we can put a weight property 

to each node n∈N, denoted by w(n). And we denote the sum 
of weight of nodes in N as w(N). A best solution to wCSDM 
BBm=<Nm ∪ Fm, EBB> should satisfy the condition (6) besides 
(1)~(4) in Section II. 
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By definition, the best solution is also a maximal biclique. 
Therefore, the algorithm EMBS for CSDM is suitable for 
wCSDM except for some different techniques to prune the 
enumeration tree.  

B. Strategy for sorting nodes 
Different from the line 4 of the algorithm EMBS, a new 

strategy for sorting nodes is presented as below.  
4: Sort {v ∈ V1} by  in decreasing order, and sort {v 

∈ V
( )w v

2} by |β(v)| in decreasing order 
When weight differences between nodes are big, sorting 

by  can speed up pruning process because a solution 
with big weights will be found earlier. If the weight 
differences are not very obvious, and if we still sort them 
such a way, then the solution with more nodes will not be 
found earlier because they may have almost the same weight 
as that of other solutions. Therefore, we need sort {v ∈ V

( )w v

1} 
by |β(v)| in decreasing order if there is no noticeable weight 
differences among nodes.  

C. Pruning Strategy 
Forecasted weight strategy 

For an enumeration over a node combination X = {v ∈ 
V1}, if w(X∪Z)<W where W is the sum of weights of the 
solution found earlier and Z is the set of all nodes in V1 after 
X, then we need no further depth-first enumerations 
branched from X.  
Closeness strategy 

For an enumeration over a node combination X = {v ∈ 
V1}, if X is unclosed, then we only need execute a calculation 
over X∪Z where Z is the set of all nodes that make X 
unclosed. If X∪Z is a solution better than the solution found 
before, then we can update the current solution and all 
thresholds. After this calculation, we rapidly return with no 
more iteration on X∪Z.  

If X is closed, whether we need iterate over a superset of 
X is determined firstly by forecasted weight strategy. Then if 
|β(X) ≤ q|, it is useless to iterate because any superset of X 
will violate the rule by the q threshold defined in algorithm 
EMBS.  

VI. EXPERIMENT AND RESULT 
We evaluate the efficiency of EMBS with dynamic 

thresholds by running on different size of graphs and 
evaluate that of EMBS without dynamic thresholds by 
comparing it to LCM algorithm. The experiments are 
conducted on randomly generated matrices representing 
bipartite graphs. Our computer for experiment is a PC with a 
3.0GHz CPU and 1GB of memory.  

Table I shows the performance of EMBS with dynamic 
thresholds on randomly generated bipartite graphs in 
different size. Row one is the size of the graphs and m+n 
means that there are m vertices in the part representing nodes 
and n vertices in the other part representing frequencies. Row 
two is edge density of the graphs. If there are m+n vertices 
and w edges in the graph, the edge density will be calculated 
by w/(m*n). The first column is the threshold of frequencies 
while the threshold of nodes is 1. The number in the table is 
time in milliseconds and data of first two size graphs are in 
integral number while others maintain two digits after 
decimal point. 

54Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-197-7

COCORA 2012 : The Second International Conference on Advances in Cognitive Radio

                            59 / 71



To evaluate the efficiency of EMBS with dynamic 
thresholds, we use four different sizes of graphs to represent 
different size of subnet. The biggest value of threshold of 
frequencies is eight because we only need to keep at most 
eight frequencies to use over a certain long period. The 
threshold of nods means that one node is needed at least. We 
can find that the running time of EMBS with dynamic 
thresholds is below one second at most times. This 
performance meets the real-time requirements of our 
applications. In some cases, the running time is still very 
long. However, these cases are very rare in real applications. 

Table II shows performance of both LCM and EMBS 
without dynamic thresholds on different number of vertices 
and edge density. At each row of the table, the performance 
is averaged over five randomly generated graphs of the same 
vertices and edge density. The thresholds are both one in this 
case. Note that both LCM and EMBS here are searching for 
all maximal bicliques (complete bipartite graphs) not only 
for the extreme maximal biclique. The first column of the 
table is the amount of nodes in each part of the graph. The 
second column is the edge density in the graph. The third 
column is the amount of all maximal bicliques ever found. 

The maximal bicliques found by LCM and those found by 
EMBS without dynamic thresholds are the same. The forth 
and fifth columns are running time of LCM and EMBS while 
the sixth column is the ratio of data in the fifth column and 
data in the forth column. The last column denotes the 
performance improvement of EMBS, and obviously EMBS 
without dynamic thresholds performs better than LCM 
according to Table II. The first reason is that we reduce the 
time for judgment of closed state, though the pruning tree of 
EMBS and that of LCM are the same. The second reason is 
that EMBS can reduce the graph better than LCM, especially 
when the edge density of graph becomes little.  

For the case of weighted CSDM, we slightly transform 
EMBS to a new version called wEMBS benefiting from 
pruning condition appeared in the Section V. With more 
pruning conditions but with more calculations related to 
weight, it is not a surprise that the performance of wEMBS is 
only somewhat faster than EMBS, as shown in Table III. 
However, this performance is sufficient for our application 
as that of EMBS and the performance instability problem in 
[13] is also solved. 

 

TABLE I.  PERFORMANCE OF EMBS WITH DYNAMIC THRESHOLDS ON RANDOM BIPARTITE GRAPHS.  

Vertices 64+512 32+256 16+128 8+64 
Density 

Threshold 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90 10 30 50 70 90

1 40 34 47 55 87 29 4 7 11 17 1.73 1.39 1.80 2.55 2.82 0.50 0.64 0.77 0.81 0.89

2 5 34 47 55 87 2 5 7 12 17 0.77 1.47 1.79 2.42 4.46 0.49 0.66 0.76 0.82 0.86

3 8 52 92 76 89 2 4 9 15 17 0.77 1.51 2.11 3.18 2.89 0.52 0.70 0.71 0.77 1.49

4 15 144 493 489 95 3 11 16 24 17 0.99 2.02 3.30 5.36 2.81 0.52 1.98 0.78 0.77 0.85

5 18 356 2,099 3,486 109 3 13 51 34 17 1.06 1.79 3.66 5.08 2.72 0.51 0.75 0.75 0.84 0.85

6 32 668 8,251 13,477 149 5 26 101 63 18 0.99 2.20 6.56 6.57 3.44 0.52 0.77 0.81 0.83 0.89

7 36 1,083 19,450 68,684 551 4 34 193 194 17 1.09 2.82 8.31 13.65 3.13 0.52 0.80 0.85 0.83 0.82

8 42 2,049 45,016 340,940 11,295 6 62 432 969 17 1.09 2.88 14.70 16.84 2.74 0.50 0.91 0.94 0.86 0.86

 

TABLE II.  PERFORMANCE OF LCM AND EMBS WITHOUT DYNAMIC THRESHOLDS ON RANDOM BIPARTITE GRAPHS.  

