
DBKDA 2014

The Sixth International Conference on Advances in Databases, Knowledge, and

Data Applications

ISBN: 978-1-61208-334-6

April 20 - 24, 2014

Chamonix, France

DBKDA 2014 Editors

Friedrich Laux, Reutlingen University, Germany

Andreas Schmidt, Karlsruhe University of Applied Sciences | Karlsruhe Institute of

Technology, Germany

Kiyoshi Nitta, Yahoo Japan Research, Japan

Iztok Savnik, Jozef Stefan Institute and University of Primorska, Slovenia

 1 / 173

DBKDA 2014

Foreword

The Sixth International Conference on Advances in Databases, Knowledge, and Data
Applications (DBKDA 2014), held between April 20 - 24, 2014 in Chamonix, France, continued a
series of international events covering a large spectrum of topics related to advances in
fundamentals on databases, evolution of relation between databases and other domains, data
base technologies and content processing, as well as specifics in applications domains
databases.

Advances in different technologies and domains related to databases triggered
substantial improvements for content processing, information indexing, and data, process and
knowledge mining. The push came from Web services, artificial intelligence, and agent
technologies, as well as from the generalization of the XML adoption.

High-speed communications and computations, large storage capacities, and load-
balancing for distributed databases access allow new approaches for content processing with
incomplete patterns, advanced ranking algorithms and advanced indexing methods.

Evolution on e-business, ehealth and telemedicine, bioinformatics, finance and
marketing, geographical positioning systems put pressure on database communities to push the
‘de facto’ methods to support new requirements in terms of scalability, privacy, performance,
indexing, and heterogeneity of both content and technology.

DBKDA 2014 also featured the following Workshop:
- GraphSM 2014: The First International Workshop on Large-scale Graph Storage and

Management

We take here the opportunity to warmly thank all the members of the DBKDA 2014
Technical Program Committee, as well as the numerous reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to
DBKDA 2014. We truly believe that, thanks to all these efforts, the final conference program
consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the DBKDA 2014 organizing
committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that DBKDA 2014 was a successful international forum for the exchange of
ideas and results between academia and industry and for the promotion of progress in the
fields of databases, knowledge and data applications.

We are convinced that the participants found the event useful and communications very
open. We also hope the attendees enjoyed the charm of Chamonix, France.

 2 / 173

DBKDA 2014 Chairs:
Friedrich Laux, Reutlingen University, Germany
Aris M. Ouksel, The University of Illinois at Chicago, USA
Serge Miranda, Université de Nice Sophia Antipolis, France
Andreas Schmidt, Karlsruhe University of Applied Sciences | Karlsruhe Institute of Technology,
Germany
Maribel Yasmina Santos, University of Minho, Portugal
Filip Zavoral, Charles University Prague, Czech Republic
Maria Del Pilar Angeles, Universidad Nacional Autonoma de Mexico - Del Coyoacan, Mexico

 3 / 173

DBKDA 2014

Committee

DBKDA Advisory Chairs

Friedrich Laux, Reutlingen University, Germany
Aris M. Ouksel, The University of Illinois at Chicago, USA
Serge Miranda, Université de Nice Sophia Antipolis, France
Andreas Schmidt, Karlsruhe University of Applied Sciences | Karlsruhe Institute of Technology, Germany
Maribel Yasmina Santos, University of Minho, Portugal
Filip Zavoral, Charles University Prague, Czech Republic
Maria Del Pilar Angeles, Universidad Nacional Autonoma de Mexico - Del Coyoacan, Mexico

DBKDA 2014 Technical Program Committee

Nipun Agarwal, Oracle Corporation, USA
Reza Akbarinia, INRIA, France
Suad Alagic, University of Southern Maine, USA
Fabrizio Angiulli, University of Calabria, Italy
Annalisa Appice, Università degli Studi di Bari, Italy
Zeyar Aung, Masdar Institute of Science and Technology - Abu Dhabi, United Arab Emirates
Fadila Bentayeb, University of Lyon 2, France
Martine Cadot, LORIA-Nancy, France
Michelangelo Ceci, University of Bari, Italy
Chin-Chen Chang, Feng Chia University Taiwan, Taiwan
Chi-Hua Chen, National Chiao Tung University - Taiwan, R.O.C.
Qiming Chen, HP Labs - Palo Alto, USA
Ding-Yuan Cheng, National Chiao Tung University, Taiwan , R.O.C.
Camelia Constantin, UPMC, France
Maria Del Pilar Angeles, Universidad Nacional Autonoma de Mexico - Del Coyoacan, Mexico
Taoufiq Dkaki, IRIT - Toulouse, France
Cédric du Mouza, CNAM - Paris, France
Gledson Elias, Universidade Federal da Paraiba, Brazil
Bijan Fadaeenia, Islamic Azad University- Hamedan Branch, Iran
Victor Felea, "A. I. Cuza" University of Iasi, Romania
Ingrid Fischer, University of Konstanz, Germany
Eloy Gonzales, National Institute of Information and Communications Technology - Kyoto, Japan
Robert Gottstein, Technische Universität Darmstadt, Germany
Martin Grund, Hasso-Plattner-Institute - Potsdam, Germany
Ismail Hababeh, United Arab Emirates University - Al-Ain, UAE
Phan Nhat Hai, Lirmm Lab - University Montpellier 2, France
Takahiro Hara, Osaka University, Japan
Bingsheng He, Nanyang Technological University, Singapore
Tobias Hoppe, Ruhr-University of Bochum, Germany
Wen-Chi Hou, Southern Illinois University, USA
Edward Hung, The Hong Kong Polytechnic University - Hong Kong, PRC

 4 / 173

Dino Ienco, Irstea Montpellier, France
Chris Ireland, Independent Scientist, UK
Yasunori Ishihara, Osaka University, Japan
Vladimir Ivancevic, University of Novi Sad, Serbia
Savnik Iztok, University of Primorska, Slovenia
Wassim Jaziri, ISIM Sfax, Tunisia
Sungwon Jung, Sogang University - Seoul, Korea
Mehdi Kargar, York University, Toronto, Canada
Nhien An Le Khac, University College Dublin, Ireland
Sadegh Kharazmi, RMIT University - Melbourne, Australia
Kyoung-Sook Kim, National Institute of Information and Communications Technology, Japan
Daniel Kimmig, Karlsruhe Institute of Technology, Germany
Christian Kop, University of Klagenfurt, Austria
Zineddine Kouahla, University of Nantes, France
Jens Krueger, Hasso Plattner Institute / University of Potsdam, Germany
Friedrich Laux, Reutlingen University, Germany
Christophe Leblay, University of Jyvaskyla, Finland
Alain Lelu, University of Franche-Comté, France
Carson Leung, University of Manitoba, Canada
Sebastian Link, The University of Auckland, New Zealand
Chunmei Liu, Howard University, USA
Corrado Loglisci, University of Bari, Italy
Qiang Ma, Kyoto University, Japan
Murali Mani, University of Michigan - Flint, USA
Gerasimos Marketos, University of Piraeus, Greece
Ernestina Menasalvas, Universidad Politécnica de Madrid, Spain
Elisabeth Métais, CEDRIC / CNAM - Paris, France
Cristian Mihaescu, University of Craiova, Romania
Serge Miranda, Université de Nice Sophia Antipolis, France
Mehran Misaghi, Educational Society of Santa Catarina – Joinville, Brazil
Mohamed Mkaouar, Sfax, Tunisia
Jacky Montmain, LGI2P - Ecole des Mines d'Alès, France
Yasuhiko Morimoto, Hiroshima University, Japan
Bela Mutschler, Ravensburg-Weingarten University of Applied Sciences, Germany
Franco Maria Nardini, ISTI-CNR, Italy
Khaled Nagi, Alexandria University, Egypt
Aris M. Ouksel, The University of Illinois at Chicago, USA
George Papastefanatos, Athena Research and Innovation Center, Greece
Alexander Pastwa, Ruhr-Universität Bochum, Germany
Dhaval Patel, IIT-Roorkee, Singapore
Przemyslaw Pawluk, York University - Toronto, Canada
Alexander Peter, AOL Data Warehouse, USA
Alain Pirotte, University of Louvain (Louvain-la-Neuve), Belgium
Pascal Poncelet, LIRMM, France
Mandar Rahurkar, Yahoo! Labs, USA
Praveen R. Rao, University of Missouri-Kansas City, USA
Mathieu Roche, TETIS, Cirad, France
Satya Sahoo, Case Western Reserve University, USA

 5 / 173

Fatiha Saïs, LRI (CNRS & Paris Sud University), France
Abhishek Sanwaliya, Indian Institute of Technology - Kanpur, India
Ismael Sanz, Universitat Jaume I - Castelló, Spain
M. Saravanan, Ericsson India Pvt. Ltd -Tamil Nadu, India
Idrissa Sarr, Université Cheikh Anta Diop, Senegal
Najla Sassi Jaziri, ISSAT Mahdia, Tunisia
Andreas Schmidt, Karlsruhe University of Applied Sciences | Karlsruhe Institute of Technology, Germany
Yong Shi, Kennesaw State University, USA
Damires Souza, Federal Institute of Education, Science and Technology of Paraiba (IFPB), Brazil
Lubomir Stanchev, University-Purdue University - Fort Wayne, USA
Ahmad Taleb, Najran University, Saudi Arabia
Maguelonne Teisseire, Irstea - UMR TETIS, France
Martin Theobald, Max Planck Institute for Informatics, Germany
Kathryn Thornton, Brunel University, UK
Gabriele Tolomei, CNR, Italy
Jose Torres-Jimenez, CINVESTAV 3C, Mexico
Nicolas Travers, CNAM-Paris, France
Thomas Triplet, Wajam, Montreal, Canada
Marian Vajtersic, University of Salzburg, Austria
Genoveva Vargas, Solar | CNRS | LIG-LAFMIA, France
Fan Wang, Microsoft Corporation - Bellevue, USA
Zhihui Wang, Dalian University of Technology, China
Guandong Xu, Victoria University, Australia
Maribel Yasmina Santos, University of Minho, Portugal
Jin Soung Yoo, Indiana University-Purdue University - Fort Wayne, USA
Filip Zavoral , Charles University Prague, Czech Republic
Wei Zhang, Amazon.com, USA

GraphSM Chairs

Kiyoshi Nitta, Yahoo Japan Research, Japan
Iztok Savnik, Jozef Stefan Institute and University of Primorska, Slovenia

GraphSM 2014 Technical Program Committee

Milan Djordjevic, University of Primorska, Slovenia
Blaz Fortuna, Jozef Stefan Institute, Slovenia
Dimitar Hristovski, University of Ljubljana, Slovenia
Yasunori Ishihara, Osaka University, Japan
Dejan Lavbic, University of Ljubljana, Slovenia
Wolfgang May, University of Goettingen, Germany
Khaled Nagi, Alexandria University, Egypt
Kiyoshi Nitta, Yahoo Japan Research, Japan
Iztok Savnik, Jozef Stefan Institute and University of Primorska, Slovenia
Andreas Schmidt, Karlsruhe University of Applied Sciences & Karlsruhe Institute of Technology, Germany
Tatjana Wezler, University of Maribor, Slovenia
Kokou Yetongnon, Université de Bourgogne, France

 6 / 173

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 173

Table of Contents

Feature Construction for Time Ordered Data Sequences
Michael Schaidnagel and Fritz Laux

1

Information Integration with Uncertainty: Performance
Inder Dumpa, Raja Kota, and Fereidoon Sadri

7

Universal Evaluation System Data Quality
Maria del Pilar Angeles, Francisco Javier Garcia-Ugalde, Carlos Ortiz, Ricardo Valencia, Jhovany Pelcastre,
Eduardo Reyes, and Arturo Nava

13

A Semi-automatic Method to Fuzzy-Ontology Design by using Clustering and Formal Concept Analysis
Amira Aloui, Alaa Ayadi, and Amel Grissa-Touzi

19

Modeling Ontology-based User Profiles from Company Knowledge
Silvia Calegari and Matteo Dominoni

26

A Concept for Plagiarism Detection Based on Compressed Bitmaps
Andreas Schmidt, Reinhold Becker, Daniel Kimmig, Robert Senger, and Steffen Scholz

30

Enriching Dimension Hierarchies with Topological Relations to Improve the Development of Spatial Data
Warehouse
Sana Ezzedine, Sami Yassine Turki, and Sami Faiz

35

In-Memory Distance Threshold Queries on Moving Object Trajectories
Michael Gowanlock and Henri Casanova

41

Exploiting the Social Structure of Online Media to Face Transient Heavy Workload
Ibrahima Gueye, Idrissa Sarr, and Hubert Naacke

51

Sample Trace: Deriving Fast Approximation for Repetitive Queries
Feng Yu, Wen-Chi Hou, and Cheng Luo

59

Efficient Aggregate Cache Revalidation in an In-Memory Column Store
Stephan Muller, Lars Butzmann, and Hasso Plattner

66

Enterprise Data Solution Leveraging Data Warehousing for Big Data Veracity at Saudi Aramco
Muhammad Khakwani

74

Parallel In-Memory Distance Threshold Queries on Trajectory Databases
Michael Gowanlock, Henri Casanova, and David Schanzenbach

80

 1 / 2 8 / 173

A Database Synchronization Approach for 3D Simulation Systems
Martin Hoppen and Juergen Rossmann

84

Achieving High Availability in D-Bobox
Miroslav Cermak and Filip Zavoral

92

Trustworthy Laboratory Automation
Jan Potthoff, Dominic Lutjohann, and Nicole Jung

98

Toward a New Approach of Distributed Databases Design and Implementation
Fadoua Hassen and Amel Grissa Touzi

104

An Object-oriented Approach for Extending MySQL into NoSQL with Enhanced Performance and Scalability
Hyunju Shim, YoungChul Sohn, YoulWoong Sung, Yonggoo Kang, Iljoo Kim, and Ohoon Kwon

111

Efficient Data Integrity Checking for Untrusted Database Systems
Anderson Luiz Silverio, Ricardo Felipe Custodio, Marcelo Carlomagno Carlos, and Ronaldo dos Santos Mello

118

Quantifying the Elasticity of a Database Management System
Christian Tinnefeld, Daniel Taschik, and Hasso Plattner

125

Hierarchical Piecewise Linear Approximation
Vineetha Bettaiah and Heggere Ranganath

132

Cache Management for Aggregates in Columnar In-Memory Databases
Stephan Muller, Ralf Diestelkamper, and Hasso Plattner

139

Survey of RDF Storage Managers
Kiyoshi Nitta and Iztok Savnik

148

Design of Distributed Storage Manager for Large-Scale RDF Graphs
Iztok Savnik and Kiyoshi Nitta

154

Learning Links in MeSH Co-occurrence Network: Preliminary Results
Andrej Kastrin and Dimitar Hristovski

161

Powered by TCPDF (www.tcpdf.org)

 2 / 2 9 / 173

Feature Construction for Time Ordered Data
Sequences

Michael Schaidnagel
School of Computing

University of the West of Scotland
Email: B00260359@studentmail.uws.ac.uk

Fritz Laux
Faculty of Computer Science

Reutlingen University
Email: fritz.laux@reutlingen-university.de

Abstract—The recent years and especially the Internet have
changed the way on how data is stored. We now often store
data together with its creation time-stamp. These data sequences
potentially enable us to track the change of data over time.
This is quite interesting, especially in the e-commerce area, in
which classification of a sequence of customer actions, is still
a challenging task for data miners. However, before standard
algorithms such as Decision Trees, Neuronal Nets, Naive Bayes
or Bayesian Belief Networks can be applied on sequential data,
preparations need to be done in order to capture the information
stored within the sequences. Therefore, this work presents a
systematic approach on how to reveal sequence patterns among
data and how to construct powerful features out of the primitive
sequence attributes. This is achieved by sequence aggregation and
the incorporation of time dimension into the feature construction
step. The proposed algorithm is described in detail and applied
on a real life data set, which demonstrates the ability of the
proposed algorithm to boost the classification performance of
well known data mining algorithms for classification tasks.

Index Terms—feature construction, sequential data, temporal
data mining

I. INTRODUCTION

Huge amounts of data are being generated on a daily basis,
in almost every aspect of our live. Advancements in computer
science as well as computer hardware enable us to store and
analyze these data. Especially in the e-commerce area it is
common to log all user activities in an online shop. Such
data can be ordered by their timestamp and can be allocated
to data sequences of particular users. However, the logged
activities or actions are not stored in a form that enables
data mining right away. Therefore, it is important to pre-
process the data before analyzing it (see also Han [1], Liu
[2]). When data is only represented by primitive attributes and
there is no prior domain expert knowledge available, the pre-
processing task becomes challenging and creates the need for
automated techniques. At this point attribute selection and/or
feature construction techniques need to be applied. Attribute
selection can be defined as the task of selecting a subset of
attributes, which are able to perform at least as good on a
given data mining task as the primitive (original) attributes
set. The original values of the data set are called attributes,
while the constructed data are called features. It is possible
that primitive attributes are not able to adequately describe
eventually existing relations among primitive attributes. Such
interrelations (or also called interactions, see Shafti [3]) can

occur in a data set, if the relation between one attribute and
the target concept depends on another attribute (see also Shafti
[4]). Attribute selection alone can fail to find existing interac-
tion among data. Therefore, one goal for feature construction
is to find and highlight interactions. Feature construction can
be defined as the process of creating new compound properties
using functional expressions on the primitive attributes. Shafti
[3] distinguishes between two types of features construction
techniques in terms of their construction strategy:
• hypothesis-driven: create features based on a hypothesis

(which is expressed as a set of rules). These features are
then added to the original data set and are used for the
next iteration in which a new hypothesis will be tested.
This process continues until a stopping requirement is
satisfied.

• data-driven methods: create features based on pre-
determined functional expressions, which are applied on
combinations of primitive features of a data set. These
strategies are normally non-iterative and the new features
are evaluated by directly assessing the data.

A. Problem description

Both feature construction strategies are not able to include
a dimension that is unique to sequential data: the time elapsed
between the corresponding actions. The so far described
strategies are not able to express a pattern, which occurs in
the course of time. Reason for this is their focus on tuples
(rows) in a database. In this work, we will focus on the data-
driven strategy and propose a new technique that is able to find
patterns that are spread across several rows of a sequence. This
can be achieved by creating meaningful features that are able
to transform sequence information into the tuple-space.

B. Structure of the paper

The remainder of this work is structured as follows: Section
II will give a short overview about the related literature.
Subsection II-A will highlight our contribution to the particular
research field. Our proposed algorithm takes additional consid-
eration on sequential data. The characteristics of such data is
described in Section III. Our approach to feature construction
will be described in detail in Section IV. We divided the
algorithm into four logical parts, which are respectively de-
scribed in the subsections of Section IV. This is followed by an

1Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 10 / 173

experimental analysis in Section V, in which we demonstrate
the ability of our proposed algorithm to boost classification
performance on a real life data set. The paper is concluded by
the sections Conclusion (Section VI) and Future Work (Section
VII).

II. RELATED WORK

Earlier work in the field of feature construction was done
by Setiono and Liu [5]. They used a neuronal network to
construct features in an automatic way for continuous and
discrete data. Pagallo [6] proposed FRINGE, which builds a
decision tree based on the primitive attributes to find suitable
boolean combinations of attributes near the fringe of the tree.
The newly constructed features are then added to the initial
attributes set and the process is repeated until no new features
are created. Zupan and Bohanec [7] used a neuronal net for
attribute selection and applied the resulting feature set on the
well known C4.5 [8] induction algorithm. Feature construction
can also be used in conjunction with linguistic fuzzy rule
models. Garcı́a [9] et al. use previously defined functions over
the input variables in order to test if the resulting combination
returns more information about the classification than the
single variables.

However, in order to deal with increasing complexity of
their genetic algorithm in the empirical part, Garcı́a only
used three functions (SUM{Xi, Xj}, PRODUCT{Xi, Xj},
SUBSTRACT ABS{Xi, Xj}) to enlarge the feature space.
Another approach to feature construction, which utilizes a
genetic algorithm, is described by Alfred [11]. Although,
his approach is not using different functions to create new
combinations of features, it can create a big variety of features
since it is not limited to binary combination. That means
that it is able to combine more than two attributes at a time.
The genetic algorithm selects thereby the crossover points for
the feature sequences. Another mentionable contribution to
the field of feature construction was done by Shafti [4]. She
describes MFE3/GA, a method that uses a global search strat-
egy (i.e., finding the optimal solution) to reduce the original
data dimensions and find new non-algebraic representations of
features. Her primary focus is to find interactions between the
original attributes (such as the interaction of several cards in
a poker game that form a certain hand). Sia [12] proposes a
’Fixed-Length Feature Construction with Substitution’ method
called FLFCWS. It constructs a set that consist of randomly
combined feature subsets. This allows initial features to be
used more than once for feature construction.

A. Contribution

We propose an automated algorithm that is able to system-
atically construct and assess suitable new features out of data
sequences for binary classification tasks. It thereby is also able
to utilize the time dimension in a sequence of actions in order
to access information, which can have a significant impact on
the discriminatory power of features. Thereby, the algorithm
transforms sequential data into tuple-based data in a way,
that allows standard algorithm such as Neuronal Networks,

Bayesian Belief Network, Decision Trees or Naive Bayes to
be applied on sequential data.

So far, feature construction techniques build new features
’horizontally’ by combining columns of a data set. We also
apply this techniques with a larger variety of mathematical op-
erators. In addition to that we include the time elapsed between
data points. Our approach is novel, since we try to ’vertically’
go down the time axis of a sequence and create features
by combining numeric values (or its probabilities in terms
of string attributes) of the corresponding occurrences. The
original values are aggregated during the feature construction
process and this allows to store sequence based information on
tuple level. As a result of that, the above mentioned standard
algorithms can be applied (not all are able to handle sequenced
data sets).

III. GENERAL CHARACTERISTICS OF SEQUENTIAL DATA

This work often refers to the term sequential data. Thereby
we understand data, that can be ordered by time and can
be attributed to logical units (i.e., the sequence). A simple
example for that are sessions in an online shop. Customers
can view products and put them into their shopping basket.
Every action can be represented in a data base as a row r
with several attributes ai ∈ E. Each row is provided with
a timestamp t. A row can be associated to a logical unit
sid (in our case the session id). There are n sequences sidn

in a data set E. Each sequence sidn consist of at least one
row r. The number of rows in a sequence equals to the
length of a sequence ls, so that 1 ≤ ls ≤ m. Table I,
depicts the general schema of sequential data: It is important

TABLE I: Schema of sequence data

r t sid a1 a2 . . . ai slabel
r1 t1 sid1 a11 a21 . . . ai1 0
r2 t2 sid1 a12 a22 . . . ai2 0
r3 t3 sid1 a13 a23 . . . ai3 0
r4 t4 sid2 a14 a24 . . . ai4 1
r5 t5 sid2 a15 a25 . . . ai5 1
r6 t6 sid2 a16 a26 . . . ai6 1
. .
rm tm sidn a1m a2m . . . aim . . .

to differentiate between the number of rows (or tuples) m of
a data set and the number of sequences n. Sequence sid1

, for
example, has a length ls of three and contains a matrix such

as sid1
=

a11 a21 . . . ai1
a12 a22 . . . ai2
a13 a23 . . . ai3

In order to use our proposed method, which is described in

detail in the following section, the user has also to mark the
following columns on a data set:
• t: timestamp column that is used for temporal based

features. It is used to calculate the time elapsed between
the collected data points of a sequence.

• sid: sequence identifier column that is used for sequence
aggregation. It identifies events/objects that can be logi-
cally associated to one entity

2Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 11 / 173

• slabel: the proposed algorithm requires a binary column
as target value. This is needed in order to automatically
calculate the information gain of newly constructed fea-
tures. Every sequence must only have one label, i.e., a
customer in an online shop is either a returning customer
or not (it can not be both at the same time).

During the feature construction process, we will create a
feature table, which includes the sid, slabel and the created
features fp ∈ S. Please refer to Table II, for a schema of
such a table. The data sequences are aggregated on a tuple-

TABLE II: Schema of feature table

sid f1 f2 . . . fp slabel
sid1 f11 f21 . . . fp1 0
sid2 f12 f22 . . . fp2 1
.
sidn f1n f2n . . . fpn . . .

based level. This enable the application of many standard
classification algorithms.

IV. FEATURE CONSTRUCTION FOR DATA SEQUENCES

Our goal is to extend and search the initial problem
space as much as possible. Problem space is thereby defined
through the primitive (original) attributes E, which are used
to solve a binary classification task. The accessible feature
space expands, if more features are constructed. Albeit, this
leads to an increase in search time, it brings a higher chance
to find discriminatory features. In order to keep things as
simple as possible, we describe the algorithm in four different
subsections, each describing a certain sort of features creation
technique. Please note that the initial attributes are, in a first
step, categorized in string and numeric attributes. Reason for
this is, that not all described functions are applicable on
string values. Please note, that after each feature construction
technique, we normalize the newly generated features with
min-max normalization, depicted in (1). This provides an easy
way to compare values that are on different numerical scales
or different units of measure.

Normalized(ei) =
ei − Emin

Emax − Emin
, for Emax > Emin (1)

The first Subsection IV-A will show construction techniques
for both string and numeric attributes. The second Subsec-
tion IV-B describes construction techniques for string-only
attributes. After that we will focus in the third Subsection IV-C
on numeric-only construction techniques. Subsection IV-D
concludes this section by describing temporal based feature
construction techniques.

A. Distinct occurrences based features

The general idea for this type of technique is to analyze
if different occurrences per sequence allows to discriminate
between the given labels. Basically, we aggregate all sequences
sidn

and count the distinct occurrences (so no duplicates are
counted) for each given string as well as numeric attribute
ain . The constructed features fp are than collected in S,

Input: E // set of string and numeric attributes
slabel ∈ {0, 1} // single value label indication

Def: ai ∈ E // single attribute or a column in a data set
sid = (r1, r2, . . . , rm) // sequences of rows r
S = ∅ // set of constructed features

for each ai ∈ E {
for each sid ∈ E {
fp := (|{ain}|, sid, slabel)
S := S ∪ fp
}

}
return S

Fig. 1: Pseudo-code feature construction based on distinct
occurences per label

together with its corresponding sequence identifier sid and
the corresponding session label slabel. Please note that the
sequence identifier sid is unique in S (as opposed to E). The
corresponding pseudo-code is depicted in Fig. 1.

In order to assess the quality of the new constructed feature
fi, we calculate the average of all aggregated values per label
slabel ∈ {0, 1}. The difference between both averages is called
split and is calculated as depicted in (4).

avg0 = avg({fp ∈ S|slabel = 0}) (2)
avg1 = avg({fp ∈ S|slabel = 1}) (3)

splitfi = |avg0−avg1|
avg0+avg1

(4)

B. Concatenation based features

Purpose of this type of feature construction is to highlight
simpler interactions among data. We systematically concate-
nate every string attribute in pairs of two and then again,
count the distinct value-pairs per sequence identifier. Thereby
interactions such as, if a1 AND a2 have low value-pair variety
for label 0, but a high value-pair variety for label 1, are
highlighted. Even for data sets with a high number of different
occurrences, this kind of feature construction will highlight
distinct occurrences between both labels. This procedure is
only applicable on string attributes. This approach is similar
to most common column combinations that is described widely
in the literature (e.g., [4], [7], [11]). However, we once again
use this technique on a different abstraction layer since we
aggregate via the sequence identifier sid. The corresponding
pseudo-code is depicted in Fig. 2.

The algorithm copies the input attribute list E for looping
purposes into a second variable E2. Right after the second
loop, it deletes the current attribute from copied list (E2−a2i).
Reason for this is to avoid the same features to occur twice,
due to symmetric properties. If, for example, we combine
column ai = X and aj = Y of a data set, we will yield
feature XY . This feature will have the same variability per
sequence as the vice versa feature Y X . The construction of
such features can be avoided by deleting the current feature
from the copied feature list E2.

3Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 12 / 173

Input: E // set of primitive string attributes
slabel ∈ {0, 1} // single value label indication

Def: ai ∈ E // single attribute or a column in a data set
sid = (r1, r2, . . . , rm) // sequences of rows r
S = ∅ // set of constructed features
E2 = E // copy of E, used for looping
con() // concatenates two values

for each ai ∈ E {
//remove ai to avoid vice versa features
E2 := E2 − {ai}
for each aj ∈ E2 {

for each sid ∈ E {
fp = (|(con(ai, aj))|, sid, slabel)
S = S ∪ fp
}
}

}
return S

Fig. 2: Pseudo-code feature construction based on
concatenated string attributes

C. Numeric operator based features

The basic idea of this feature construction technique is to
combine two numeric attributes with basic arithmetic operators
such as ”+”, ”-”, ”*” or ”/”. Garcia [9] and Pagallo [6] for
instance are using similar techniques with fewer operators.
In addition to the repeated use of arithmetic operators we,
once again, use the sequence identifier attribute to aggregate
the constructed features for each sequence. Lets put this
into an example: attributes ai and aj are combined with the
multiplication operator ”*” for a sequence sid1

. The resulting

feature f = ai ∗aj exists in the sequence sid1
=

ai1 aj1
ai2 aj2
ai3 aj3

The sequence consists of three data points. In the aggregation
phase, we sum up the multiplied attributes for all sequences∑

3
j=1fij . This process is repeated for all possible combi-

nations of numeric attributes for all of the above mentioned
mathematical operators. The full pseudo-code is depicted in
Fig. 3. For these technique, we also avoid vice versa features
as described in previous Subsection IV-B.

D. Temporal axis based features

The general idea for this feature construction technique is
to use the time axis, which is displayed in each sequence
by the time indicator column t. This is applicable for both,
numeric as well as string attributes. However, for string
attributes, there needs to be some preparations done, which are
explained further down in this subsection. We continue here to
describe the process for numeric attributes. What the algorithm
basically does, is to multiply the time interval (e.g., days,
hours, minutes), between earliest data point and the current
data point with the numeric value of corresponding attribute,
which results in a weighting.

