
COMPUTATION TOOLS 2024

The Fifteenth International Conference on Computational Logics, Algebras,

Programming, Tools, and Benchmarking

ISBN: 978-1-68558-158-9

April 14 - 18, 2024

Venice, Italy

COMPUTATION TOOLS 2024 Editors

Claus-Peter Rückemann, Universität Münster / DIMF / Leibniz Universität
Hannover, Germany

 1 / 16

COMPUTATION TOOLS 2024

Forward

The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and
Benchmarking (COMPUTATION TOOLS 2024), held between April 14 – 18, 2024, continued a series of
events dealing with logics, algebras, advanced computation techniques, specialized programming
languages, and tools for distributed computation. Mainly, the event targeted those aspects supporting
context-oriented systems, adaptive systems, service computing, patterns and content-oriented features,
temporal and ubiquitous aspects, and many facets of computational benchmarking.

Similar to the previous edition, this event attracted excellent contributions and active participation from
all over the world. We were very pleased to receive top quality contributions.

We take here the opportunity to warmly thank all the members of the COMPUTATION TOOLS 2024
technical program committee, as well as the numerous reviewers. The creation of quality conference
program would not have been possible without their involvement. We also kindly thank all the authors
that dedicated much of their time and effort to contribute to COMPUTATION TOOLS 2024. We truly
believe that, thanks to all these efforts, the final conference program consisted of top quality
contributions.

Also, this event could not have been a reality without the support of many individuals, organizations and
sponsors. We also gratefully thank the members of the COMPUTATION TOOLS 2024 organizing
committee for their help in handling the logistics and for their work that made this professional meeting
a success.

We hope COMPUTATION TOOLS 2024 was a successful international forum for the exchange of ideas
and results between academia and industry and to promote further progress in the area of
computational logics, algebras, programming, tools, and benchmarking. We also hope that Venice
provided a pleasant environment during the conference and everyone saved some time to enjoy this
beautiful city.

COMPUTATION TOOLS 2024 Steering Committee

Cornel Klein, Siemens AG, Germany
Claus-Peter Rückemann, Westfälische Wilhelms-Universität Münster (WWU) / DIMF / Leibniz Universität
Hannover, Germany

COMPUTATIONAL TOOLS 2024 Publicity Chairs

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

 2 / 16

COMPUTATION TOOLS 2024

Committee

COMPUTATION TOOLS 2024 Steering Committee

Cornel Klein, Siemens AG, Germany
Claus-Peter Rückemann, Westfälische Wilhelms-Universität Münster (WWU) / DIMF / Leibniz Universität
Hannover, Germany

COMPUTATIONAL TOOLS 2024 Publicity Chairs

José Miguel Jiménez, Universitat Politecnica de Valencia, Spain
Sandra Viciano Tudela, Universitat Politecnica de Valencia, Spain

COMPUTATION TOOLS 2024 Technical Program Committee

Lorenzo Bettini, Università di Firenze, Italy
Ateet Bhalla, Independent Consultant, India
Narhimene Boustia, University Saad Dahlab, Blida 1, Algeria
Azahara Camacho, Opinno, Spain
Angelo Ciaramella, University of Naples Parthenope, Italy
Cornel Klein, Siemens AG, Germany
Emanuele Covino, Universita' di Bari, Italy
Marcos Cramer, TU Dresden, Germany
Santiago Escobar, VRAIN - Universitat Politècnica de València, Spain
Andreas Fischer, Deggendorf Institute of Technology, Germany
Shengzhong Mao, University of Manchester, UK
Roderick Melnik, Wilfrid Laurier University, Canada
Corrado Mencar, Università degli Studi di Bari Aldo Moro, Italy
Ralph Müller-Pfefferkorn, Technische Universität Dresden, Germany
Keiko Nakata, SAP SE - Potsdam, Germany
Adam Naumowicz, University of Bialystok, Poland
Cecilia E. Nugraheni, Parahyangan Catholic University, Indonesia
Alberto Policriti, University of Udine, Italy
Kristin Yvonne Rozier, Iowa State University, USA
James Tan, Singapore University of Social Sciences, Singapore
Hans Tompits, Technische Universität Wien, Austria
Prajna Upadhyay, BITS Pilani Hyderabad, India
Miroslav Velev, Aries Design Automation, USA
Tao Zheng, Orange Innovation China, China

 3 / 16

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 4 / 16

Table of Contents

A Note on a Syntactical Measure of the Complexity of Programs
Emanuele Covino

1

Contextual Categorization Enhancement through LLMs Latent-Space
Zineddine Bettouche, Anas Safi, and Andreas Fischer

6

Powered by TCPDF (www.tcpdf.org)

 1 / 1 5 / 16

A Note on a Syntactical Measure of the
Complexity of Programs

Emanuele Covino
Dipartimento di Informatica
Universitá degli Studi di Bari

Bari, Italy
emanuele.covino@uniba.it

Abstract—We introduce a programming language operating
on stacks and a syntactical measure σ, such that a natural num-
ber σ(P) is assigned to each program P. The measure considers
how the presence of loops defined over size-increasing (and
non-size-increasing) subprograms influences the complexity of
the program itself. Functions computed by a program of σ-
measure n are exactly those computable by a Turing machine
with running time in En+2 (the n+2-th Grzegorczyk class). Pro-
grams of σ-measure 0 compute the polynomial-time computable
functions. Thus, we have a syntactical characterization of the
functions belonging to the Grzegorczyk hierarchy; this result
represents an improvement with respect to previous similar
results.

Index Terms—polynomial-time complexity, Grzegorczyk hi-
erarchy, imperative programming languages, stack programs

I. INTRODUCTION

The definition of a class of functions with a given com-
putational complexity is usually given by introducing an
explicit bound on time and/or space resources used by a
Turing Machine during the computation of the functions.
Other approaches capture complexity classes by means of
some form of limited recursion; the first characterization of
this type has been given by Cobham [3], who has shown that
the polynomial-time computable functions are exactly those
that are definable by bounded recursion on notation, starting
from a set of simple basic functions.

In the recent years, a number of characterizations of
complexity classes has been given, showing that they can
be captured by means of various forms of ramified recursion,
without any explicitly bounded scheme of recursion. Initiated
by Simmons [23], Bellantoni and Cook [1] and Leivant [13]
- [15], one can find functional characterization of linear-
space/time computable functions LINSPACE and LOGSPACE
[9], polynomial time [16], polynomial space [18] [21], the
elementary functions [21] [4], non-size-increasing computa-
tions [6], among the others.