Vertices Edge 
density 

Maximal 
biclique 

Time of LCM
(milliseconds)

Time of EMBS 
(milliseconds) Ratio Performance Improvement  

(1-Ratio) 
100+100 0.10 1,371 120 80 67% 33% 
100+100 0.20 11,340 102 95 93% 7% 
100+100 0.30 96,809 896 848 95% 5% 
100+100 0.50 11,264,781 120,075 113,920 95% 5% 
200+200 0.10 13,640 132 126 95% 5% 
300+300 0.10 59,296 787 731 93% 7% 
400+400 0.10 178,732 3,282 2,908 89% 11% 
500+500 0.10 433,874 10,156 8,672 85% 15% 

1000+1000 0.01 4,233 45 43 96% 4% 
2000+2000 0.01 35,322 511 417 82% 18% 
4000+4000 0.01 419,076 9,399 6,964 74% 26% 
6000+6000 0.01 1,823,122 60,598 44,910 74% 26% 
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TABLE III.  PERFORMANCE (IN MILLISECONDS) OF EMBS VS WEMBS WITH 64 NODES AND 462 FREQUENCIES. 

T 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 Average 
EMBS 1.308 15 540 1588 618 331 211 259 178 158 147.8 139 132 128 123 125 116 283.4651

wEMBS 1.309 16 747 1295 491 273 183 222 166 153 147.2 137 129 124 120 124 117 262.0086

 
Data in each column of Table III are from 10 

experiments. For each experiment, the same frequency 
threshold configuration (T) is set for both wEBMS and 
EBMS. Moreover, we have setup a computer simulation 
platform to test spectrum sensing process in network 
scenarios with more than 100 nodes. Especially, we have 
executed a formal verification [14] on the cooperative 
spectrum sensing protocol used by our application. The 
simulation shows real time performance of EMBS & 
wEMBS and the verification guarantees high reliability. 

 

VII. CONCLUSION AND FUTURE WORK 
In this paper, we discussed a new application named 

CSDM in cognitive radio networks. Based on a well-known 
algorithm LCM for frequent item set mining, the CSDM 
problem has been solved by our algorithm EMBS perfectly 
through introducing the idea of dynamic thresholds. 
Benefiting from dynamic thresholds, EMBS can prune small 
maximal bicliques efficiently to find the extreme maximal 
biclique. Therefore, most CSDM problems can be solved in 
real time. We also improved the performance of LCM 
algorithm itself in two aspects: reduce the size of the graph 
and reduce the time for judgment of closed state. We found 
that the performance of EMBS with dynamic thresholds 
relates to the thresholds while the performance of EMBS 
without dynamic thresholds relates to the edge density of the 
graph. And the experiments show that EMBS outperforms 
much more than LCM. 

EMBS solves CSDM problem perfectly in one subnet. 
However, in some real-life applications, nodes in a subnet 
may have different importance or weights. Thus another 
problem wCSDM is presented in this paper and an improved 
version of wEMBS is proposed for wCSDM. And the 
performance of wCSDM is somewhat better than that of 
EMBS because we can combine those pruning techniques for 
CSDM with an extra pruning strategy in terms of weight. 

Meanwhile, we should develop more efficient algorithm 
to achieve real-time performance in some very large wireless 
networks, though such networks are very rare in current 
applications. Still, the future work also includes those related 
applications with different definitions of extreme maximal 
bicliques. For example, some applications may be interested 
in maximal bicliques which includes the most nodes in both 
parts of a biclique. Moreover, some nodes in a special scene 
may have infinite weights and thus they must not be 
removed. In such cases, the current wEMBS can not fulfill 
its work because the infinite weights require a totally 
different strategy for calculating sum of weights. Therefore, 
an adaptive wEMBS is required for the future. 

Currently, the algorithm EMBS has been put to use in a 
real cognitive radio network (CRN) with tree based topology. 
As this network has a limit in its capacity, EMBS gains 

surprising performance of no more than 1 millisecond for 
optimal solutions. Furthermore, we developed a platform for 
simulating with more than one hundred nodes and for 
verifying the protocol of cooperative spectrum sensing. In 
this platform, EMBS accomplished its task in real-time too 
and the protocol runs well after a few bugs are removed. 
Now, wEMBS is also ready to be used as more requirements 
for applications contribute more complexity to our CRNs. 
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Abstract—In this paper, spectrum sensing in OFDM-based 
cognitive radio systems is modeled as a pattern recognition 
problem. The proposed scheme uses a linear classifier to decide 
on when the spectrum is busy (class 1) or not busy (class 2). Two 
types of feature vectors are compared in this work, namely 
energy estimates and cross-correlation estimates using the cyclic 
prefix of the OFDM signal. Simulation results indicate that the 
energy-based linear classifier provides excellent performance in 
terms of detection probability over AWGN channels but suffers 
significant degradation if the channel undergoes flat Rayleigh 
fading conditions. On the other hand, the correlation-based 
features offer a more robust performance under both AWGN 
and fading conditions with a detection rate of about 90% at a 
signal-to-noise ratio of –𝟑 dB. 

Keywords- cognitive radio; OFDM; linear classifier; energy 
detection; correlation detection. 

I.  INTRODUCTION  
The radio spectrum is one of the most expensive resources 

in wireless communication systems. Service providers and 
users of the radio spectrum are generally required to obtain a 
license in order to use a particular frequency band. However, 
these users do not use the assigned spectrum at all times of the 
day and spectrum holes are created when the licensed user is 
not using its allotted spectrum resulting in an inefficient use of 
the radio spectrum [1]. To counter this problem, cognitive 
radio technology has been  introduced which allows secondary 
users to access the spectrum only when it is not being used by 
the licensed user. Intuitively, the cognitive radio (CR) should 
be able to sense the spectrum to detect the presence or absence 
of the licensed primary user. By definition, spectrum sensing is 
the task of obtaining awareness about the spectrum usage and 
determining the existence of primary users in a geographical 
area [2]. 