Input: E // set of primitive numeric attributes
slabel ∈ {0, 1} // single value label indication

Def: ai ∈ E // single attribute or a column in a data set
sid = (r1, r2, . . . , rm) // sequences of rows r
S = ∅ // set of constructed features
E2 = E // copy of E, used for looping
O // set of arithmetic operators
ls // length of a sequence sid

for each ai ∈ E {
//remove ai to avoid vice versa features
E2 := E2 − {ai}
for each aj ∈ E2 {

for each o ∈ O {
for each sid ∈ E {
fp = (

∑ls
i=1(ai o aj), sid, slabel)

S = S ∪ fp
}

}
}

}
return S

Fig. 3: Pseudo-code feature construction based on numeric
attributes

Table III, shows this for two example sequences. We have
two attributes ai and aj for two sequences as well as the t
column. In order to calculate the temporal based feature for
attribute sequence sid = 1 in terms of attribute ai, we first
have to calculate the time between the earliest data point of
sid = 1 and each of the ’current’ data points. In Table III, this
is depicted by the ∆time in days column. The next step is to
multiply the value of each ti in sid = 1 with its corresponding
delta time value: (ai1 ∗ 1, ai2 ∗ 10, . . . , ai4 ∗ 23). The sum of
this value is the new time based constructed feature fp. This
process is repeated for all sequences s and for all numerical
attributes E.

TABLE III: Example for creating temporal based features

sid t min(t) ∆time−
in days

ai aj slabel

1 01.01.2013 01.01.2013 1 ai1 aj1 0
1 10.01.2013 01.01.2013 10 ai2 aj2 0
1 15.01.2013 01.01.2013 15 ai3 aj3 0
1 23.01.2013 01.01.2013 23 ai4 aj4 0
2 24.01.2013 24.01.2013 1 ai5 aj5 1
2 28.01.2013 24.01.2013 4 ai6 aj6 1
2 30.01.2013 24.01.2013 6 ai7 aj7 1

However, there are two directions of including the time
for this feature construction technique. What we described
above puts a stronger emphasis on the recent history. It
is also possible to increase the weight of the past by us-
ing the (max date - current date) operator to calculate the
∆time in days column.

The above mentioned techniques are applicable on numeric

4Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 13 / 173

Input: E // set of primitive numeric attributes
t // time indicator column
slabel ∈ {0, 1} // label indication

Def: ai ∈ E // single attribute or a column in a data set
sid = (r1, r2, . . . , rm) // sequences of rows r
S = ∅ // set of constructed features
E2 = E // copy of E, used for looping
ls // length of a sequence sid
max() // returns max value of a set

for each ai ∈ E {
for each sid {
fp = (

∑ls
i=1((max

k=1,...,ls
(tk)− ti) ∗ ai), sid, slabel)

S = {S ∪ fp}
}
}

return S

Fig. 4: Pseudo-code feature construction of temporal based
attributes

attributes. For string attributes, it is possible to replace the
string by the posterior probability p(θ|x) (see also Hand
[14], pp. 117-118 and pp. 354-356). Thereby θ represents the
probability of the parameters for a given evidence x. In our
example case, we have the distribution of our two labels as
parameters θ and occurrences of ai as evidence x. Based on
this the posterior probability can be calculated as depicted in
(5)

p(slabel = 1|ai) = p(ai|slabel=1)∗p(slabel=1))
p(ai)

(5)

In order to apply this for string based attributes, we can
construct new features f for string attributes as depicted in
(6)

fp =

ls∑
i=1

(max
k=1,...,m

(tk)− ti) ∗ (p(slabel = 1|ai)) (6)

If there are occurrences in the data that have a great tendency
towards a particular label (i.e., having a high possibility for
one label), we can make this pattern visible by multiplying
the posterior possibility with the temporal axis of the given
sequence.

However, if there are too many different occurrences, lets
say more than 1.000 different values per attribute, this tech-
nique could have problems dealing with very small proba-
bilities. So, it is recommended to take the logarithm of the
posterior probability for cases with high cardinality.

V. EXPERIMENTAL SETUP AND RESULTS

This section is divided into three subsection in which we
will first look at the technical framework we used during our
experiments. This is followed by a brief look at the data profile
and the corresponding classification task. The third subsection
will then compare and discuss the results of our experiments.

A. Technical Framework and Infrastructure

All implementations and experiments were carried out on
a Microsoft Windows Server 2008 R2 Enterprise Edition
(6.1.7601 Service Pack 1 Build 7601) with four Intel Xeon
CPUs E5320 (1.86 GHz, 1862 MHz). The available RAM
comprised of 20 GB installed physical memory and 62 GB
virtual memory (size of page file 42 GB). The widespread
freeware data mining software RapidMiner (version 5.2.008)
was used for the standard methods under comparison: Decision
Tree, Naive Bayes, Neuronal Network and Random Forrest
(for a closer description please also see Witten [13] pp. 191-
294, Han [1] pp. 291-337). The method Bayesian Belief
Network required the installation of the free RapidMiner
extension WEKA. We used the default parameters for all of
the above mentioned classification algorithms.

B. Data Profile

The data we used for our experiments was retrieved from the
DataMiningCup 2013. The training as well as the test data set
can be downloaded on the following site: ’http://www.data-
mining-cup.de/en/review/dmc-2013/’. The given historical
data from an online shop consisting of session activities from
customers. The goal of the task is to classify sessions into a
buyer and a non-buyer class. The given training data has the
following parameters:
• total number of rows: 429,013
• number of sessions: 50,000
• number of numeric attributes: 21
• number of string attributes: 2
The test data has the following parameters:
• total number of rows: 45,068
• number of sessions: 5,111
• number of numeric attributes: 21
• number of string attributes: 2
Most of the given attributes are numeric. Please note that

there is no exact time column given. Therefore, we used a
artificial id column to map the temporal order of the various
sessions. We also used this column to calculate the temporal
based features described in Subsection IV-D.

C. Comparison of original attributes vs constructed features
sets

As a first step, we used the given primitive attributes to
solve the task. We used the accuracy measurement (7) due to
a similar label distribution (45 % to 55 %) and both labels are
associated with the same ’costs’ for misclassification.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

As it can be seen in Fig. 6, the Naive Bayes classification
algorithm was able to achieve better result than the base line
(the other algorithms defaulted and predicted label = 0 for all
sessions). The Bayesian Belief Networks are not applicable
for situations in which the same sid can occur several time
(therefore a accuracy rate of 0 %). In a next step, we used our

5Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 14 / 173

Fig. 5: All constructed features ranked by their split value.

Fig. 6: Accuracy rate comparison original data set with
primitive attributes and the same algorithms applied

including the top 29 constructed features.

suggested feature construction algorithm in order to aggregate
the sessions and find useful features. During this process, a
grand total of 732 features were created:
• # of distinct occurrences based features: 23
• # of string concatenation based features: 2
• # of arithmetic based features: 686
• # of temporal axis based features: 21
All features were normalized with the min-max normaliza-

tion and assessed by calculating the split value for each feature.
The features were ranked by their split value, as it can be seen
in Fig. 5. The best feature achieve a split value of 0.815, the
lowest of 0.0003. In order to keep execution times low, we
chose only the top 29 constructed features for our second run.
Fig. 6 shows the impressive improvement for the compared
standard methods. Since the sid is unique for the constructed
features set, the Bayesian Belief Networks are applicable.

VI. CONCLUSION

Data pre-processing and selection are very important steps
in the data mining process. This can be challenging, if there
is no domain expert knowledge available. The algorithm
proposed in this work helps, not only to understand the

patterns within the data, but also, to simplify more complex
data structures (such as sequential data). It can be applied
in conjunction with well known standard algorithms and can
boost classification performance in a big variety of fields
with similar specifications (such as the detection of credit
card fraud, network intrusions, bots in computer games). Its
systematic approach can also help domain experts to find
previously unknown interactions among data and therefore,
to get a better understanding of their domain.

VII. FUTURE WORK

Further ways for extending the features space could be to
implement more numerical features generated by logarithm,
exponential powers or combinations of more than two at-
tributes. The algorithm itself could be optimized to assess
the quality of a candidate feature before actually calculating
it. Another development direction could be to align the con-
structed features in a way, that would allow to classify data
without the help of one of the standard algorithms.

REFERENCES

[1] J. Han and M. Kamber, ”Data mining: Concepts and techniques” 2. edition
pp. 48-97 second edition, San Francisco, Morgan Kaufmann, 2006

[2] H. Liu and H. Motoda, ”Feature Extraction, Construction and Selection:
A Data Mining Perspective”, Boston, Kluwe Academic Publisher, 1998

[3] L. S. Shafti and E. Pérez ”Constructive Induction and Genetic Algorithms
for Learning Concepts with Complex Interaction”, in Proceedings of The
Genetic and Evolutionary Computation Conference, Washington, June
2005, pp. 1811-1818

[4] L. S. Shafti and E. Pérez ”Data Reduction by Genetic Algorithms
and Non-algebraic Feature Construction: a Case Study”, in Proceed-
ings of: Eighth International Conference on Hybrid Intelligent Systems,
Barcelona, September 2008, pp. 573-578

[5] R. Setiono and H. Liu ”Fragmentation Problem and Automated Feature
Construction”, in Proceedings of: fourth Conference on Data Mining and
Optimization (DMO), Langkawi, September 2012, pp. 53-58

[6] G. Pagallo ”Learning DNF by Decision Trees”, Machine Learning, pp.
71-99 Kluwer Academic Publishers, 1990

[7] B. Zupan and M. Bohanec ”Feature Transformation by Function Decom-
position”, in Journal IEEE Intelligent Systems archive Volume 13 Issue
2, March 1998, pp. 38-43

[8] J.R. Quinlan ”C4.5: Programs for Machine Learning”. Morgan Kaufmann,
1993

[9] D. Garcı́a, A. González and R. Pérez, ”A Two-Step Approach of Feature
Construction for a Genetic Learning Algorithm”, in Proceedings of: IEEE
International Conference on Fuzzy Systems, Taipei, June 2011, pp. 1255-
1262

[10] D. Garcı́a, Antonio González and R. Pérez, ”An Iterative Strategy for
Feature Construction on a Fuzzy Rule-Based Learning Algorithm”, in
Proceedings of: 11th International Conference on Intelligent Systems
Design and Applications, Cordoba, November 2011, pp. 1235-1240

[11] R. Alfred ”DARA: Data Summarisation with Feature Construction”, in
Proceedings of: Second Asia International Conference on Modelling &
Simulation, Kuala Lumpur, May 2008, pp. 830-835

[12] F. Sia and R. Alfred ”Evolutionary-Based Feature Construction with
Substitution for Data Summarization using DARA”, in Proceedings of:
fourth Conference on Data Mining and Optimization (DMO), Langkawi,
September 2012, pp. 53-58

[13] I. Witten and F. Eibe, ”Data mining : practical machine learning tools
and techniques” 2. edition, San Francisco, Morgan Kaufmann, 2005, pp.
48-97

[14] D. Hand, H. Mannila and P. Smyth ”Principles of Data Mining”, MIT
Press, 2001

6Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 15 / 173

Information Integration with Uncertainty:
Performance

Inder K. Dumpa Raja S. Kota Fereidoon Sadri
Department of Computer Science

University of North Carolina at Greensboro
Greensboro, NC, USA

ikdumpa@uncg.edu, raja k999@yahoo.com, f sadri@uncg.edu

Abstract—Information integration and modeling and manage-
ment of uncertain information have been active research areas
for decades, with both areas receiving significant renewed in-
terest in recent years. Research on information integration with
uncertainty, on the other hand, is quite recent. In this paper we
concentrate on recent works on uncertain-data integration. We
present experimental results on the efficiency of recent algorithms
for information integration from sources that contain uncertain
data. Our experiments show the algorithms to be efficient,
demonstrating a near linear performance in the total size of the
uncertain data to be integrated.

Keywords: Information integration; uncertain data; possible
worlds; integration performance.

I. INTRODUCTION

The importance of information integration with uncertainty,
has been realized recently [1]-[4]. It has been observed that [2]:
“While in traditional database management managing uncer-
tainty and lineage seems like a nice feature, in data integration
it becomes a necessity.” Research on information integration
with uncertainty, is quite recent [5]-[11]. Researchers have
concentrated on two main aspects of information integration
with uncertainty. The first category considers integration of
definite data with uncertain schema mappings [6], [7]. The
second category considers integration of uncertain data [5],
[8], [9], [11]. Our work in [11] falls in the second category.
We presented algorithms for the integration of uncertain data,
and justified the correctness of the algorithms by showing
they coincided with the integration formalism presented in
the foundational work [5]. In this paper, we report the im-
plementation and experimental results of these algorithms.
Note that information integration has many dimensions and
involves a number of important tasks such as data cleaning,
data linkage, schema mapping, data standardization, query
translation, and query optimization. We concentrate only on
the issue of information integration from sources that contain
uncertain data in this paper.

This paper is organized as follows. In Section II, we present
an introduction to integration of information from sources
with uncertain data, and briefly discuss the uncertain data
integration algorithms of [11]. Our implementation is presented
in Section III, and experimental results in Section IV. Our
experiments show the algorithms to be efficient, demonstrating
a near linear performance in the total size of the uncertain data
to be integrated. Conclusion and future work are presented in
Section V.

II. PRELIMINARIES

In this section we will review some of the recent works
regarding issues and algorithms for the integration of uncertain
data.

A. Information Integration with Uncertainty: Foundations

Foundations of information integration with uncertainty
have been discussed in [5], [11]. We will present a brief
summary here. We begin with an example from [11].

Example 1: John and Jane are talking about fellow student
Bob. John says “I am taking CS100 and CS101, and Bob is in
one of them, but not in both.” Jane says “I am taking CS101
and CS102 and Bob is in one of them, but not in both.”

Intuitively, if we integrate the information from these two
sources (John and Jane), we should infer that Bob is either
taking CS101, or he is taking both CS100 and CS102.

The model used in [5], [11] for the representation of
uncertain information is the well-known possible-worlds model
[12]. In Example 1, the information presented by the two
sources (John and Jane) is represented by the possible worlds
shown in Figures 1 and 2. The possible worlds of the result
of integration is shown in Figure 3.

student course
Bob CS100

D1

student course
Bob CS101

D2

Figure 1: Possible Worlds of source S1

student course
Bob CS101

D3

student course
Bob CS102

D4

Figure 2: Possible Worlds of source S2

student course
Bob CS101

student course
Bob CS100
Bob CS102

Figure 3: Possible Worlds of the Integration for Example 1

Here, we will summarize the integration approach from
[11] which uses a simple logic-based technique. It has been

7Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 16 / 173

shown to be equivalent to the integration formalism of [5]
which is based on the concept of superset-containment. Inter-
ested readers are referred to [11] for details.

First, we should point out that the pure possible world
model is not adequate for uncertain-data integration appli-
cations. We need additional information, namely, the set of
all tuples. The following example demonstrates the possible-
worlds with tuple sets model.

Example 2: Andy and Jane are talking about fellow stu-
dent Bob. Andy says “I am taking CS100, CS101, and CS102
and Bob is in either CS100 or CS101 but not in both.” Jane
says “I am taking CS101 and CS102 and Bob is in one of
them, but not in both.”

Intuitively, if we integrate the information from these two
sources, we should infer that Bob is taking CS101. The second
possibility from Example 1 is not valid anymore since Andy’s
statement rules out the possibility that Bob is taking 102.

To justify this answer, we observe that pairwise combi-
naiton of possible worlds from the two sources result in the
four possible worlds of Figure 4. But only the second possible
world is a valid combination, and the other three are not valid.
The first world is not valid since Andy states that he is taking
CS100, CS101, and CS102 and Bob is taking 100 of 101 but
not both. So Bob can not be in both 100 and 101. The third
and fourth worlds are not valid due to Andy’s statement too.
He is taking 102 (among other courses) and states that Bob is
taking 100 or 101. Hence Bob can not be in 102. Note that
the last world is also not valid due to Jane’s statements. She
says that she is in 101 and 102, and Bob is in one of them,
but not both. The only valid combination is the second world:
Bob must be taking CS101.

student course
Bob CS100
Bob CS101

student course
Bob CS101

student course
Bob CS100
Bob CS102

student course
Bob CS101
Bob CS102

Figure 4: Pairwise combination of possible worlds from the
two sources

However, the possible-worlds representations of these
sources (Andy and Jane) are exactly the same as those of
Example 1 (Figures 1 and 2). Only when we add the tuple-
set to possible worlds of Andy, namely {(Bob, CS100), (Bob,
CS101), (Bob, CS102)}, It becomes explicit that Andy’s
statement eliminates the possibility that Bob is taking CS102.

Hence, we will use the following definition from [5] for
uncertain databases that adds tuple sets to the possible-worlds
model. Note that to simplify presentation, it is assumed that
possible worlds are sets of tuples in a single relation. We adopt
the same convention throughout this paper.

Definition 1: (UNCERTAIN DATABASE). An uncertain
database U consists of a finite set of tuples T (U) and a
nonempty set of possible worlds PW (U) = {D1, . . . , Dm},
where each Di ⊆ T (U) is a certain database.

B. Integration Using Logical Representation

The following definitions and results are from [11].

Given an uncertain database U , we assign a propositional
variable xi to each tuple ti ∈ T (U). We define the formula
fj corresponding to a possible world Dj , and the formula f
corresponding to the uncertain database U as follows:

Definition 2: (LOGICAL REPRESENTATION OF AN UN-
CERTAIN DATABASE). Let Dj be a database in the possible
worlds of uncertain Database U . Construct a formula as the
conjunction of all variables xi where the corresponding tuple ti
is in Dj , and the conjunction of ¬xi where the corresponding
tuple ti is not in Dj . That is,

fj =
∧

ti∈Dj

xi

∧
ti 6∈Dj

¬xi (1)

The formula corresponding to the uncertain database U is
the disjunction of the formulas corresponding to the possible
worlds of U . That is,

f =
∨

Dj∈PW (U)

fj (2)

Now we can integrate uncertain databases using their
logical representations as follows:

Let S1, . . . , Sn be sources containing (uncertain) databases
U1, . . . , Un. Let the propositional formulas corresponding to
U1, . . . , Un be f1, . . . , fn. We obtain the formula f corre-
sponding to the uncertain database resulting from integrating
U1, . . . , Un by conjuncting the formulas of the databases:
f = f1 ∧ · · · ∧ fn.

Example 3: (INTEGRATION USING LOGICAL REPRESEN-
TATION) Consider Example 1. The uncertain database corre-
sponding to John’s statement is represented by (x1 ∧ ¬x2) ∨
(¬x1 ∧ x2), where x1, and x2 correspond to the tuples
(Bob, CS100) and (Bob, CS101), respectively. The uncertain
database corresponding to Jane’s statement is represented by
(x2 ∧ ¬x3) ∨ (¬x2 ∧ x3), where x2 is as above and x3

corresponds to the tuple (Bob, CS102). The integration in this
case is obtained as

((x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)) ∧ ((x2 ∧ ¬x3) ∨ (¬x2 ∧ x3))

= (x1 ∧ ¬x2 ∧ x3) ∨ (¬x1 ∧ x2 ∧ ¬x3)

which corresponds to the possible worlds of Figure 3. The
result is consistent with our intuition: Based on statements by
John and Jan, Bob is taking either CS101 or both CS100 and
CS102.

Now consider Example 2. The uncertain database corre-
sponding to Andy’s statement is represented by (x1 ∧ ¬x2 ∧
¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x3), where x1, x2, and x3 represent
(Bob, CS100), (Bob, CS101), and (Bob, CS102), respectively.
The uncertain database corresponding to Jane’s statement is
represented by (x2 ∧ ¬x3) ∨ (¬x2 ∧ x3). The integration in
this case is obtained as

((x1 ∧ ¬x2 ∧ ¬x3) ∨ (¬x1 ∧ x2 ∧ ¬x3))∧
((x2 ∧ ¬x3) ∨ (¬x2 ∧ x3))

= (¬x1 ∧ x2 ∧ ¬x3)

8Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 17 / 173

corresponding to the (in this case, definite) relation consisting
only of the tuple (Bob, CS101) (Figure 5). Again, this result
is consistent with our intuition: Based on statements by Andy
and Jane, Bob is taking CS101.

student course
Bob CS101

Figure 5: Possible Worlds of the Integration for Example 2

C. An Alternative View of Integration

Let S1, . . . , Sn be sources containing (uncertain) databases
U1, . . . , Un. Let PW (Ui) represent the set of possible worlds
of uncertain database Ui, and Ti represent the tuple set of
Ui. We can regard the integration of information from these
sources as follows:

Definition 3: (COMPATIBLE SET OF POSSIBLE-WORLDS
RELATIONS). Consider a set of n relations {w1, . . . , wn}
where each wi is a relation in the set of possible worlds of Ui,
that is, wi ∈ PW (Ui), i = 1, . . . , n. If there is a tuple t in a
relation wi, that it is also in Tj −wj for some other possible-
world relation wj , we say the set of possible-world relations
{w1, . . . , wn} is not compatible. Otherwise, {w1, . . . , wn} is
compatible.

Note that t ∈ Tj − wj means that according to source
Sj , the tuple t can not exist (is ruled out) in wj . Hence, if
a set of possible world-relations is not compatible, they can
not be integrated. A compatible set of possible-world relations
{w1, . . . , wn} can be integrated, and the resulting relation
contains all the tuples in the relations, that is, the result of
integrating w1, . . . , wn is w = ∪ni=1wi.

Hence, to integrate sources S1, . . . , Sn, we can compute
the possible-worlds relations of the integration by

1) forming all possible combinations {w1, . . . , wn},
wi ∈ PW (Ui),

2) determining compatible sets, and
3) obtaining the union of the relations in the compatible

set.

This alternative characterization of integration results in a
simpler integration algorithm. We use the logical formulation
only to determine compatible sets of possible worlds, and then
we obtain the result by calculating the union of the possible
worlds in each compatible set. We have used this characteri-
zation to design our integration algorithm (Section III).

Example 4: (ALTERNATIVE VIEW OF INTEGRATION)
Consider Example 1. The possible-worlds relations of the
uncertain database corresponding to John’s statement were
shown in Figure 1, and the possible-worlds relations of the
uncertain database corresponding to Jane’s statement were
shown in Figure 2. In this case, the compatible sets of possible
worlds are {D1, D4} and {D2, D3}. We can conveniently
represent the compatibility of possible-worlds relations for two
sources by a bi-partite graph, such as Figure 6. The possible-
worlds of the result of integration is shown in Figure 3.

Figure 6: Compatibility graph of Example 1.

III. IMPLEMENTATION

We implemented the information integration approach of
Section II-C, and ran a large number of experiments to assess
the performance of the implementation. In this section we
present the implementation details. Experimental results are
presented and discussed in the next section.

Our implementation consists of several modules imple-
mented in Java.

• The GeneratePossibleWorlds module is a util-
ity module used to randomly generate possible world
relations for the information sources. The user can
specify the following parameters:
◦ Number of information sources.
◦ Number of possible worlds for each source.
◦ Number of tuples for each possible world.
◦ Number of attributes for the possible-worlds

relations.
To generate random tuples for possible worlds rela-
tions, we stored several files of domain values. Each
file contains a large number of values from a spe-
cific domain, such as names, course numbers, course
titles, semesters, and years. The user can specify
the number of attributes for the possible world rela-
tions. The system forms a random tuple by randomly
picking values from the domain of each attribute.
The GeneratePossibleWorlds module stores
the possible worlds relations in Oracle databases, one
for each source. The sizes of the relations, and the
total size of the integration instance are also recorded.

These features were used to generate desired cases for
the experiments by altering the number of sources,
number of possible worlds, size of each possible
world, and total size of the sources data. Hence we
can evaluate the impact of each parameter on the
performance of the algorithm.

• The TableIntegration module performs the
following tasks for each dataset generated by the
GeneratePossibleWorlds module discussed
above.
◦ The module accesses the possible world re-

lations in the databases of the sources. Each
source is represented by an Oracle database
that contains the possible world relations for
thet source.

◦ The tuple set for each source is computed as
the union of the possible world relations for
that source.

◦ The module generates the logical formula for
each possible world relation for the sources

9Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 18 / 173

according to the algorithm of Section II-B
The formulas are conveniently represented by
vectors, which can be used to easily implement
logical operations over the expressions.

◦ The module determines which sets of possible
world relations, one from each source, are
compatible and hence can produce a possible
world relation in the integration. This is done
by computing the conjunction (logical and)
of the corresponding formulas of the possible
world relations. If the result is false, the set of
possible worlds are not compatible. Otherwise
they are compatible.

◦ For all compatible sets of possible worlds,
the modul generates the resulting relation by
unioning the possible worlds relations in the
set. It stores the integrated relation in the
Oracle database for the integration result.

◦ Once all compatible possible wrolds sets are
processed, the module displays the total time
for the integration.

IV. EXPERIMENTAL EVALUATION

We carried out a large number of experiments to evaluate
the performance of the integration algorithm. The experiments
were executed on a 2.10 GHz Intel i3 CPU with 4.00 GB
RAM, 64-bit Windows 7 Operating System using Java 1.7
and Oracle XE 10g. The first few experiments evaluated
the performance of the integration algorithm for integrating
information from two sources.

Figure 7: integration times; fixed number of possible worlds
for each source.

In the first set of experiments the number of possible
world relations of the two sources were kept constant, and
test cases were generated by varying the number of tuples
in the possible world relations (and hence, varying the size of
uncertain databases to be integrated). Figure 7 shows the result
of these experiments. The horizontal axis shows the total size
(KB) of databases to be integrated. The vertical axis shows the
time needed for the integration (sec). The experiments show
that the integration algorithm is almost linear in the total size
of databases to be integrated.

In the second set of experiments, we varied the number of
possible world relations of the two sources while keeping the
number of tuples constant. Figure 8 shows the result of these

experiments. The horizontal axis shows the total size (KB) of
databases to be integrated. The vertical axis shows the time
needed for the integration (sec). Again, the experiments show
that the integration algorithm is almost linear in the total size of
databases to be integrated (no matter whether the size increase
is due to larger number of possible worlds per sources, or larger
possible world relation sizes.)

Figure 8: integration times; variable number of possible
worlds for each source.

In the next set of experiments we evaluated the impact
of the number of possible world relations and their sizes on
the integration algorithm. The total size was kept constant
(approximately) by changing both the number of possible
world relations and the number of tuples in these relations
accordingly. The values of these parameters and the integration
time are shown in Table I. The columns are, respectively,
number of possible worlds for each source, number of tuples
in each possible world, total size, and integration time. Total
size is almost constant – it ranges between 99.6 and 100.4 KB.

TABLE I: Integration experiments; with total size (almost)
constant

PWs tuples size time
20 110 99.9 114
19 116 99.8 114
18 122 99.6 109
17 130 100.4 113
16 138 100.2 116
15 147 100.0 114
14 158 100.3 111
13 170 100.3 116
12 184 100.2 113
11 200 99.8 113
10 220 100.0 114
9 245 100.0 114
8 275 100.0 114
7 315 99.9 111
6 368 100.2 115
5 442 100.3 116
4 553 100.1 119
3 737 100.4 120

Figures 9 and 10 plot the integration time in the ex-
periments of Table I against the number of possible worlds

10Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 19 / 173

Figure 9: integration times vs number of possible worlds;
total size is constant

and the number of tuples in each possible world. The x-
axis of Figure 10 (number of tuples in each possible world)
is logarithmic to better demonstrate the effect of number of
tuples, ranging from 110 to 737 in the experiments. These
experiments show that the number of possible worlds and their
sizes are not factors in the performance of the integration
algorithm when the total size is constant. In other words,
integration time is almost constant when number of possible
world relations and their sizes change while the total size is
fixed. This observation is counter-intuitive since the integration
algorithm needs to determine, for every pair of possible worlds
(w1, w2), whether they are compatible, where w1 and w2

belong to source 1 and source 2, respectively. But the impact of
number of tuples (smaller number of tuples for larger number
of possible world relations) counterbalances the impact of
number of possible worlds.

Figure 10: integration times vs number of tuples in each
possible world; total size is constant

In the next set of experiments we generated test cases by
varying both the number of possible worlds and the number
of tuples in each possible worlds (and hence, varying the
total size). The results are summarized in Table II. The
columns are, respectively, number of possible worlds for each
source, number of tuples in each possible world, total size,
and integration time. Figure 11 plots the integration time in
these experiments against total size. It confirms a near linear
performance of the algorithms as a function of the total size of
the integration. Figure 12 plots the integration time against the

number of tuples in each possible-world relation. Note that the
same figure is also the plot of integration time against number
of possible worlds, since we are using the same numbers
for the two parameters for each data point (See Table II).
This figure suggests integration time is a quadratic function
of number of possible worlds (or number of tuples in each
possible world). This is no surprise, since by varying both
these parameters (and using the same numbers) we obtain a
total size that is quadratic in each of these parameters. So,
again, we confirm that total size is the important parameter in
the performance of the algorithm.

TABLE II: Integration experiments; varying number of
possible worlds and number of tuples in each possible world

PWs tuples size time
4 4 0.7 0
8 8 2.9 1

12 12 6.5 3
16 16 11.5 4
20 20 18 7
24 24 26.1 13
28 28 35.4 22
32 32 46.4 33
36 36 58.8 50
40 40 72.7 70
44 44 87.8 89
48 48 104.5 121
52 52 122.5 149
56 56 142 182
60 60 163.4 219

negvs

Figure 11: integration times vs total time

In the next set of experiments we evaluate the performance
of the integration algorithm when integrating data from more
than two information sources. We generated test cases by
varying the number of information sources, while keeping
the total size constant. Figure 13 plots the integration time
against the number of possible worlds. This performance was
very unexpected. As seen from this graph, the algorithm has
an almost constant time up to about 10 information sources,
then the integration time increases sharply. We postulated that
the reason for the sharp increase is memory saturation, which

11Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 20 / 173

Figure 12: integration times vs number of tuples in
possible-world relations

forces the execution to use virtual memory. In our experiments,
the number of possible world relations for each source was
kept constant at 3, and constant total size was achieved by
varying the number of tuples in each possible world. So, with
10 sources, the number of integration combinations to generate
was 310 = 59, 049. This number increases to 311 = 177, 147
for 11 sources, and to 312 = 531, 441 for 12 sources. The
memory of our testbed system saturates at about 10 sources.