A different approach can be found in [7] [8] [10] [11];
more recently, in [12] [17]. The properties of imperative
programs (such as complexity, resource utilization, termina-
tion) are now investigated by analyzing their syntax only.
In particular, the properties of a programming language

operating on stacks are studied in [10]; the language supports
loops over stacks, conditionals and concatenation, besides
the usual pop and push operations (see Section II for the
detailed semantics). The natural concept of µ-measure is then
introduced; it is a syntactical method by which one is able
to assign to each program P a number µ(P). It is proved the
following bounding theorem: functions computed by stack
programs of µ measure n have a length bound b ∈ En+2

(the n+2-th Grzegorczyk class), that is |f(w⃗)| ≤ b(|w⃗|); as
a consequence, stack programs of measure 0 have polynomial
running time, and programs of measure n compute functions
whose time complexity is in the n + 2-th finite level of the
Grzegorczyk hierarchy. This result provides a measure of
the impact of nesting loops on computational complexity;
if a stack Z is updated into a loop controlled by a stack Y
and, afterwards, Y is updated into a loop controlled by Z,
we have a so called top circle in the program; when this
circular reference occurs into an external loop, a blow up in
the complexity of the program is produced. The µ-measure
is a syntactical way to detect top circles; each time one of
them occurs in the body of a loop, the µ measure is increased
by 1 (see below, Section III and definition 3.1).

There are various ways of improving the measure µ
(for instance, see [11]), since it is an undecidable problem
whether or not a function computed by a given stack program
lies in a given complexity class. In this paper, we provide a
refinement of µ, starting from the following consideration: a
program whose structure leads the µ-measure to be equal
to n contains n nested top circles, and this implies, by
the bounding theorem, that the program has a length bound
b ∈ En+2. Suppose now that some of the sequences of pop
and push (or, in general, some of the subprograms) iterated
into the main program leave unchanged the overall space
used; since not increasing programs can be iterated without
leading to any growth in space, the effective space bound
is lower than the bound obtained via the µ-measure, and
it can be evaluated by an alternative measure σ. While µ
grows each time a top circle appears in the body of a loop,
σ grows only for increasing top circles. In other words,
the new measure doesn’t consider those situations in which
some (potentially harmful) operations are performed, but

1Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 6 / 16

their overall balance is negative. We prove a new bounding
theorem using the σ-measure, providing a more appropriate
bound to the complexity of stacks programs.

In Section II, we recall concepts and definitions of stack
programs and of the Grzegorczyk hierarchy. In Section III,
we recall the definition of µ-measure. In Section IV, we
introduce the definition of the new σ-measure and the new
bounding theorem. Conclusions and future work can be found
in Section V.

II. PRELIMINARIES ON THE GRZEGORCZYK HIERARCHY
AND ON STACK PROGRAMS

In this section, we recall the definition of the Grzegorczyk
hierarchy, and fundamentals on stack programs and their
computations; the reader is referred to [22] [5] [2] [10] for
complete definitions and properties.

Definition 2.1: Given a unary function f , the k-th iterate of
f (denoted with fk) is f0(x) = x and fk+1(x) = f(fk(x)).

Definition 2.2: The principal functions E1, E2, E3, . . . are
E1(x) = x2 + 2 and En+2(x) = Ex

n+1(2) (the x-th iterate
of En+1).

Definition 2.3: A function f is defined by bounded re-
cursion from functions g, h, and b if for all x⃗, y one has
f(x⃗, 0) = g(x⃗), f(x⃗, y) = h(x⃗, y, f(x⃗)) and f(x⃗, y) ≤
g(x⃗, y).

Definition 2.4: The n-th Grzegorczyk class En is the
least class of functions containing the initial functions zero,
successor, projections, maximum and En−1, and closed under
composition and bounded recursion.

Stack programs operate on variables serving as stacks; they
contain arbitrary words over a fixed alphabet Σ, and they are
manipulated by running a program built from imperatives
push(a,X), pop(X), and nil(X) combined by sequencing, con-
ditional, and loop statements (respectively, P;Q, if top(X)≡a
then [P], and foreach X [P]).

Definition 2.5: The operational semantics of stack pro-
grams are defined as follows:

1) push(a,X) pushes a letter a on the top of the stack X;
2) pop(X) removes the top of X, if any; it leaves X

unchanged, otherwise;
3) nil(X) empties the stack X;
4) if top(X)≡a [P] executes P if the top of the stack X is

equal to a;
5) P1;. . .;Pk are executed from left to right;
6) foreach X [P] executes P for |X| times
with the restriction that no imperatives over X may occur

in the body of a loop foreach X [P] (i.e., in P), and that the
loop is executed call-by-value; X is the control stack of the
loop. |X| stands for the length of the word stored in X.

The notation {A}P{B} means that if the condition ex-
pressed by the sentence A holds before the execution of P,
then the condition expressed by the sentence B holds after
the execution of P.

Definition 2.6: A stack program P computes a function
f : (Σ∗)n → Σ∗ if P has an output variable O and n input
variables X̄ = Xi1 , . . . ,Xin among stacks X1, . . . ,Xm such
that {X̄ = w⃗}P{O = f(w⃗)}, for all w⃗ = w1, . . . , wn ∈
(Σ∗)n.

For a fixed program P, two sets of variables are de-
fined: U(P) = {X|P contains an imperative push(a,X)} and
C(P) = {X|P contains a loop foreach X [Q], and U(Q) ̸=
∅}. Variables in U(P) can be altered by a push during a run
of P, while variables in C(P) control a loop occurring in P.
The two sets are not disjoint.

Definition 2.7: X controls Y in the program P (denoted
with X ≺P Y) if P contains a loop foreach X [Q], and Y ∈
U(Q); the transitive closure of ≺P is denoted by P→.

Consider the following program:

P1:= foreach X1[. . . foreach Xl [push (a,Y)]]

If words v1 . . . vl, w are stored in X1 . . . Xl, Y, respectively,
before P1 is executed, then Y holds the word wa|v1|...|vl|

after the execution of P1. The depth of loop-nesting is a
necessary condition for high computational complexity, but
it is not a sufficient condition. Now, consider the following
two programs:

P2:= nil(Y); push(a,Y); nil(Z); push(a,Z);
foreach X [nil(Z); foreach Y [push(a,Z); push(a,Z)];

nil(Y); foreach Z [push(a,Y)]]

P3:= nil(Y); push(a,Y); nil(Z);
foreach X [

foreach Y [push(a,Z); push(a,Z); push(a,Y)]]

Even if both P2 and P3 have nesting depth 2, if w is
initially stored in X, then Z holds the word a2|w|

after P2 is
executed, while a|w|(|w|+1) is stored in Z after the execution
of P3. Thus, we see that P3 runs in polynomial time, whereas
P2 has exponential running time. This happens because of
the (control) circle contained inside the outermost loop in
P2: inside the loop governed by X, first Y controls Z (in
that Z is updated via push(a,Z) inside a loop governed by
Y), and then Z controls Y in the same sense. In contrast,
there is no such circle in P3. Stack programs where each
body of a loop statement is circle-free compute exactly the
functions computable within polynomial time, and must be
separated from those programs with loops that cause a blow
up in running time.