The optimal algorithm for spectrum sensing is the 
likelihood ratio test (LRT) [3][4] and several techniques have 
been proposed in the literature which employ the LRT using 
energy detection [5][6], autocorrelation [7], cyclostationarity 
[8] and pilot tones [9] to sense the spectrum. In addition, CR 
has also been considered as a pattern recognition problem 
where spectrum sensing is done using linear or polynomial 
classifiers [10][11]. This is because the signal received at the 
CR can be either the primary user signal or noise, both of these 
signals have different characteristics which a classifier can 

learn during the training phase and then utilize this learning to 
classify any unseen data into one of two classes: the primary 
signal (class 1) or noise (class 2). Any incoming signal has to 
be classified into one of these classes by the linear classifier. 
However, Orthogonal Frequency Division Multiplexing 
(OFDM) based CRs were not investigated in this research.  

OFDM has rapidly developed into the preferred modulation 
scheme for most wireless standards such as IEEE 802.11a/g, 
IEEE 802.16 and IEEE 802.20 [7]. Consequently, cognitive 
radios operating in wireless channels are expected to be OFDM 
based. In addition, OFDM is the best physical layer candidate 
for cognitive radios because it allows for generation of signals 
which fit into discontinuous and arbitrary sized spectrum 
segments [12]. 

The performance of a CR is measured using detection 
probability which is defined as the probability with which the 
CR (or secondary user) correctly decides that the target radio 
spectrum is occupied by the primary user. Another important 
parameter is the false alarm probability defined as the 
probability with which the CR incorrectly decides on the 
presence of a primary signal thereby not allowing the CR to 
transmit while, in fact, it is eligible to. 

As mentioned earlier, most of the existing techniques 
employ the LRT to decide on the presence or absence of the 
primary OFDM signal. In [7], the autocorrelation coefficient is 
computed at the CR which is zero when no signal is present 
and is a function of different parameters such as the energy per 
bit-to-noise power spectral density (𝐸𝑏/𝑁0), subcarriers, and 
cyclic prefix when the primary signal is received. However, the 
variance of the received signal is unknown and maximum 
likelihood estimate (MLE) is used to compute it. The LRT is 
then applied and its result is compared with a threshold, which 
depends directly on the autocorrelation function of the OFDM 
signal, to make a decision on presence of the primary signal. 
Alternatively, pilot tones in the OFDM signal can also be used 
to sense the spectrum [9]. The time-domain symbol cross-
correlation (TDSC) of two OFDM symbols is computed which 
has a nonzero constant value only if both the symbols have 
same pilots. Comparing the TDSC with a threshold determines 
the presence or absence of the signal.  

In this paper, spectrum sensing technique for an OFDM 
based CR is proposed using a linear classifier instead of the 
traditionally used likelihood ratio test. The linear classifier 
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receives an input signal and decides whether the input signal 
belongs to one of two classes: Class 1: OFDM primary signal 
and Class 2: Noise.  

The rest of the paper is organized as follows: In Section II, 
a system model for the OFDM CRs is presented. Section III 
discusses the proposed spectrum sensing technique and the 
features to be used for sensing. Section IV illustrates the 
performance of the proposed system through simulation results 
and Section V concludes the paper. 

II. SYSTEM MODEL 
In an OFDM system, the available frequency band is 

divided into N overlapping but orthogonal narrow sub-bands 
each associated with a sinusoidal subcarrier. For high data rate 
transmission, each subcarrier is used to carry a small part of 
data and, due to the narrow band nature, does not suffer from 
channel distortion caused by Intersymbol Interference (ISI).  
This is considered as the main advantage of OFDM signal 
since there is no need for complex equalization schemes to 
mitigate ISI as in single-carrier systems. 

The data to be transmitted using M-QAM or M-PSK 
modulation is converted into N parallel streams each to be 
transmitted over a separate subcarrier. An Inverse Fast Fourier 
Transform (IFFT) block is used to modulate the 𝑁 subcarriers 
with the 𝑁  parallel symbol streams. Since the sinusoidal 
subcarriers are orthogonal, they do not cause interference 
among adjacent bands. However, due to channel delays and 
frequency offsets, the orthogonality among the subcarriers may 
be lost. To maintain this orthogonality, a cyclic prefix is added 
to the OFDM signal where the last 𝐿 samples of the signal are 
copied and appended to the beginning to form the cyclic prefix.  

As discussed above, the OFDM signal is constructed by 
feeding 𝑁 symbols (or streams of symbols) to IFFT operator. 
Assume that 𝑆(0), 𝑆(1), . . . , 𝑆(𝑁 − 1) are 𝑁 complex QAM or 
PSK symbols, the output of the IFFT is: 

 𝑠[𝑘] = 1
√𝑁
∑ 𝑆(𝑚)𝑒

𝑗2𝜋𝑘𝑚
𝑁𝑁−1

𝑚=0 , 𝑘 = 0, . . . ,𝑁 − 1, (1) 

where 𝑘  is a discrete time index, 𝑚  is a discrete frequency 
index. Thus, 𝑁 denotes the number of symbols in an OFDM 
data block. The last 𝐿  symbols 𝑠(𝑁 − 𝐿), 𝑠(𝑁 − 𝐿 +
1), . . . , 𝑠(𝑁 − 1)  are added to the front of each block as a 
cyclic prefix to obtain the OFDM symbol of the form: 

𝒔 = [𝑠(𝑁 − 𝐿), . . . , 𝑠(𝑁 − 1), 𝑠(0), 𝑠(1), . . . , 𝑠(𝑁 − 1)]. (2) 

The signal in (2) is first converted from digital to analog to 
form 𝑠(𝑡)  and is then sent over the channel after up-
conversion to the desired radio frequency carrier. 

At the CR, the following signal will be received: 

 𝑥(𝑡) = 𝑐(𝑡)𝑠(𝑡) + 𝑛(𝑡), (3) 

where  𝑐(𝑡) is the channel coefficient at time 𝑡 and 𝑛(𝑡) is the 
additive white Gaussian noise, with zero mean and two-side 
power spectral density of 𝑁0/2, which corrupts the transmitted 

signal. The CR will first down-convert the received signal 
𝑥(𝑡) and then performs analog-to-digital conversion to get the 
following digital signal 

 𝑥[𝑘] = 𝑐[𝑘]𝑠[𝑘] + 𝑛[𝑘], (4) 

where 𝑐[𝑘] is the discrete channel coefficient. At the CR, all 
the computations are done on the signal defined in (4). 