To test our hypothesis, we executed the exact same ex-
periments on systems with lower (2GB) and higher (8GB)
memory sizes. The graphs for these experiments have the same
shape, except at lower memory size the graph is shifted to the
left, and at higher memory size the graph is shifted to the
right. In other words, the sharp increase happens at a lower
number of sources for the lower memory size, and at a higher
number of sources for higher memory size. These additional
experiments confirm our hypothesis that the change in the
performance of the integration algorithm, from constant time
to almost linear, is a result of memory saturation. So, our final
conclusion is that, given adequate memory, the performance of
the integration algorithm is a linear function (approximately)
of the total size of the integration instance. It is not sensitive
to the other factors, namely, number of information sources,
number of possible worlds relations in the sources, and number
of tuples in the possible world relation, when the total size is
kept constant.

V. CONCLUSION

We presented our implementation and experimental evalu-
ation of the uncertain-data integration algorithms of [11]. Our
experiments show the algorithms to be efficient, demonstrating
a near linear performance in the total size of the uncertain data
to be integrated.

There are a number of important issues that require further
investigation. First, uncertain schema mappings is another
source of uncertainty in information integration. We would like
to develop integration algorithms for this case, with definite or
uncertain data. The integration algorithm is a good candidate
for parallel computation, in particular, using the map-reduce
framework [13]. A future direction would be to implement
the integration using Hadoop running on a large number
of computers. More importantly, we would like to devise

Figure 13: integration times vs number of sources

integration algorithms to work with compact representations
of uncertain data, such as the probabilistic relational model of
[14], [15].

REFERENCES

[1] L. M. Haas, “Beauty and the beast: The theory and practice of
information integration,” in Proceedings of International Conference on
Database Theory, 2007, pp. 28–43.

[2] A. Y. Halevy, A. Rajaraman, and J. Ordille, “Data integration: The
teenage years,” Proceedings of International Conference on Very Large
Databases, 2006, pp. 9–16.

[3] M. Magnani and D. Montesi, “Uncertainty in data integration: current
approaches and open problems,” in Proceedings of VLDB Workshop
on Management of Uncertain Data, 2007, pp. 18–32.

[4] ——, “A survey on uncertainty management in data integration,” ACM
Journal of Data and Information Quality, vol. 2, no. 1, 2010.

[5] P. Agrawal, A. D. Sarma, J. D. Ullman, and J. Widom, “Foundations
of uncertain-data integration,” Proceedings of the VLDB Endowment,
vol. 3, no. 1, 2010, pp. 1080–1090.

[6] X. L. Dong, A. Halevy, and C. Yu, “Data integration with uncertainty,”
in Proceedings of International Conference on Very Large Databases,
2007, pp. 687–698.

[7] X. L. Dong, A. Y. Halevy, and C. Yu, “Data integration with uncer-
tainty,” The VLDB Journal, vol. 18, no. 2, 2009, pp. 469–500.

[8] A. A. Eshmawi and F. Sadri, “Information integration with uncertainty,”
in Proceedings of International Database Engineering and Applications,
IDEAS, 2009, pp. 284–291.

[9] R. Fagin, B. Kimelfeld, and P. G. Kolaitis, “Probabilistic data ex-
change,” Journal of the ACM, vol. 58, no. 4, 2011, p. 15.

[10] D. Florescu, D. Koller, and A. Y. Levy, “Using probabilistic information
in data integration,” in Proceedings of International Conference on Very
Large Databases, 1997, pp. 216–225.

[11] F. Sadri, “On the foundations of probabilistic information integration,”
in Proceedings of International Conference on Information and Knowl-
edge Management, 2012, pp. 882–891.

[12] S. Abiteboul, P. C. Kanellakis, and G. Grahne, “On the representation
and querying of sets of possible worlds,” in Proceedings of ACM
SIGMOD International Conference on Management of Data, 1987, pp.
34–48.

[13] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,” in Proceedings of Operating System Design and
Implementation, 2004, pp. 137–150.

[14] N. N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic
databases,” in Proceedings of International Conference on Very Large
Databases, 2004, pp. 864–875.

[15] ——, “Efficient query evaluation on probabilistic databases,” The
VLDB Journal, vol. 16, no. 4, 2007, pp. 523–544.

12Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 21 / 173

Universal Evaluation System Data Quality

María del Pilar Angeles, Francisco Javier García-Ugalde,

Carlos Ortiz, Ricardo Valencia,Eduardo Reyes,

Arturo Nava, Jhovany Pelcastre
Facultad de Ingeniería

Universidad Nacional Autónoma de México

México, D.F.

pilarang@unam.mx, fgarciau@unam.mx,

carlos.ortiz.eng@comunidad.unam.mx, ricardofdk8@hotmail.com, eduardorv07@hotmail.com,

arturo_shox@hotmail.com, j.pelcastre@hotmail.com

Abstract— This paper presents a work in progress regarding to

the extension and improvement of the Freely Extensible

Biomedical Record Linkage system. Currently, the prototype

has been extended to directly connect to a number of database

managements systems, calculate their database quality

indicators, automatically generate a flat file from any database

and execute an appropriate data matching process.

Keywords-data matching; de-duplication; record linkage

I. INTRODUCTION

When an enterprise information system is meant to be
built upon integration of their existing heterogeneous
database systems, they would face the difficulty of
comparing disparate schemas in order to identify syntactic
and semantic heterogeneities; make these schemas
correspond and match them through transformation
functions; and finally, comparing data of unknown quality
such as name, address from a single record against a large
number of records.

Integrating data from different sources consists of three
tasks [1]. The first task is concerned with identifying
database tables, attributes and conceptual structures from
disparate databases that contain data that correspond to the
same type of information, namely schema matching [2]. The
second task is concerned with the identification and match
of records that correspond to the same entity, when they
come from disparate data sources, called data matching. In
the case of identification of records that actually refer to the
same entity within a single database, is known as duplicate
detection [1]. Duplicated records can be handled in different
ways, providing the complete set of inconsistent answers,
providing the complete set of answers, but ranked according
to likelihood of being correct [3], providing a single value
selected at random, providing a top value in a ranked
answer, or providing a fused answer [4], which is the
process of merging pairs or groups of records that have been
classified as matches into a clean and consistent record that
represents an entity. When applied on one database, this
process is called de-duplication. We assume that the process
of schema matching has already achieved.

The open issues on data matching are mainly concerned
to the record comparison among databases in order to
determine if a pair of records corresponds to the same entity
or not, because the process grows exponentially as the

databases to be matched get larger. In real-world data
matching applications, the true status of two records that are
matched across two databases is not known. Therefore,
accurately assessing data matching quality and completeness
is challenging [1].

This approach is aimed to the development of algorithms
that reduce the quadratic complexity of the naive process of
pair-wise comparing each record from one database with all
records in the other database, and how to accurately classify
the compared record pairs into matches and non-matches
considering attributes dependency.

Nowadays, we are focused on the implementation of
algorithms in order to measure, assess and help during the
analysis of data quality process under a number of open and
licensed database management system (DBMS), such as
Oracle DB, MySQL, IBM DB2, SAP-Sybase Adaptive
Server Enterprise, SAP-Sybase IQ, EnterpriseDB
PostgreSQL.

For the process of identification, analysis and merge of
duplicated records, we are still working on the extension of
the Freely Available Record Linkage System (FEBRL) [5]
developed by a research group of the Department of
Computer Science at The Australian National University.

 We are focused on the integration of the FEBRL system
to any database from any DBMS by querying the native data
dictionary; the research proposal is also aimed to the
enhancement and addition of further standardization,
indexing, and classification algorithms for data matching.

We have called our prototype as FEBRL-SEUCAD, it
will support six DBMS at least. The application extracts the
database schema directly from the data dictionary and
measures the intrinsic quality of the data through the
following indicators: coverage, density, completeness [6].
Since these measures are intrinsically computed through
SQL queries, the assessed granularity levels are at database,
table and column where applicable as we have done in
previous research [7]. Furthermore, the prototype will
implement a specific framework for the detection,
classification and fusion (cleaning) of duplicate records
within a number of databases (data matching and de-
duplication) with no regard of the type of data source.

The present paper is organized as follows: The next
section is focused on the assessment of data quality. The
third section briefly explains the data matching process.
Section IV describes the work we have carried out regarding

13Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 22 / 173

to the extension and enhancement of algorithms of the data
matching process. The last section concludes the main topics
achieved and the future work to be done.

II. ASSESSMENT OF DATA QUALITY

The strictness of quality assessment is a weak or strong
characterization depending on evaluating the quality property
as a percentage or as a Boolean function respectively as
shown in [8]. The strong characterization of the quality
metrics is useful in applications where it is not possible to
admit errors at the corresponding level of granularity.

In the case of the assessment of data quality, we have
considered the weak strictness to make possible the
comparison of data sources for a number of data quality
properties in. However, there might be alternatives where
strictness could depend on the level of quality required,
according to specific applications.

In order to assess data quality at different levels of
granularity [7], we have utilized the measures provided at
lower levels of granularity (data value, attribute) to
determine aggregated scores (table, database) as we move
through the levels of granularity.

Regarding completeness, we have taken the
corresponding metrics of [6] and [8] for the value, attribute,
and relation granularity levels, and we have incorporated
completeness at the database level.

Coverage: This is the measure for the number of tuples a
source stores; in other words as the probability that an entity
of the world is represented in the source [6]. This is also
contemplated under the Open World Assumption without
nulls completeness case, at the relation level of granularity,
refer to [8] for further detail.

Density of an attribute: is the measure of how well the
attributes stored at a source are filled with actual (non-null)
values (columns), in [6], a weak attribute completeness case
under the Closed World Assumption with nulls in [8].

 Density of the source d(S) is obtained by the average
density over all density attributes [6].

Weak relation completeness is the number of tuples with
all its attributes filled with non-null values divided by the
number of tuples [6].

 The completeness at database level will correspond to
the average completeness of its corresponding relations.

The measurements are given by the aggregation of values
at each of these levels as they are moving on. As a
measurement of data quality is directly related to the level of
granularity, we conclude that scores measured at lower level
of granularity will provide a greater degree of accuracy than
aggregated scores produced at higher levels.

The functions utilized for aggregation of scores are
commonly average, maximum, and minimum. The
appropriateness of an aggregation function will depend on
the optimistic, conservative, or pessimistic approach taken
according with the application context. It is not our intension
to identify the best aggregation function, because there is not
an absolute value. As long as the aggregation function
reflects the user needs and it is consistently used, it should be
enough for the estimation of quality and comparison
purposes.

III. THE DATA MATCHING PROCESS

A. Introduction

The data matching process in general terms is focused on
joining records from one data source with another that
describe the same entity. This process requires the following
tasks: data standardization [9]; indexing possible matching
data in order to reduce the number of comparisons; data
comparison and classification of pairs of records in possible
match, not match and match. These steps are briefly
explained during this section.

B. Standardization

The standardization process [9] refers to the conversion

of input data from multiple databases into a format that

allows correct and efficient record correspondence between

two data sources. Within the first step, called tokenization, it

is assumed that the attributes of the input databases contain

values that are separated by spaces, known as tokens. The

second step is concerned with the detection and correction

of data values that contain typographical errors or variations

already known. The third step is the segmentation of tokens

in well-defined output fields for proper data mapping or

identification and correction of duplicate values (known as

de-duplication).

C. Indexing

A detailed process of records comparison is usually

computationally expensive. That is, the complexity is

quadratic according to the length of the attribute values

(mostly chains) that are correlated. The comparison process

is the most complex of all the data mapping steps. The

indexing aims to reduce the number of pairs of records that

will be compared, reducing those pairs of records that are

unlikely to correspond to the same real world entity and

retaining those records that probably would correspond in

the same block for comparison reducing the number of

record comparisons. Therefore, the definition of the locking

key is very important, because it will specify how to keep

similar records in the same block of comparison. The record

similarity depends on the data types they contain because

they can be similar phonetically, numerically or textually.

Some of the methods implemented within Febrl are for

instance, Soundex [10], Phonex [1], Phonix [1],

NYSIIS[11], Double metaphone [12], QGrams.

D. Field and record Comparison Methods

As the comparison data might be of low quality (they

may contain typographical errors or variations), establishing

a binary or strict criterion for the comparison process such

as (similar / dissimilar) is not possible or realistic.

Therefore, the comparison methods implemented provide

degrees of similarity and define thresholds depending on the

semantics and data type of each field. Some of the methods

implemented within Febrl are for instance, Qgram, Jaro -

Winkler Distance [13], [14] Longest common substring

Comparison.

14Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 23 / 173

E. Classification

The classification of pairs of records grouped and

compared in the previous steps [15], [6], is mainly based on

the similarity values were obtained, since it is assumed that

the more similar two records are, there is more probability

that these records belong to the same entity of the real

world.

The records are classified into “matches”, “not matches”

or “possible matches”, the classification of records can be

an unsupervised or supervised process.

The unsupervised process classifies pairs or groups of

records in the similarities between them without having

access to more information about the characteristics of those

records.

The supervised process requires training based on data

identified as similar or not similar. In this case, comparison

vectors with an associated value that determines whether

records correspond or not are required.

In the case of potentially corresponding records, the

duplicates detection may be performed manually.

Within Febrl, there are methods based on thresholds,

probabilistic methods, costs based methods or rule-based

methods.

The accuracy of data matching is mostly influenced by

the comparison and classification steps. However, the

indexing step will impact on the completeness of a data

matching exercise because record pairs filtered out in the

indexing step will be classified as non-matches without

being compared.

The most commonly way to classify candidate record

pairs is to sum the similarity values in their comparison

vectors into a single total similarity value and to then apply

two similarity thresholds to decide the class a candidate

record pair belongs to. However, there are some

dependencies between attributes. For instance, records with

the same postcode will potentially have the same street

name [1]. Therefore, if we assume that all similarity values

are normalized between 0 and 1, all attribute similarities

contribute in the same way towards the final summed

similarity value. The importance of different attributes, as

well as their discriminative power regard to distinguishing

matches from non-matches, is not considered. Furthermore,

with no regard of a weighted or an unweight approach, the

detailed information contained in the individual similarity

values is lost by such a simple summation approach.

For instance, the probabilistic classification approach of

Fellegi and Sunter [6] is one of the most utilized nowadays

because it allows the calculation of weights for

corresponding and not corresponding pairs of attribute

values, which leads to a better decision during records pair

classification, but by assuming a conditional independence.

 The present research is currently on the implementation

of an enhancement to this issue.

F. Evaluation of Matching

Matching quality refers to how many of the classified
matches correspond to true real-world entities, while
matching completeness is concerned with how many of the
real-world entities that appear in both databases were
correctly matched [17].

Each of the record pair corresponds to one of the
following categories [18]:

• True positives (TP). These are the record pairs that have
been classified as matches and that are true matches. These
are the pairs where both records refer to the same entity.

• False positives (FP). These are the record pairs that
have been classified as matches, but they are not true
matches. The two records in these pairs refer to two different
entities. The classifier has made a wrong decision with these
record pairs. These pairs are also known as false matches.

• True negative (TN). These are the record pairs that have
been classified as non-matches, and they are true non-
matches. The two records in pairs in this category do refer to
two different real-world entities.

• False negatives FN) .These are the record pairs that
have been classified as non-matches, but they are actually
true matches. The two records in these pairs refer to the same
entity. The classifier has made a wrong decision with these
record pairs. These pairs are also known as false non-
matches.

An ideal outcome of a data matching project is to
correctly classify as many of the true matches as true
positives, while keeping both the number of false positives
and false negatives small.

Precision calculates the proportion of how many of the
classified matches (TP + FP) have been correctly classified
as true matches (TP). It thus measures how precise a
classifier is in classifying true matches. [19]. It is calculated
as: precision= TP/(TP+FP)

Recall measures how many of the actual true matching
record pairs have been correctly classified as matches [19]. It
is calculated as: recall= TP/(TP+FN).

At the present time, we have been focused on the
enhancement of the Fellegi and Sunter probabilistic
classification in terms of keeping the match weight after
classification.

G. Related work

The FEBRL project has developed prototype software
which undertakes data standardisation, which is an essential
pre-processing phase for most record linkage projects, and
which implements the "classical" approach to probabilistic
record linkage model as described by Fellegi and Sunter in
[16]. We are focused on the extension of the original FEBRL
system to any database from any DBMS by querying the
native data dictionary; the research proposal is also aimed to
the enhancement and addition of further standardization,
indexing, and classification algorithms for data matching.

We are currently analysing which de-duplication
algorithms are suitable for incorporating to the FEBRL-
SEUCAD in order to implement them and compare them to
the already implemented on FEBRL.

15Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 24 / 173

IV. FEBRL-SEUCAD

This section presents the enhancement we have
implemented to the original FEBRL project so far. However,
as we have pointed out before, there is a long way of further
work to be done.

The prototype FEBRL-SEUCAD is now able to connect
to any application implemented under a number of Database
Management Systems such as PostgreSQL, SAP Sybase
Adaptive Server Enterprise, SAP Sybase IQ, MySQL, Oracle
and IBM DB2 with only the name of the database to be
analyzed as a parameter. FEBRL-SEUCAD contains code to
extract the native data dictionary in order to obtain all the
database objects created under such database name.

A. Activities

To develop the prototype we have undertaken the
following activities.

• Extraction of database objects by the data dictionary
from each DBMS.

• Implementation by SQL programming of quality
metrics such as coverage, density and uniqueness, the latter
considering primary key, because otherwise would be data
de-duplication or data matching covered by Febrl. Such sql
programming has been carried out for each DBMS in their
corresponding SQL language.

• Extension of the Febrl application for connection to
any database through the already mentioned DBMS.

• Extension of the Febrl application to incorporate the
options concerned to compute the quality metrics at
database, table, record and column.

• Extension of the Febrl application to incorporate the
option of selecting a specific database object and its
corresponding data matching process.

The prototype currently supports the measurement of
data qualitative dimensions within a number of database
management systems and the steps within the data matching
process (indexing, comparison, and classification).

The application extracts the database schemas directly
from the data dictionary and identifies the following
indicators: coverage, density, complete and uniqueness, since
they are intrinsically calculable through SQL, granularity
levels are calculated at database, table, and column log for a
number of Database Management Systems.

B. Operations

This section is aimed to briefly describe the operation of

the FEBRL-SEUCAD prototype. In the case of Data

profiling, the first step is to select the metrics option, specify

the required metric, the level of granularity to compute, the

Database management system and the database name. We

have extended the Febrl system in order to calculate

completeness and uniqueness at different levels of

granularity by extracting from the data dictionary the

database objects, this feature allows the prototype to be

utilized on any database platform. Fig. 1 shows

completeness at database level from a SAP-Sybase Adaptive

Server Enterprise database.

Figure 1 Completeness at database level

Once the database object has been selected, we have
extended Febrl as shown in Fig. 2, in order to automatically
generate the corresponding flat file in CSV, TBL formats,
where originally the flat file had to be generated apart and
then loaded to the application for further analysis.

Figure 2 Flat file generated from a database table

The data profiling step helps to determine the number of
different data values for such attribute, the distance
frequency, and the number of records with empty values.
These brief data profiling allows the identification of a
suitable attribute for indexing.
 Indexing: The next step is the identification of attributes

that would help on the execution of the indexing process

along with specification of the corresponding parameters

according to such indexing method. The best suited

attributes for indexing are those with no missing values and

uniform frequency distance. For instance, in the case of

QGramIndex it is possible to specify the number of Q-

grams and threshold as is shown in Fig. 3.

16Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 25 / 173

Figure 3 Indexing by QGramIndex and Soundex encoding

 Comparison: The most common attributes for comparison

are strings of one token, such as surname, family name, or a

short number of tokens such as address, street name. Within

SEUCAD-FEBRL is required to also specify the field

comparison function per each comparison attribute. For

instance, in Fig. 4, the comparison function Bag-Distance is

used for surname and the Number-Percentage algorithm for

the attribute street_number.

Figure 4 Comparison by Bag-Distance and Number percentage

 Classification: The data type of the attributes involved for

the classification process is relevant in order to specify the

classification method. In Fig. 5 the classification method

chosen is Fellegi Sunter with a lower threshold of 8 and a

upper threshold of 1.8.

Figure 5 Classification by Fellegi and Sunter

Once identified the attributes and methods for each step,
it is possible to execute the data matching process, which is
the case shown in Fig. 6.

Figure 6 Execution of data matching process

Fig. 7 presents the number of matches, non-matches and
possible matches as the outcome of the data matching
process.

Figure 7 Outcome of matches, non matches and possible matches

The data matching outcome shows 4 matches, 1 possible
match, there were not pair of records with non matches.

The evaluation of the data matching algorithms has
already been coordinated by Peter Christen during the
development of the FEBRL prototype [1], [5].

The data quality indicators: coverage, density,
completeness and uniqueness have been identified in
previous work [3], [6], [7], [8] and extended to different
levels of granularity in [7]. However, as these quality
indicators are an addition to the original de-duplication
prototype, they have been calculated and tested at database,
table, and column log for a number of Database
Management Systems within FEBRL-SEUCAD.

V. CONCLUSION AND FUTURE WORK

A. Conclusion

We present a work in progress regarding the extension
and improvement of an open software for de-duplication of
records originally called FEBRL.

Currently, the FEBRL-SEUCAD prototype can directly
connect to several database management systems such as
Oracle DB, MySQL, IBM DB2, SAP-Sybase Adaptive
Server Enterprise, SAP-Sybase IQ, EnterpriseDB
PostgreSQL, extracted from the dictionary database objects
of interest in order to allow data platform independency.

Our prototype is able to calculate data quality indicators
allowing a better decision regarding to the identification of
attributes that would help on the data matching process.

FEBRL-SEUCAD allows the flat file generation from
any object database in CSV, TBL formats and then loaded to
the application for further analysis.

B. Future work

We are planning the enhancement of some of data
matching algorithms already implemented in the original
FEBRL prototype, at the present time; we are focused on the
enhancement of the classification process by considering the
importance of different attributes through their
corresponding weights.

17Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 26 / 173

The implementation of new indexing algorithms,
comparison and classification methods is part of our future
work.

ACKNOWLEDGMENT

This work is being supported by a grant from “Research
Projects and Technology Innovation Support Program
(Programa de Apoyo a Proyectos de Investigación e
Innovación Tecnológica, PAPIIT”, UNAM Project
IN114413 named “Universal Evaluation System Data
Quality (Sistema Evaluador Universal de Calidad de
Datos)”.

REFERENCES

[1] P. Christen, Data Matching: Concepts and Techniques for
Record Linkage, Entity Resolution, and Duplicate
Detection, Series Data-Centric Systems and Applications,
Springer, 2012.

[2] E. Rahm and H.H. Do, “Data cleaning: Problems and
current approaches”. IEEE Data Engineering Bulletin 23(4),
2000, pp.3-13.

[3] P. Angeles and F. Garcia-Ugalde, “A Data Quality Practical
Approach”, para el “International Journal On Advances in
Software” Vol. 2, No. 3, 2009, pp. 259-274.

[4] J. Bleiholder and F. Naumann, “Data fusion”, ACM
Computing Surveys 41(1), 2008, pp. 1-41.

[5] Febrl – A Freely Available Record Linkage System with a
Graphical User Interface, Proceeding of the 2nd
Australasian Workshop on Health Data and Knowledge
Management (HDKM), Wollongong, Australia, 2008,
pp.17-25.

[6] F. Naumann, J. Freytag, and U. Lesser, "Completeness of
Integrated Information Sources", Workshop on Data Quality
in Cooperative Information Systems (DQCIS2004),
Cambridge, Mass., 2004, pp.583-615.

[7] P. Angeles and F. Garcia-Ugalde, “Assessing data quality of
integrated data by quality aggregation of its ancestors”,
Computación y Sistemas, Centro de Investigación en
Computación, Instituto Politécnico Nacional (IPN), vol. 13
No. 3, 2010, pp. 331-334, ISSN 1405-5546.

[8] M. Scannapieco and C. Batini, "Completeness in the
Relational Model: A Comprehensive Framework”, Research
Paper, in Proceedings of the 9h International Conference on

Information Quality (ICIQ-04, Cambridge, MA, USA,
2004, pp. 333-354.

[9] T. Churches, P. Christen, K. Lim, and J. X. Zhu,
Preparation of name and address data for record linkage
using hidden Markov models. BioMed Central Medical
Informatics and Decision Making 2(9), 2002.

[10] M. Odell and R. Russell,The soundex coding system. US
Patents 1261167, 1918.

[11] C. L. Borgman and S. L. Siegfried, “Getty’s synonameTM
and its cousins: A survey of applications of personal name-
matching algorithms”, Journal of the American Society for
Information Science 43(7), 1992, pp. 459–476.

[12] L. Philips, “The double metaphone search algorithm”,
C/C++ Users J. 18, 6,pp. 38-43, 2000.

[13] M. A. Jaro, “Advances in record-linkage methodology
applied to matching the 1985 Census of Tampa, Florida”,
Journal of the American Statistical Association 84, 1989,
pp. 414–420.

[14] W. Winkler, “String comparator metrics and enhanced
decision rules in the Fellegi-Sunter model of record
linkage”, Proceedings of the Section on Survey Research
Methods, 1990, pp. 354–359, American Statistical
Association.

[15] M. Neiling and H. J. Lenz, “Supplement of Information:
Data Integration by Classification of Pairs of Records,
Classification, Automation, and New Media Studies in
Classification, Data Analysis, and Knowledge
Organization”, 2002, pp. 219-226,
http://dx.doi.org/10.1007/978-3-642-55991-4_23 [retrieved:
february, 2014], Springer Berlin Heidelberg, ISBN 978-3-
540-43233-3.

[16] I. P. Fellegi and A. B. Sunter, “A theory for record linkage”,
Journal of the American Statistical Association 64(328),
1969, pp. 1183–1210.

[17] D. Barone, A. Maurino, F. Stella, and C. Batini, “A privacy-
preserving framework for accuracy and completeness
quality assessment”, Emerging Paradigms in Informatics,
Systems and Communication,2009, p. 83.

[18] P. Christen and K. Goiser, “Quality and complexity
measures for data linkage and deduplication,” In: F. Guillet,
H. Hamilton (eds.) Quality Measures in Data Mining,
Studies in Computational Intelligence, vol. 43, 2007, pp.
127–151, Springer.

[19] I. H. Witten, A. Moffat, and T. C. Bell, Managing
Gigabytes, 2 Ed. Morgan Kaufmann, 1999.

18Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 27 / 173

A Semi-automatic Method to Fuzzy-Ontology Design by using Clustering and

Formal Concept Analysis

Amira Aloui

Université Tunis El Manar
Ecole Nationale d’Ingénieurs de

Tunis
LR-SITI

Tunis,Tunisia
aloui_amira@yahoo.fr

Alaa Ayadi
Université Tunis El Manar

Ecole Nationale d’Ingénieurs de
Tunis
LR-SITI

Tunis,Tunisia
alaa.ayadi@gmail.com

Amel Grissa-Touzi
Université Tunis El Manar

Ecole Nationale d’Ingénieurs de
Tunis,

Faculté des Sciences de Tunis,
LIPAH

Tunis,Tunisia
amel.touzi@enit.rnu.tn

Abstract—Ontology design is a complex and time-consuming

process. It is extremely difficult for experts to discover ontology

from given data or texts. This paper presents a semi-automatic

method for Fuzzy Ontology extraction and Design (FOD). The

method is based on conceptual clustering, fuzzy logic and

Formal Concept Analysis (FCA). The FOD approach starts

with the organization of the data in homogeneous clusters

having common properties which allows to deduce the data’s

semantic. Then, it models these clusters by an extension of the

FCA. This lattice will be used to build a core of ontology that

is represented as a set of fuzzy rules. Ontology designer is given

this initial ontology expression for further extension by adding

concepts and relationships (part-of, related to, etc.). To validate

our approach, we used Protégé 4.3, that support the fuzzy

concept and generates automatically the script in fuzzy-OWL

2 language.

Keywords-Data Mining; Clustering; Formal Concept

Analysis; Fuzzy Logic; Ontology; Fuzzy OWL2.

I. INTRODUCTION

Manual construction and description of field-specific
ontology is a complex and time-consuming procedure. The
recent study of ontology design methodologies shows that it
is very difficult for a designer to create a precise and
consistent ontology [1]. Many researchers in the field of data
mining have tried to build an ontology for data mining that
intended to solve some specific problems. Most of the
developments aimed to automate the planning of data mining
workflows [2][3]. Some of them are concerned with the
description of the data mining services on the grid [4]. Others
explored the possible interactions among FCA and Ontology
in the Semantic Web [5] and the text documents [6] fields.
The problem of these ontologies is that they are not
constructed to describe the complete domain of data mining,
but are simply made with a specific task in mind.
Accordingly, the limits of these approaches reside in the
extraction of this ontology starting from the data or a data
variety, which may be huge. The goal of this paper is to
present a new semi-automatic approach to extract ontology
using clustering and FCA combined with a fuzzy rule-based
language[19].

Our approach provides tools for semi-automatic extraction
of taxonomy and automatic transformation of initial ontology

to fuzzy rules. Validation of ontology is done by using
Protégé 4.3 [15].

Thus, we propose a new approach for generating an
ontology which takes into consideration another degree of
granularity in the process of this generation. Indeed, we
propose to define an ontology between classes resulting from
a preliminary classification of the data and not from the initial
large amount of data. We have proven that this approach
optimizes the definition of the ontology, offers a better
interpretation of the data and optimizes both the space
memory and the time spent on data exploiting.

The remainder of the paper is formed as follows: Section
2 introduces the basic concepts of ontology and FCA. Section
3 presents related work; Section 4 presents our motivation for
this work. Section 5 describes our new approach for the semi-
automatic generation of Fuzzy Ontology of Data Mining,
called FODM. Section 6 validates our approach and
represents some applications using the generated fuzzy
ontology. Section 7 enumerates the advantages of the
proposed approach. We finish this paper with a conclusion
and a presentation of some future works.

II. BASIC CONCEPTS

In this section, we present the basic concepts of ontology
and FCA.