III. THE µ-MEASURE ON STACK PROGRAMS

Starting from the previous relation P→, a measure over the
set of stack programs is introduced in [10].

Definition 3.1: Let P be a stack program. The µ-measure
of P (denoted with µ(P)) is defined as follows, inductively:

1) µ(pop) = µ(push) = µ(nil) := 0;
2) µ(if top(X)≡a [Q]) := µ(Q);

2Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 7 / 16

3) µ(P;Q) := max(µ(P), µ(Q));
4) µ(foreach X [Q]) := µ(Q) + 1, if Q is a sequence

Q1; . . . ;Ql with a top circle (that is, if there exists Qi

such that µ(Qi) = µ(Q), some Y controls some Z in
Qi, and Z controls Y in Q1; . . . ;Qi−1;Qi+1; . . . ;Ql);
µ(foreach X [Q]) := µ(Q), otherwise.

To focus on the critical case where P is a loop foreach
X [Q], assume that µ(Q) is already determined. Suppose
that Q is a sequence Q1; . . .;Ql, in which case µ(Q) is
max(Q1, . . .,Ql). Then a blow up in running time can only
occur if Q has a top circle, that is, Q has a circle with respect
to a control variable Y of some component Qi of maximal µ-
measure µ(Q). In this case, µ(P) is defined as µ(Q)+1. In all
other cases, µ(P) is defined as µ(Q). Given that all primitive
instructions receive µ-measure 0, one easily verifies for the
examples above that µ(P1)=µ(P3)=0, whereas µ(P2)=1.

The core of [10] is the following bounding theorem.
Lemma 3.1: Every function f computed by a stack pro-

gram of µ-measure n has length bound b ∈ En+2 satisfying
|f(w⃗)| ≤ b(|w⃗|), for all w⃗. In particular, if P computes
a function f , and µ(P) = 0, then f has a polynomial
length bound, that is, there exists a polynomial p satisfying
|f(w⃗)| ≤ p(|w⃗|).

Let Ln
µ be the class of all functions which can be computed

by a stack program of µ-measure n ≥ 0, and let Gn be the
class of all functions which can be computed by a Turing
machine in time b(|w⃗|), for some b ∈ En. As a consequence
of the bounding lemma, the following result holds.

Theorem 3.1: For n ≥ 0: Ln
µ = Gn+2.

IV. THE σ-MEASURE AND A NEW BOUNDING THEOREM

In the rest of the paper, we denote with imp(Y) an imper-
ative pop(Y), push(a,Y), or nil(Y); we denote with mod(X̄)
a modifier, that is a sequence of imperatives operating on
the variables occurring in X̄ = X1, . . . ,Xn. We introduce a
modified definition of circle, which better matches our new
measure.

Definition 4.1: Let Q be a sequence in the form
Q1; . . . ;Ql. There is a circle in Q if there exists a sequence
of variables Z1,Z2,. . . ,Zl, and a permutation π of {1, . . . , l}
such that Z1

Qπ(1)→ Z2

Qπ(2)→ . . .Zl

Qπ(l)→ Z1. The subprograms
Q1, . . . ,Ql and the variables Z1, . . . ,Zl are involved in the
circle.

For sake of simplicity, we will consider π(i) = i, that is
the case Z1

Q1→ Z2
Q2→ . . .Zl

Ql→ Z1; proofs and definitions
holds in the general case too.

Definition 4.2: Let P be a stack program and let Y be
a given variable. The σ-measure of P with respect to Y
(denoted with σY(P)) is defined as follows, inductively (with
sg(z) = 1 if z ≥ 1, sg(z) = 0 otherwise):

1) σY(mod(X̄)) := sg(
∑

σ̂Y(imp(Y))), for each imp(Y) ∈
mod(X̄), where
σ̂Y(push(a,Y)) := 1;

σ̂Y(pop(Y)) := −1;
σ̂Y(nil(Y)) := −∞;
σ̂Y(imp(X)) := 0, with Y̸=X;

2) σY(if top Z ≡a[P]) := σY(P);
3) σY(P1;P2) := max(σY(P1), σY(P2)), with P1;P2 not a

modifier;
4) σY(foreach X [Q]) := σY(Q)+1, if there exists a circle

in Q, and a subprogram Qi s.t.
(a) Y and Qi are involved in the circle;
(b) σY(Q) = σY(Qi);
(c) the circle is increasing;
σY(foreach X [Q]) := σY(Q), otherwise,

where a circle is not increasing if, denoted with
Q1,Q2,. . . ,Ql and with Z1,Z2,. . . ,Zl the sequences of sub-
programs and, respectively, of variables involved in the circle,
we have that σZi

(Qj) = 0, for each i := 1 . . . l and
j := 1 . . . l. If the previous condition doesn’t hold, we say
that the circle is increasing.

Note that the σY-measure of a modifier (see (1) in the
previous definition) is equal to 1 only when, in absence of
nil’s, the overall number of push’s over Y is greater than the
number of pop’s over the same variable, that is, only when a
growth in the length of Y is produced. Moreover, note that the
"otherwise" case in (4) can be split in three different cases.
First, there are no circles in which Y is involved. Second,
Y is involved, together with a subprogram Qi, in a circle
in Q, but it happens that σY(Qi) is lower than σY(Q) (this
means that there is a blow-up in the complexity of Y in
σY(Qi), but this growth is still bounded by the complexity
of Y in a different subprogram of Q). Third, Y is involved
in some circles in Q, but each of them is not increasing
(that is, according to the previous definition, each variable
Zi involved in each circle doesn’t produce a growth in the
complexity of the subprograms Qj involved in the same
circle). This implies that the space used during the execution
of the external loop foreach X [Q] is basically the same used
by Q (this is not a surprising fact: one can freely iterate a
not increasing program without leading an harmful growth).
In all three cases the σ-measure must remain unchanged:
it is increased only when an increasing top circle occurs
and when at least one of the variables involved in that
circle causes a growth in the space complexity of the related
subprogram, simultaneously (that is, if there exists a p such
that σZp(Qp) > 0).

In the following definition, we extend the measure to the
whole set of variables occurring in a stack program.