III. SPECTRUM SENSING IN COGNITIVE RADIOS 
As discussed earlier, spectrum sensing can be considered a 

two class pattern recognition problem [10]. The main objective 
of a pattern recognition system is to assign any input signal or 
data to one of a number of known classes (or categories) based 
on features extracted from the input signal. The process of 
acquiring features from the input signal is called feature 
extraction. In this paper, pattern recognition is used at the CR 
to classify the received signal as primary signal or noise such 
that maximum detection probability is achieved while keeping 
the false alarm probability below a certain threshold. A block 
diagram of the proposed system is shown in Fig. 1. 

The feature extracted from the received input signal can be 
one of the many techniques used for spectrum sensing such as 
Energy, Correlation, etc. In Fig. 1, the input to the CR is the 
vector of received signal samples, {𝑥[𝑘]}. The CR then extracts 
the features, 𝒇, from this signal which are then input to the 
linear classifier. The classifier computes an output vector 𝑻 
which is used to classify the input signal based on the features 
into one of the two classes: 

      𝑥[𝑘] = 𝑐[𝑘]𝑠[𝑘] + 𝑛[𝑘] ;  Class 1 (Spectrum busy) (5) 

      𝑥[𝑘] = 𝑛[𝑘]                    ;  Class 2 (Spectrum available) (6) 

where class 1 is the case when the primary OFDM signal is 
present and the spectrum is occupied and class 2 is the case 
when no primary signal is present and the spectrum is 
available. 

A. Energy Detection 
One of the most commonly used techniques for spectrum 

sensing is Energy Detection. With this technique, the CR does 
not require any prior knowledge of the primary signal and, 
therefore, is very easy to implement. The CR senses the 
spectrum for a period of time and compares the received signal 
energy with a defined threshold to decide on the presence or 
absence of the primary signal. However, this type of detection 
is unreliable in fading environments where the energy of the 
primary signal has been severely degraded (attenuated) since 
the signal energy becomes comparable to the noise level. This 
may happen due to deep fades in the channel or due to the 
primary signal energy being very small resulting in a very low 
signal-to-noise ratio (SNR). In such cases, the selection of a 
suitable threshold to decide whether the primary signal is 
present or not becomes a challenging task. 

When the spectrum sensing technique used is energy 
detection, the feature extraction process in the CR will compute 
the energy of the received signal, 𝑥[𝑘], and pass it on to the 
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linear classifier. When the CR estimates the energy of the 
received signal over an observation window of size W, the 
energy, in time-domain, of the detected signal is computed as: 

 𝑓𝐸 = ∑ |𝑥[𝑘]|2𝑊−1
𝑘=0 . (7) 

The extracted energy feature, 𝑓𝐸, is then used by the linear 
classifier to make a decision on the class of the received 
signal, 𝑥[𝑘].  To improve the performance of the energy 
detector, the CR can sense the spectrum more than once (each 
time for a window of W samples) and compute the energy of 
the received signal each time and store it as a feature. The 
linear classifier will now have multiple features and since the 
energy is computed for different instances of time, it will 
 

 
Fig. 1. Block diagram of the proposed system 

make a better and more informed decision on the presence or 
absence of the primary signal. 

B. Correlation Detection 
Energy detection does not require any prior knowledge of 

the type of primary user signal. This could be considered as an 
advantage for such scheme but it results in inferior 
performance compared to other schemes that take advantage of 
certain structure in the OFDM signal. OFDM symbols have an 
inherent special property; namely the cyclic prefix, which can 
be utilized to sense the presence of the primary signal. The 
addition of a cyclic prefix at the beginning of the OFDM 
symbol means that the first 𝐿 samples of the OFDM symbol are 
similar to the last 𝐿  samples. In the case when there is no 
distortion due to noise or channel, the first 𝐿  samples are 
exactly the same as the last 𝐿 samples. This implies that the 
first 𝐿 samples of the OFDM symbol are highly correlated with 
the last 𝐿 samples and this property can be used to sense the 
spectrum for presence of the signal. The CR performs 

correlation between the first 𝑊 samples of the cyclic prefix at 
the start and end of the OFDM symbol and takes the maximum 
correlation value. The size of 𝑊 should always be less than the 
cyclic prefix size 𝐿. If a primary OFDM signal is present, then 
there will be high correlation. On the other hand, if only noise 
is present, then any two samples of Gaussian noise are 
uncorrelated. The correlation at the CR is computed as: 

 𝑓𝐶 = 𝑚𝑎𝑥|𝐸[𝑥𝐵𝑥𝐸∗]|, (8) 

where 𝑥𝐵 = [𝑥1, 𝑥2, … . , 𝑥𝑊] is a vector of first W samples of 
the cyclic prefix at the beginning of the received signal and 
𝑥𝐸 = [𝑥𝑁−𝐿 , 𝑥𝑁−𝐿+1, … . , 𝑥𝑁−𝐿+𝑊]  is a vector of  the last W 
samples of the cyclic prefix at the end of the OFDM signal, 
𝐸[. ]  is the expectation operator and 𝑚𝑎𝑥|. |  takes the 
maximum value of the elements inside the argument. Finally, 
using the correlation, 𝑓𝐶 , as a feature, the linear classifier can 
then make a decision on whether the received signal, 𝑥[𝑘], 
belongs to class 1 or Class 2.  

C. Training the Linear Classifier 
For a linear classifier, a linear discriminant function is 

defined for each class which is used to separate data of a 
particular class from data of another class. A linear 
discriminant function is defined as: 

 𝑔𝑖 = 𝒘𝒊
𝒕𝒇 + 𝑤𝑖0 ;    𝑖 = 1, … ,𝑁𝐶 ,  (9) 

and, 

 𝒇 = [𝑓1 …𝑓𝑑], (10) 

where, for the ith class, 𝑔𝑖 is the linear discriminant function,  
𝒘𝒊 is the weigth vector, 𝑤𝑖0 is the bias or threshold. The vector  
𝒇 is the input feature vector,  𝑁𝐶  is the number of classes (for 
our case, 𝑁𝐶=2), 𝑑 is the dimension of the feature vector 𝒇 (for 
our case 𝑑=1) and 𝑡 is the transpose operation. Any incoming 
feature vector is multiplied by the weights, 𝒘𝒊, and shifted by 
the bias, 𝑤𝑖0, to get the linear discriminant function for each 
class. For a given feature vector, 𝒇, the class which gives the 
maximum value for 𝑔  is the class of 𝒇 . To compute the 
weights for each class, the linear classifier has to be trained 
using training data. As a first step, the bias 𝑤𝑖0 is incorportated 
into the weight vector, 𝒘𝒊, such that a new weight vector 𝒂𝒊 
and a new feature vector, 𝒚, are defined: 