A. Ontologies

Ontologies [7] are content theories about the classes of
individuals, properties of individuals, and relations between
individuals that are possible in a specified domain of
knowledge. They set the terms for describing our knowledge
around the field. An ontology of a domain is beneficial in
establishing a common vocabulary describing the domain of
interest. This is important for the unification and the sharing
of knowledge about the domain and connecting with other
domains. In reality, there is no common formal definition of
what an ontology is. All the same, most approaches share a
few core items, such as: concepts, a hierarchical IS-A-
relation, and further relations. For the sake of generality, we
do not discuss more specific features like constraints,
functions, or axioms in this paper, instead we formalize the
core in the following way:

Definition: A (core) ontology is a tuple
O = (C, is_a, R, σ) where

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 28 / 173

 C is a set, whose elements are called concepts

 is_a is a partial order on C (I. e., a is a binary relation
is_a (C, X C which is reflexive, transitive, and anti
symmetric),

 R is a set whose elements is called relation names (or
relations for short),

 : R C
+
 is a function which assigns to each

relation name its arity.

In the last years, several languages have been developed

to describe ontologies. For instance, the Ontology Web
Language (OWL) [8] and extension of OWL language like
OWL 2 [9] or Fuzzy OWL [10]. Likewise, the number of
environments and tools for building ontologies has grown
exponentially. These tools aimed to provide support for the
ontology's development process and for the subsequent
ontology usage. Among these tools, the most relevant are:
Ontolingua [11], WebODE [12], Protégé-2000 [13], OntoEdit
[14] and OilEd [15].

B. Formal concept analysis (FCA)

FCA is a method of data analysis, knowledge
representation and information management. It was suggested
by Rudolf Wille in 1982 [16]. In late years, FCA has grown
into an international research community with applications in
many fields, such as linguistics, software technology,
psychology, medicine, AI, database, library science,
environmental science, information retrieval, ontology
building, etc. FCA starts with the concept of a formal context
specifying which objects have attributes and thus a formal
context may be viewed as a binary relation between the object
set and the attribute set. In [17], an ordered lattice extension
theory has been proposed: Fuzzy Formal Concept Analysis
(FFCA), in which uncertainty information is directly
represented by a real number of membership values in the
range of [0,1], then the intersection of these membership
values should be the minimum of these membership values,
according to fuzzy theory [18]. This number is equal to the
similarity defined as follows:

Definition. The similarity of a fuzzy formal concept
 111 ,BAC and its subconcept 222 ,BAC is defined

as:

 21

21

21 ,
AA

AA
CCS

 (1)

In (1), and refer to the intersection and union
operators on fuzzy sets [18], respectively. In [19], we showed
that these FFCA are very powerful in the interpretation of the
results of the Fuzzy Clustering as well as in the optimization
of the flexible query.

III. RELATED WORK

Usually, the ontology building is performed manually, but
researchers try to build an ontology automatically or semi
automatically to save the time and the efforts of building the
ontology. We survey in this section the most important
approaches that generate ontologies from data.

Clerkin et al. used concept clustering algorithm
(COBWEB) to automatically discover and generate ontology.
They argued that such an approach is highly appropriate to
domains where no expert knowledge exists, and they
proposed how they might use software agents to collaborate,
as a substitute to human beings, in the construction of shared
ontologies [20]. Blaschke et al. presented a methodology that
creates structured knowledge for gene-product function
directly from the literature. They apply an iterative statistical
information extraction method combined with the nearest
neighbor clustering to create an ontology structure [21]. FCA
is an efficient technique that can formally abstract data as
conceptual structures [22]. Quan et al. proposed to
incorporate fuzzy logic into FCA to enable FCA to deal with
uncertainty in data and interpret the concept hierarchy
reasonably, the proposed framework is known as FFCA. They
use FFCA for automatic generation of ontology for scholarly
Semantic Web [23]. Dahab et al. presented a framework for
constructing ontology from natural English text namely
TextOntEx. TextOntEx constructs ontology from natural
domain text using semantic pattern-based approach, and
analyzes natural domain text to extract candidate relations,
then maps them into a meaning representation to facilitate
ontology representation [24]. Wuermli et al. used different
ways to build ontologies automatically, based on data mining
outputs represented by rule sets or decision trees. They used
the semantic web languages, RDF, RDF-S and DAML+OIL
for defining ontologies [25].

IV. MOTIVATION

The motivation for developing an ontology of data mining
is multi-fold.

 The area of data mining is rapidly developing and one
of the most challenging problems deals with
developing a general framework for data mining. By
developing an ontology of data mining, we are taking
one step towards solving this problem.

 There exist several proposals for ontology of data
mining, but all of them are light-weight, aimed at
covering a particular use-case in data mining and are
of a limited scope and highly use-case dependent.

Accordingly, we would argue that the limits of these
approaches are due to the extraction of this ontology
departing from the data or a data variety, which may be huge.
To solve all these problems, we propose a new approach for
generation of the ontology using conceptual clustering, fuzzy
logic, and FCA. Indeed, we propose to define an ontology
between classes resulting from a preliminary classification of
the data. The data classification is to divide a data set into
subsets, called classes, so that all data in the same class are
similar and data from different classes are dissimilar.

V. PRESENTATION OF THE FUZZY ONTOLOGY DESIGN:

FOD

A. Principle of the FOD

In this section, we present the architecture of the Fuzzy
Ontology Design (FOD) approach and the process for
building fuzzy ontology. Our FOD approach takes the

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 29 / 173

database records and provides the corresponding Fuzzy
Ontology Design; Figure 1 shows the proposed approach.

Figure 1. Presentation of the Fuzzy Ontology of Data Mining approach

The FODM approach is organized according to two
principal steps: Data Organization step and Fuzzy Ontology
Generation step. In the following we describe each step of the
method in more detail.

B. Theoretical Foundation of the FOD model

In this part, we present the theoretical foundations of the
proposed approach, based on the following properties:

Property 1. The number of clusters generated by a
clustering algorithm is always lower than the number of
starting objects to which one applies the clustering algorithm.

 All objects belonging to one same cluster have the
same proprieties. These characteristics can be easily
deduced knowing the center and the distance from the
cluster.

 The size of the lattice modeling the properties of the
clusters is lower than the size of the lattice modeling
the properties of the objects.

 The management of the lattice modeling the
properties of the clusters is optimum than the
management of the lattice modeling the properties of
the objects.

Property 2. Let C1, C2 be two clusters, generated by a
clustering algorithm and verifying the properties p1 and p2
respectively. Then the following properties are equivalent:

C1 C2 (CR)

 object O1 C1 => O1 C2 (CR)

 object O1 C1, O1 checks the property p1 of
 C1 and the property p2 of C2. (CR)

Property 3. Let C1, C2 and C3 are three clusters
generated by a classification algorithm and verifying the
properties p1, p2 and p3 respectively. Then the following
properties are equivalent: C1, C2 = > C3 (CR)

 object O1 C1 C2 = > O1 C3 (CR)

 object O1 C1 C2 then O1 checks the
properties p1, p2 and p3 with (CR).

The validation of the two properties rises owing to the fact

that all objects which belong to a same cluster check
necessarily the same attribute as their cluster.

C. Data Organization Step

This step allows us to organize the database records in
homogeneous clusters having common properties. This step
gives a certain number of clusters for each attribute. Each
tuple has values in the interval [0,1] representing these
membership degrees according to the formed clusters. We

propose to leave the fuzzy formal context, to apply an -Cut
(2) to the set of the degrees of membership, to replace them
by values 1 and 0 and to deduce the binary reduced formal

context. We define -Cut as follow:

Definition. alpha-cut We define the cut, noted -Cut, on
the fuzzy context as being the reverse of the number of
clusters obtained.

-Cut

 = (c)
-1

 (2)
Linguistic labels, which are fuzzy partitions, will be

assigned to the attribute’s domain. This step consists of
generating the relieving attributes for the fuzzy concept [19]
lattices noted as TAH’s and the fuzzy nested lattice noted as
MTAH's. This step is very important in the FOD process
because it allows us to define and interpret the distribution of
objects in the various clusters.

Example: Let a relational database table presented in
Table I containing the list of AGE and SALARY of
Employee.

TABLE I. A RELATIONAL DATABASE TABLE.

 SALARY AGE

t1 800 30

t2 600 35

t3 400 26

t4 900 40

t5 1000 27

t6 500 30

TABLE II. FUZZY CONCEPTUAL SCALES FOR AGE AND SALARY

ATTRIBUTES

 SALARY AGE

 C1 C2 C3 C4 C5

t1 0.1 0.5 0.4 0.5 0.5

t2 0.3 0.6 0.1 0.4 0.6

t3 0.7 0.2 0.1 0.7 0.3

t4 0.1 0.4 0.5 0.2 0.8

t5 - 0.5 0.5 0.6 0.4

t6 0.5 0.5 - 0.5 0.5

Table II shows the results of fuzzy clustering (using Fuzzy
C-Means [26]) applied to Age and Salary attributes. For
Salary attribute, fuzzy clustering generates three clusters (C1,
C2 and C3). For AGE attribute, two clusters have been
generated (C4 and C5).

In our example, -Cut (Salary) = 0.3 and -Cut (Age) =
0.5; so, the Table II can be rewritten, as show in Table III.

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 30 / 173

TABLE III. FUZZY CONCEPTUAL SCALES FOR AGE AND SALARY

ATTRIBUTES WITH Cut .

 SALARY AGE

 C1 C2 C3 C4 C5

t1 - 0.5 0.4 0.5 0.5

t2 0.3 0.6 - - 0.6

t3 0.7 - - 0.7 -

t4 - 0.4 0.5 - 0.8

t5 - 0.5 0.5 0.6 -

t6 0.5 0.5 - 0.5 0.5

The minimum value (maximal, respectively) of each

cluster corresponds to the lower (resp. higher) interval
terminal of its values. The corresponding SALARY TAH of
fuzzy context presented in Table III are given by the line
diagrams presented in Figure 2.

Figure 2. Salary TAH

Each cluster of a partition is labeled with a linguistic label
provided by the user or a domain expert. For example, the
fuzzy labels young and adult could belong to a partition built
over the domain of the attribute AGE. Besides, the fuzzy
labels low, Medium and High, could belong to a partition built
over the sphere of the attribute Salary. Table IV presents the
correspondence of the linguistic labels and their designations
for the attributes Salary and Age. The corresponding fuzzy
concept lattices of fuzzy context are shown in Table V.

TABLE IV. CORRESPONDENCE OF THE LINGUISTIC LABELS AND THEIR

DESIGNATIONS

Attribute Linguistic labels Designation

Salary Low C1

Salary Medium C2

Salary High C3

Age Young C4

Age Adult C5

TABLE V. FUZZY CONCEPTUAL SCALES FOR AGE AND SALARY

ATTRIBUTES WITH
Cut .

 SALARY AGE

Low
C1

Medium
C2

High
C3

Young
C4

Adult
C5

t1 - 0.5 0.4 0.5 0.5

t2 0.3 0.6 - - 0.6

t3 0.7 - - 0.7 -

t4 - 0.4 0.5 - 0.8

t5 - 0.5 0.5 0.6 -

t6 0.5 0.5 - 0.5 0.5

This very simple sorting procedure gives us for each
many-valued attribute the distribution of the objects in the
line diagram of the chosen fuzzy scale. Usually, we are
interested in the interaction between two or more fuzzy many-
valued attributes. This interaction can be visualized using the
so-called fuzzy nested line diagrams. It is used for visualizing
larger fuzzy concept lattices, and combining fuzzy conceptual
scales on-line. Figure 3 shows the fuzzy nested lattice
constructed from TAH's.

Figure 3. Fuzzy Lattice: MTAH

D. Fuzzy Ontology Generation step

This step consists of the construction of a Fuzzy Ontology

from the Fuzzy Cluster Lattice generated in the first step.

1) FCL Generation.
The goal of this phase is to make a certain abstraction on

the list of the objects with their degrees of membership in the
clusters. This lattice will be used to build a core of ontology.

Definition. A Fuzzy Clusters Lattice (FCL) of a Fuzzy
Formal Concept Lattice, consists on a Fuzzy concept lattice
where each equivalence class (a node of the lattice) contains
only the intentional description (intent) of the associated
fuzzy formal concept.

Definition. A level i of FCL is a is the set of nodes of
FCL with cardinality equal to i.

We do a certain abstraction of the list of the objects with
their degrees of membership in the clusters. The nodes of

FCL are the clusters ordered by the inclusion relation.

Figure 4. Fuzzy Clusters Lattice FCL

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 31 / 173

As shown in Figure 5, we obtain a lattice more reduced,
simply traversed and stored.

2) Discovering Knowledge
This step consists in the Extraction of knowledge for the

fuzzy ontology. To do so, we must build a concept of
hierarchy from the conceptual clusters; we need to find the
hierarchical relations from the clusters. We first define a
concept hierarchy as follows:

Definition (Concept Hierarchy). A concept hierarchy is a
poset (partially ordered set) (H,<), where H is a finite set of
concepts and < is a partial order on H.

a) Principle of discovering knowledge from FCL.

Taking as input an FCL, the extraction of fuzzy
association rules can be performed straightforwardly. Indeed,
the rule represents the implications deduced from FCL
between two adjacent classes. The confidence factor will be
equal to the weight of the link (arc)between the two nodes.

Rule 1. Discovering rule: Let C1= {A1.., A} and C2=
{B1.., BM} two nodes of FCL such as C2 is the successors of
C1 in the lattice and having as distance d>0 (weight of the arc)
the generated rule will be defined as follows:

A1,...,An => B1,...,Bm (d)
Notice that, if d=0 this implies that there is no object in

common to the two concepts C1, C2. There is no knowledge
to discover or to generate.

Rule 2. Discovering rule: Let C1= {A1.., An} and C2=
{B1.., BM} two nodes of FCL such as C2 is the successors of
C1 in the lattice and having as distance d>0 (weight of the
arc). The generated rule will be defined by:

R: A1,.., An => C1,.., Cq (d) such that

{C1,…, Cq} = {B1.., Bm}\{A1.., A} (Ci, Ci ({A1,…
An })

Rule 3. Generated rule: Let C1={A1.., An} C2={B1..,
Bn} and C3={D1.., Dn} three concepts such as C2 successors
of C1 and C2 successor of C3 having respectively as distance
d1 and d2. The generated rule will be defined by:

R 3: A1,..,An => D1,..,Dn (d2*d1)

b) Algorithm for Discovering Fuzzy Association rules.

The pseudo-code for this algorithm is as follows:

Figure 5. Algorithm for Discovering Fuzzy Association rules

The Algorithm for Discovering Fuzzy Association rules
traverses the search space (FCL) by level to square up the
Fuzzy Rules Set (FRS). As input it takes the lattice of
Clusters FCL and returns, as output, the list of all Fuzzy
Rules Set (FRS) generated. It works as follows: For each non

empty node FCL in descending, it generates all rules with
one cluster in conclusion (level 1). Then, it generates the set
of all rules with two Clusters in conclusion. The same process
is applied to generate conclusions with four clusters, and so
on until conclusions with n clusters are generated.

Proposition 3.
If the system of extraction rules traverses the search space

by the level of the lattice of clusters then no rule generated by
this system is redundant (all the generated rules are
obligatorily distinct).

Proof. This is due to the fact that from a level to another
of the lattice the nodes are obligatorily distinct (by definition
even of a level of lattice).

3) Ontology Generation.
This step constructs fuzzy ontology from a fuzzy context

using the concept hierarchy created by fuzzy conceptual
clustering. This is done based on the characteristic that both
FCA and ontology support formal definitions of concepts.
Thus, we define the fuzzy ontology as follows:

Definition (Fuzzy Ontology). A fuzzy ontology Fo
consists of four elements (C, A

C
, R, X), where:

 C represents a set of concepts,

 A
C
 represents a collection of attribute sets, one for each

concept,

 R = (RT; RN) represents a set of relationships, which

consists of two elements:

 RN is a set of non-taxonomy relationships and

 RT is a set of taxonomic relationships.

 Each concept ci in C represents a set of objects, or

instances, of the same kind.

 Each object oij of a concept ci can be described by a set of

attributes values denoted by A
C
(ci).

 Each relationship ri(cp, cq,α) in R represents a fuzzy

association between concepts cp and cq, and the instances

of such a relationship are pairs of (cp, cq) concept objects

with confidence α; α is in]0..1].

 Each attribute value of an object or the relationship

instance is associated with a fuzzy membership value

between [0,1] implying the uncertain degree of this

attribute value or relationship.

 X is a set of axioms. Each axiom in X is a constraint on

the concept’s and relationship’s attribute values or a

constraint on the relationships between concept objects.
In our approach, we consider the Fuzzy Ontology Lattice

as a formal domain-specific ontology. This ontology has all
lattice properties, which are useful for ontology sharing, and
reasoning. The whole process to create a fuzzy ontology was
completed. We may consider nodes as concepts. The name of
the concept is a concatenation of an attribute and its label
linguistics, in accordance with the correspondence in Table
IV. Nevertheless, taxonomic relationships between concepts
are present in the lattice.

23Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 32 / 173

VI. VALIDATION AND APPLICATION OF GENERATING

FUZZY ONTOLOGY

The performance of the proposed algorithm for
Discovering Fuzzy Association rules can be measured in
order to evaluate the generated ontology. To do this, we
evaluate the processing time and the number of rules
between two approaches: The first one does not apply the
clustering concept and the second uses the formal concepts
for structuring and building ontology-based classification.

Figure 6. Metrics of the Proposed Approach

Figure 7. Processing time of the Proposed Approach

We prove that with FCA, we minimize the high time and
space complexity of the resulting lattice. We implement, then,
the concept lattice (result of fuzzy classification in
ClusterFCA) with Protégé 4.3, generate the ontology, test its
consistency, and extract the queries. The process of
generating ontology is presented in Figure 9.

Figure 8. Process of generating/ vaidating Ontology

By taking the abstractions got by FCA as a guideline, the
generated ontology in Protégé 4.3 is shown in Figure 10.

Figure 9. Generated Ontology

Once the queries concepts are defined, we can model the
resulting rules deduced from our Fuzzy Ontology using
Protégé 4.3 and respond to the user answers. We have also
succeeded to generate the description of our ontology with
fuzzy-OWL 2 language.

VII. ADVANTAGES OF THE PROPOSED APPROACH

We present in Table VI the advantage of every basic
concept used on our approach.

TABLE VI. ADVANTAGES OF THE PROPOSED APPROACH

Operat

ionaliz

ation

Advantage

s

 Comments

Using

FCL

for

constr

ucting

Ontolo

gy

Redundant

relation

elimination

For each relation concepts, we can have two

concept instances which are equivalent. The

two concept instances are valid in the sense
that concept with a higher membership degree

is closer to the concept truth. Eliminating one

of the concept relation will not reduce the
information conveyed, but will reduce by half

the size of the storage. In constructing an

ontology we retain the fuzzy relation that has a
higher membership degree. This decision

strategy will choose a positive concept instance

and will choose a stronger relation if the two
membership values are close to each other.

Less

meaningful

relation
elimination

After redundant class relation is removed much

potential less meaningful information intact.

Unrelated

concept

relation
elimination

The relation between two distinct classes

cannot be established if both concept never co-
occur so that their membership values will be

0. It is obvious that unrelated classes should

also not be considered during the ontology
creation. These concepts will be automatically

excluded by applying alpha-cut as described

above.

Using

the

domai

n

ontolo

gy

Less

number of

generating
classes

The number of classes generated is less than
the number of objects starting on which we

apply the classification algorithm. This

improves the quality of the process of
information retrieval by considering only a part

of the ontology according to a user preference.

Best
answer to

the user

request

The ontology has been described in OWL2,
we took advantage of the progress of this

language in terms of expressiveness for greater

capacity inference without using a dedicated
language to express rules

24Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 33 / 173

Nowadays, a few proposals for ontologies of data mining
using FCA exist, but all of them start from a data unit, after
having done a data cleansing step and an elimination of
invalid-value elements. We have come to the conclusion that
this idea is very important because it models an abstraction of
the data especially in the case of voluminous one.

VIII. CONCLUSION

Motivated by the increased need for formalized
representations of the domain of Data Mining, the success of
using FCA and Ontology in several Computer Science fields,
we presented in this paper a new approach for the semi
automatic generation of Fuzzy Ontology Design (FOD),
through the fusion of conceptual clustering, fuzzy logic, and
FCA. In our approach, we proposed to generate an ontology
taking into consideration another degree of granularity in the
process of generation. Indeed, we suggest to define an
ontology between classes resulting from a preliminary
classification of the data. We prove that this approach
optimizes the definition of the ontology, offers a better
interpretation of the data and optimizes both the space
memory and the execution time for exploiting this data. To
validate our approach, we used Protégé 4.3, which supports
the fuzzy concept, to model our ontology and to generate the
script in fuzzy-OWL 2 language.

Knowing that the number of classes has been always
lower than the number of starting data, our proposed
approach intends to achieve the objectives of offering better
interpretation of the data and minimizing both execution time
and space memory (by reducing considerably the definition of
the ontology). As future perspectives of this work, we intend
to test our approach on several large datasets.

REFERENCES

[1] C. Tempich and R. Volz, "Towards a benchmark for Semantic Web
reasoners-an analysis of the DAML ontology library," Sure Y (editor)
Proceedings of Workshop of Evaluation of Ontology-based Tools
(EON 2003) at 2nd Int. Semantic Web Conference (ISWC 2003),
USA, (2003) .

[2] A. Bernstein, F. Provost, and S. Hill, "Toward intelligent assistance for
a data mining process: An ontology-based approach for cost-sensitive
classification", IEEE Trans on Knowl and Data Eng, 2005, pp. 503–
518.

[3] M. Zakova, P. Kremen, F. Zelezny, and N. Lavrac, "Planning to learn
with a knowledge discovery ontology," In P. Brazdil, A. Bernstein,
and L. Hunter, editors, Proceedings of the Second Planning to Learn
Workshop (PlanLearn) at the ICML/COLT/UAI, 2008, pp. 29–34.

[4] P. Brezany, I. Janciak, and A. M. Tjoa, "Data Mining with Ontologies
Implementations, Findings and Frameworks," chapter Ontology-Based
Construction of Grid Data Mining Workflows. IGI Global, 2007.

[5] Q. T. Tho, S. C. Hui, A. C. M. Fong, and Cao, T.H., “Automatic fuzzy
ontology generation for semantic web”, Knowledge and Data
Engineering, IEEE Transactions on, vol. 18, no. 6, 2006, pp. 842-856.

[6] P. Cimiano, A. Hotho, G. Stumme, and J. Tane, "Conceptual
knowledge processing with formal concept analysis and ontologies,"
In ICFCA, 2004, pp. 189–207.

[7] B. Chandrasekaran, J. R. Josephson, and V. R. Benjamins, "What are
ontologies, and why do we need them?," IEEE Intelligent Systems,
1999, pp. 20–26.

[8] S. Bechhofer et al. , "OWL Web Ontology Language: Reference".
World Wide Web Consertium, February. 2004.

[9] B. Cuenca-Grau, I. Horrocks, B. Motik, B. Parsia, P. F. Patel-
Schneider, and U. Sattler, "OWL 2: The next step for OWL", Journal
of Web Semantics, 2008, pp. 309-322.

[10] F. Bobillo and U. Straccia, "Representing fuzzy ontologies in OWL 2,"
in: Proceedings of the 19th IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE 2010), IEEE Press, 2010, pp. 2695–2700.

[11] A. Farquhar, R. Fikes, and J. Rice, "The ontolingua server: a tool for
collaborative ontology construction," In the 10th Knowledge
Aqcuisition for Knowledge-Based Systems (KAW'96), Canada, 1996.

[12] J. Arpirez, O. Corcho, M. Fernández-López and A. Gómez-Pérez).
"WebODE , a Workbench for Ontological Engineering", In First
international Conference on Knowledge Capture (K-CAP’01),
Victoria, Canada ACM, 2001, pp. 6–13.

[13] N. Noy, R. Fergerson, and M. Musen, "The knowledge model of
Protégé2000 : Combining interoperability and flexibility," In R. D
IENG & O.CORBY, Eds., 12th International Conference on
Knowledge Engineering and Knowledge Management (EKAW’00),
volume (1937) of Lecture Notes in Computer Science, Juan-les-Pins,
France: Springer Verlag, pp. 17–32.

[14] Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke,
"OntoEdit: Collaborative Ontology Engineering for the Semantic
Web", In I. Horrocks & J. Hendler, Eds., First International Semantic
Web Conference (ISWC’02), volume (2342) of Lecture Notes in
Computer Science, Chia, Sardaigne, Italie: Springer Verlag. 2002, pp.
221–235

[15] S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens, "OilEd: a
Reason-able Ontology Editor for the Semantic Web", In Joint
German/Austrian conference on Artificial Intelligence (KI’01), volume
(2174) of Lecture Notes in Artificial Intelligence, Vienne, Austria:
Springer Verlag, 2001, pp. 396–408.

[16] R. Wille, "Restructuring lattice theory: An approach based on
hierarchies of concepts", In I. Rival (Ed.), Ordered sets, 1982, pp .445–
470.

[17] T. T. Quan, S. C. Hui, and T. H. Cao, "A Fuzzy FCA-based Approach
to Conceptual Clustering for Automatic Generation of Concept
Hierarchy on Uncertainty Data", Proc. of the 2004 Concept Lattices
and Their Applications Workshop (CLA), pp. 1-12, 2004.

[18] L. A. Zadeh, “Fuzzy Logic and Approximate Reasoning,” Synthese,
vol. 30, 1975, pp. 407-428.

[19] A. Grissa Touzi, M. Sassi, and H. Ounelli, "An innovative contribution
to flexible query through the fusion of conceptual clustering, fuzzy
logic, and formal concept analysis", International Journal of
Computers and Their Applications. Vol. 16, N 4, December. 2009, pp.
220-233.

[20] P. Clerkin, P, P. Cunningham, and C. Hayes, "Ontology Discovery for
the Semantic Web Using Hierarchical Clustering" , Proc. European
Conf. Machine Learning (ECML) and European Conf. Principles and
Practice of Knowledge Discovery in Databases (ECML/PKDD-2001),
2001.

[21] C. Blaschke and A. Valencia, "Automatic Ontology Construction from
the Literature", Genome Informatics, vol. 13, 2002, pp. 201–213.

[22] B. Ganter, G. Stumme, and R. Wille, "Formal Concept Analysis",
Foundations and Applications. Lecture Notes in Artificial Intelligence,
no.3626, Springer-Verlag. ISBN 3-540-27891-5. (Eds.) 2005.

[23] T. T. Quan, S. C. Hui, A. C. M. Fong, and T. H. Cao, "Automatic
generation of ontology for scholarly semantic Web", In: Lecture Notes
in Computer Science. Vol. 3298, 2004 , pp. 726–740.

[24] M. Y. Dahab, H. Hassan, and A. Rafea, "TextOntoEx: Automatic
ontology construction from natural English text", Expert Systems with
Applications (2007), doi:10.1016/j.eswa.2007.01.043.

[25] O. Wuermli, A. Wrobel, S. C. Hui, and J. M. Joller ,“Data Mining For
Ontology_Building: Semantic Web Overview”, Diploma Thesis–Dep.
of Computer Science_WS2002/2003, Nanyang Technological
University.

[26] H. Sun, S. Wanga, and Q. Jiangb, "FCM-Based Model Selection
Algorithms for Determining the Number of Clusters”, Pattern
Recognition 37, pp. 2027-2037.

25Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 34 / 173

Modeling Ontology-based User Profiles

from Company Knowledge

Silvia Calegari, Matteo Dominoni

Department of Informatics, Systems and Communication (DISCo)

University of Milano-Bicocca

Milan, Italy

e-mail: {calegari,dominoni}@disco.unimib.it

Abstract—This paper presents a model based on the ontology

paradigm to represent the knowledge of users who work in

companies. The model guarantees to follow specific guidelines

that can be used in defining user knowledge. The goal is to

improve the development of processes and applications aimed

at leveraging the information stored in companies to support

users during their interactions with the system by considering

all the advantages of the ontology-knowledge.

This research was developed in the KBMS 2.0 project where

an advanced portal has been defined with the aim to manage

and search information effectively. The model to represent

user knowledge has been defined by analysing the information

of the KBMS 2.0 project stored in the database.

User Profile, Ontology, Company Knowledge.

I. INTRODUCTION

In the last few decades, many research activities have

focused on the management of the growing amount of

information on the Web or in any big repository. There are

several problems that can afflict this issue, ranging, for

example, from architectural aspects, i.e., how to define a

robust architecture for addressing issue of scalability, to

personalization aspects, i.e., how to model user profiles to

represent the user's interests and preferences. The former

allows to help systems retrieve information faster, whereas

the latter is used to filter knowledge which is not related to

the user's interest needs.
In this paper, we focus on the definition of user profiles

in the context of big companies, where thousands of pieces
of information are stored in the repository. In this scenario,
the problem is to support the user during his/her research
activities, not only with the local search engine for retrieving
relevant documents, but also with all the knowledge
accessible in the company portal, such as news, emails,
external links, etc., where the information is geographically
distributed in the several locations of the company. This
means that in a big company, besides the standard problems
with a search engine on the Web, there are complex
problems due to the several information access points of a
user. In addition, in a company a user belongs to a
hierarchical structure, where for each level users have a
different role, meaning different access to the information.
Thus, the definition of processes that exploit the knowledge

represented in the user profile assumes a key role for
managing knowledge in companies.