Definition 4.3: Let P be a stack program. The σ-measure
of P is σ(P) := σ̃(P)−̇1, where −̇ is the usual cut-off
subtraction, and

1) σ̃(mod(X̄)) := 0
2) σ̃(if top Z ≡a [Q]) := max(σY(if top Z ≡a [Q])), for

all Y occurring in P;
3) σ̃(P1;P2) := max(σY(P1;P2)), for all Y occurring in

P, with P1;P2 not a modifier;

3Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 8 / 16

4) σ̃(foreach X [Q]) := max(σY(foreach X [Q])), for all
Y occurring in P.

Note that σ(P) ≤ µ(P), for each stack program P. Note
also that we are using the previously defined σ̂Y to detect all
the increasing modifiers, for a given variable Y (this is done
setting σ̂Y equal to 1); but, once detected, we don’t have to
consider them in the evaluation of the σ-measure. This is the
reason of the "−̇1" part in the previous definition.

In the rest of the paper we introduce a reduction procedure
between stack programs, denoted with ⇝, and we prove a
new bounding theorem.

Definition 4.4: P and Q are space equivalent if {X̄ =
w⃗}P{|X̄| = m} implies that {X̄ = w⃗}Q{|X̄| = O(m)}. This
is denoted with P≈sQ.

Definition 4.5: Let A be a stack program such that µ(A) =
n+ 1, and σ(A) = m, with m < n+ 1; the program ⇝A is
obtained as follows:

1) if A is foreach X [R], with µ(R) = σ(R) = n, and
denoted with C1, . . . , Cl the top circles in R, and with
Ai1, . . . ,Aip the variables involved in Ci, for each i, we
have that ⇝A is the result of changing each imp(Aij)
into nop(Aij) (a no-operation imperative);

2) if A is foreach X [R], with µ(R) > σ(R), , we have
that ⇝A is equal to foreach X [⇝R];

3) if A is A1;A2 and max(µ(A1), µ(A2)) = µ(A1), we
have that ⇝A is equal to ⇝A1;A2;
simmetrically, if max(µ(A1), µ(A2)) = µ(A2), we
have that ⇝A is equal to A1;⇝A2;
if µ(A1) = µ(A2), we have that ⇝A is equal to
⇝A1;⇝A2;

4) if A is if top(X)≡a [R], we have that ⇝A is equal to
if top(X)≡a [⇝R].

Lemma 4.1: Given a stack program P, with µ(P) = n+1
and σ(P) = n, there exists a stack program ⇝P such that
µ(⇝ P) = n, σ(⇝ P) = n, and P≈s⇝P.
Proof. (by induction on n). Base. Let µ(P) = 1 and σ(P) =
0. In the main case, P is in the form foreach X [Q], with
a not-incresing circle occurring in Q. Applying ⇝ to P, we
obtain a program P′ whose σ-measure is still 0, and whose
µ-measure is reduced to 0, because ⇝ has broken off the
circle in P that leads µ from 0 to 1 (i.e., in P′, there are no
more push’s on the variables involved in the circle). Note
that P can decrease the length of the stacks involved in the
circle, while P′ does not perform any operation in the same
circle. Thus, P′ can increase its variables only by a linear
factor; indeed, if {X̄ = w⃗}P{|X̄| = m} we have that {X̄ =
w⃗}P′{|X̄| = cm}, where c is a constant depending on the
structure of P: thus, P≈sP′.
Step. Let µ(P) = n+ 2 and σ(P) = n+ 1. Let P be in the
form foreach X [Q], and let C be a top circle occurring in
Q, with µ(Q) = n+1; we have two cases: (1) σ(Q) = n+1,
or (2) σ(Q) = n.
(1) In this case C is a not-increasing circle, because it has
been detected by µ, but not by σ. Applying ⇝ to P, we

obtain a program P′ such that σ(P′) = n+1, µ(P′) = n+1,
and P≈sP′.
(2) In this case C is an increasing circle, detected by µ and
σ. We have that (by the inductive hypothesis) there exists a
program Q′ such that µ(Q′) = n, σ(Q′) = n, and Q≈sQ

′.
Starting from P, we build a new program P′=foreach X [Q’]
. We have that µ(P′) = µ(Q′)+1 = n+1, σ(P′) = σ(Q′)+
1 = n+ 1, and P≈sP′ as expected.
The cases P1;P2;. . . ;Pk and if top(X)≡a [P] can be proved
in a similar way.

Theorem 4.1: Every function f computed by a stack
program P such that µ(P) = n and σ(P) = m, with n > m,
has a length bound b ∈ Em+2 satisfying |f(w⃗)| ≤ b(|w⃗|).
Proof. Let k be µ(P) − σ(P). Then by k applications of
Lemma 4.1, we obtain a sequence P =: P0,P1, . . . ,Pk of
stack programs such that, for all i < k,

µ(Pi+1) = µ(P)− i, σ(Pi) = σ(Pi+1), and Pi ≈s Pi+1.

By Kristiansen and Niggl’s bounding theorem, Pk has a
length bound in Eσ(P)+2, and so does P, by transitivity of
≈s.

Let Ln
σ be the class of all functions that can be computed

by a stack program of σ-measure n ≥ 0, and let Gn be the
class of all functions which can be computed by a Turing
machine in time b(|w⃗|), for some b ∈ En. As a consequence
of Theorem 4.1, and similarly to what has been recalled in
Section III, the following result holds.

Theorem 4.2: For n ≥ 0: Ln
σ = Gn+2.

V. CONCLUSIONS AND FUTURE WORK

We have defined a syntactical measure σ that considers
how the iteration of imperative stack programs affects the
complexity of the programs themselves. In particular, this
measure only counts those loops in which programs with a
size-increasing effect (w.r.t. the final length of the result) are
iterated. Each time such a loop is built over other loops,
the σ-measure is increased by 1. Other measures detect
potentially harmful loops, but are not able to distinguish
between size-increasing loops and the non-size-increasing
one’s. It is undecidable to know if a function computed
by a given stack program lies in a given complexity class,
but our measure represents an improvement when compared
to previously defined measures. We can assign a function
computed by a stack program of σ-measure n to the n+2−th
Grzegorczyk class, and this class is lower in the hierarchy,
when compared to the class obtained via the µ-measure.

REFERENCES

[1] S. Bellantoni and S. Cook, "A new recursion-theoretic characterization
of the poly-time functions," Computational Complexity, no. 2, pp. 97-
110, 1992.

[2] P. Clote, "Computation models and function algebra," in E. Grivor (Ed.),
Handbook of Computability Theory, Elsevier, Amsterdam, 1996.

[3] A. Cobham, "The intrinsic computational difficulty of functions," in Y.
Bar-Hillel (ed), Proceedings of the International Conference on Logic,
Methodology, and Philosophy of Science, pp. 24-30, North-Holland,
Amsterdam, 1962.

4Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 9 / 16

[4] E. Covino and G. Pani, "Diagonalization and the complexity of pro-
grams," The Ninth International Conference on Computational Logics,
Algebras, Programming, Tools, and Benchmarking, (COMPUTATION
TOOLS 2018), February 18-22, 2018, Barcelona, Spain. ISBN: 978-1-
61208-394-0. ISSN: 2308-4170

[5] A. Grzegorczyk, "Some classes of recursive functions," Rozprawy Mat.,
Vol. IV, Warszawa, 1953.

[6] M. Hofmann, "The strength of non-size-increasing computations," Prin-
ciples of Programming Languages, POPL’02, Portland, Oregon, January
16-18th, 2002.

[7] N. Jones, "Program analysis for implicit computational complexity,"
Third International Workshop on Implicit Computational Complexity
(ICC’01), Aarhus.

[8] N. Jones, "LOGSPACE and PTIME characterized by programming lan-
guages," Theoretical Computer Science, no. 228, pp. 151-174, 1999.

[9] L. Kristiansen, "New recursion-theoretic characterizations of well
known complexity classes," Fourth International Workshop on Implicit
Computational Complexity (ICC’02), Copenhagen.

[10] L. Kristiansen and K.-H. Niggl, "On the computational complexity of
imperative programming languages," Theoretical Computer Science, no.
318(1-2), pp. 139–161, 2004.

[11] L. Kristiansen and K.-H. Niggl, "The garland measure and computa-
tional complexity of imperative programs," Fifth International Workshop
on Implicit Computational Complexity, (ICC ’03), Ottawa.

[12] D. Leivant, "A generic imperative language for polynomial time,"
arXiv:1911.04026v2 [cs.LO], 2020.

[13] D. Leivant, "Subrecursion and lambda representation over free alge-
bras," in S. Buss, P. Scott (Eds.), Feasible Mathematics, Perspectives in
Computer Science, BirkhLauser, Boston, New York, 1990, pp. 281–291.

[14] D. Leivant, "A foundational delineation of computational feasibility,"
in Proc. Sixth IEEE Conf. on Logic in Computer Science (Amsterdam),
IEEE Computer Society Press, Washington, DC, 1991.

[15] D. Leivant, "Stratifed functional programs and computational complex-
ity," in Conf. Record of the 20th Annual ACM Symposium on Principles
of Programming Languages, New York, 1993, pp. 325–333.

[16] D. Leivant, "Ramifed recurrence and computational complexity I:
Word recurrence and poly-time," in P. Clote, J. Remmel (Eds.), Feasible
Mathematics II, Perspectives in Computer Science, BirkhLauser, Basel,
1994, pp. 320–343.

[17] D. Leivant and J.-Y. Marion, "Primitive recursion in the abstract,"
Mathematical Structures in Computer Science, Cambridge University
Press (CUP), 2020, 30 (1), pp. 33-43. 10.1017/S0960129519000112.
hal-02573188.

[18] D. Leivant and J.-Y. Marion, "Ramified recurrence and computational
complexity II: substitution and polyspace," in J. Tiuryn and L. Pocholsky
(eds), Computer Science Logic, LNCS no. 933, pp. 486-500, 1995.

[19] A. Meyer and D. Ritchie, "The complexity of loop programs," in
Proceedings of the 1967 22nd National Conference, pp. 465–469, New
York, NY, USA, 1967, ACM.

[20] K.-H. Niggl, "Control structures in programs and computational
complexity," Fourth Implicit Computational Complexity Workshop
(ICC’02), Copenhagen.

[21] I. Oitavem, "New recursive characterization of the elementary func-
tions and the functions computable in polynomial space," Revista
Matematica de la Universidad Complutense de Madrid, no. 10.1, pp.
109-125, 1997.

[22] H. E. Rose, Subrecursion: functions and hierarchies, Oxford University
Press, Oxford, 1984.

[23] H. Simmons, "The realm of primitive recursion," Arch. Math. Logic
27 (1988), pp. 177–188.

5Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 10 / 16

Contextual Categorization Enhancement
through LLMs Latent-Space

Zineddine Bettouche, Anas Safi, Andreas Fischer
Deggendorf Institute of Technology

Dieter-Görlitz-Platz 1, 94469 Deggendorf
zineddine.bettouche@th-deg.de, anas.safi@stud.th-deg.de, andreas.fischer@th-deg.de

Abstract—Managing the semantic quality of the categorization
in large textual datasets, such as Wikipedia, presents significant
challenges in terms of complexity and cost. In this paper,
we propose leveraging transformer models to distill semantic
information from texts in the Wikipedia dataset and its asso-
ciated categories into a latent space. We then explore different
approaches based on these encodings to assess and enhance the
semantic identity of the categories. Our graphical approach is
powered by Convex Hull, while we utilize Hierarchical Navigable
Small Worlds (HNSWs) for the hierarchical approach. As a
solution to the information loss caused by the dimensionality
reduction, we modulate the following mathematical solution: an
exponential decay function driven by the Euclidean distances
between the high-dimensional encodings of the textual categories.
This function represents a filter built around a contextual
category and retrieves items with a certain Reconsideration
Probability (RP). Retrieving high-RP items serves as a tool for
database administrators to improve data groupings by providing
recommendations and identifying outliers within a contextual
framework.

Index Terms—Natural Language Processing, Contextual Cate-
gorization, Large Language Models, BERT, Convex Hull, Hierar-
chical Navigable Small Worlds, High-dimensional Latent Space,
Dimensionality Reduction.

I. INTRODUCTION

In the modern age of abundant textual data, effective cate-
gorization poses a significant challenge due to its increasing
complexity. As data volumes grow exponentially, traditional
methods struggle to handle the task adequately.

Fortunately, advancements in Natural Language Processing
(NLP) provide a promising solution. NLP techniques, like
word embeddings, encode semantic information, enabling au-
tomated and accurate categorization of vast datasets. Long
Short-Term Memory (LSTM) networks, a type of recurrent
neural network, excel at modeling sequential data and have
proven effective in automating categorization tasks.

Transformer models [1], such as the BERT series [2],
offer a deep understanding of contextual nuances, enhancing
categorization accuracy. Innovative algorithms like Convex
Hull [3] and Hierarchical Navigable Small World (HNSW) [4],
powered by embeddings, can be employed to check the
categorization efficiency by organizing and navigating through
high-dimensional spaces.

In our previous works [5], [6], we addressed the contextual
clustering of transformer encodings in an unlabeled database
of scientific articles. In this study, we investigate the effec-
tiveness of these methodologies—NLP techniques, LLMs, and

geometric algorithms—in improving categorization efficiency
and accuracy. Through empirical analysis, we aim to demon-
strate their efficacy in managing large-scale data categorization
challenges.