 𝒂𝒊 = [𝑤0 𝒘𝒊
𝒕],     (11) 

and, 

 𝒚 = [1 𝒇] = [𝑦0 𝑦1 …  𝑦𝑑]. (12)           

The linear discriminant function for class i can be 
written as 

 𝑔𝑖 = 𝒂𝒊𝒕𝒚 ;          𝑖 = 1, … ,𝑁𝐶. (13) 
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The weights of the linear classifier have to be 
computed using a set of training data which consists of feature 
vectors belonging to both classes. The training data, 𝒀 , is 
defined as: 

 𝒀 = [𝒚11 𝒚12 … 𝒚1𝐾 𝒚21 … 𝒚2𝐾]𝑡 ,     (14) 

where 𝒚11 … 𝒚1𝐾 are feature vectors of data belonging to class 
1 (OFDM signal) and 𝒚21 … 𝒚2𝐾 are features vectors of data 
belonging to class 2 (noise). The first 𝐾 rows of 𝒀 correspond 
to data belonging to class 1 while the last 𝐾 rows correspond to 
data from class 2. The number of elements in 𝒀 is 2𝐾 ×  𝑑 +
1. Furthermore, two target vectors, 𝒕𝟏 and 𝒕𝟐, are defined for 
each class (𝒕𝟏  for class 1 and 𝒕𝟐 for class 2). Each element of  
𝒕𝟏 and 𝒕𝟐 is basically a linear discriminant function defined in 
(13).  However, since the data is already known, the values of 
𝒕𝟏  are set to zero everywhere except for rows belonging to 
class 1. Similary 𝒕𝟐  is zero everywhere except the rows 
belonging to class 2. 𝒕𝟏  and 𝒕𝟐  are 2𝐾 ×  1  dimensional 
vectors. The first 𝐾  elements of 𝒕𝟏  are 1 while the last 𝐾 
elements of 𝒕𝟐 are 1. The target vectors are combined into a 
matrix 𝑻 defined as: 

 𝑻 = [𝒕𝟏 𝒕𝟐].     (15) 

In addition, a weight matrix, 𝑨 , is formed whose 
columns are the weight matrices for each class. 

 𝑨 = [𝒂𝟏 𝒂𝟐].     (16) 

Therefore, the linear classifier problem now becomes 
a linear equation with 𝑨 being the unknown quantity.  

 𝑻 = 𝒀𝑨.     (17) 

The weight matrix 𝑨 is computed using the pseudo-
inverse of 𝒀: 

 𝑨 = (𝒀𝒕𝒀)−𝟏𝒀𝑻.     (18) 

The training data has to be large enough to provide a good 
estimate of the weight matrix 𝑨. If the data from both classes is 
linearly separable, linear classifier will perform really well. 
However, if the data is not linearly separable, the linear 
classifier may fail. This can happen when at low SNR values 
when the signal and noise have comparable levels. 

D. Testing the Linear Classifier 
After training the linear classifier to compute the weight 

matrix 𝑨, the linear classifier has to be tested using test data, 
𝒀𝒕𝒆𝒔𝒕, to evaluate its performance. Similar to the training data 
described in (14), the test data consists of feature vectors 
belonging to class 1 and class 2. The first 𝑍 elements of 𝒀𝒕𝒆𝒔𝒕 
belong to class 1 while the last 𝑍 elements belong to class 2. 
The linear classifier multiplies the test data, 𝒀𝒕𝒆𝒔𝒕 , with the 
weight matrix, 𝑨 , to get a matrix, 𝑻𝒕𝒆𝒔𝒕  with two columns. 
Ideally, the first column of 𝑻𝒕𝒆𝒔𝒕 should be one for the first 𝑍 
elements (corresponding to class 1) and zero for the rest while 

the second column of 𝑻𝒕𝒆𝒔𝒕  should be zero for the first 𝑍 
elements and one for the last 𝑍  elements (corresponding to 
class 2). However, the obtained values vary around these ideal 
values when novel data is fed to the classifier [10]. 

The obtained 𝑻𝒕𝒆𝒔𝒕  matrix is used to classify the data by 
comparing the values of each row. Usually, the column which 
contains the higher value is decided to be the class of that 
particular feature vector. However, to maintain the false alarm 
probability below a certain target value, a threshold is used to 
distinguish between the two classes. The detection probability 
of the classifier is then determined by comparing the classified 
data with the actual classes of the data. The training and 
threshold setting are usually done offline to reduce the 
complexity of the CR system [10]. 

IV. SIMULATION RESULTS 
In this section, the performance of the linear classifier is 

determined using test data belonging to class 1 and class 2. 
Simulations were used to obtain results due to the complexity 
of analytical evaluation of the proposed technique. The signal 
is received by the CR and energy detection is performed by the 
CR and a decision is made on the presence or absence of the 
primary user signal. In addition to the energy detector, 
simulation results are also presented for the correlation detector 
where the CR uses the correlation between the cyclic prefix at 
the beginning and the end of the OFDM symbol as a feature to 
decide on the availability of the spectrum. The transmitted 
signal is modulated using M-QAM for different values for 
modulation level 𝑀.  For illustration purposes, the Digital 
Video Broadcasting – Terrestrial (DVB-T) standard is used in 
4k mode. Under this condition, an OFDM signal structure with 
4096 subcarriers and the cyclic prefix length 1/8  of the 
number of subcarriers is used. The performance of the linear 
classifier is evaluated at different 𝐸𝑏/𝑁0 values when the signal 
passes through an ideal channel with AWGN only and also 
when the signal experiences flat channel fading with a low 
Doppler frequency of 3 Hz. Before testing the linear classifier, 
for all cases, the weight vector 𝑨, defined in (18) is obtained 
using a random model for the primary user with 50% spectrum 
utilization and defining 2000 training data vectors, 1000 
belonging to class 1 (primary signal) and 1000 to class 2 (noise 
only). This implies that the primary user occupies the spectrum 
only 50% of the time. 