The accurate definition of a user profile plays a central
role in effective approaches to personalization: only if a user
profile faithfully represents the information related to a user,
can a system rely on it. Three main activities have to be
considered during the building of a user profile, such as: (1)
the identification of the knowledge which represents the
user's interests, (2) the choice of a formal language used to
represent this knowledge, and (3) a strategy for updating it.
Regarding the first point, in the literature explicit and
implicit approaches [1] are adopted in order to capture the
user's interests and preferences. With the explicit approach
the user must explicitly specify his/her preferences to the
system by filling in questionnaires and/or by providing short
textual descriptions. With the implicit approach, the user's
preferences are automatically gathered by monitoring the
user's actions, thanks to the use of click-through data
analysis, log analysis, etc. The second point is on the choice
of suited data structures for modeling a user profile; in the
literature bags of words, vectors, graph-based
representations, and some external knowledge sources (i.e.,
WordNet, or Open Directory Project) have been mainly used
to define users' profiles. Ontologies are a recent powerful
tool for knowledge definition, modeling and representation;
and they allow to give a more structured and expressive
knowledge representation with respect to the above
mentioned approaches. In fact, they allow to enrich the
expressiveness of the information represented in a profile by
using formal languages like Resource Description
Framework Schema (RDFS) or Ontology Web Language
(OWL). The third point is the most complex as it has to
guarantee a dynamic user profile, where the knowledge is
always updated and related to the user's recent interests and
preferences. The objective is to support the processes that
exploit this fresh information to help users during their
interactions with the system.
In the literature, the existing models that build user profiles

based on ontologies are mainly focused on approaches either

relying on data mining techniques [2] or adopting external

reference knowledge [3] to capture the meaning of the user's

preferences that are represented in RDFS or OWL. With the

use of formal ontological languages it is possible to define

user profiles, thanks to the adoption of suitable logical

26Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 35 / 173

language constructs, but they do not give explicit guidelines

on how to use them in order to solve specific tasks. The

Ontology Design Patterns (ODP) [4] are a recent solution to

make ontology as reusable solutions, and they are defined as

a “reusable successful solution to a recurrent modeling

problem”. ODP are aimed at reducing mistakes in

ontologies, detecting uncovered requirements, improving

qualities of produced ontologies, etc. [5].
In this paper, for the first time in the literature we make

use of the ODP solution to define the skeleton of user
profiles that can be reusable in any domain where users are
involved. Our objective is to represent a richer knowledge of
user profiles than the existing models previously defined that
mainly acquire initial information from textual information
or from a set of keywords related to the user's interests. To
help us in the definition of the ODP for user profiles, we
considered the knowledge gained from a research project
with the Enel SpA energy company. In this case study, user
knowledge is obtained by analysing the database of the
company where only the portion of information useful for
the definition of some crucial parts of the ODP-user profile is
extracted. In addition, we have completed same portions of
the defined ODP-ontology by considering the basic notion of
the ODP solution, where it is possible to compose pieces of
knowledge by considering other ODPs previously defined.
An ODP is used across ontologies to define a richer
knowledge based on ontologies, whereas an ontology is used
across applications. Our intent is to obtain an accurate ODP-
user profile that can be used as a model for representing the
user knowledge in any enterprise. The next phase of this
work will consider the validation of the obtained user profile;
at the moment this aspect is out of topics with respect to the
goal of this paper.

The paper is organised as follows. Section II describes
how the main pieces of knowledge for defining the ODP-
user profile have been acquired. Section III presents the
generic ODP-user profile for companies. Finally, in Section
IV conclusion and future work are given.

II. TOWARDS THE DEFINITION OF A ODP-USER PROFILE

This section gives the steps performed to elicit
knowledge used to define the ODP-user profile. We started
from the knowledge stored in the database of the KBMS 2.0
project (KBMS 2.0: Knowledge-Base Management System
2.0 is a research project that has involved the University of
Milano-Bicocca, Italy, together with the Enel SpA energy
company) [6]. The KBMS 2.0 project is aimed at providing
an advanced knowledge-based portal to manage knowledge
innovatively, with the objective to support people in all the
phases of their searches and also in the emergence of new
knowledge in the system. This project is based on the open
source edition of the Liferay portal and is based on several
modules (by developing new modules or by extending some
existing ones) in order to satisfy the requirements of the Enel
SpA stakeholders. The most important modules developed
for the KBMS 2.0 portal are: a workflow to guarantee a

certified quality of the information, a personalised search
engine to retrieve relevant documents for users, a grid of
navigation to allow users immediate access to documents
classified, thanks to the support of specific categories, a
newsletter to send and filter news according to specific rules,
spot-news to highlight emergent news, and my-links to
personalise access to external web-links. All the information
used by these modules is stored in the database. In detail, the
Relational Database Management System (RDBMS) Oracle
10g version has been used for the project by defining a total
of 253 tables. Most of the tables have been automatically
defined by Liferay during its installation, while some of them
are not used for the project such as tables on market-place,
wikipedia, kaleo, etc. Other tables, instead, have been
introduced to support newly defined modules for activities
not defined in the standard edition of Liferay.

The database has been analysed to design for the

extraction of some portions of knowledge useful in defining

the skeleton of the user profile presented in Section III.

Figure 1 shows the phases considered for our analysis that

are: (1) view the tables stored in the database in order to

consider only the subset related to the knowledge of users,

(2) list the user's knowledge, and (3) define the ODP-user

profile based on point (2).
The list of user knowledge assumes a key role for the

definition of the user profile model, which has been grouped
in the following macro-areas:

 Personal data: describes personal user
characteristics, such as name, address and age.

 User's company data: describes user characteristics
of the company, such as login, password, nickname
and job/role.

Figure 1. Logical path for the definition of a ODP-User Profile.

27Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 36 / 173

Figure 2. Example of a TWO-COLUMN figure caption: (a) this is the format for referencing parts of a figure.

 Company data: describes company information,
such as name and address.

 Interests and preferences: describes user interests
and preferences on topical arguments. They can be
obtained by analysing, for example, the documents
saved or viewed by the user.

 Expert on specific topics: indicates which topics a
user is considered as an expert. Several processes
can be adopted in order to establish the user's
expertise, such as methodologies of voting or use of
metrics defined in the literature.

 Actions performed on the information: monitors
the actions on the information stored in the system,
such as the pages/documents viewed, the time spent
on a page/document, emails sent, etc.

 Social Actions: monitors the user's action on the
system or documents, such as a methodology of
rating on documents retrieved by a search engine, or
on people contacted for suggestions, directed
preferences on the information such as the use of
like/not-like.

 People contacted: monitors the people who are
working in the company that have been contacted by
a user, for example, by emails or by using social
applications.

The knowledge considered from these macro-areas can
be gathered by using both explicit and implicit approaches,
as explained in Section I. In this phase, it is not important to
understand the complex processes that exploit the data stored
in the log files, generally used to monitor the user's actions
(i.e., actions on information and social actions), in order to
understand what information can be of interest to a user. Our
objective is to analyse such preferred information to design
the ODP model used for establishing the knowledge that has
to be represented in a generic user profile (see Section III).

III. ODP-USER PROFILE FOR COMPANIES

The ODPs are used in the community to define reusable

logical models with the aim to design conceptualizations of

knowledge. In this section, we present the first ODP model

defined to represent the knowledge of users who work in

companies. Figure 2 shows the class diagram of the user

profile-ODP where the main concepts are reported. The main

concepts are organized by the taxonomic relation IS-A,

whereas the other knowledge is represented by different

relations (i.e., ObjectProperties) as described in this section.

For the sake of readability, we have not introduced the pre-

defined Instances (e.g., male and female instances for the

concept Gender), and the relations (domain and range)

established with the DatatypeProperties and the

ObjectProperties.

The user profile is logically divided into two logical areas

that are: Static and Dynamic with the intent of representing

the two key aspects of the user's profile knowledge. The

Static class represents long-term interests of user knowledge.

The Dynamic class represents short-term interests of user

knowledge, where the changes can happen every time that a

user interacts with the system. This class identifies the most

interesting part of the ODP-user profile, since it needs to

represent the interactions of a user with the information

stored in the system and the people who work in the

company. Thus, we have classified the information into four

categories that are: Documents, Webpages, Email, and

News. For these categories the following common

ObjectProperties have been defined:

hasInterestedOn, hasPreference, hasRating, and

hasRelevantConcepts:topicConcept.

The hasInterestedOn defines user interests on specific

information stored in the system, the hasPreference defines

28Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 37 / 173

the social actions on the information related to the like/not-

like preferences, and the hasRating defines the social actions

on the information related to the rating preferences given, for

example, by the star rating method.

The hasRelevantConcepts:topicConcept deserves a

closer look, as it links the documents or email or news or

webpages with the relevant concepts extracted from them.

The relevant concepts are not defined, as bags of words or

vectors, etc., as they are in many works presented in the

literature (see Section I). In our work, the relevant concepts

are represented as ontology-based knowledge, not extracted

by external reference knowledge (i.e., Yet Another General

Ontology (YAGO) or Open Directory Project or domain

ontologies). To define the knowledge for representing the

relevant concepts of user preference information, we have

used the ODP schema on Topic [7] download from the

official ODP's repository [4] with the intent of following the

logic of the ODP models, i.e., to reuse pre-defined logical

models in new ODP models.

In the end, the class Colleagues defines the users who work

in the same company that have interacted with the user. The

idea is to create a network of users to establish, for example,

people who share common interests.

A. How to use the ODP-User Profile

When the ODP-User Profile is defined, it is possible to
use it in order to represent the knowledge of a user profile
represented as an ontology. The next phase consists in

modeling an ontology in the OWL language that is an

instance of the ODP-User Profile. This step is easily

performed by importing the ODP schema in the

configuration part of the OWL file as follows:

<?xml version="1.0"?>

<rdf:RDF

 ...

 xmlns="http://www.ontologydesignpatterns.org/cp/

 examples/userprofile/enel.owl#"

 xmlns:up="http://www.ontologydesignpatterns.org/cp/

 owl/userprofile.owl#"

 xml:base="http://www.ontologydesignpatterns.org/cp/

 examples/agentrole/enel.owl">

 <owl:Ontology rdf:about="">

 ...

 <rdfs:comment>It encodes the following:User Profile

 in the Enel SpA company</rdfs:comment>

 <owl:imports rdf:resource=

 "http://www.ontologydesignpatterns.org/cp/owl/

 userprofile.owl"/>

 </owl:Ontology>

 <up:Profile>

 ...

 </up:Profile>

</rdf:RDF>

IV. CONCLUSION AND FUTURE WORK

In this paper, we have presented the ODP model for

representing the user profile logical schema. An ODP model

is a new frontier of research, as it allows to provide specific

guidelines for defining knowledge based on specific logical

schemas. In fact, the defined ODP-user profile can be used to

represent the knowledge of users in companies to facilitate

the definition of applications and of processes by exploiting

all the well known advantages of the ontology paradigm. The

ODP-user profile has been designed by taking support from

the knowledge stored in the database of the KBMS 2.0

project. In this project, an advanced portal has been defined

with the aim of satisfying the user's information needs by

providing a certified quality of information and by

supporting a user during his/her searches, with the goal of

retrieving relevant documents faster.
In the future, we plan to improve the ODP-user profile by

including more details on the defined concepts and by
defining axioms to classify user interests on information and
on people to support the processes that are defined for this
goal. Furthermore, we will consider its validation in order to
establish the good quality of the obtained ODP-user profile.

ACKNOWLEDGMENT

The authors would like to thank all the people who
allowed us to make an in depth study for the development of
the KBMS 2.0 system.

REFERENCES

[1] J. Teevan, S. T. Dumais, and E. Horvitz, “Personalizing
search via automated analysis of interests and activities”. In
Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information
retrieval, ser. SIGIR ’05. New York, NY, USA: ACM, 2005,
pp. 449–456, doi:10.1145/1076034.1076111.

[2] X. Tao, Y. Li, and N. Zhong, “A personalized ontology model
for web information gathering”. IEEE Trans. on Knowl. and
Data Eng., vol. 23, April 2011, pp. 496–511, doi:
10.1109/TKDE.2010.145.

[3] S. Calegari and G. Pasi, “Personal ontologies: Generation of
user profiles based on the yago ontology”. Inf. Process.
Manage., vol. 49, no. 3, 2013, pp. 640–658, doi:
http://dx.doi.org/10.1016/j.ipm.2012.07.010.

[4] Ontology Design Pattern, website. [Online]. Available:
http://ontologydesignpatterns.org/wiki/Main Page (October,
2013)

[5] V. Presutti, E. Blomqvist, E. Daga, and A. Gangemi, “Pattern-
based ontology design”. In Ontology Engineering in a
Networked World, M. del Carmen Suarez-Figueroa, A.
Gomez-Perez, E. Motta, and A. Gangemi, Eds. Springer,
2012, pp. 35–64, doi:10.1007/978-3-642-24794-1_3.

[6] S. Calegari, M. Dominoni, and E. Panzeri, “Towards the
design of an advanced knowledge-based portal for
enterprises: the KBMS 2.0 project”. The 27th International
Conference on Industrial, Engineering & Other Applications
of Applied Intelligent Systems, 2013, Unpublished.

[7] Ontology Design Pattern, Topic schema, website. [Online].
Available:http://www.ontologydesignpatterns.org/cp/owl/topi
c.owl (October, 2013)

29Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 38 / 173

A Concept for Plagiarism Detection Based on Compressed Bitmaps

Andreas Schmidt∗†, Reinhold Becker‡, Daniel Kimmig†, Robert Senger∗ and Steffen Scholz†
∗ Department of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences
Karlsruhe, Germany

Email: {andreas.schmidt, robert.senger}@hs-karlsruhe.de
† Institute for Applied Computer Science

Karlsruhe Institute of Technology
Karlsruhe, Germany

Email: {andreas.schmidt, daniel.kimmig, steffen.scholz}@kit.edu
‡ esentri AG, Ettlingen

Email: reinhold.becker@esentri.com

Abstract—In the last few years, several public persons in Ger-
many have been convicted of inadequate scientific practice and or
scientific misconduct in writing their dissertations. An examples
is the former German Federal Minister of Defense Guttenberg,
who had to resign as a consequence of this scandal. These
events have led to an increased interest in methodologies to
automatically detect plagiarism in documents. In today’s digital
society, however, the vast growth of available information makes
this a challenging task. To address this situation, tools for the
detection of plagiarism must be built up on highly efficient data
structures and utilize very fast operations. In our approach, we
propose the use of compressed bitmaps as a representation form.
We introduce a new concept of plagiarism detection, which is
based on mapping suspicious documents and potential source
documents onto these compressed bitmaps. We will explain how
the detection process can be accelerated.

Keywords-Compressed bitmaps; plagiarism detection; visualiza-
tion

I. INTRODUCTION

The fully automated search for plagiarized sections in
documents is gaining more and more importance. This search
is a multi-stage process [1] with the initial point being a
suspicious document that has to be examined as to whether
its content is plagiarized. In a first preselection step, which
is called source retrieval, a number of so-called “candidate
documents” are extracted. As the number of these reference
documents typically is very high (i.e., all documents in the
WWW), the efficiency of this step is of high importance. The
challenge is to extract a possibly small number of documents
for further investigation, without neglecting potentially relevant
documents (high recall). In a second step, the so-called text
alignment procedure, the preselected candidate documents are
examined for text fragments that also appear in the suspicious
document. In this step, a mapping between text fragments
in the suspicious and the candidate set is performed. After
this mapping process, a final knowledge-based process is
performed, by means of which overlapping text fragments are
combined or deleted and visualized.

In practice, it is required to distinguish between two
possible scenarios. In the first case, the algorithm has access to
a complete data pool. For example, this is the case in a well-
defined research area where all relevant literature is stored in
a local database. In this case, the algorithm is in full control
of the complete procedure of plagiarism search. This scenario
is not very likely. In the second more likely case, the first step
depends on the utilization of an internet search engine, such
as Google or Yahoo!.

The structure of the paper is as follows: In the next section
we give a brief overview of the state of the art in plagiarism
detection. Then in Section III we give an introduction of Zipf’s
Law and the size of typical vocabularies. After that, we present
our approach (section IV) and in Section V we provide an
algorithm for this approach. We conclude our paper with a
number of tasks we plan for the future.

II. STATE OF THE ART

Since 2009, a competition has been organized in the
context of the “Conference and Labs of the Evaluation Forum”
(CLEF). The Plagiarism Analysis, Authorship Identification,
and Near Duplicate Detection) (PAN) competition uses a
standardized collection to compare the different approaches.
In 2013, 32 teams joined the competition, in which a number
of plagiarized documents was to detected by the developed
software systems. In the following paragraphs, we focus on
some of the different approaches according to the different
tasks of a Plagiarism Detection System (PDS):

A. Source Retrieval

In source retrieval the following steps can be distin-
guished [2]: In order to generate the search request, the
document under evaluation will be chopped into a number of
paragraphs (chunking). For example, this fragmentation can be
based on chapters or a defined number of lines or sentences.
Often, dynamic chunking techniques are utilized. For example,
intrinsic methods / procedures which search the document for
conspicuities, such as lexis or average word length, in order

30Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 39 / 173

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0 1000 2000 3000 4000 5000 6000

fr
eq

ue
nc

y

Words

Figure 1. Zipf distribution of the words in all papers of the DBKDA 2013
conference

to find variations leading to potential plagiarized fragments in
the document. After completing the first step, the chunks will
be used to create keywords or key phrases which then will be
implemented in the request for the search engine. This step is
typically carried out by i.e. observation of the td∗idf values [3]
for single words within the chunks or by the generation of
one or more so-called n-grams (phrases with a typical length
of 5 to 8 words). These keywords or key phrases will then
be submitted to a search engine. Based on the response from
the search engine, a number of documents will be downloaded
and analyzed in the following step.

B. Text Alignment

The main purpose of the text alignment step is to identify
text fragments from the source data / documents that found
their way into the document under investigation. Not only 1:1
plagiarized text fragments should be identified, the objective
is to identify disguised or faked fragments as well. These
faked phrases are often characterized by simply changing
the sequence of words, adding or deleting single words or
combining sentences.

C. Post Processing and Final Visualization

After this mapping process, a final knowledge-based pro-
cess is carried out in which overlapping text fragments are
combined or deleted and accordingly visualized.

III. WORDS, SENTENCES, AND LANGUAGE

A. Zipf’s Law

Zipf’s law [4] postulates that the frequency of any word
in a language is inversely proportional to its rank in the
corresponding frequency table. Figure 1 shows the distribution
of the words that appeared in the papers of the DBKDA-
2013 conference [5]. It can be seen that, the distribution is
represented by a hyperbolic function.

Examining the articles of the DBKDA 2013 conference,
we made the following findings:

• Altogether, about 7000 different (stemmed) words are
used.

• The average size of an article is about 5000 words.

• A typical article only contains about 1000 different
(stemmed) words.

• The average length of a sentence was between 14 and
22 words for the different articles.

• A paragraph comprised between 7 and 14 sentences
for the different articles on the average.

These values were not specific of the conference selected,
but can be reproduced with other scientific publications as well.
The average length of a sentence in one of the famous literature
books Moby Dick or The Adventures of Tom Sawyer was only
about 7 words.

Based on the finding of Zipf’s law, it can be postulated that
there are words that are more important to identify a document
than other words. For example, when we used the following
six keywords “the, of, and, in, to, for” in a google query, we
got about 11.5 billion results. When searching for the three
words “bitmap, index, encoding”, only 1.4 million results were
obtained. Because a lot of words are inflections or derived
from a base form, a stemming process in general reduces all
the words to their (morphological) stem. This process reduces
the number of different words, without losing the meaning
when used in an information retrieval process. The porter
stemmer [6] is the most well-known stemmer for the English
language.

B. Size of Vocabulary

The vocabulary of a native English speaker is about 10,000
to 12,000 words. This is quite small compared to the size of
the entire English vocabulary which is between 500,000 to
600,000 words (twice the size of the French vocabulary which
has only about 300,000 words). This does not include techni-
cal terminology. The chemical nomenclature terminology, for
example, contains at least 20 million words [7].

IV. CHOSEN APPROACH

A. Representation of Text

In this subsection, we examine how the basic units of a doc-
ument (word, n-gram, sentence, paragraph, whole document)
can be represented to support the work of a PDS. The task of
a PDS is to find overlapping sections between the suspicious
document and the candidate documents. In the trivial case of
a 1:1 copy & paste plagiarism, n-grams (a sequence of n
words) can be used, which slide over the document base to find
matching regions (technically, this is typically implemented
with an inverted index). This approach works very well if the
plagiarized extracts are not too obfuscated by changes in the
syntax or exchange of words (synonyms, hypernyms).

Another approach is to use the well-known vector space
model (VSM). In this model, the whole document or a part of it
is represented as an n-dimensional vector. The vector space is
defined by the used vocabulary (words) in the document base.
The similarity between two documents (or parts of it) is defined
by a similarity function based on the vector representation. A
typical similarity function, for example, is the cosine similarity
between two vectors. Often, VSM is combined with the td∗idf
weighting.

31Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 40 / 173

A major difference between the n-grams representation and
the VSM approach is that in VSM the words are represented
as an unordered collection. This makes this approach more
robust against syntactic modifications of the text. A serious
drawback of this approach is that when using a single vector
for one document, small plagiarized fragments can easily be
overlooked [8]. This can be compensated by building vectors
from smaller fragments of the document, which, on the other
hand, makes the computation more expensive, because more
vectors have to be compared.

B. Compressed Bitmaps

In our approach, text fragments are represented as com-
pressed bitmaps. Every bit in the bitmap represents a fixed
word of our language (i.e., all words sorted alphabetically).
Setting the bit at position i to 1 means, that the ith word
appears in the given text fragment. As in the case of the VSM,
we maintain an unordered list of words (“Bag of Words”) for
each text fragment. But, in contrast to VSM, we do not keep
the information of how often a word appears in text fragment,
we only keep the information whether it appears or not. This
seems to be a substantial loss of information at first, but for
small units of text (like sentences) the difference is not so
big, because in general, most of the words (and especially
the relevant words) would not appear more than once anyway.
The advantage of our approach is the very fast computation
of similarity between two bitmaps using the Jaccard similarity
coefficient [3] (equation below).

J(A,B) = |A∩B|
|A∪B| .

In our case, the sets A and B represent the words in two
text fragments. The Jaccard measure is then defined as the
coefficient between the number of elements in the intersection
of the two sets and the number of elements in the union of
the sets. If both sets are equal (i.e., they contain the same
words), the value is 1, in the case of no common words
the coefficient is 0. In our implementation using bitmaps, the
operation consists of an and and an or operation between
two bitmaps and an integer division.

When the chunks of text are small (i.e., sentence or para-
graph size), the amount of 1-bits is quite small and the bitmap
can be compressed very effectively using Run Lengh Encoding
(RLE) [9]. The required operation, namely, the computation of
the Jaccard similarity coefficient can also be performed on the
compressed bitmaps, even with higher speed. One important
question is how many words the vocabularity should contain?
Our experiments with the DBKDA conference proceedings
suggest, that probably 10,000 words should be enough. But on
the other hand, the whole English vocabulary contains about
500,000 words and the technological terminology can be even
much bigger. So in a next experiment, we compare the memory
consumption between uncompressed and compressed bitmaps
and vector representations. In this experiment, we use different
vocabularity sizes starting from 10,000 words up to 5,000,000
words as well as different sizes of text fragments, ranging from
15 words (a typical sentence) to 200 words (a paragraph) up to
5000 words (average paper size). The size of the vector (sparse
vector implementation) was calculated by the number of used
dimensions in the vector, multiplied by the size of two integers
(2 ∗ 16 bit). Figure 2 shows the results of this experiment.

 100

 1000

 10000

 100000

 1e+06

 10000 100000 1e+06

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

in
 b

y
te

s
)

size of vocabulary

Memory consumption, based in vocabularity size and number of words

compressed, 15 words

uncompressed, 15 words

vector, 15 words

compressed, 200 words

uncompressed, 200 words

vector, 200 words

uncompressed, 5000 words

compressed, 5000 words

vector, 5000 words

Figure 2. Memory consumption for different representation forms

The most relevant findings of this experiment are:

• The memory consumption for the uncompressed
bitmap grows linearly with the size of the vocabulary.

• The memory consumption for the compressed bitmaps
and the sparse vector are independent of the vocabu-
lary.

• The size of the compressed bitmaps and the vector
depends on the length of the text fragment.

• For the sentence case (15 words), vector and com-
pressed bitmap have nearly the same memory con-
sumption (vector 6% less). For the 200-word para-
graph, the bitmap only needs 53% of the memory
of the vector representation. For the full paper (5000
words) case, the compressed bitmap memory con-
sumption is only about 6% of the vector represen-
tation.

C. Influence of Word Ordering in Bitmap

The position of the words in the bitmap has an influence
on the size of the compressed bitmaps. Figure 3 shows two
different ordering schemes. In the first (sentence with about
15 words) and third bitmaps (paragraph with 100 words), the
words are ordered alphabetically, which results in a nearly
equal distribution (the vertical lines represent 1-bits). In the
second and fourth bitmaps, by contrast, the order is based on
the Zipf distribution shown in Figure 1. Words with a very
high frequency appear at the beginning of the bitmap and the
words with low frequency appear at the end of the bitmap.

The ordering based on the Zipf distribution has two advan-
tages:

1) The gaps between two 1-bits are very small at the
beginning of the bitmap, but grow towards the right.
Based on the characteristics of the Word Aligned
Hybrid (WAH) algorithm, which needs at least a gap
size of a multiple of 31 (or 63), this leads to a number
of fill words at the beginning of the bitmap, followed
by 0-fills with growing capacity, interrupted by single
literals. This results in a better compression ratio as
when the set bits are more evenly distributed over
the whole bitmap. Figure 4 compares the memory
consumption for the different sorting orders. On the

32Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 41 / 173

 0

 0 2000 4000 6000 8000 10000

words

Distribution of 1-Bits

15 words, alphanumeric

15 words, zipf

100 words, alphanumeric

100 words, zipf

Figure 3. Comparison of distributions using alphabetic or word frequency-
based ordering of words in bitmap

sentence (15 words) and paragraph (200 words) level,
the amount of memory for the Zipf-based sorting is
about 75% compared to alphabetic ordering. The gain
of memory for the 5000 words case is smaller (about
2%).

2) As discussed before, words with high frequency are
not very usable to identify documents. As these words
are now grouped together at the beginning of the
bitmap, they can simply be ignored by skipping the
first n bits.

 100

 1000

 10000

 10000 100000 1e+06

M
e
m

o
ry

 c
o
n
s
u
m

p
ti
o
n
 (

in
 b

y
te

s
)

size of vocabulary

compressed (alpha), 15 words

compressed (zipf), 15 words

compressed (alpha), 200 words

compressed (zipf), 200 words

compressed (alpha), 5000 words

compressed (zipf), 5000 words

Figure 4. Comparison of distribution using alphabetic or word frequency
based ordering of words in bitmap

D. Comparison of Execution Time for Measuring Similarity

In a last experiment, we compare the time for the com-
putation of the similarity measure using different measure
functions and text representations. Figure 5 shows the differ-
ence in execution time between the cosine measure based on
the vector representation and the Jaccard measure based on
compressed and uncompressed bitmaps. The main findings of
this experiment are:

• The computation of the similarity measure using com-
pressed bitmaps and the Jaccard coefficient is much
more independent of the chunk size (sentence, para-
graph, whole paper) compared to the cosine similarity
measure. The time difference using the bitmaps is in
a range of a factor of 2 compared to three orders

of magnitude for using the vectors with the cosine
similarity measure.

• The performance of the cosine similarity is slightly
better (max. factor of 2) for the sentence case. In the
case of considering a whole paragraph or paper, the
bitmaps solution is at least superior by a factor of 4,
growing up to a factor of 50.

 0.001

 0.01

 0.1

 1

 10

 100

 10000 100000 1e+06

t
(s

e
c
.)

size of vocabulary

Jaccard vs. Cosine similarity measure

Jaccard, compressed, 15 words

Cosine, vector, 15 words

Jaccard, compressed, 200 words

Cosine, vector, 200 words

Jaccard, compressed, 5000 words

Cosine, vector, 5000 words

Figure 5. Comparison of execution time for similarity measure based on
compressed bitmaps (Jaccard) and vector (cosine measure)

Based on the findings of the last two experiments, the
usage of bitmaps seems an appropriate choice for the source
retrieval step, to find the “candidate set”. In contrast to the
much more expensive cosine measure which typically only
allows to use one vector per document, it is possible to sub-
divide a document into a number of smaller parts which can
be examined separately and, hence, to minimize the chance to
overlook smaller parts, which have been plagiarized.

But also for the text alignment step, compressed bitmaps
seem to be suitable. The reason for this is, that compared to
the search for n-grams which require that the order of the
words is the same in the suspicious document as well as in the
candidate documents, the order of the word is irrelevant. This
makes this approach insensitive to obfuscation approaches like
paraphrasing single sentences. Additionally, the obfuscation
approach by replacing single words by synonyms or hyper-
nyms can be handled easily. In this case, not only the bit for
a concrete word has to be set, but also for possible synonyms
and hypernyms. These words can be provided automatically
using Wordnet [10].

V. ALGORITHM

The algorithm for the identification of the candidate set
is as follows: In a preprocessing step, all documents which
form the comparison document set are fragmented into a
small number of chunks. For each of these text-fragments the
bitmap representation is built. Additionally, the amount of 1-
bits (the number of words) is stored. To handle obfuscations,
taxonomies from Wordnet are used and for every word where
Wordnet offers a synonym or one or more hypernyms, the bits
for these words are also set (the number of words determined
previously is not incremented). After this enrichment step, the
bitmaps are compressed using the WAH algorithm [11]). Paral-
lel to the fragmentation of the document into a small number
of text fragments for the candidate search, a sentence-wise

33Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 42 / 173

S
e

n
te

n
c
e

s
 i
n
 s

u
s
p
ic

io
u

s
 d

o
c
u
m

e
n

t

Sentences in candidate fragment set

possible plagiarized text fragment ?

Figure 6. Plagiat Matrix

fragmentation and transformation into compressed bitmaps is
performed for the later text alignment step. In the same way,
but without the enrichment of the Wordnet taxonomies, the
suspicious document is preprocessed.

In the next step, every compressed bitmap of the suspicious
document is compared with every bitmap of the document
base using the Jaccard measure coefficient. As we are only
interested in finding the candidate set, the most leftmost bits
(which represent the most irrelevant words) can be ignored. If
the Jaccard measure is above a threshold value, the fragment
the bitmap belongs to is included into the candidate set.

In the text alignment step, the bitmaps representing the
sentences are considered. Every compressed bitmap represent-
ing a sentence in the suspicious document is compared using
the Jaccard measure with all sentences from the fragments
identified in the first step. As a result, we get a matrix, where
each row represents a sentence in the suspicous document
and each column represents a sentence from the qualified
fragments. Every cell in the matrix has a value between zero
and one, representing the similarity between two sentences.
This matrix can easily be represented graphically using a
heatmap, as it is shown in Figure 6. Using a color gradient
for the values in the interval [0, 1] from white to red, we can
easily identify fragments with similar or alike content. The
lines originate from a number of consecutive sentences with
high similarity and, therefore, are probably plagiarisms. The
representation of plagiarized fragments as lines is also shown
in [12].