As for the structure of this paper, Section II offers a
background on key topics such as Transformer models, and the
NLP techniques employed. Section III cites the related works,
setting a foundation and context for the research. Section IV
lays out the methodology, detailing the approach, models,
and metrics used. Section V presents the experiments, the
challenges faced, trade-offs considered, and the results derived
from the techniques employed. Finally Section VI concludes
the study and sets up future work.

II. BACKGROUND

This section introduces the background of the techniques
used to develop our methodology.

A. Transformer Models: BERT

Transformer models, such as BERT, are pivotal tools in
the field of natural language processing. BERT, which stands
for Bidirectional Encoder Representations from Transformers,
has transformed the way we handle text data. BERT models
are pretrained on vast textual corpora and excel at converting
text into high-dimensional vectors. They shine at capturing
intricate semantic relationships between words and sentences,
making them invaluable for various NLP tasks.

B. Convex Hull

Convex hulls are key concepts in computational geometry
and mathematics. They represent a closed, convex shape that
encloses a set of data points in multi-dimensional space. In our
study, we use convex hulls to define boundaries around groups
of BERT-encoded articles, creating distinct regions within the
latent space. This method aids in exploring how articles are
distributed within a specific category and identifying those that
are positioned near the boundaries. This enables us to adjust
and extend category definitions effectively.

C. Hierarchical Navigable Small Worlds

Hierarchical Navigable Small Worlds (HNSWs) serve as
a data structure for approximate similarity searches in high-
dimensional spaces. They offer a practical and scalable means
to navigate complex, multi-dimensional data while preserving

6Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 11 / 16

proximity relationships. In our research, HNSWs are employed
to efficiently organize and search BERT-encoded vectors. This
facilitates the process of identifying articles that closely resem-
ble a given category within the latent space. The hierarchical
nature of HNSWs enhances our ability to adjust and expand
categories based on latent similarities.

III. RELATED WORK

In this section, we provide a concise overview of related
work, highlighting key contributions that inform our study.

Moas’ investigation into “Real-time prediction of Wikipedia
articles’ quality” [7] examines various assessment methods,
automated and manual, highlighting the challenges in manual
assessment due to its time-consuming nature and issues like
“circular categories.” The paper suggests using an Application
Programming Interface (API) to address these challenges in
analyzing category trees. Another study, “The Use of NLP-
Based Text Representation Techniques to Support Require-
ment Engineering Tasks,” [8] discusses levels of Natural
Language Processing (NLP). It emphasizes the semantic level
for understanding text meaning and supports the adoption of
the Vector Space Model [9] for its simplicity in representing
articles in high-dimensional spaces.

The paper “Data Mining with Python” [10] by Nielsen
highlights NetworkX and DiGraphs’ utility in analyzing hi-
erarchical structures like category trees in Wikipedia. These
directed graphs accurately represent parent-child relationships,
essential in modeling category relationships. Studies on convex
hulls, such as Preparata and Hong’s computational aspects [11]
and Graham’s algorithm [3], provide insights into computa-
tional methods for points in two and three-dimensional spaces.
Understanding convex hull derivation from simple polygons
aids in comprehending data distribution in high-dimensional
spaces, relevant to machine learning.

The research by Malkov and Yashunin [4] introduces Hi-
erarchical Navigable Small World (HNSW) graphs for kNN
search, implemented in this thesis for vector retrieval. The
analysis revealed that articles within the same category tend
to be the closest neighbors in the constructed HNSW structure.

Johnson et al. [12] proposed a language-agnostic method for
categorizing Wikipedia articles, overcoming content quality
and geographic variations. Leveraging article links, their ap-
proach matches language-dependent methods in performance,
extending coverage across Wikipedia languages. Biswas et
al. [13] introduced Cat2Type, enhancing entity typing in
knowledge graphs (KGs) like DBpedia and Freebase us-
ing Wikipedia categories. By utilizing semantic information,
Cat2Type surpasses existing methods on real-world datasets.
Ostendorff et al. [14] addressed semantic relationship iden-
tification between documents, treating it as a pairwise clas-
sification task. Employing BERT and XLNet, experiments
on Wikipedia article pairs and Wikidata properties vali-
dated BERT’s effectiveness, suggesting potential for semantic
document-based recommender systems.

This overview summarizes findings from various research
domains, including article categorization, NLP techniques,

Figure 1. Sample of Data Objects in the Wikipedia Dataset

dimensionality reduction, graph analysis, convex hulls, and
nearest neighbor search, all relevant to this study. Notably,
the reviewed research does not directly address the use of
transformer-generated encodings in their high-dimensionality
(full information), which differentiates the methodology pre-
sented in this paper. The paper introduces a novel mathe-
matical function that utilizes these encodings, representing a
distinctive contribution to the field.

IV. METHODOLOGY

This section presents the Wikipedia dataset used in this work
and the approaches developed to select articles for context-
based reconsideration.

A. Overview of Wikipedia Dumps

The data used is from the Wikipedia dump of November
2020 on Kaggle [15] (plain text). There are 6,144,363 articles
in the dataset divided into 605 JSON files. Figure 1 shows a
random sample of items in these JSON files. Each item has
an id, a text, and a title.

The transformer model processes articles individually, en-
suring consistent and undistorted encodings regardless of the
number of articles processed and sample size. Therefore,
as a proof of concept and for computational feasibility, we
randomly selected 10,000 articles to assess the approaches and
conduct experiments.

B. Convex Hull

Our second approach involves the construction of a convex
hull on the set of vectors representing the category. The
vectors of the category tree are mapped onto a 2D plane using
UMAP [16]. The reason behind including UMAP is that it is
not feasible to construct a convex hull in the 768 dimensions
Every article in the dataset undergoes encoding and mapping
onto the 2D plane, enabling the determination of whether
any article breaches the established convex hull boundary.
Convex hulls provide an efficient way to capture the spatial
relationships between category vectors when mapped onto a
2D plane. This approach leverages the geometric properties
of convex hulls, enabling the visualization and definition of
the boundaries of category clusters. By determining whether
an article breaches the established convex hull boundary, one
can promptly identify articles that do not conform to their
designated categories.

7Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 12 / 16

C. HNSW

The application of Hierarchical Navigable Small World
(HNSW) is used in the third approach to retrieve the nearest
neighbors of articles within a category tree. The premise of
this approach is that retrieved articles should already share
the same category. The presence of articles that are retrieved
but do not belong to the category tree should be reconsidered
for category addition. We construct an HNSW using the ran-
domly selected articles, alongside category vectors. For each
category vector, we retrieve the five nearest neighbors in this
HNSW. Articles that appear and are not associated with the
category, are flagged for inspection. This approach leverages
the structure of the data. Articles within the same category
should naturally be closer to each other in the vector space.
By flagging articles retrieved by HNSW that do not belong to
the category tree, one can promptly identify instances of lack
of categorization.

D. Filter built on High-dimensional Latent Space

The high dimensionality of the encodings can be too com-
plex for several techniques, and it is referred to as the curse of
dimensionality in this case. However, we intend to use these
information-rich vectors to our advantage. We design a filter
that takes the category articles (as encodings) and its centroid
vector. This filter is applied on the articles of the sample. It
takes a percentage that represents the Reconsideration Proba-
bility (RP).

An article with 100% RP must be reconsidered to be
added to the concerned category. We encode the category into
latent space and calculate the centroid vector. The category
encodings form a cloud around this centroid vector in the
latent space. Any non-category vector in the dataset that has a
distance to the centroid vector equal to or less than the radius
of this category cloud is assigned 100% RP.

We assume that in the sample there must at least one
article that must not be in the selected category. We assign
this non-category article 0.1% RP (0% RP complicates the
mathematical modeling of the filter). In the case that the
dataset admin cannot select such an article, we assign 0.1%
RP to the article with the farthest encoding from the centroid.

As for the filter function, let dc represent the distance of the
last quarter threshold (75th percentile). This value is often used
as a measure of central tendency that is less affected by outliers
compared to the mean. Let dea represent the distance of the
examined article. The RP (dc, dea) should be 100% when dea
is equal to dc, and approach 0% the greater is dea compared to
dc. We achieve this is by using an exponential decay function
with a horizontal shift. To determine the decay constant k,
we need to consider the set of non-category articles and their
distances. The median value median(set(dea)) in this set of
distances should result in 50% RP. Equations 1 and 2 show
the mathematical modeling of this description.

k =
−ln(0.5)

median(set(dea))− dc
(1)

Figure 2. Euclidean Distances between Centroid and Space Vectors

RP (dc, dea) = 100 ∗ e−k∗(dea−dc) (2)

V. EXPERIMENTS

This section discusses the experiments done in this paper.

A. Setting up the Vector Space: Encodings of the Category
and the Sample Articles

To set the ground for the experiments, the sample of articles
and the category articles are all encoded into the vector space.
The centroid vector of the category is calculated by averaging
its vectors. We calculate then the euclidean distances between
this centroid vector and every other vector in this space.
Figure 2 shows the results of these calculations. We observe
that the distances of the sample articles fall mostly in the
interval of distances: [3.5, 10.5] while the category articles
have distances to their centroid not exceeding 4, showing
an overlap in [3.5, 4]. The upcoming experiments shed more
light on how to retrieve the closest articles to the centroid
(other than the category vectors), and we highlight how these
retrieved articles fall distance-wise.

B. Convex Hull: Geometric Boundaries

In this experiment we construct the convex hull with the
encodings of the category (Figure 3). The convex hull is placed
on the map of the 10,000 articles and the articles that breach
it are recorded (Figure 4). The distance-to-centroid of each
article breaching the convex hull is recorded and plotted in
Figure 5.

The convex hull successfully identified 10 out of the 55
articles with distances smaller than 4 and 33 with distances
smaller than 5. This outcome showcases a downside to con-
sider, as the convex hull also selected articles positioned farther
away from the centroid than the articles it ignored. This
is a form of “blindness” in the method, warranting further
exploration and refinement.

8Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 13 / 16

Figure 3. Convex Hull of the Category

Figure 4. Map of Articles Breaching the Convex Hull

Figure 5. Histogram of Distances of Convex-Hull-Breaching Articles to
Category Centroid

Figure 6. Histogram of Distances of HNSW-Retrieved Articles (non-category)
to Category Centroid

C. The Contextual Category in an HNS-World of Articles

An HNSW is built on the setup vectors (sample articles, cat-
egory articles, and the centroid vector). We retrieve iteratively
all of the category vectors from the position of the centroid
vector in the HNSW. In this process, we consider the category
vectors as a fishnet to retrieve within any other non-category
vector that is closer to the centroid vector than the farthest
category-vector.

We calculated the distances of the retrieved non-category
vectors to the category centroid (Figure 6). We observe that
the built HNSW jumped over articles closer to the centroid
(only one with d < 4.5) and retrieved farther ones (six with
d = 5.4). This indicates that HNSW follows a pattern similar
to the convex hull technique. This similarity arises from the
implicit mapping performed by HNSW, resulting in a mapping
structure mirroring the loss of information already seen in the
convex hull technique.

D. High-Dimensional Latent-Space Filter

As described in IV-D, the 75th percentile distance from
the centroid vector to articles of the category dc is 3.151
(Figure 7). The median of the distances in the non-category
vectors median(set(dea)) is 5.447. By numerical application,
Equations 1 and 2 are as follows:

k =
−ln(0.5)

median(set(dea))− dc
= 0.302

RP (dc = 3.151, dea) = 100 ∗ e−0.302∗(dea−3.151)

We calculate the RP values of every articles in the sample
(Figure 8). The distances of these articles dea are in the range
of [3.143, 11.737]:

• For the minimum value: RP (3.151, 3.143) = 100.241%
(saturated to 100%)

9Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 14 / 16

Figure 7. Distances of Category Articles to Category Centroid

Figure 8. RP of Sample Articles to Category Centroid

• For the median value: RP (3.151, 5.447) = 49.988%
• For the maximum value: RP (3.151, 11.737) = 7.479%

We take the articles with RP > 75%, extract their keywords
and plot their wordcloud (Figure 9). The filter retrieved 20
articles with this threshold. Table I shows the breakdown of
closest 5 retrieved items. The category “Serbian Films” is
similar in context to art topics from the Balkans. This explains
the presence of articles about writings from the ex-Yugoslavian
countries. To test the variations in centroid vector, we sample
the data into 100 samples. The mean distance between the
centroid vector and the 80% sample centroid vector is 0.102
with a standard variation of 0.026. This shows an initial
stability in the category.