Fig. 2 shows the detection probability achieved by the CR 
using a linear classifier, while maintaining the false alarm 
probability below 0.1, for different values of 𝐸𝑏/𝑁0 using an 
observation window of 𝑊=50 samples and modulation level of 
𝑀=2. The performance is shown for the cases when there is no 
fading and when there is slow fading using the energy detector 
and correlation detector. All results are averaged over 100 
simulation runs. It can be seen that when there is no fading in 
the channel, the energy detector performs very well as it can 
accumulate enough energy to detect the presence of the signal. 
The correlation detector has a similar performance but falls 
behind at very low SNR conditions. On the other hand, when 
fading is present, the energy detector performance is severely 
degraded while the correlation detector exhibits a very small 
degradation in performance. This is because flat fading causes 
significant attenuation in the received signal energy resulting in 
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degradation in performance of the energy detector. The 
correlation detector, however, depends on the repetitiveness in 
the received signal and is therefore less affected by flat fading. 
It is noted that, under AWGN, a detection probability of about 
90% is achieved at about –4 dB and –3 dB for the energy and 
correlation detectors, respectively. Fading degrades the energy 
detector performance by about 15 dB while the correlation 
detector suffers around 6 dB degradation for the same detection 
probability. Ideally, the spectrum utilization can reach 100% 
where the secondary users utilize the spectrum whenever the 
primary user is not active. However, a reduction in the 
spectrum utilization is incurred in the event of a false alarm 
where secondary users decide that the spectrum is busy while 
the primary user is not transmitting. For the simulation 
example used in this paper, the primary user has a utilization of 
50% and hence the secondary users can ideally achieve a 
utilization of 50% but since the false alarm rate was fixed to 
0.1 then the actual utilization for the secondary users will be 
about 45%. Therefore, the total spectrum utilization by the 
primary and secondary users will be about 95%. Note that 
further improvements in spectrum utilization could be obtained 
by reducing the false alarm probability but this may result in 
reducing the detection probability leading to more interference 
from the secondary users to the primary user and hence 
reducing the overall spectrum utilization.  

The performance of the classifier can be improved further 
by increasing the window size 𝑊. However, the window size 
of the correlation detector should not exceed the length of the 
cyclic prefix. Fig. 3 shows the performance of the correlation 
detector for different window sizes in a flat fading channel. The 
modulation level used is 𝑀 =16. An improvement in 
performance is seen as the observation window size is 
increased for the correlation detector. For instance, using an 
observation window of size 10 requires 𝐸𝑏/𝑁0  = -1 dB to 
achieve 90% detection while the same detection probability is 
achieved at 𝐸𝑏/𝑁0 = -6 dB when the window size is increased 
to 100. However, no significant improvement can be seen 
when the observation window size is increased beyond 200. 
For window size of 200 and above, 90% detection is reached at 
around 𝐸𝑏/𝑁0  = -7 dB. 

V.  CONCLUSION 
In this paper, spectrum sensing in a CR is modeled as a 

pattern recognition problem with two classes: the primary user 
signal and noise. Energy detection and correlation detection 
are used as features which are input to the linear classifier that 
decides on the presence or absence of the primary signal while 
maintaining the false alarm probability below a certain value. 
At the CR, training data is used to compute the optimal weight 
matrix. Simulation results show that energy detection provides 
excellent results only when there is no fading by the channel. 
However, in presence of flat fading, the energy detector 
suffers significant degradation in the detection performance 
while the correlation detector maintains good performance for 
most 𝐸𝑏/𝑁0  values. It is also shown that increasing the 
observation window size results in an improvement in the 
performance of the CR.  

 

 
Fig. 2. CR performance in AWGN and flat fading  

 

Fig. 3. Correlation detection performance for different window sizes 
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Abstract— Due to Information and Communication 

Technologies, wireless data traffic is growing with a rate 

higher than 25% annually. Wireless Sensor Networks (WSNs) 

represent nowadays one of the most rapidly expanding sectors 

in wireless networks. In this context, applying reducing power 

consumption in WSN scenarios is a great challenge to face in 

order to make this kind of networks sustainable. In this paper, 

we present some work in progress ideas about different 

opportunities in power consumption reduction for WSN taking 

advantage of the opportunities presented by applying 

Cognitive Radio (CR) capabilities to WSN. Cognitive 

characteristics provide some features that make WSNs 

different to Cognitive Wireless Sensor Networks (CWSNs). 

However, cognitive capabilities entail extra power 

consumption too. Therefore, the design of strategies must be a 

task that involves the overall design across all layers of the 

communication protocol and not only specific improvements 

without considering consumption in a holistic way. 

Keywords - WSN; Power management; Cognitive radio; 

Network optimization 

I.  INTRODUCTION 

Global data traffic in telecommunication annually grows 
with a rate higher than 50%. While the growth in traffic is 
stunning, the rapid adoption of wireless technology over the 
complete globe and the penetration through all layers of 
society is even more amazing. Over the span of 20 years, 
wireless subscription has risen to 40% of the world 
population, and is expected to grow to 70% by 2015. Overall 
mobile data traffic is expected to grow to 6.3 exabytes per 
month by 2015, a 26-fold increase over 2010 [1]. This 
expansion leads to an increase of the energy consumption by 
approximately 10% per year. 

A major portion of this expanding traffic has been 
migrating to mobile networks and systems. This increasing 
demand for wireless communication presents an efficient 
spectrum utilization challenge. To address this challenge, 
Cognitive Radio (CR) has emerged as the key technology, 
which enables opportunistic access to the spectrum.  Briefly, 
CR is defined as a wireless radio device which can adapt to 
its operating environment via sensing in order to facilitate 
efficient communications [2]. Moreover, it can facilitate 
multimode radio interfaces that can operate in multiple 
standards with its adaptation property. 

Adding cognition to the existing WSN infrastructure will 
bring many benefits. In fact, WSN is one of the areas with 
the highest demand for cognitive networking.  In WSN, node 

resources are constrained in terms of battery and power of 
computation but also in terms of spectrum availability. 

Regarding spectrum scarcity, most WSN solutions 
operate in unlicensed frequency bands. In general, they use 
ISM bands, like, the worldwide available 2.4 GHz band. This 
band is also used by a large number of popular wireless 
applications (Wi-Fi, Bluetooth, Zigbee and IEEE 802.15.4). 
For this reason, the unlicensed spectrum bands are becoming 
overcrowded with the increasing use of WSN based systems. 
As a result, coexistence issues in unlicensed bands have been 
subject of extensive research [3][4] and in particular, it has 
been shown that IEEE 802.11 networks can significantly 
degrade the performance of Zigbee/802.15.4 networks when 
operating in overlapping frequency bands [4]. 

In this scenario, Cognitive Wireless Sensor Networks 
(CWSN) emerge as a new paradigm that can help mitigate 
very important problems like spectrum scarcity, interferences 
or reliable connections. Due to the number of nodes, its 
wireless nature, and its deployment in difficult access areas, 
CWSN nodes should not require any maintenance. In terms 
of consumption, this means that the sensors must be 
energetically autonomous and therefore the batteries cannot 
be changed or recharged. In this kind of scenarios lifetime of 
the nodes ranges typically between 2 and 5 years, making 
power consumption a dramatic requirement to establish [5].  