VI. CONCLUSION

We presented a new approach to plagiarism detection using
compressed bitmaps. As we have shown, the bitmap approach
can be used for the candidate retrieval as well as for the text
alignment process. At the beginning of the paper, we show that
from the memory consumption aspect and the performance
aspect, a compressed bitmap with the Jaccard measure is
superior to the vector representation using cosine similarity
measure. To cover both steps, we build compressed bitmaps
based on different aggregation levels. An additional enrich-
ment step using semantic taxonomies from Wordnet allows
us to also cover obfuscation techniques like renaming words.
Obfuscation by paraphrasing is also covered by our approach,
based on the set characteristic (no order of words). The final

visual representation using heatmaps shows plagiarized text
fragments as lines.

As a next step, we have to finely tune our process, find
appropriate threshold values, and compare our results with
others (see PAN competition mentioned in Section II). Another
interesting aspect for our future research is the parallelization
of the whole process using a framework like Hadoop [13].

REFERENCES

[1] B. Stein, S. M. zu Eissen, and M. Potthast, “Strategies for retrieving
plagiarized documents,” in Proceedings of the 30th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’07. New York, NY, USA: ACM, 2007, pp.
825–826.

[2] M. Potthast, M. Hagen, T. Gollub, M. Tippmann, J. Kiesel, P. Rosso,
E. Stamatatos, and B. Stein, “Overview of the 5th international com-
petition on plagiarism detection,” in CLEF 2013 Evaluation Labs and
Workshop Working Notes Papers, 2013.

[3] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Infor-
mation Retrieval. New York, NY, USA: Cambridge University Press,
2008.

[4] G. Zipf, Human behavior and the principle of least effort: an
introduction to human ecology. Addison-Wesley Press, 1949.
[Online]. Available: http://books.google.de/books?id=1tx9AAAAIAAJ

[5] IARIA, “ThinkMind // DBKDA 2013, The Fifth International
Conference on Advances in Databases, Knowledge, and Data
Applications,” 2013, [accessed 24-Feb-2014]. [Online]. Avail-
able: http://www.thinkmind.org/index.php?view=instance&instance=
DBKDA+2013

[6] M. F. Porter, “Readings in information retrieval,” K. Sparck Jones and
P. Willett, Eds. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1997, ch. An Algorithm for Suffix Stripping, pp. 313–316.

[7] Wikipedia, “Wortschatz — Wikipedia, the free encyclo-
pedia,” 2013, [accessed 24-Feb-2014]. [Online]. Available:
http://de.wikipedia.org/wiki/Wortschatz

[8] N. Meuschke and B. Gipp, “State of the Art in Detecting Academic
Plagiarism,” International Journal for Educational Integrity, vol. 9, no. 1,
Jun. 2013, pp. 50–71.

[9] M. Nelson, The Data Compression Book. New York, NY, USA: Henry
Holt and Co., Inc., 1991.

[10] G. A. Miller, “Wordnet: A lexical database for english,” Communica-
tions of the ACM, vol. 38, 1995, pp. 39–41.

[11] K. Wu, E. J. Otoo, and A. Shoshani, “Optimizing bitmap indices with
efficient compression,” ACM Trans. Database Syst., vol. 31, no. 1, 2006,
pp. 1–38.

[12] T. Gottron, “External plagiarism detection based on standard ir tech-
nology and fast recognition of common subsequences - lab report
for pan at clef 2010.” in CLEF (Notebook Papers/LABs/Workshops),
M. Braschler, D. Harman, and E. Pianta, Eds., 2010.

[13] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc.,
2009.

34Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 43 / 173

Enriching Dimension Hierarchies with Topological Relations to Improve
the Development of Spatial Data Warehouse

Sana Ezzedine

LTSIRS Laboratory, National School of Engineers,
University of Tunis El Manar, Tunisia

sana.ezzedine@gmail.com

 Sami Yassine Turki and Sami Faiz

LTSIRS Laboratory, National School of Engineers,
University of Tunis El Manar, Tunisia

 yassine.turki@isteub.rnu.tn and
sami.faiz@insat.rnu.tn

Abstract—The design of a spatial data warehouse depends
on operational data, spatial and non spatial requirements
in order to support the decision-making process required
by final users. It is crucial to consider decision maker
requirements in the conceptual level of the construction of
a spatial data warehouse. Furthermore, updating a
spatial data warehouse and especially the addition of a
new user’s requirement after the construction of a spatial
data warehouse is a great need for users. In this paper, to
overcome this problem, dimension hierarchies will be
specified in the Spatial Data Warehouse using topological
relationships among spatial objects. Dimension
hierarchies added show spatial requirements which are
necessary to improve decision-making process. Decision
makers thus will be able to achieve their information
needs for analysis. Finally, we show the benefits of our
approach by providing a case study, which defines an
enriched conceptual model of a spatial data warehouse.

Keywords-spatial data warehouse; updating; spatial
requirements; decision-making.

I. INTRODUCTION

If we consider the definition proposed by Inmon [1],
a Spatial Data Warehouse (SDW) is “a subject oriented,
integrated, non-volatile, and time variant collection of
spatial data in support of management’s decision”.

The design of a SDW is based on a Multidimensional
Model, which contains facts and dimensions. Facts
contain the business metrics (i.e., measures) and
dimensions describe facts and context to analyze these
facts using dimension attributes organized in hierarchies.

Several approaches are proposed to model the design
of a SDW. They did not define formal and standard
transformations between the design and the
implementation of SDWs in a specific platform.
Moreover, they did not suggest an automatic
transformation from the conceptual model to the possible
logical representation. In addition, they did not consider
needs related to the spatial Decision Maker (DM)’s
requirements. To overcome these problems, we defined
an approach [2] based on the Model Driven Architecture
(MDA) models and the Unified Modeling Language
(UML). This approach considers both spatial and non
spatial requirements, described by a Geographic

Computation Independent Model (Geo CIM), the first
MDA Model. The Geo CIM is integrated by means of
transformation rules into a Geographic Platform
Independent Model (Geo PIM), the second MDA model,
which defines the conceptual Multidimensional model of
a SDW.

Within this approach, once user requirements are
correctly captured, we obtain automatically the
corresponding Multidimensional and conceptual model
of a SDW. Nevertheless, in this approach, we find that
the required multidimensional model does not take
account of the updating requirements of a DM.
Therefore, the final SDW will not completely satisfy
final user requirements.

Our aim is to improve the quality of dimension
hierarchies by means of adding new hierarchy
aggregation levels, which allow SDW DMs to achieve
their analysis information needs [2]. Dimension
hierarchies enable also to the adding of new
requirements to better support the decision-making
process.

 In this paper, we present an approach that treats
updating in terms of adding new spatial requirements.
We propose to enrich dimension hierarchies by adding
new levels of aggregation in order to obtain the required
hierarchies.

To accomplish this, we propose the use of
semantic relations among spatial concepts provided by
topological relationships [3]. The initial hypothesis is
that both SDWs and Topological relationships present
hierarchical structures: dimension hierarchies in SDWs
show the relationships between value domains from
different dimension attribute (set by levels of
aggregation) [4], while topological relations present
hierarchical semantic relations between spatial
concepts, such as adjacency or inclusion or
intersection, etc. [3]. Therefore, our approach is based
on using these topological relations to add new levels to
dimension hierarchies in order to obtain the required
hierarchies. Figure. 1 summarizes this scenario.

The remainder of this paper is structured as follows.
Section 2 presents an overview of works about the
development of SDWs and the addition of dimension
Hierarchies in the conceptual level. Section 3 defines
our approach for enriching dimension hierarchies using
topological relationships. In Section 4, a case study is
presented. Finally, we point out our conclusions and
sketch some future work in Section 5.

35Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 44 / 173

Figure1: Using Topological Relations to enrich the Multidimensional Model of SDW

II. RELATED WORK

It is widely accepted that the development of SDWs
must be based on a conceptual model. Therefore, in this
section, we focus on briefly describing the most relevant
approaches for the conceptual modeling of SDWs and,
more generally, the addition of dimension Hierarchies in
conceptual modeling.

A. Conceptual Modeling of SDWs

Various approaches for the conceptual design of SDW
systems have been proposed in the last few years. In this
section, we present a brief discussion about some of the
most well-known approaches.

The first attempt integrated spatial information and
ensured correct aggregation over spatial [4][5]. Other
works defined a multidimensional analysis tool that
modeled spatial Data in a SDW [6][7][8][9]. Alternatively,
authors defined a query language [10][11] that allowed the
use of multidimensional and spatial and topological
operators such as GeoMDQL [12]. All these approaches
did not present an unequivocal and automatic
transformation to every possible logical representation
from a conceptual model. In addition, they did not
consider needs related to the DM’s requirements.
More recently, some approaches have tried to overcome
these limitations, especially the problem of the automatic
transformations. These approaches used standards
framework as MDA. MDA provides a set of guidelines to
structure specifications expressed as models. An alignment
of multidimensional spatial model with MDA is proposed
in [13]. The same approach is extended [14] to include
spatial data in the SDW design level. It allows DM to
define his geographical queries independently of the
logical presentation. [15] proposed to consider the DM’s
aims and defined [16] some spatial elements describing the
top DM’s goals. In the same context, a Case tool based on
Unified Modeling Language (UML) standard is used by
[17] to model both spatial and non spatial data in the SDW
design. [18] focused on the use of transformations based
on MDA to automatically generate the data and the
analysis models.

Every of the above-described approaches presented
conceptual models lacked the integration of all DMs’
spatial needs in the SDW design. To overcome this
problem, [2] proposed an approach, which aims to
integrate DM’s requirements in the SDW Design. It

presented an approach that automatically generates the
design of SDW from a requirement’s model.

This approach does not consider updating requirements
in terms of adding new contexts to the requirements model
after the development of SDW. This must be taken into
account in stages of the development process, i.e., the
conceptual modeling of the SDWs.

B. Adding Dimension Hierarchies in SDWs

Mazón and Trujillo [19] suggested enriching
dimension hierarchies in terms of structure and data. They
considered dimension hierarchy as semantic relationships
between values and they proposed to exploit the
hypernymy/hyponymy relationships ("is-a-kind-of") and
Meronymy/Holonymy ("is-a-part-of") WordNet. In this
approach, levels of granularity are created at the end of
hierarchy.

Favre et al. [20] proposed to enhance the dimension
hierarchies by exploiting the knowledge of users. This
knowledge is represented by a meta-aggregation rule and
different rules. A meta-aggregation rule represents the
structure of the link aggregation between two levels of
granularity. And rules "if-then" represent the link at the
instances. The levels created can be inserted into a
hierarchy or created at the end thereof.

III. USING TOPOLOGICAL RELATIONSHIPS TO
ENRICH DIMENSION HIERARCHIES

Dimension hierarchies in SDWs show the relationships
between domains of values from different dimension
attributes (set in levels of aggregation). Topological
relationships also present hierarchical relationships
between spatial concepts, such as adjacency and
connectivity. Thereby, we use topological relationships to
automatically complete dimension hierarchies in a
conceptual model of a SDW.

In this paper, we use classes’ stereotypes defined in [2].
These classes are based on Unified Modeling Language
(UML) as shown in Table1.

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 45 / 173

TABLE 1. STEREOTYPES USED TO DEVELOP THE
CONCEPTUAL MODEL OF A SDW

Stereotype Description Presentation
Fact Class Facts contain

business measures
Dimension Class Dimensions

describe Facts
Base Class Base represent

Dimension
Hierarchy with
their attributes

In this paper, we define another stereotype based also on
UML named Spatial Hierarchy, as shown in Table 2.

Spatial Hierarchy is added in the conceptual model of a
SDW when the DM needs to take account of a new
context of spatial requirements in the developing of the
SDW.

Our proposal consists of identifying topological
relationships between existing dimensions and bases in the
conceptual model of SDW and the new added spatial
requirements given by the user.

With each identified topological relationship, we create a
Spatial Hierarchy, which is named with the same name of
the identified topological relationship and has as attributes
the characteristics of the added requirement.

Following, we explain the main steps of our approach (an
overview is shown in Figure. 2).

TABLE 2. SPATIAL HIERARCHY STEREOTYPE USED TO
DEVELOP THE CONCEPTUAL MODEL OF A SDW

Stereotype Description Presentation
Spatial
Hierarchy

Spatial Hierarchy
present spatial
Dimension
hierarchy with
their attributes.

Prerequisite 1. A dimension attribute is chosen from the
initial conceptual model of the SDW. The spatial hierarchy
will be enriched starting from this attribute.

Prerequisite 2. A new spatial requirement has been added
by the DM, which is in relation with one of existing
dimensions in the initial conceptual model.

Step 1. Extract different instances from the dimension
attribute chosen from the initial conceptual model.

Step 2. Identify topological relationships between spatial
objects recently required with spatial objects existing in
the dimension attribute chosen.

Step 3. If there are relationships between the required
spatial objects and the existed ones, a spatial hierarchy for
every relationship is created having the same name as the
topological relationship.

Step 3’. If there are no relationships between the required
spatial objects and the existed ones, a new record is
inserted in the selected dimension without creating a new
hierarchy.

In Figure. 2, every step of our approach is illustrated. From
a dimension or a dimension hierarchy in a
Multidimensional model, which not accomplishes all user
requirements, a dimension attribute is chosen. Then the
topological relationships are identified between instances
of the dimension attribute chosen and the new requirement
in order to create a new level of the spatial dimension
hierarchy. If there are no relationships between added
requirement and existed dimensions, a new record is
inserted. Iterations are repeated until all required spatial
objects are classified.

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 46 / 173

Figure 2. Overview of our approach

IV. CASE STUDY

In this section, we show the benefits of our approach
by providing a case study, in which Spatial hierarchies
are enriched in the conceptual Model of a SDW. Our
case study consists of defining a conceptual model of a
sales manager who wants to analyze sales operations in
stores situated 2 km around the airport. Then, he needs
to extend the analysis region by adding others streets.

The initial conceptual model before adding spatial
requirements and applying our approach is presented in
Figure. 3. In this case, the added requirements are the
extended streets.

As is described previously, we should choose firstly a
dimension attribute. In this case, we choose the
dimension spatial cover and the dimension attribute
spatial objects. Then we identify relations between
spatial objects and streets added. We found that some
streets have an intersection relationship with existed
streets; others have an inclusion relationship and others
streets having no relationships with existed spatial
objects.

The conceptual model is extended according to the
different stages of the approach as shown in Figure. 4.

The initial conceptual model contains facts and
dimensions presenting the spatial and non spatial
requirements. The facts presented in Figure. 3 are: Sale
and Spatial Cover. The dimensions are: Product, Time,
Operational, DMcharacteristic, Presentation and
Semantic.

Figure.3 presents the spatial and non-spatial data that
are necessary for the decision maker, the sales
manager, to make the right decision. We use classes of
the Unified Modeling Language UML to model

requirements. Each class is a one of the requirements
expressed by the sales manager.

After the addition of new spatial requirements, we
identify two types of relations, as shown in Figure.4,
inclusions’ relations and intersections’ relations
between spatial objects and added spatial objects.

Consequently, two spatial hierarchies are added
according to the two relationships identified.

V. CONCLUSION AND FUTURE WORK

Spatial Dimension hierarchies are important to support
the decision making process, since they allow the
analysis of data at different levels of detail (i.e., levels
of aggregation). Then, obtaining the required spatial
hierarchies captured from decision maker is crucial for
specifying a successful SDW.

In this paper, we propose the application of
topological relationships to obtain the required
hierarchies. The advantage of our proposal is clear:
the enrichment of the conceptual model of the SDW
by adding new aggregation levels in order to
satisfy the required DM requirements.

These required hierarchies allow SDW users to satisfy
their information analysis needs, since they better
support the decision-making process.

Our proposal can be generalized to generate a star
scheme or a snowflake scheme of a conceptual model
of a SDW appropriate for a group of DMs.

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 47 / 173

Figure 3. The conceptual model of the SDW used by the sales manager [2]

 REFERENCES

[1] W. Inmon, “Building the Data warehouse”. In John Wiley
& Sons, Chichester , 1996.

[2] S. Ezzedine, S. Y. Turki, and S. Faiz “An approach based
on Model Driven Engineering for data integration in a spatial
data warehouse’, in CODIT’13, 2013.

[3] J. Egenhofer and R. D.Franzosa “Point-Set Topological
Spatial Relations”, in International Journal for Geographical
Information Systems, vol. 5, pp. 161-174, 1991.

[4] S. Bimonte, A. Tchounikine, and M. Miquel, “Geocube, a
multidimensional model and navigation operators handling
complex measures: Application in spatial olap’, Advances in
Information Systems (ADVIS)”, pp. 100–109, Berlin /
Heidelberg, Germany, 2006.

[5] S. Bimonte, A. Tchounikine, and M. Bertolotto
“Integration of geographic information into multidimensional
models”, in ICCSA, pp. 316–329, 2008.

[6] A. Escribano, L. Gomez., B. Kuijpers, and A. Vaisman
“Piet: a gis-olap implementation”, in DOLAP ’07:
Proceedings of the ACM tenth international workshop on Data
warehousing and OLAP, pp 73–80, New York, NY, USA,
2007.

[7] L. Gomez, S. Haesevoets, B. Kuijpers, and A. Vaisman
“Spatial aggregation: Data model and implementation”, in
CoRR, abs/0707.4304, 2007.

[8] E. Malinowski and E. Zimanyi “Representing spatiality in
a conceptual multidimensional model”, in GIS ’04:
Proceedings of the 12th annual ACM international workshop
on Geographic information systems, pp. 12–22, New York,
NY, USA, 2004.

[9] E. Malinowski and E. Zimanyi “Implementing spatial
datawarehouse hierarchies in object-relational dbmss”, in
ICEIS, pp. 186–191, 2007.

[10] J. Da Silva, V. C. Times, A. C. Salgado, C. Souza, R. do
Nascimento Fidalgo, and A.G. de Oliveira “Querying
geographical data warehouses with geomdql”, in SBBD, pp.
223–237, 2007.

[11] N. Stefanovic, J. Han, and K. Koperski “Object-based
selective materialization for efficient implementation of
spatial data cubes”, in IEEE Transactions on Knowledge and
Data Engineering, vol. 12. N. 6, pp. 938–958, 2000.

[12] S. Rivest, Y. Bedard, and P. Marchand “Toward better
support for spatial decision making: Defining the

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 48 / 173

characteristics of spatial on-line analytical processing”, in
Geomatica, vol. 55, N. 4, pp.539–555, 2001.

[13] O. Glorio and J. Trujillo, “An MDA Approach for the
Development of Spatial Data Warehouses”, In DaWaK '08,
2008.

[14] O. Glorio and J. Trujillo, “Designing Dhata Warehouses
for Geographic OLAP querying by using MDA”, in ICCSA
'09, 2009.

[15] J. Mazon and J. Trujillo, “A Hybrid Model Driven
Development Framework for the Multidimensional Modeling
of Data Warehouses”, in SIGMOD, 2007.

[16] O. Glorio, J. Mazón, I. Garrigós, and J. Trujillo, “Using
Web-based Personalization on Spatial Data Warehouses”, in
EDBT '10, 2010.

[17] R. Fidalgo and A. Cuzzocrea, “An Enhanced Spatial Data
Warehouse Metamodel”, in CAiSE Forum, Vol. 855 of CEUR
Workshop Proceedings, pp.32-39, 2012.

[18] A. Cuzzocrea, J. Mazon, J. Trujillo, and J. Zubcoff
“Model-driven data mining engineering: from solution-driven
implementations to 'composable' conceptual data mining
models”, in Int. J. of Data Mining, Modelling and
Management, 2011 Vol.3, No.3, pp.217 – 251, 2011.

[19] J.N. Mazón, and J. Trujillo, “Enriching Data Warehouse
Dimension Hierarchies by Using Semantic Relations”, in
XXIIIrd British National Conference on Databases (BNCOD
2006), Vol. 4042, pp. 278–281. Springer, 2006.

[20] C. Favre, F. Bentayeb, and O. Boussaïd, “Dimension
Hierarchies Updates in Data Ware-houses : a User-driven
Approach”, in IXth International Conference on Enterprise
Informa-tion Systems (ICEIS 07), Funchal, Madeira, Portugal,
2007.

Figure 4. The extended conceptual model of the SDW after adding spatial requirements

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 49 / 173

In-Memory Distance Threshold Queries on Moving Object Trajectories

Michael Gowanlock
Department of Information and Computer Sciences and

NASA Astrobiology Institute
University of Hawai‘i, Honolulu, HI, U.S.A.

Email: gowanloc@hawaii.edu

Henri Casanova
Department of Information and Computer Sciences

University of Hawai‘i, Honolulu, HI, U.S.A.
Email: henric@hawaii.edu

Abstract—The need to query spatiotemporal databases that
store trajectories of moving objects arises in a broad range
of application domains. In this work, we focus on in-memory
distance threshold queries which return all moving objects that
are found within a given distance d of a fixed or moving
object over a time interval. We propose algorithms to solve
such queries efficiently, using an R-tree index to store trajectory
data and two methods for filtering out trajectory segments so as
to reduce segment processing time. We evaluate our algorithms
on both real-world and synthetic in-memory trajectory datasets.
Choosing an efficient trajectory splitting strategy to reduce index
resolution increases the efficiency of distance threshold queries.
Interestingly, the traditional notion of considering good trajectory
splits by minimizing the volume of MBBs so as to reduce index
overlap is not well-suited to improve the performance of in-
memory distance threshold queries.

Keywords-spatiotemporal databases; query optimization.

I. INTRODUCTION

Moving object databases (MODs) have gained attention as
applications in several domains analyze trajectories of mov-
ing objects (animals, vehicles, humans, stellar bodies, etc.).
Contributing to the motivation for MOD research is the pro-
liferation of mobile devices that provide location information
(e.g., GPS tracking). We focus on MODs that store historical
trajectories [1], [2], [3], [4], such as the movement patterns
of animals over a given period of observation, and that must
support queries over subsets, or perhaps the full set, of the
trajectory histories. In particular, we focus on two types of
distance threshold queries:

1) Find all trajectories within a distance d of a given
static point over a time interval [t0, t1].

2) Find all trajectories within a distance d of a given
trajectory over a time interval [t0, t1].

An example query of the first type would be to find all animals
within a distance d of a water source within a day. An example
query of the second type would be to find all police vehicles on
patrol within a distance d of a moving stolen vehicle during an
afternoon. We investigate efficient distance threshold querying
on MODs, making the following contributions:

• We propose algorithms to solve the two types of in-
memory distance threshold queries above.

• We make the case for using an R-tree index for storing
trajectory line segments.

• Given a set of candidate line segments returned from
the R-tree, we propose methods to filter out line
segments that are not part of the query result set.

• We propose decreasing index resolution to exploit the
trade-off between the amount of index overlap and
the number of entries in the index by exploring three
trajectory splitting strategies.

• We demonstrate that, for in-memory queries, lower-
bounding the index resolution is more important than
minimizing the volume of hyperrectangular minimum
bounding boxes (MBB), and thus index overlap.

• We evaluate our proposed algorithms using both real-
world and synthetic datasets for both 3-D and 4-D
trajectory data (i.e., the temporal dimension plus either
2 or 3 spatial dimensions).

This paper is organized as follows. In Section II, we outline
related work. Section III defines the distance threshold query.
Section IV discusses the indexing method. In Section V we
present our algorithms and present an initial performance
evaluation in Section VI. Section VII motivates, proposes,
and evaluates methods to filter the candidate line segments.
Section VIII presents and evaluates methods to split trajectories
to reduce index resolution for efficient query processing.
Finally, Section IX concludes the paper with a brief summary
of findings and perspectives on future work.

II. RELATED WORK

A trajectory is a set of points traversed by an object over
time in Euclidean space. In MODs, trajectories are stored
as sets of spatiotemporal line segments. The majority of the
literature on indexing spatiotemporal data utilizes R-tree data
structures [5]. An R-tree indexes spatial and spatiotemporal
data using MBBs. Each trajectory segment is contained in one
MBB. Leaf nodes in the R-tree store pointers to MBBs and the
segments they contain (coordinates, trajectory id). A non-leaf
node stores the dimensions of the MBB that contains all the
MBBs stored (at the leaf nodes) in the non-leaf node’s sub-
tree. Searches traverse the tree to find all (leaf) MBBs that
overlap with a query MBB. Variations of the R-tree and other
methods have been proposed (TB-trees [6], STR-trees [6],
3DR-trees [7], SETI [8], and TrajStore [9]).

Few works on trajectory similarity searches have studied
distance threshold queries [3]. Other types of trajectories,

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 50 / 173

which we do not consider in this work, have been studied
(e.g., flocks [10], convoys [4], swarms [11]). The well-studied
k Nearest Neighbors (kNN) queries [12], [13], [14], [15] are
related to distance threshold queries. A distance threshold
query can be seen as a kNN query with an unknown value of
k. As a result, previous work on kNN queries (with known k)
cannot be applied directly to distance threshold queries (with
unknown k).

III. PROBLEM STATEMENT

A. Motivating Example

One motivation application for this work is in the area
of astrophysics [16]. The past decade of exoplanet searches
implies that the Milky Way, and hence the universe, hosts
many rocky, low mass planets that may sustain complex life.
However, regions of a galaxy, such as the Milky Way, may
be inhospitable due to transient radiation events, such as
supernovae explosions or close encounters with flyby stars
that can gravitationally perturb planetary systems. Studying
habitability thus entails solving the following two types of
distance threshold queries on the trajectories of (possibly
billions of) stars orbiting the Milky Way: (i) Find all stars
within a distance d of a supernova explosion, i.e., a non-
moving point over a time interval; and (ii) Find the stars, and
corresponding time periods, that host a habitable planet and
are within a distance d of all other stellar trajectories.

B. Problem Definition

Let D be a database of N trajectories, where each tra-
jectory Ti consists of ni 4D (3 spatial + 1 temporal) line
segments. Each line segment L in D is defined by the
following attributes: xstart, ystart, zstart, tstart, xend, yend,
zend, tend, trajectory id, and segment id. These coordinates
for each segment define the segment’s MBB (note that the
temporal dimension is treated in the same manner as the spatial
dimensions). Linear interpolation is used to answer queries that
lie between tstart and tend of a given line segment.

We consider historical continuous searches for trajectories
within a distance d of a query Q, where Q is a moving object’s
trajectory, Qt, or a stationary point, Qp. More specifically:

• DistTrajSearch Qp(D,Qp,Qstart,Qend, d) searches D
to find all trajectories that are withing a distance d of a
given query static point Qp over the query time period
[Qstart,Qend]. The query is continuous, such that the
trajectories found may be within the distance threshold
d for a subinterval of the query time [Qstart,Qend].
For example, for a query Q1 with a query time interval
of [0,1], the search may return T1 between [0.1,0.3]
and T2 between [0.2,0.6].

• DistTrajSearch Qt(D,Qt,Qstart,Qend, d) is similar
but searches for trajectories that are within a distance
d of a query trajectory Qt.

DistTrajSearch Qp is a simpler case of DistTrajSearch Qt.
We focus on developing an efficient approach for DistTra-
jSearch Qt, which can be reused as is for DistTrajSearch Qp.

In all that follows, we consider in-memory databases,
meaning that the database fits and is loaded in RAM once and

for all. Distance threshold queries are relevant for scientific
applications that are typically executed on high-performance
computing platforms such as clusters. It is thus possible to
partition the database and distribute it over a (possibly large)
number of compute nodes so that the application does not
require disk accesses. It is straightforward to parallelize dis-
tance threshold searches (replicate the query across all nodes,
search the MOD independently at each node, and aggregate
the obtained results). We leave the topic of parallel searches
for future work. Instead we focus on efficient in-memory
processing at a single compute node, which is challenging
and yet necessary for achieving efficient parallel executions.
Furthermore, as explained in Section IV, no criterion can be
used to avoid index tree node accesses in distance threshold
searches. Therefore, there are no possible I/O optimizations
when (part of) the database resides on disk, which is another
reason why we focus on the in-memory scenario.

IV. TRAJECTORY INDEXING

Given a distance threshold search for some query trajectory
over some temporal extent, one considers all relevant query
MBBs (those for the query trajectory segments). These query
MBBs are augmented in all spatial dimensions by the threshold
distance d. One then searches for the set of trajectory segment
MBBs that overlap with the query MBBs, since these segments
may be in the result set. Efficient indexing of the trajectory
segment MBBs can thus lower query response time.

The most common approach is to store trajectory segments
as MBBs in an index tree [12], [13], [14], [15]. Several index
trees have been proposed (TB-tree [6], STR-tree [6], 3DR-
tree [7]). Their main objective is to reduce the number of tree
nodes visited during index traversals, using various pruning
techniques (e.g., the MINDIST and MINMAXDIST metrics
in [17]). While this is sensible for kNN queries, instead for
distance threshold queries there is no criterion for reducing the
number of tree nodes that must be traversed. This is because
any MBB in the index that overlaps the query MBB may
contain a line segment within the distance threshold, and thus
must be returned as part of the candidate set.

Figure 1. An example trajectory stored in different leaf nodes in a TB-tree.

Figure 2. Four line segments belonging to three different trajectories within
one leaf node of an R-tree.

Let us consider for instance the popular TB-tree, in which
a leaf node stores only contiguous line segments that belong to

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 51 / 173

the same trajectory and leaf nodes that store segments from the
same trajectory are chained in a linked list. As a result, the TB-
tree has high “temporal discrimination” (this terminology was
introduced in [6]). Figure 1 shows a trajectory stored inside
four leaf nodes within a TB-tree (each leaf node is shown
as a bounding box). The curved and continuous appearance
of the trajectory is because multiple line segments are stored
together in each leaf node. By contrast, the R-tree simply
stores in each leaf node trajectory segments that are spatially
and temporally near each other, regardless of the individual
trajectories. Figure 2 depicts an example with 4 segments
belonging to 3 different trajectories that could be stored in
a leaf node of an R-tree. For a distance threshold query, the
number of TB-tree leaf nodes processed to perform the search
could be arbitrarily high (since segment MBBs from many
different trajectories can overlap the query MBB). Therefore,
the TB-tree reduces the important R-tree property of overlap
reduction; with an R-tree it may be sufficient to process only
a few leaf nodes since each leaf node stores spatially close
segments from multiple trajectories. For distance threshold
queries, high spatial discrimination is likely to be more ef-
ficient than high temporal discrimination. Also, results in [6]
show that the TB-tree performs better than the R-tree (for kNN
queries) especially when the number of indexed entries is low;
however, we are interested in large MODs (see Section III-A).
We conclude that an R-tree index should be used for efficient
distance threshold query processing.