E. Bonus: Hierarchical Vectors Effect on Cluster Cohesion

The presence of hierarchical structures in the form of
categories and sub-categories raises the question regarding
their utility. One hypothesis worth exploring is whether the
incorporation of hierarchical vectors into clusters can rein-
force their internal coherence, rendering them more distinct

Figure 9. Wordcloud of Articles with RP > 75%

Table I
CLOSEST 5 FILTER-RETRIEVED ARTICLES (CATEGORY: Serbian Films)

RP (%) Title Keywords

100.00 Croatia in Eurovision 2006 eurovision serbia montenegro

91.216 Dani Pervan bosnian musician songwriter

90.993 Vranjic venice church

90.499 Vinci Vogue Anžlovar vampyre blog slovenian

89.713 Jovan Cvijić serbian ethnological historic

from one another. To quantify this distinction, the Silhouette
score [17] serves as a reliable metric. To initiate the clustering
process, two distinct clusters were created based on articles
encoded with BERT, resulting in an initial Silhouette score
of 0.23. Subsequently, hierarchical vectors were calculated
to represent sub-categories (Figure 10). Each sub-category’s
vector was computed as the average vector of its constituent
encoded articles (further elucidated in the subsequent section).
These hierarchical vectors were integrated into the clustering
process, and the clustering was re-executed. Notably, the new
Silhouette score was improved by 13% (0.26). This shows the
impact of incorporating hierarchical vectors, leading to denser
clusters.

VI. CONCLUSION AND FUTURE WORK

In conclusion, this paper has addressed the goal of improv-
ing the efficiency of contextual categorization within hierar-
chical structures. This work employed the Wikipedia dumps
and its categories, along with BERT models as the latent-

Figure 10. 2D Mappings of two different categories (left: without hierarchical
vectors, right: with them).

10Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

 15 / 16

representation technique. The exploration has focused on the
integration of hierarchical vectors and advanced clustering
techniques.

The experiments showed the practicality of calculating cen-
troid vectors for category trees. The centroid vector, obtained
by averaging all the vectors within a category tree, served as a
key item for assessing the proximity of articles to the tree. The
relationship between an article’s vector and the centroid vector
provided a quantitative basis for evaluating the relevance of an
article to a specific category tree. This approach allowed for
a reconsideration of category labels based on the calculated
distances. Alternative techniques such as convex hulls and
HNSWs, although explored, exhibited distortions in the results
due to the inherent mapping processes involved. To overcome
the loss of information and take advantage of the high-
dimensionality of the embeddings, we modulated a filter using
the exponential decay function that indicates the Reconsid-
eration Probability. The transformer model processes articles
individually, ensuring consistent and undistorted encodings
regardless of the number of articles processed and sample size.
Therefore, the scalability of the exponential decay function
(our modulated filter), leveraging transformer embeddings, due
to its mathematical nature, offers efficiency gains compared to
the scalability challenges typically associated with convex hull
and HNSW algorithms. Finally, utilizing hierarchical vectors
for subcategories proved valuable, enhancing the represen-
tation of the category tree in the latent space. This was
evident in the increased Silhouette score, indicating a clearer
categorization structure. This utilization is not limited to our
case (Wikipedia data), but extends to any form of dataset
hosting such hierarchies.

Future research should refine hierarchical vector integration,
develop specialized clustering algorithms for complex struc-
tures, scale experiments to larger datasets, explore new content
categorization tools, assess their impact on platforms like
Wikipedia and other databases more scientifically oriented,
and enhance categorization systems’ precision and utility from
a contextual perspective.

ACKNOWLEDGEMENT

This paper has received funding from the state of Bavaria
in the context of project SEMIARID, funding no. DIK-2104-
0067//DIK0299/01

REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in Neural Information Processing Systems, I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
Eds., vol. 30. Curran Associates, Inc., 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Bidirectional
encoder representations from transformers,” in Proceedings of the 2019
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2019.

[3] R. L. Graham and F. F. Yao, “Finding the convex hull of a simple
polygon,” in Proceedings of the 19th Annual IEEE Symposium on
Foundations of Computer Science, 1983, pp. 324–331.

[4] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs,” in Proceedings of the 34th International Conference on Machine
Learning, 2018, pp. 824–836.

[5] Z. Bettouche and A. Fischer, “Mapping researcher activity based on
publication data by means of transformers,” in Proceedings of the
Interdisciplinary Conference on Mechanics, Computers and Electrics
(ICMECE 2022), 2022.

[6] ——, “Topical clustering of unlabeled transformer-encoded researcher
activity,” Bavarian Journal of Applied Sciences, no. 6, pp. 504–525,
2023.

[7] P. M. B. B. L. Moas, “Real-time prediction of wikipedia articles’
quality,” 2022.

[8] R. Sonbol, G. Rebdawi, and N. Ghneim, “The use of nlp-based text
representation techniques to support requirement engineering tasks: A
systematic mapping review,” 2022.

[9] G. Salton, “Automatic text processing-addison-wesley longman publish-
ing co., inc.” 2022.

[10] F. A. Nielsen, “Data mining with python (working draft),” 2017.
[11] F. P. Preparata and S. J. Hong, “Convex hulls of finite sets of points

in two and three dimensions,” in Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, 1977, pp. 87–93.

[12] I. Johnson, M. Gerlach, and D. Sáez-Trumper, “Language-agnostic
topic classification for wikipedia,” in Companion Proceedings of the
Web Conference 2021, ser. WWW ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 594–601. [Online].
Available: https://doi.org/10.1145/3442442.3452347

[13] R. Biswas, R. Sofronova, H. Sack, and M. Alam, “Cat2type: Wikipedia
category embeddings for entity typing in knowledge graphs,” in
Proceedings of the 11th Knowledge Capture Conference, ser. K-CAP
’21. New York, NY, USA: Association for Computing Machinery, 2021,
p. 81–88. [Online]. Available: https://doi.org/10.1145/3460210.3493575

[14] M. Ostendorff, T. Ruas, M. Schubotz, G. Rehm, and B. Gipp, “Pairwise
multi-class document classification for semantic relations between
wikipedia articles,” in Proceedings of the ACM/IEEE Joint Conference
on Digital Libraries in 2020, ser. JCDL ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 127–136. [Online].
Available: https://doi.org/10.1145/3383583.3398525

[15] DavidShapiro, “Plain text wikipedia dataset 202011,”
https://www.kaggle.com/datasets/ltcmdrdata/plain-text-wikipedia-
202011, 2020, accessed on November 2, 2023.

[16] L. McInnes, J. Healy, and J. Melville, “Umap: Uniform manifold
approximation and projection,” arXiv preprint arXiv:1802.03426, 2018.

[17] P. J. Rousseeuw, “Silhouettes: A graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied
Mathematics, vol. 20, pp. 53–65, 1987.

11Copyright (c) IARIA, 2024. ISBN: 978-1-68558-158-9

COMPUTATION TOOLS 2024 : The Fifteenth International Conference on Computational Logics, Algebras, Programming, Tools, and Benchmarking

Powered by TCPDF (www.tcpdf.org)

 16 / 16

http://www.tcpdf.org