Considering all these points, it is extremely important to 
optimize every step of wireless communications (ranging 
from the manufacture of equipment for basic functions). 
Thus, green networks and communication approaches 
require a holistic approach to energy optimization in 
communication systems inspiring a new research field.  

The structure of this paper is organized as follows: 
Section II present the related work in CWSNs and some 
efforts related to reduce energy consumption. Section III 
focuses on the power consumption challenge in CWSNs. 
Section IV presents a group of strategies for power 
consumption reduction for CWSN sorted by the cognitive 
feature chosen for developing the strategy. Finally, 
conclusions and future work are presented in Section V.  

II. RELATED WORK 

In this section, state of the art on Cognitive Radio from a 
low-power WSN communication perspective is provided. 

CWSN is a young technology and we can find few works 
about CWSN in a generic way [6]. Most of works introduce 
the idea of CWSN and promoting the research on this topic. 
Along the same line, [7] presents an overview of CWSNs, 
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discussing the emerging topics and the potential challenges 
in the field. The main advantages are discussed and possible, 
but vague, solutions to the problems are suggested. In [8], 
the main design principles, topologies, algorithms, sensing 
and decision techniques, advantages, application areas and 
architectures of CWSN are exposed. In [9], the vision and 
advantage of a holistic approach to cognition in sensor 
networks is provided. In [10], a methodology, a theoretical 
framework, and some novel ideas on performance modelling 
are presented. 

Talking about reduce power consumption in general CN, 
there are several approaches. In a bottom-up review of low-
power design, the first level can be focused on circuit 
choices (error correction, rake parameters, and drive 
currents). Second level is system parameters such us 
modulation, coding, carrier, filtering, sample rate or 
algorithms. Third level is radio knowledge of consumed 
power and final level is the application development. Most of 
the research works focus on achieving power-efficient 
spectrum use. In [11], a transmission power management is 
proposed to minimize interference with primary users and to 
guarantee an acceptable QoS level for the cognitive 
transmission. A method of spectrum sharing with multi-user 
cognitive network based on interference temperature limits 
model is proposed in [12]. Taking into account the channel 
occupancy probability is possible to develop a variable 
power-bandwidth efficiency strategy. Reducing the 
bandwidth efficiency by 50% can increase the battery life by 
400% [13]. In [14], the power constraint is integrated into the 
objective function named power efficiency. 

If we move to the specific area of consumption reduction 
in CWSN, there is still much work to do. Focusing on low-
power networks, Gür and Alagöz [15] notice the importance 
of CR features to improve power consumption, as in [8] 
where it is noted that CR could be able to adapt to varying 
channel conditions, which would increase transmission 
efficiency, and hence help reduce power used for 
transmission and reception. 

Some advices are given in [6] as “implementing 
spectrum sensing in all nodes in a WSN may not be efficient 
in terms of energy consumption”. In [9], two main problems 
related with energy consumption are listed:  network lifetime 
maximization and energy efficient routing.  

A routing scheme optimizing size of transmitted data and 
transmission distance is proposed in [16], while [17] focuses 
on reducing power consumption in the sensing step. It is 
noted the importance of carrying out this task adopting a 
cross layer approach for spectrum sensing and optimizing the 
sensing procedure with respect to energy consumption. 

In [10], Bdira and Ibnkahla remark that energy-aware 
routing studies do not use to address application layer 
constraints (distributed or centralized processing of 
information, whether information relayed is urgent or 
essential) even though recent literature is rich in cross-layer 
optimization suggestions. 

Even the research in this area looks to be very interesting 
(as the references prove), the use of Cognitive Radio to 
improve energy consumption in WSN is not a mature 
research area. Some ideas are given, but real proposals and 

improvements are missing. In this scenario, CWSN has 
much potential to provide. In this paper, we propose different 
approaches to improve power consumption strategies with 
cognitive features.  

III. COMSUMPTION CHALLENGES IN CWSN 

Cognitive Radio emerges as a new paradigm that allows 
the use of techniques and can help to mitigate very important 
problems like spectrum scarcity, interferences or reliable 
connections. We can say that CR is an intelligent wireless 
communication system that is aware of its surrounding 
environment, and adapts its internal parameters to achieve 
reliable and efficient communication (in terms of power 
consumption too) [18]. 

CRs open up new control dimensions for reducing energy 
consumption with their agility and adaptation properties. 
However, the cognitive technology will not only provide 
access to new spectrum but also provides better propagation 
characteristics. CR networks could achieve a wide variety of 
enhancements by adaptively changing system parameters 
like modulation, transmission power, carrier frequency, data 
rate and constellation size. This will certainly improve power 
consumption, network life and reliability in a WSN. 

With these capabilities, a CWSN node can select the best 
strategy meeting its goals. A CWSN node could decide on 
the most appropriate strategy and acts accordingly. For this 
purpose each node has an optimization module that manages 
various parameters to decide the best policy in each case. 
The energy efficiency should be one of these optimization 
policies embedded in the optimization module. 

However, there are intrinsic challenges related to the CR 
capabilities such as hardware complexity, algorithmic 
problems, and design problems. Indeed, the added 
complexity of the nodes to enable cognitive capabilities 
makes nodes have higher energy consumption. Sensing state, 
collaboration among devices (that requires communication) 
and changes in transmission parameters are not free in terms 
of consumption.  

In this way, all steps must be taken into account for a 
holistic optimization.  Reducing power consumption requires 
optimization across all the layers of the communication 
systems. This paper addresses the different options provided 
by CR in the design of low-power WSN. 

IV. ENERGY OPTIMIZATION STRATEGIES 

As mentioned above, the reduction of power 
consumption is a task that involves the overall design across 
all layers of the communication protocol. Focusing layer by 
layer, several strategies for optimizing the consumption can 
be listed for each level, but we believe that due to CR 
characteristics, address the problem of consumption in a 
holistic approach has more advantages. 

Our proposal is to divide the opportunities to optimize 
energy consumption in 3 aspects, namely those that obtained 
through the sensing of the spectrum, those related to the 
capability to change transmission parameters and those that 
depend on the ability to share knowledge of the network.  
The first two aspects derive directly from the cognitive 
capabilities added to the WSN nodes. However, the third 

64Copyright (c) IARIA, 2012.     ISBN:  978-1-61208-197-7

COCORA 2012 : The Second International Conference on Advances in Cognitive Radio

                            69 / 71



aspect, related to the communication between devices, 
although essential for CR, is one of the basic characteristics 
of WSN, now enriched with cognitive information.  