V. SEARCH ALGORITHM

We propose an algorithm, TRAJDISTSEARCH (Figure 3),
to search for trajectories that are within a threshold distance
of a query trajectory (defined as a set of connected trajectory
segments over some temporal extent). All entry MBBs that
overlap the query MBB are returned by the R-tree index
and are then processed to determine the result set. More
specifically, the algorithm takes as input an R-Tree index, T ,
a query trajectory, Q, and a threshold distance, d. It returns a
set of time intervals annotated by trajectory ids, corresponding
to the interval of time during which a particular trajectory is
within distance d of the query trajectory. After initializing the
result set to the empty set (line 2), the algorithm loops over
all (augmented) MBBs that correspond to the segments of the
query trajectory (line 3). For each such query MBB, the R-Tree
index is searched to obtain a set of candidate entry MBBs that
overlap the query MBB (line 4). The algorithm then loops over
all the candidates (line 5) and does the following. First, given
the candidate entry MBB and the query MBB, it computes
an entry trajectory segment and a query trajectory segment
that span the same time interval (line 6). The algorithm then
computes the interval of time during which these two trajectory
segments are within a distance d of each other (line 7). This
calculation involves computing the coefficients of and solving
a degree two polynomial [15]. If this interval is non-empty,
then it is annotated with the trajectory id and added to the
result set (line 9). The overall result set is returned once all
query MBBs have been processed (line 13). Note that for a
static point search Q.MBBSet (line 3) would consist of a single
(degenerate) MBB with a zero extent in all spatial dimensions
and some temporal extent, thus obviating the need for the outer
loop. We call this algorithm POINTDISTSEARCH.

1: procedure TRAJDISTSEARCH (R-Tree T, Query Q, double d)
2: resultSet ← ∅
3: for all querySegmentMBB in Q.MBBSet do
4: CandidateSet ← T.Search(querySegmentMBB, d)
5: for all candidateMBB in CandidateSet do
6: (EntrySegment, QuerySegment) ← interpolate(

candidateMBB,querySegmentMBB)
7: timeInterval ← calcTimeInterval(

EntrySegment,QuerySegment,d)
8: if timeInterval 6= ∅ then
9: resultSet ← resultsSet ∪ timeInterval

10: end if
11: end for
12: end for
13: return resultSet
14: end procedure

Figure 3. Pseudo-code for the TRAJDISTSEARCH algorithm (Section V).

VI. INITIAL EXPERIMENTAL EVALUATION

A. Datasets

Our first dataset, Trucks [18], is used in other MOD
works [13], [14], [15]. It contains 276 trajectories correspond-
ing to 50 trucks that travel in the Athens metropolitan area
for 33 days. This is a 3-dimensional dataset (2 spatial + 1
temporal). Our second dataset is a class of 4-dimensional
datasets (3 spatial + 1 temporal), Galaxy. These datasets
contain the trajectories of stars moving in the Milky Way’s
gravitational field (see Section III-A). The largest Galaxy
dataset consists of 1,000,000 trajectory segments correspond-
ing to 2,500 trajectories of 400 timesteps each. Distances are
expressed in kiloparsecs (kpc). Our third dataset is a class
of 4-dimensional synthetic datasets, Random, with trajectories
generated via random walks. An adjustable parameter, α, is
used to control whether the trajectory is a straight line (α = 0)
or a Brownian motion trajectory (α = 1). We vary α in
0.1 increments to produce 11 datasets for datasets containing
between ∼1,000,000 and ∼5,000,000 segments. Trajectories
with α = 0 spans the largest spatial extent and trajectories
with α = 1 are the most localized. All trajectories have the
same temporal extent but different start times. Other synthetic
datasets exist, such as GSTD [19]. We do not use GSTD
because it does not allow for 3-dimensional spatial trajectories.

(a) (b)

Figure 4. (a) Galaxy dataset: a sample of 30 trajectories, (b) 200
trajectories in the Random dataset with α = 0.8.

Figure 4 shows a 2-D illustration of the Galaxy and
Random datasets. An illustration of Trucks can be found in
previous works [13], [14]. Table I summarizes the main char-
acteristics of each dataset. The Galaxy and Random datasets
are publicly available [20].

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 52 / 173

TABLE I. CHARACTERISTICS OF DATASETS

Dataset Trajec. Entries
Trucks 276 112152

Galaxy-200k 500 200000
Galaxy-400k 1000 400000
Galaxy-600k 1500 600000
Galaxy-800k 2000 800000
Galaxy-1M 2500 1000000

Random-1M (α ∈ {0, 0.1, . . . , 1}) 2500 997500
Random-2M (α = 1) 5000 1995000
Random-3M (α = 1) 7500 2992500
Random-4M (α = 1) 10000 3990000
Random-5M (α = 1) 12500 4987500

B. Experimental Methodology

We have implemented algorithm TRAJDISTSEARCH in
C++, reusing an existing R-Tree implementation based on
that initially developed by A. Guttman [5], and the code is
available [21]. We execute this implementation on one core of
a dedicated Intel Xeon X5660 processor, at 2.8 GHz, with 12
MB L3 cache and sufficient memory to store the entire index.
We measure query response time averaged over 3 trials. The
variation among the trials is negligible so that error bars in
our results are not visible. We ignore the overhead of loading
the R-Tree from disk into memory, which can be done once
before all query processing.

C. Trajectory Search Performance

 0

 0.1

 0.2

 0.3

 0.4

 5 15 25

T
im

e
 (

s
)

Distance

10 extent

20 extent

50 extent

100 extent

(a) Random α = 1

 0

 50

 100

 150

 200

 250

 1 3 5

T
im

e
 (

s
)

Distance

10 extent

20 extent

50 extent

100 extent

(b) Galaxy-1M

Figure 5. Query response time vs. threshold distance for 10%, 20%, 50%
and 100% of the temporal extents of trajectories in S1 using the Random-1M

α = 1 dataset (a) and the Galaxy-1M dataset with search S2 (b).

We measure the query response time of TRAJDISTSEARCH
for the following sets of trajectory searches:

 0

 1

 2

 5 15 25

T
im

e
 (

s
)

Distance

1M
2M
3M
4M
5M

(a) Random α = 1

 0

 0.5

 1

 1.5

 0.01 0.1

T
im

e
 (

s
)

Temporal Extent

200k
400k
600k
800k

1M

(b) Galaxy

Figure 6. (a) Response time vs. threshold distances for various numbers of
segments in the index using search S3. (b) Response time vs. temporal
extent for various numbers of segments in the index using search S4.

• S1: Random-1M dataset, α = 1, 100 randomly se-
lected query trajectories, processed for 10%, 20%,
50% and 100% of their temporal extents, with various
query distances;

• S2: Same as S1 but for the Galaxy-1M dataset;
• S3: Random-1M, 2M, 3M, 4M and 5M datasets, α =

1, 100 randomly selected query trajectories, processed
for 100% of their temporal extent, with various query
distances;

• S4: Galaxy-200k, 400k, 600k, 800k, 1M datasets, 100
randomly selected trajectories, processed with for 1%,
5% and 10% of their temporal extents, with a fixed
query distance d = 1.

Figures 5 (a) and 5 (b) plot response time vs. query distance
for S1 and S2 above. The response time increases slightly
superlinearly with the query distance and with the temporal
extents. In other words, the R-tree search performance de-
grades gracefully as the search is more extensive. Figures 6 (a)
and (b) show response time vs. query distance for S3 and S4
above. The response time increases slightly superlinearly as
the query distance increases for S3, and roughly linearly with
the temporal extent increases for S4. Both these figures show
results for various dataset sizes. An important observation is
that the response time degrades gracefully as the datasets
increase in size. More interestingly, note that for a fixed
temporal extent and a fixed query distance, a larger dataset
means a higher trajectory density, and thus a higher degree of
overlap in the R-tree index. In spite of this increasing overlap,

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 53 / 173

B

d

Q A

C

Figure 7. Three example entry MBBs and their overlap with a query MBB.

the R-tree still delivers good performance. We obtained similar
results for POINTDISTSEARCH, which are omitted here.

VII. TRAJECTORY SEGMENT FILTERING

The results in the previous section illustrate that TRAJ-
DISTSEARCH maintains roughly consistent performance be-
havior over a range of query configurations (temporal extents,
threshold distances, index sizes). In this and the next section,
we explore approaches to reduce response time.

At each iteration our algorithm computes the moving dis-
tance between two line segments (line 7 in Figure 3). One can
bypass this computation by “filtering out” those line segments
for which it is straightforward (i.e., computationally cheap) to
determine that they cannot possibly lie within distance d of
the query. This filtering is applied to the segments once they
have been returned by the index, and is thus independent of
the indexing method.

Figure 7 shows an example with a query MBB, Q, and
three overlapping MBBs, A, B, and C, that have been returned
from the index search. The query distance d is indicated in the
(augmented) query box so that the query trajectory segment is
shorter than the box’s diagonal. A contains a segment that is
outside Q and should thus be filtered out. The line segment in
B crosses the query box boundary but is never within distance
d of the query segment and should be filtered out. C contains a
line segment that is within a distance d of the query segment,
and should thus not be filtered out. For this segment a moving
distance computation must be performed (Figure 3, line 7) to
determine whether there is an interval of time in which the two
trajectories are indeed within a distance d of each other. The
fact that candidate segments are returned that should in fact be
ignored is inherent to the use of MBBs: a segment occupies an
infinitesimal portion of its MBB’s space. This issue is germane
to MODs that store trajectories using MBBs.

In practice, depending on the dataset and the search, the
number of line segments that should be filtered out can be
large. Figure 8 shows the number of candidate segments
returned by the index search and the number of segments
that are within the query distance vs. α, for the Random-
1M dataset, with 100 randomly selected query trajectories
processed for 100% of their temporal extent. The fraction of
candidate segments that are within the query distance is below
16.5% at α = 1. In this particular example, an ideal filtering
method would filter out more than 80% of the line segments.

 0

 50000

 100000

 150000

 200000

 0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r

α

Number of candidates
Number within distance

Figure 8. Total number of moving distance calculations vs. the number that
are actually within a distance of 15 in the Random-1M datasets.

A. Two Segment Filtering Methods

After the query and entry line segments are interpolated so
that they have the same temporal extent (Figure 3, line 6),
various criteria may remove the candidate segment from
consideration. We consider two filtering methods beyond the
simple no filtering approach:

Method 1 – No filtering.
Method 2 – After the interpolation, check whether the can-
didate segment still lies within the query MBB. This check
only requires floating point comparisons between spatial coor-
dinates of the segment endpoints and the query MBB corners,
and would occur between lines 6 and 7 in Figure 3. Method
2 would filter out A in Figure 7.
Method 3 – Considering only 2 spatial dimensions, say x and
y, for a given query segment MBB compute the slope and the
y-intercept of the line that contains the query segment. This
computation requires only a few floating point operations and
would occur in between lines 3 and 4 in Figure 3, i.e., in
the outer loop. Then, before line 7, check if the endpoints
of the candidate segment both lie more than a distance d
above or below the query trajectory line. In this case, the
candidate segment can be filtered out. This check requires only
a few floating point operations involving segment endpoint
coordinates and the computed slope and y-intercept of the
query line. Method 3 would filter out both A and B in Figure 7.

Other computational geometry methods could be used for
filtering, but these methods must be sufficiently fast (i.e., low
floating point operation counts) if any benefit over Method 1
is to be achieved.

B. Filtering Performance

We have implemented the filtering methods in the previous
section in TRAJDISTSEARCH and in this section we measure
response times ignoring the R-tree search, i.e., focusing only
on the filtering and the moving distance computation. We use
the following distance threshold searches:

• S5: From the Trucks dataset, 10 trajectories are pro-
cessed for 100% of their temporal extent.

• S6: From the Galaxy-1M dataset, 100 trajectories are
processed for 100% of their temporal extent.

• S7: From the Random-1M datasets, 100 trajectories
are processed for 100% of their temporal extent, with
a fixed query distance d = 15.

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 54 / 173

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 1.02

 1.04

 1.06

 5000 10000 15000 20000 25000

 1 2 3 4 5

T
im

e
/T

im
e

M
e

th
o

d
 1

Distance (Trucks)

Distance (Galaxy)

Trucks-Method 2
Trucks-Method 3
Galaxy-Method 2
Galaxy-Method 3

Figure 9. Performance improvement ratio of filtering methods for real
datasets with S5 and S6, vs. query distance.

Figure 9 plots the relative improvement (i.e., ratio of
response times) of using Method 2 and Method 3 over using
Method 1 vs. the threshold distance for S5 and S6 above for
the Galaxy and Trucks datasets. Data points below the y = 1
line indicate that filtering is beneficial. We see that filtering
is almost never beneficial and can in fact marginally increase
response time. Similar results are obtained for the Random
dataset regardless of the α value.

It turns out that our methods filter only a small fraction
of the line segments. For instance, for search S7 Method
2, resp. Method 3, filters out between 2.5% and 12%, resp.
between 3.2% and 15.9%, of the line segments. Therefore, for
most candidate segments the time spent doing filtering is pure
overhead. Furthermore, filtering requires only a few floating
point operations but also several if-then-else statements. The
resulting branch instructions slow down executions (due to
pipeline stalls) when compared to straight line code. We
conclude that, at least for the datasets and searches we have
used, our filtering methods are not effective.

One may envision developing better filtering methods to
achieve (part of the) filtering potential seen in Figure 8. We
profiled the execution of TRAJDISTSEARCH for searches S5,
S6, and S7, with no filtering, and accounting both for the R-
tree search and the distance computation. We found that the
time spent searching the R-tree accounts for at least 97% of
the overall response time. As a result, filtering can only lead
to marginal performance improvements for the datasets and
queries in our experiments. For other datasets and queries,
however, the fraction of time spent computing distances could
be larger. Nevertheless, given the results in this section, in all
that follows we do not perform any filtering.

VIII. INDEX RESOLUTION

According to the cost model in [22], index performance
depends on the number of nodes in the index, but also on
the volume and surface area of the MBBs. One extreme is
to store an entire trajectory in a single MBB as defined by
the spatial and temporal properties of the trajectory; however,
this leads to a lot of “wasted MBB space.” Representing the
object using multiple MBBs decreases the amount of empty
space by storing the object in a series of consecutive multi-
segment MBBs. The other extreme is to store each trajectory

line segment in its own MBB, as done so far in this paper and
in previous work on kNN queries [12], [13], [14], [15]. In this
scenario, the volume occupied by the trajectory in the index
is minimized, with the trade-off that the number of entries in
the index will be maximized.

Assigning a fraction of a trajectory to a single MBB,
as a series of line segments, increases overlap in the index,
as the resulting MBB is larger in comparison to minimiz-
ing the volume of the MBBs by describing each individual
trajectory line segment by its own MBB. As a result, an
index search can return a portion of a trajectory that does
not overlap the query, leading to increased overhead when
processing the candidate set of line segments returned by
the index. However, the number of entries in the index is
reduced, thereby reducing tree traversal time. To explore the
tradeoff between number of nodes in the index, the amount of
wasted volume required by a trajectory, index overlap, and the
overhead of processing candidate trajectory segments, in this
section we evaluate three strategies for splitting trajectories
into a series of consecutive MBBs, implemented as an array
of references to trajectory segments (leading to one extra
indirection when compared to assigning a single segment per
MBB). We evaluate performance experimentally by splitting
the trajectories, and then creating their associated indexes,
where the configuration with the lowest query response time
is highlighted. We leave analytical performance models of
trajectory splitting methods for future work.

A. Static Temporal Splitting

Assuming it is desirable to ensure that trajectory segments
are stored contiguously, we propose a simple method. Given a
trajectory of n line segments, we split the trajectory by assign-
ing r contiguous line segments per MBB, where r is a constant.
Therefore, the number of MBBs, M that represent a single
trajectory is M = dnr e. By storing segments contiguously, this
strategy leads to high temporal locality of reference, which
may be important for cache reuse in our in-memory database,
in addition to the benefits of the high spatial discrimination of
the R-tree (see Section IV).

Figure 10 plots response time vs. r for the S6 (Galaxy
dataset) and S7 (Random dataset) searches defined in Sec-
tion VII-B. For S6, 5 different query distances are used, while
for S7 the query distance is fixed as 15 but results are shown
for various dataset sizes for α = 1. The right y-axis shows
the number of MBBs used per trajectory. The data points at
r = 1 correspond to the original implementation (rather than
the implementation with r = 1, which would include one
unnecessary indirection).

The best value for r depends on the dataset and the search.
For instance, in the Galaxy-1M dataset (S6) using 12 segments
per MBB leads to the best performance (or M = 34). We
note that picking a r value in a large neighborhood around
this best value would lead to only marginally higher query
response times. In general, using a small value of r can lead
to high response times, especially for r = 1 (or M = 400).
For instance, for S6 with a query distance of 5, the response
time with r = 1 is above 208 s while it is just above 37
s with r = 12. With r = 1 the index is large and thus time-
consuming to search. A very large r value does not lead to the

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 55 / 173

 0

 50

 100

 150

 200

 5 10 15 20 25 30

 0

 50

 100

 150

 200

 250

 300

 350

 400

T
im

e
 (

s
)

M
B

B
s
 p

e
r

T
ra

je
c
to

ry
 (

M
)

Segments/MBB

Distance: 1
Distance: 2
Distance: 3
Distance: 4
Distance: 5

Number of MBBs per Trajectory

(a) Galaxy-1M

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 10 18 26 34 42 50 58

 0

 50

 100

 150

 200

 250

 300

 350

 400

T
im

e
 (

s
)

M
B

B
s
 p

e
r

T
ra

je
c
to

ry
 (

M
)

Segments/MBB

1M-α=1

3M-α=1

5M-α=1

Number of MBBs per Trajectory

(b) Random datasets

Figure 10. Static Temporal Splitting: Response time vs. r for (a) S6 for the
Galaxy-1M dataset for various query distances; and (b) S7 for the

Random-1M, 3M, and 5M α = 1 datasets and a query distance of 15. The
number of MBBs per trajectory, M , is shown on the right vertical axis.

lowest response time since in this case many of the segments
returned from the R-tree search are not query matches. Finally,
results in Figure 10 (a) show that the advantage of assigning
multiple trajectory segments per MBB increases as the query
distance increases. For instance, for a distance of 2 using r =
12 decreases the response time by a factor 2.76 when compared
to using r = 1, while this factor is 5.6 for a distance of 5. Note
that the difference in response times between Figure 10 (a)
and (b) are largely due to more queries within d in Galaxy in
comparison to Random for the query distances selected.

B. Static Spatial Splitting

Another strategy consists in ordering the line segments
belonging to a trajectory spatially, i.e., by sorting the line
segments of a trajectory by the x, y, and z values of the
segment’s origin. We then assign r segments per trajectory
into each MBB, as in the previous method. With such spatial
grouping, the line segments are no longer guaranteed to
be temporally contiguous in their MBBs, but reduced index
overlap may be achieved. Figure 11 plots response time vs.
r for the S7 (Random dataset) searches. We see that there is
no advantage to assigning multiple trajectory segments to an
MBB over assigning a single line segment to a MBB (r = 1
in the plot). When comparing with results in Figure 10 (b) we
find that spatial splitting leads to query response times higher
by several factors than that of temporal splitting.

 0

 1

 2

 3

 4

 5

 6

 2 10 18 26 34 42 50 58

 0

 50

 100

 150

 200

 250

 300

 350

 400

T
im

e
 (

s
)

M
B

B
s
 p

e
r

T
ra

je
c
to

ry
 (

M
)

Segments/MBB

1M-α=1

3M-α=1

5M-α=1

Number of MBBs per Trajectory

Figure 11. Static Spatial Splitting: Response time vs. r using S7 for the
Random-1M, 3M, and 5M α = 1 datasets and a query distance of 15. The
number of MBBs per trajectory, M , for each data point is shown on the

rightmost vertical axis.

C. Splitting to Reduce Trajectory Volume

The encouraging results in Section VIII-A suggest that
using an appropriate trajectory splitting strategy can lead
to performance gains primarily by exploiting the trade-off
between the number of entries in the index and the amount
of wasted space that leads to higher index overlap. More
sophisticated methods can be used. In particular, we implement
the heuristic algorithm MergeSplit in [23], which is shown to
produce a splitting close to optimal in terms of wasted space.
MergeSplit takes as input a trajectory, T , as a series of l line
segments, and a constant number of MBBs, M . As output,
the algorithm creates a set of M MBBs that encapsulate the l
segments of T . The pseudocode of MergeSplit is as follows:

1) For 0 ≤ i < l calculate the volume of the merger
of the MBBs that define li and li+1 and store the
resulting series of MBBs and their volumes.

2) To obtain M MBBs, repeat (l−1)−(M−1) times and
merge consecutive MBBs that produce the smallest
volume increase at each step. After the first iteration,
there will be l − 2 initial MBBs describing line
segments, and one MBB that is the merger of two
line segment MBBs.

Figure 12 shows response time vs. M for S6 (Galaxy
dataset) and S7 (Random dataset). Compared to static temporal
splitting, which has a constant number of segments, r per
MBB, MergeSplit has a variable number of segments per
MBB. From the figure, we observe that for the Galaxy-1M
dataset (S6), M = 30 leads to the best performance. Com-
paring MergeSplit to the static temporal splitting (Figures 10
and 12 (a)), the best performance for the S6 (Galaxy dataset) is
achieved by the static temporal splitting. For S7, the Random-
1M, 3M, and 5M α = 1 datasets, MergeSplit is only marginally
better than the static temporal splitting (Figures 10 and 12 (b)).
This is surprising, given that the total hypervolume of the
entries in the index for a given M across both splitting
strategies is higher for the simple static temporal splitting,
as it makes no attempt to minimize volume. Therefore, the
trade-off between the number of entries and overlap in the
index cannot fully explain the performance of these trajectory
splitting strategies for distance threshold queries.

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 56 / 173

 0

 50

 100

 150

 200

 250

 300

 350

 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

T
im

e
 (

s
)

MBBs per Trajectory (M)

Distance: 1
Distance: 2
Distance: 3
Distance: 4
Distance: 5

(a) Galaxy-1M

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 10 18 26 34 42 50 58

T
im

e
 (

s
)

MBBs per Trajectory (M)

1M-α=1

3M-α=1

5M-α=1

(b) Random datasets

Figure 12. Greedy Trajectory Splitting: Response time vs. M for (a) S6
for the Galaxy-1M dataset for various query distances; and (b) S7 for the

Random-1M, 3M, and 5M α = 1 datasets and a query distance of 15.

D. Discussion

A good trade-off between the number of entries in the
index and the amount of index overlap can be achieved by
selecting an appropriate trajectory splitting strategy. However,
comparing the results of the simple temporal splitting strat-
egy (Section VIII-A) and MergeSplit (Section VIII-C), we
find that volume minimization did not significantly improve
performance for S7, and led to worse performance for S6.
In Figure 13, we plot the total hypervolume vs. M for the
Galaxy-1M (S6) and the Random-1M, 3M, and 5M α = 1
(S7) datasets. M = 1 refers to placing an entire trajectory in a
single MBB, and the maximum value of M refers to placing
each individual line segment of a trajectory in its own MBB.
For the static temporal splitting strategy, M = 34 leads to the
best performance for the Galaxy-1M dataset (S6), whereas this
value is M = 30 for MergeSplit. The total hypervolume of the
MBBs in units of kpc3Gyr for the static temporal grouping
strategy at M = 34 is 3.6 × 107, whereas for MergeSplit at
M = 30, it is 1.62 × 107, or the MBBs require 55% less
volume. Due to the greater volume occupied by the MBBs,
index overlap is much higher for the static temporal splitting
strategy. Figure 14 (a) plots the number of overlapping line
segments vs. M for S6 with d = 5. From the figure, we
observe that independently of M , MergeSplit returns a greater
number of candidate line segments to process than the simple
temporal splitting strategy. MergeSplit attempts to minimize
volume; however, if an MBB contains a significant fraction
of the line segments of a given trajectory, then all of these

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 50 100 150 200 250 300 350 400

T
o
ta

l
H

y
p

e
rv

o
lu

m
e

MBBs per Trajectory (M)

Temporal Splitting
MergeSplit

(a) Galaxy-1M

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

 50 100 150 200 250 300 350

T
o

ta
l
H

y
p
e

rv
o

lu
m

e
MBBs per Trajectory (M)

Temporal Splitting: 1M-α=1

Temporal Splitting: 3M-α=1

Temporal Splitting: 5M-α=1

MergeSplit: 1M-α=1

MergeSplit: 3M-α=1

MergeSplit: 5M-α=1

(b) Random-1M

Figure 13. Total hypervolume vs. M for the static temporal splitting
strategy and MergeSplit. (a)for the Galaxy-1M dataset (S6); and (b) for the

Random-1M, 3M, and 5M α = 1 datasets (S7).

segments are returned as candidates. The simple temporal
grouping strategy has an upper bound (r) on the number of
segments returned per overlapping MBB and thus can return
fewer candidate segments for a query, despite occupying more
volume in the index. For in-memory distance threshold queries,
there is a trade-off between a trajectory splitting strategy that
has an upper bound on the number of line segments per MBB,
and index overlap, characterized by the volume occupied by
the MBBs in the index. This is in sharp contrast to other
works that focus on efficient indexing of spatiotemporal objects
in traditional out-of-core implementations where the index
resides partially in-memory and on disk, and therefore volume
reduction to minimize index overlap is necessary to minimize
disk accesses (e.g., [23]).

E. Performance Considerations for In-memory and Out-of-
Core Implementations

The focus of this work is on in-memory distance threshold
queries; however, most of the literature on MODs assume out-
of-core implementations, where the number of node accesses
are used as a metric to estimate I/O activity. Figure 15 shows
the number of node accesses vs. M for both of the static
temporal splitting strategy and MergeSplit. We find that for the
Galaxy-1M dataset (S6) with d = 5, there are a comparable
number of node accesses for both trajectory splitting methods.
However, for S7 (Random-1M), on average, trajectory split-
ting with MergeSplit requires fewer node accesses and may
perform significantly better than the simple temporal splitting

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 57 / 173

 2e+08

 4e+08

 6e+08

 8e+08

 1e+09

 1.2e+09

 1.4e+09

 1.6e+09

 1.8e+09

 15 20 25 30 35 40 45 50 55 60 65

N
u

m
b
e

r

MBBs per Trajectory (M)

Temporal
MergeSplit

(a) Galaxy-1M

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 10 15 20 25 30 35 40 45 50

N
u

m
b

e
r

MBBs per Trajectory (M)

Temporal
MergeSplit

(b) Random-1M

Figure 14. Total number of overlapping segments vs. M for the static
temporal splitting strategy and MergeSplit. (a) S6 for the Galaxy-1M dataset

with d = 5; and (b) S7 for the Random α = 1 dataset with d = 15.

strategy in an out-of-core implementation. For example, in
Figure 15 (b) some values of M have a significantly higher
number of node accesses, such as values around 14, 30, 38, due
to the idiosyncrasies of the data, and resulting index overlap.
However, as we demonstrated in Section VIII-D, distance
threshold queries in the context of in-memory databases also
benefit from reducing the number of candidate line segments
returned, and this is not entirely volume contingent. Therefore,
methods that consider volume reduction, such as the Merge-
Split algorithm of [23], or other works that consider volume
reduction in the context of query sizes, such as [24], may not
be entirely applicable to distance threshold queries.

A single metric cannot capture the trade-offs between
the number of entries in the index, volume reduction, index
overlap, and the number of candidate line segments returned
(germane to distance threshold queries). However, for Galaxy-
1M (S6), a value of M = 34 and M = 30 lead to the best
query response time for the temporal splitting strategy and
MergeSplit, respectively (Figures 10 (a) and 12 (a)). Figure 16
shows the number of L1 cache misses vs. M for S6 with d = 5.
The number of cache misses was measured using PAPI [25].
The best values of M in terms of query response time for both
of the trajectory splitting strategies (M = 34 and M = 30)
roughly correspond to a value of M that minimizes cache
misses. Thus, cache misses appear to be a good indicator of
relative query performance under different indexing methods.
Future work for in-memory distance threshold queries should
focus on improved cache reuse through temporal locality of

 1.5e+08

 2e+08

 2.5e+08

 3e+08

 3.5e+08

 15 20 25 30 35 40 45 50 55 60 65

N
o

d
e

 A
c
c
e

s
s
e

s

MBBs per Trajectory (M)

Temporal
MergeSplit

(a) Galaxy-1M

 2e+06

 2.5e+06

 3e+06

 3.5e+06

 4e+06

 4.5e+06

 10 15 20 25 30 35 40 45 50

N
o

d
e
 A

c
c
e
s
s
e
s

MBBs per Trajectory (M)

Temporal
MergeSplit

(b) Random-1M

Figure 15. Node Accesses vs. M for the static temporal splitting strategy
and MergeSplit. (a) S6 for the Galaxy-1M dataset with d = 5; and (b) S7

for the Random α = 1 dataset with d = 15.

 2.8e+09

 3e+09

 3.2e+09

 3.4e+09

 3.6e+09

 3.8e+09

 4e+09

 15 20 25 30 35 40 45 50 55 60 65

L
1

 C
a

c
h

e
 M

is
s
e
s

MBBs per Trajectory (M)

Temporal
MergeSplit

Figure 16. L1 cache misses vs. M for the static temporal splitting strategy
and MergeSplit for the Galaxy-1M dataset (S6) with d = 5.

reference (which is in part obtained by storing segments
contiguously within a single MBB).

IX. CONCLUSION

In-memory distance threshold queries for trajectory and
point queries on moving object trajectories are significantly
different from the well-studied kNN searches [12], [13], [14],
[15]. We made a case for using an R-tree index to store
trajectory segments, and found it to perform robustly for two
real world datasets and a synthetic dataset. We focused on 4-
D datasets (3 spatial + 1 temporal) while other works only
consider 3-D datasets [12], [13], [14], [15].