A. Ability to sense the spectrum. 

Related with the ability of being conscious at any time of 
the spectrum features and changing the transmission 
parameters dynamically we can list the following 
optimization strategies. 

 Use less noisy channels implies less number of 
retransmissions: Often in WSN scenarios, due to 
congestion of the network and low power 
transmission, some packets are lost forcing 
retransmissions. CR provides the ability to sense the 
spectrum and change transmission parameters 
according to them. Thus, if in sensing step a less 
noisy channel is found may be optimal to change the 
transmission to this channel in order to avoid 
duplicate transmissions and reducing the global 
consumption of the network. 

 Use less saturated channels implies lower 
transmitted power: In the same way as in the 
previous case, cognitive features provide the ability 
to transmit in less noisy channels. If the transmission 
is made through a channel less saturated we can 
reduce the transmission power by ensuring that 
messages reach their destination. Taken into account 
that  communication is one of the most energy 
expensive tasks, reduce power transmission saves 
power to the network 

 Use less noisy channels provides the possibility of 
using more efficient modulations: Power 
consumption could be reduced by using less robust 
modulations with lower consumption. More energy 
can be conserved by dynamically adopting the 
modulation according to instantaneous traffic load 
and congestion of channels [13].  

B. Capability to change transmission parameters 

Network can reduce power modifying several 
transmission parameters linked with sensed information. 
Examples of these parameters are: using less transmission 
power, using less memory, less microprocessor cycles, or an 
oscillator with lower frequency. For this challenge the 
following strategies could be used: 

 Change communication parameters based on data 
rate requirements: Network devices can modify their 
communication parameters (modulation, channel, 
interleaving, etc.) to avoid a specific data rate with 
low power optimization. Network can use the most 
low power consumption wireless interface for a 
required data rate. 

 Adaptative communication based on QoS 
requirements: because of the spectrum knowledge 
network can send more important packets using a 
better modulation, frequency channel or emitter 
power, but with a power penalty. Also, network can 
use crowd channels to transmit packets with low 
QoS requirements.   

 Change transmission parameters according to 
spectrum: As it is said in section A, it is possible to 
change channel, power transmission or modulation 
parameters depending on the interferences found in 
the spectrum.  

C. Ability to share knowledge of the network 

CWSN paradigm allows modifying several parameters 
with influence in power consumption. These parameters 
belong to all stack levels, from application layer to physical 
radio interface. Spectrum knowledge, sharing information 
and collaboration are essential to achieve this goal. Strategies 
for achieving this goal are: 

 Devices with higher consume could be switched off: 
One of the parameters that can be shared with other 
network nodes is the consumption of each node. In 
this way, the entire network could be aware of what 
nodes consumptions are higher or lower or in what 
circumstances (overcrowded channels) these values 
could vary. Thus, the network can be aware of the 
"black spots" and ensure that these nodes have fewer 
messages to be routed thus reducing the overall 
consumption of the network. 

 Load balance could be used to take advantage of 
consumption and decrease overall consumption: 
Despite what is said in the previous point, sometimes 
load balance could be beneficial to reduce the overall 
consumption of the network even when using a 
priori nodes with higher consume. If nodes with the 
lowest consumption get stressed their batteries could 
be depleted, which would force in the future to pass 
all messages by nodes with higher consumption. 
Due to the ability of the network to share 
information about nodes consumption and remaining 
battery, this action could be taken. 

 Transmitting with power enough to reach only some 
nodes: Taking into account that the network is aware 
of the topology, the packets could be sent directly to 
the destination if it is within range but if it is not the 
case, instead of increase transmission power, 
messages could be sent to intermediate nodes, which 
then forward the packet to other nodes until the 
destination is reached. This multi-hop transmission 
allows to take advantage of the exponential decrease 
in radiated power to save overall power consumption 
in the network by shortening the distance between 
nodes taking advantages of the density of nodes [5]. 

 Developing more energy efficient protocols and 
routing algorithms: Related to the above three points, 
there is a vast field of investigation related with 
routing schemes. It could be combined data from 
individual nodes consumption, load balancing, 
distance between nodes, number of hops to reach the 
destination, noise in channels, etc. In this area, 
several papers in WSN scenarios have published 
[19][20], but adding CR capabilities further enriches 
the possibilities for consumption reduction. 

 Switching off the sensing state if it is no necessary: 
Knowing the behavior of the network and being 
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aware of the history, nodes can decide to turn off the 
sensing state to reduce individual consumption and 
thus also the overall consumption of the network. 

 Change on/off/idle mode based on latency 
requirement: packets can be stored in a node for a 
long time, limited by latency limit. During that time 
the receiver can be switch off and to save power. 
Transmitter node gathers information for a more 
efficient communication.  

 Decrease security depending of power constraints. 
Security processing is one of the most important 
microprocessor activities. Ciphering, key generation 
or other countermeasures are critical for power 
consumption. A cognitive algorithm could change 
security depending of power consumption. 

V. CONCLUSION AND FUTURE WORK 

Due to the number of nodes, its wireless nature, and that 
they may be deployed in difficult access areas, power 
consumption in CWSN nodes is one of the more recurrent 
problems of this kind of networks. This work in progress 
presents some ideas in order to reduce power consumption 
for Cognitive Wireless Sensor Networks scenarios. 

The introduction of Cognitive Radio capabilities in WSN 
provides a new paradigm for power consumption reduction 
but also implies some challenges to face. This reduction of 
consumption is a task that must involve the overall design 
across all layers of the communication protocol. 

Our proposal is divided in three blocks depending of the 
opportunities to optimize energy consumption. These blocks 
are: 1) Strategies related to the sensing of the spectrum 
capability, 2) Strategies related to the ability to change 
transmission parameters and finally, 3) Strategies depending 
on the ability to share knowledge of the network. 

As a preliminary test for these ideas, some scenarios have 
been implemented with very simple low power optimization 
algorithms. Results show as a simple cognitive radio strategy 
can reduce between 94% (changing the wireless interface 
accordingly to data rate) to 40% (choosing less noisy 
channels) amount of power. Also we can check other curious 
issues such as the opportunity of change data-packet size 
depending on the transmission context is very important to 
reduce energy consumption. These tests must be completed 
with more complex algorithms in order to be presented.  

Current green wireless communications research 
directions have to consider Cognitive Radio capabilities to 
enable power reduction in Wireless Sensor Networks.  
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