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 58 / 173

We found the popular “search and refine” strategy to be in-
effective for distance threshold searches since many segments
returned by the index search must be excluded from the result
set. We have proposed computationally inexpensive solutions
to filter out candidate segments, but found that they have poor
selectivity. A more promising direction for reducing query
response time is to reduce the time spent traversing the tree
index. We demonstrated that efficiently splitting trajectories is
beneficial because the penalty for the increased index overlap
is offset by the reduction in number of index entries. We find
that for in-memory distance threshold queries, the number of
line segments returned per overlapping MBB has an impact
on performance, where attempts to reduce the volume of
the MBBs that store a trajectory may be at cross-purposes
with returning a limited number of candidate segments per
overlapping MBB. Therefore, trajectory splitting methods that
focus on volume reduction are not necessarily preferable to a
simple and bounded grouping of line segments in MBBs.

A future direction is to explore trajectory splitting methods
that achieve volume reduction while bounding the number of
MBBs used per trajectory. Another direction is to investigate
non-MBB-based data structures to index line segments, such as
that in [26]. Finally, we plan to develop algorithms for parallel
processing of in-memory distance threshold queries both for
shared- and distributed-memory executions.

One may wonder whether the idea of assigning multiple
segments to an MBB is generally applicable, and in particular
for kNN searches on trajectories [12], [13], [14], [15]. The
kNN literature focuses on pruning strategies and associated
metrics that require a high resolution index, thus implying
storing a single trajectory segment in an MBB. Furthermore,
kNN query processing algorithms maintain a list of nearest
neighbors over a time interval, which would lead to greater
overhead if multiple segments were stored per MBB. There-
fore, the approach of grouping line segments together in a
single MBB may be ineffective for kNN queries. An interesting
problem is to reconcile the differences between both types of
queries in terms of index resolution.

ACKNOWLEDGMENTS

This paper has benefited from the insightful comments of
Lipyeow Lim. This material is based upon work supported by
the National Aeronautics and Space Administration through
the NASA Astrobiology Institute under Cooperative Agree-
ment No. NNA08DA77A issued through the Office of Space
Science, and by NSF Award CNS-0855245.

REFERENCES

[1] L. Forlizzi, R. H. Güting, E. Nardelli, and M. Schneider, “A data model
and data structures for moving objects databases,” in Proc. of ACM
SIGMOD Intl. Conf. on Management of Data, 2000, pp. 319–330.

[2] R. H. Güting, M. H. Böhlen, M. Erwig, C. S. Jensen, N. A. Lorentzos,
M. Schneider, and M. Vazirgiannis, “A foundation for representing and
querying moving objects,” ACM Trans. Database Syst., vol. 25, no. 1,
2000, pp. 1–42.

[3] S. Arumugam and C. Jermaine, “Closest-point-of-approach join for
moving object histories,” in Proc. of the 22nd Intl. Conf. on Data
Engineering, 2006, pp. 86–95.

[4] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen, “Discovery
of convoys in trajectory databases,” Proc. VLDB Endow., vol. 1, no. 1,
Aug. 2008, pp. 1068–1080.

[5] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
in Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1984,
pp. 47–57.

[6] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel Approaches in
Query Proc. for Moving Object Trajectories,” in Proc. of the 26th Intl.
Conf. on Very Large Data Bases, 2000, pp. 395–406.

[7] Y. Theodoridis, M. Vazirgiannis, and T. Sellis, “Spatio-Temporal Index-
ing for Large Multimedia Applications,” in Proc. of the Intl. Conf. on
Multimedia Computing and Systems, 1996, pp. 441–448.

[8] V. P. Chakka, A. Everspaugh, and J. M. Patel, “Indexing large trajectory
data sets with SETI,” in Proc. of Conference on Innovative Data Systems
Research, 2003, pp. 164–175.

[9] P. Cudre-Mauroux, E. Wu, and S. Madden, “TrajStore: An Adaptive
Storage System for Very Large Trajectory Data Sets,” in Proc. of the
26th Intl. Conf. on Data Engineering, 2010, pp. 109–120.

[10] M. R. Vieira, P. Bakalov, and V. J. Tsotras, “On-line discovery of
flock patterns in spatio-temporal data,” in Proc. of the 17th ACM
SIGSPATIAL Intl. Conf. on Advances in Geographic Information
Systems, 2009, pp. 286–295.

[11] Z. Li, M. Ji, J.-G. Lee, L.-A. Tang, Y. Yu, J. Han, and R. Kays,
“Movemine: Mining moving object databases,” in Proc. of the 2010
ACM SIGMOD Intl. Conf. on Management of Data, 2010, pp. 1203–
1206.

[12] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Nearest
neighbor search on moving object trajectories,” in Proc. of the 9th Intl.
Conf. on Advances in Spatial and Temporal Databases, 2005, pp. 328–
345.

[13] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Algorithms
for Nearest Neighbor Search on Moving Object Trajectories,” Geoin-
formatica, vol. 11, no. 2, 2007, pp. 159–193.

[14] Y.-J. Gao, C. Li, G.-C. Chen, L. Chen, X.-T. Jiang, and C. Chen,
“Efficient k-Nearest-Neighbor Search Algorithms for Historical Moving
Object Trajectories,” J. Comput. Sci. Technol., vol. 22, no. 2, 2007, pp.
232–244.

[15] R. H. Güting, T. Behr, and J. Xu, “Efficient k-nearest neighbor search
on moving object trajectories,” The VLDB Journal, vol. 19, no. 5, 2010,
pp. 687–714.

[16] M. G. Gowanlock, D. R. Patton, and S. M. McConnell, “A Model
of Habitability Within the Milky Way Galaxy,” Astrobiology, vol. 11,
2011, pp. 855–873.

[17] N. Roussopoulos, S. Kelley, and F. Vincent, “Nearest neighbor queries,”
in Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1995,
pp. 71–79.

[18] http://www.chorochronos.org/, accessed 5-February-2014.
[19] Y. Theodoridis, J. R. O. Silva, and M. A. Nascimento, “On the

Generation of Spatiotemporal Datasets,” in Proc. of the 6th Intl. Symp.
on Advances in Spatial Databases, 1999, pp. 147–164.

[20] http://navet.ics.hawaii.edu/%7Emike/datasets/DBKDA2014/datasets.zip,
accessed 12-February-2014.

[21] http://www.superliminal.com/sources/sources.htm, accessed 5-
February-2014.

[22] B.-U. Pagel, H.-W. Six, H. Toben, and P. Widmayer, “Towards an
analysis of range query performance in spatial data structures,” in Proc.
of the 12th Symp. on Principles of Database Sys., 1993, pp. 214–221.

[23] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos,
“Efficient indexing of spatiotemporal objects,” in Proc. of the 8th
Intl. Conf. on Extending Database Technology: Advances in Database
Technology, 2002, pp. 251–268.

[24] S. Rasetic, J. Sander, J. Elding, and M. A. Nascimento, “A trajectory
splitting model for efficient spatio-temporal indexing,” in Proc. of the
31st Intl. Conf. on Very Large Data Bases, 2005, pp. 934–945.

[25] P. J. Mucci, S. Browne, C. Deane, and G. Ho, “PAPI: A Portable Inter-
face to Hardware Performance Counters,” in Proc. of the Department
of Defense HPCMP Users Group Conf., 1999, pp. 7–10.

[26] E. Bertino, B. Catania, and B. Shidlovsky, “Towards Optimal Indexing
for Segment Databases,” in Proc. of the 6th Intl. Conf. on Advances in
Database Technology, 1998, pp. 39–53.

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 59 / 173

Exploiting the Social Structure of Online Media to Face Transient Heavy Workload

Ibrahima Gueye and Idrissa Sarr
LID laboratory

Université Cheikh Anta Diop
Dakar, Senegal

(ibrahima82.gueye, idrissa.sarr)@ucad.edu.sn

Hubert Naacke
LIP6 Laboratory

Sorbonne Universités, UPMC Univ Paris 06
Paris, France

hubert.naacke@lip6.fr

Abstract—A challenging issue many online social media have to
deal with is facing egocentric workloads that are very frequent.
Such a situation is generally due to the simultaneous access of
several users to a small piece of data owned by a user or a
few ones. A key example is the number of comments posted
on the Manchester United Facebook page after the manager
announced his retirement (more than 1 billion comments on
the related subjects). Since egocentric workloads are transient,
two dimensions must be taken into account to deal with them:
(1) the rapidity to react to the peak load and, (2) the lightness
of the solution or its low cost. Therefore, the first goal of this
paper is to exploit the underlying social structure of online social
media to localize from which the peaks take place and to face
them in their early stage. The second goal is to combine an
elastic approach with a load balancing process to sustain the
overall performances while minimizing the required resources.
Our solution is evaluated through simulation with SimJava. The
obtained results show the soundness of the approach as well as
it feasibility.

Keywords–Transaction, Social workload, Load balancing, Elas-
ticity.

I. INTRODUCTION

Social media applications are characterized by online col-
laborative actions such as chatting, tagging and content shar-
ing. The user experience is more and more guided by her social
context or social position, i.e., a user with many connections
tends to be involved in frequent online interactions. As reported
in [1], the data belonging to the most popular users are the most
frequently accessed. Furthermore, when a popular user acts in
response to another user’s action, this can causes other users
to respond subsequently, generating a so called net effect. As
a result, users may simultaneously access the same piece of
data for a short period of time. We say that we face a set
of egocentric workloads that are characterized by a socially
dependent and fluctuating access pattern. The reason is that
the overall workload derives from few users and their close
contacts based on the status or role of users. To face egocentric
workloads, a challenging issue is to deliver fast, scalable and
cheap data access, using a reduced amount of resources.

A. Motivations and Problem Statement

The interactions between users as well as the actions
(comment, tag, etc.) made by a user on the items owned by
others shape the well-known social structure. This structure is
generally represented as a graph of a set of vertices with edges
between them. Vertices are users or their items while edges are
interactions or links between users. The number of neighbors
or edges of a user is called centrality degree. A node with

a high number of neighbors is called a popular or important
node and has therefore a high centrality degree value. Less
important nodes are called peripheral nodes. Figure 1 depicts
a social network where big rings represent popular users and
small rings designate peripheral users.

It is obvious that popular users are involved more fre-
quently than peripheral ones in online interactions. That is,
paramount of the workload derives essentialy from popular
users and is the main reason we characterize the social
workload as a set of egocentric workloads. Furthermore, an
egocentric workload is transient since users behaviors are
event-dependent and old events attract less attention leading
to a disappearence of the related workload.

However, based on the interactions of users or their similar-
ity, nodes can form groups for which the network connections
are dense, but between which they are sparse. Such groups
are called communities [2][3] or circles as in Google+. For
instance, Figure 1 shows different groups: users within a group
have a similar color. Moreover, users interact more with their
neighbors within a circle than with others belonging to another
circle. Thus, it is worth-noting that the overall workload is
biaised since the social position of a user as well as the size of
its group impacts the number of interactions within the circle.
Whatsoever the particularity of the social workload, it is
made of by read and write intensive operations since (1) the
overall number of users is very important and (2) almost
every user action causes data read, insert and update. That
is, even though the actions or interactions done by users are
socially dependent, the generated workload is quite the same
as the workload of classical applications (i.e., set of read and
write operations). Therefore, egocentric peak load observed
from social applications can be handled by using and adapting
traditional techniques such as data partition and replication.
The main issue to address therefore is how such techniques can
be used for facing peak load while including social features. To
face this issue, three problems may be formulated as follows

• How to detect data causing transient workload in its
early stage within a social network?

• How to partition such data while ensuring fast inter-
actions between a user and its contacts?

• How to forecast data that will cause a peak and to
anticipate it based on the social structure?

Here are the set of problems we unveil and that we want
to deal with through this paper. It is worth noting that even
though the peak load is transient, it lasts thousand times longer

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 60 / 173

Figure 1: A social network graph.

than the time to execute a transaction. That is, partition and
replication done for facing a peak load are cost for value.

B. Contributions and paper organization

Our goal in this paper is to face the previous problems
and the key novelties of our approach can be summarized as
follows.

• A fine-grain identification of a peak load. Actually, we
propose 1) a naive approach that relies on the number
of transactions accessing a partition, and, 2) a social-
based approach that uses interactions between users.
The last approach is in fact a peak prediction model
and it is designed using the homophily principle,
which states that the flow of information from person
to person is a declining function of distance in Blau
space [4]. That is, it is possible to locate the scope of
interactions initiated by a user, and to assess whether
such interactions may lead to a peak.
Moreover, since social network is composed by a set
of communities, peak origins are located in those
communities. Such a mechanism has the edge to
isolate the peak origin and to face it locally.

• A lightweight data migration method that moves only
relevant data, on a pull-on-demand basis, with minimal
disruption on transactions processing. The data migra-
tion method is coupled with an elastic load balancing
mechanism that is optimized for reducing resource
usage while maintaining bounded response time.

The rest of this paper is structured as follows: in Section
II, we present the the social workloads, basic concepts and
global architecture of our system. In Section III, we show how
we detect peak load as well as the prediction model we use
to anticipate their appearance. In Section IV, we present the
management of transient heavy workload. In Section V, we
present the validation of our approaches and we highlight, in
Section VI, a few related works before we conclude in Section
VII.

II. BASIC CONCEPTS AND GLOBAL ARCHITECTURE

In this section, we describe the global architecture we use
and the social workloads we plan to face.

A. Social workload

The workload is made of user actions. A user action is a
sequence of transactions and we assume that each transaction
reads and writes data owned by a single user. A user may share
data with other users and grants consequently read and/or write
permissions on them.
Actually, with a social networking website as Facebook or
Google+, users have a various sort of data that may concern
distinct subsets of their contacts. In other words, the user
belongs to several circles. For instance, users may have pro-
fessional circles that contain their items related to their profes-
sional activities and that will attract more their colleagues and
collaborators. They can share a private circle with only their
close friends and relatives. Therefore, the items of one user
may be seen as a set of cohesive data that are more attached
to a specific circle.
Furthermore, the workload looms from users with various
popularity levels. Thus, a peak load may be observed on
so called popular data belonging to popular users. Since all
popular users are not active at the same time, therefore, the
overall workload is not distributed uniformelly over circles
as well as over popular users (say we face a non-uniform
distribution of the workload). In other words, the workload
of the group i can be light while the one of the group j is
heavy. With this insigth, it is trivial to identify groups with
peaks or those underloaded. Getting this kind of information
has the edge to apply a selective mechanism to face peak load
within a group while minimizing the cost and required time.

B. Architecture

We devise an architecture using two layers: the routing
layer and the datastore layer (see Figure 2). Our solution
is a middleware that serves as an interface with the data
manipulation procedures of applications. The routing layer is
made of a set of nodes called client nodes (CN) and routers
while the datastore layer contains database nodes (DB) that
store data and execute queries. Data are stored on DB nodes
by using community or cricle configuration in such a way
that all related data of one group are on the same DB node.
This is possible since the number of users within a circle is
generally limited and hence, the related data can be hold in
one single DB node. Transactions are sent by CN to any router,
which afterwards forwards them to the right DB based on their
access classes for execution. Note that each router stores a
part of the global index, which allows them to locate data
among database nodes. Transactions accessing the same data
are routed in a serial way and the DBs guarantee consistent
execution of transactions without locking.

Moreover, the routing layer includes a special and useful
node called Controller node (CtlN). It monitors the database
layer for detecting whether a DB becomes a bottleneck or tends
to be underloaded. In this respect, every DB sends periodically
its load to the CtlN in order to permit overload detection
based on a threshold. We mention that once a DB is found
as overloaded, a migration process consisting of moving part
of its data to a less loaded DB or a new one is initialized.

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 61 / 173

Figure 2: System architecture.

Reversely, an underloaded DB will bring out the merge of its
data with another DB that has not enough load.

Furthermore, DB nodes are able to communicate between
them for ensuring data migration from one to another in a
consistent manner. To figure out the part of data to migrate
from one to another DB, we rely on metadata hold via a
data structure called trace. The trace records information about
transactions such as their identifiers, their arrival dates, their
waiting times.

III. PEAK LOAD DETECTION

A. Definitions

We consider a set of nodes N . Each node Nk ∈ N is
a (virtual) machine managing the database DBk. Each DBk
node stores a set of partitions, pki denoting the partition i
of database k. During operation, a DB node executes the
incoming transactions in sequence. Let ω denote the most
recent observation window, expressed in second. Each DB
node logs the incoming transactions requests: Tω(pki) denotes
the set of transactions requesting the partition pki , which either
terminated during ω or are not currently terminated (i.e.,
pending or running transactions). The log informs about the
current execution time and waiting time of each transaction. To
quantify the node load, we aggregate recent log information,
let RTω(pki) denote sum of the execution and waiting times
of all transactions in Tω(pki).

We define load(pki) as the mean load of pki within ω as:

load(pki) =
RTω(pki)

| ω |
(1)

Since a DB node may store many partitions based on its
storage capacity, we define the load of a DB node as the sum
of the loads of all partitions under its control. Formally, the
load of a DBk holding n partition is:

load(DBk) =
∑
i

load(pki) | pki ∈ DBk (2)

Let τk be the standalone transaction processing time at
node DBk. Let rtk be the observed transaction response

time (including the waiting time). The load(DBk) can be
considered as a penality factor impacting rtk as follows:
rtk = τk.load(DBk)

B. Detecting peak load

We define the stability conditions of every DB node as
the conditions under which it is neither overloaded nor under-
loaded. More precisely, we expect every transaction to be
executed in bounded time. Let Tmax denote the maximum
expected response time of a transaction. For each DB node,
we expect rtk ≤ Tmax, that is, the following condition must
hold:

load(DBk) ≤ Tmax
τk

(3)

Reversely, a node is considered under-loaded if it remains
idle (i.e., no transaction execution). Thus any DB node must
satisfy the following condition:

load(DBk) > 0 (4)

A node is detected as overloaded (resp. idle) if the
condition (3) (resp. (4)) does not hold for a given amount
of time ωoverload (resp. ωidle). It is worth noting that Tmax
as well as the size of the time windows ωoverload and ωidle,
are key performance indicators. Tmax can be set based on the
SLA of the of cloud provider, while ω values are tuned in
order to make accurate decisions.

C. Identifying peak origins

A peak load occurs at a DB node if one or many partitions
are overloaded, resulting in slow response time. With this
respect, finding the origins of a peak can be summarized
intuitively as identifying the sufficient set of partitions, with the
highest load, that correspond to the extra load ∆load defined
as:

∆loadk = load(DBk)− Tmax
τk

(5)

For each overloaded DBk node, we sort its set of partitions
{pik} in descending order of load(pki). Then, we determine a
subset Mk of {pki } such that:∑

pki ∈Mk

load(pki) ≥ ∆loadk (6)

Notice that the size of Mk is minimal since Mk is a prefix of
the ordered set {pki }. This aim to further reduce the number of
partitions to move. Next, we will move iteratively all partitions
in Mk, to restore DBk in a normal load status.

D. Predicting peak origins

The peak origin is identified previously based on the load
of the partition. That is, we gather some statistics during a set
of time windows before being able to detect peak. Briefly, we
detect peak after their arrivals. However, we should be able
to detect whether a pic will arrive soon based on the social
interactions. We aim in this section to predict when a peak
can happen based on data social characteristics or the social
graph.
In fact, since each interaction corresponds to a transaction,
thus, it is possible to estimate the number of transactions that
are related to a user ui and his/her related data. Therefore,

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 62 / 173

the partition that stores data of ui can be continually checked
whether it is overloaded or not.
To reach our goal, we rely entirely on the homophily principle,
which states that the flow of information from person to person
is a declining function of distance. Thus, using the degree
centrality of nodes or its neigbhorhood can help to locate the
scope of interactions initiated by a user, and to assess whether
such interactions may lead to a peak.

We start from the point that each neighbor of ui may either
partake to ui’s activities or not. Let pm be the probability that
m neighbors are involved in a given activity ai of ui. Thus,
the number of transactions associated with ai is approxima-
tively equal to m when considering that each neighbor of ui
reacts only one time to ai. Therefore, it is trivial to express
the social load Ls(p

k
i) of the partition pki storing ui’s data

by using Equation 1. For sake of presentation, we assume
Ls(p

k
i) = χ.m, where χ is the mapping function that expresses

the load in terms of response time. Once Ls(pki) is obtained,
we consider two possible states for pki : acceptable (A) and
overloaded (O). The partition is overloaded if Ls(pki) ≥ Tmax.
Given an activity ai of ui, its neigbhors can either partake to it
or not, thus we can define a set of Bernoulli random variables
X = X1 + X2 + ... + Xn where Xl is representing a situation
in which actor l have participated to ai. Hence, the sum of
such independent variables S follows the binomial distribution
∼ B(n, p), from which we derive the probability pm of having
m actors during an activity.

pm = p(X = m) =

(
n

m

)
pm(1− p)n−m, (7)

where p is the probability that an actor participates to an
activity and (1 − p) the probability it misses it. Moreover,
the probability of having m neighbors interacting during N
activities is

N∏
i

pm. (8)

Once this probability defined, we set a threshold γ beyond
which the likelihood of having Ls(p

k
i) = χ.m is very high,

i.e., the pic load prediction is more accurate. Formally,

N∏
i

pm ≥ γ (9)

with γ a threshold based on the average participation rate of
users. This approach has the advantage to take into account
interactions of social network and therefore helps to forsee a
peak once some users start interacting.

IV. FACING TRANSIENT WORKLOAD

The main idea of facing transient workload is to migrate
data of overloaded partitions to a less loaded DB. To this
end, we proceed by selective fragmentation and migration that
directly takes the overloaded partitions and distribute them to
less loaded databases. The problems we face are twofold: 1)
identify the database candidate that will receive the extra load
and, 2) process the migration mechanism.

A. Naive Identication of DB candidates

The basic and naive approach consists of using the less
under-loaded DB as candidates to receive extra loads. Basi-
cally, when a database is chosen to receive a load from another
database, it must remain not overloaded. The naive algorithm
of facing a peak of DBk works step by step as follows:

• For each pki in Mk (see section III-C) that is over-
loaded, evaluate its load;

• Find all DB candidates that are not overloaded and
able to receive load(pki) without being overloaded
afterwards. In fact, DBd is a candidate destination to
receive load(pki) if:

load(DBd)) ≤
Tmax
τd
− load(pki) (10)

• If there is no database able to receive pki , then the
condition (10) is checked for pki+1.

• After each pki migration, Mk is updated. If Mk still not
empty and if no database is able to receive its content
then we start a new DB instance and the Mk’s content
is allocated to it.

This approach has the edge to be simple and easy to be imple-
mented and works well for rather regular, slowly fluctuating,
workloads. However, in case of stressed workloads generating
frequent peaks, this may lead to cascading migrations, i.e.,
migrating data from a DB that just previously received data
from another DB. We need to better anticipate workload
fluctuations in order to avoid overloading a DB, which receives
an extra load recently. To this end, we propose to take into
account the social characteristics of the data. We will exclude
a DB candidate that stores data of important users, since it has
a high probability to become overloaded in a near future.

B. Social-based identification of DB candidates

As mentioned before, important users hold data that are
usually the peak origins. An intuitive approach can be to
stave off gathering data of several important users in the same
database. To this end, we rely on the user interactions graph
when migrating data. That is, before moving data of DB1 to
DB2 we check if the latter does not have important users and
if neighbors of such users are likely to participate to activities.
In fact, we replace step 2 of the naive approach by an
identification method based on the prediction model that uses
graph interactions. A DB is a candidate if the data of users it
holds respect the model. The other steps are kept unchanged.

C. Migration process

We use a similar migration mechanism as in Relational
Cloud [5] and ElasTraS [6]. Data is lazily fetched from the
source as needed to support transactions on the destination. In-
flight transactions are redirected to the destination. Once the
data to be migrated and their destination DB are identified, the
migration process starts; it consists of two steps:

• First, the initialization step. The source DB informs its
associated router and the destination DB. The router
spreads this information to the other routers. The
indexes, which locate the data partitions are updated.
From now, the future transactions on that data are

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 63 / 173

redirected to the new destination DB. This initiates
load balancing. However, at this stage, no data is
transmitted yet. Only the indexes are updated and the
destination DB is ready for inserting new data when
needed.

• Once the initialization step is done, all the transac-
tions accessing the migrated data are routed to the
destination DB. When the destination DB receives a
transaction on the migrated data, it pulls the pieces of
the data that the transaction intends to access, from
the source and write it to the DB destination. And so
forth, the pieces of the migrated data are transmitted to
the destination DB on demand until completion. This
pull on demand migration process has the advantages
(i) to allow the source DB to alternate data transfer
and transaction processing, which reduce the overhead
(waiting time) due to the migration; and (ii) to migrate
just the needed part of the data. In fact, even if a data
have to be migrated, only actually accessed pieces of it
are transmitted from the source DB to the destination
DB. This aims to reduce the amount of transmitted
data, saving communication resource.

• Preventing continuous migration of a partition We as-
sume that if a partition pki of database DBk is migrated to
another newly initialized DBz then the maximum load of that
partition pki could not exceed the DBz capacities. That means
this partition won’t be migrated anymore for overload reasons.

D. Example

Given the database {p1..p10000}. Each pi represents one
users’ data. The data are distributed among three DB nodes
DB1 to DB3 of various processing capacity. The standalone
processing time of a single transaction at DB1, DB2, and
DB3 is τ1 = 20ms, τ2 = 10ms, τ3 = 8ms respectively.
The users require a maximum response time Tmax equals
to 100ms. Thus, the maximum supported load at DB1 is
Tmax

τ1
= 5. Respectively, DB2 and DB3 support a maximum

load of 10 and 12.5.
During operation, each DB node process incoming transactions
in sequence, queuing pending transactions. We see in Figure 3,
two (red colored) transactions pending at node DB1: they
will wait too long and exceed Tmax; such case requires
data migration. To this end, during the last period ω (10s),
we measure at node DB1, the following workload values:
load(p11) = 1.4, load(p17) = 2.1 and load(p18) = 3.5, which
sums to load(DB1) = 7. The amount of extra load at DB1 is:

∆load1 = 7− Tmax

τ1
= 2

The smaller load(p1i) value greater than ∆load1 is load(p17) =
2.1. Thus, migrating p17 will cause to drop 2.1 of extra load,
and to return under Tmax response time.
Finally, to find a destination candidate, we measure the amount
of ∆load that non-overloaded DBs could accept: ∆load values
are 1 for DB2, which is too small compared to our need, and
2.5 for DB3, which suits our need. The migration operation
give the result we can see in Figure 4.
Note that while estimating the availability a DB node (i.e.,
the maximum load it may accept), we take into account the

Figure 3: Example: State before migration.

Figure 4: Example: State after migration.

predicted load of its important users so to prevent cascading
migrations.

V. VALIDATION

In this section, we evaluate the overall performances of our
approach and we answer the following questions: (i) how long
does it take the system to respond to an overload? (ii) What
is the cost of facing to an overload? (iii) What is the impact
of the reconfiguration on transaction latency? (iv) Does the
system can ensure a response time below a given thresholdd
for more than 90 % of cases? (v) How does the number of
DB evolve, depending on the workload?
We begin by describing the environment and the tools used
during the experiments. Afterwards, we describe the experi-
ments and their results while answering the unveiled questions.

A. Experimental setup

We use Simjava [7] to simulate our approach and to eval-
uate it. Simjava is a toolkit (API Java) for modeling complex
systems. It is based on discrete events simulation and includes
facilities for representing simulation objects. We implement
each of entities: Client nodes (CN), Routeurs, Database nodes
(DB) and the Controller node (CtrlN). We use during the
simulations, some data structures to represent the storage
layer. Each entity is embedded into a thread and exchanges
with others through events. During simulation experiments,
we focus on the reaction of our system against an heavy and
transient workload, and the evolution of the DB nodes. The
experiments were conducted on an Intel duo core with 2 GB
of RAM and 2.66 GHz running under Ubuntu LTS 12.04.

In the experiments, we implemented the social workload
using the algorithm described below. In all experiments, we

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 64 / 173

started with a small size system (relatively to the number of
running machines): one Router and two DB nodes, which store
all the data. All transactions are read and write accesses.

1) Algorithm for workload generation

We aim to generate the load peaks in a controlled way,
ensuring that the load at each partition (i.e., load(pki)) cor-
responds to a given value. Indeed, the load values at each
partition characterizes the workload pattern. We propose an
algorithm to generate the workload, which follows the biased
(e.g., power-law) pattern of social networks, as described
in [1], i.e., the data of users with a high centrality degree
receive a higher load. Accordingly, we control how many
users are concurrently accessing each partition. Without loss
of generality, we assume that a user involved into a peak load
is accessing only one partition, as long as the peak occurs.
Notice that a user may still access several partitions if her
session lasts longer than the peak duration.

More precisely, we design an algorithm to assign users
to partitions. We also change this assignment dynamically
such that the overall data access frequency follows the same
distribution as the underlying centrality degree distribution.
Our algorithm takes as input the number m of partitions,
the number U of users, the peak duration D in seconds,
a distribution function f (e.g. the zipfian function), and the
amount of work to do in a run expressed as the number N of
transactions to process.

• We assess the distribution of the N transactions to the
m partitions. We use f to get the number of accesses
Aki to each partition pki , such that the sum of all the
Aki values equals N .

• We distribute the U users to a subset of the partitions
such that there is Aki users per partition, and the sum
of the Aki of the partitions in that subset equals U .

• For D seconds, every user submits a sequence of
transactions to its assigned partition.

• Then we redistribute the users to another subset of
the partitions; then we continue the run for D more
seconds, redistribute again, and so on until all the
partitions have been accessed by Aki users.

B. Experiments

1) Reaction to unexpected overload

The objective of this experiment is to assess how our
system reacts against a higher load and how fast this is done.
The results of the experiment are depicted on Figures 5 and 6.
Data are horizontally partitioned and each DB node stores 50%
of the overall data. We consider a heavy load on a small range
of data that does not change during the experiment. Since we
use a zipfian distribution to generate this range of hot data,
most of them are for the first hundred users and are stored on
DB0. We set a threshold of one second for the response time.
We observe that the system handles the overload situation a
few seconds after it starts: hot data are identified and the load
is balanced between DB0 and DB1. Actually, after a peak
arrival, one can see it does not take a long time to our system
to deal with the peak and to stabilize the latency. The difference
between results obtained on DB0 and DB1 is mainly due by

Figure 5: Reaction to a high and subite load at DB0.

Figure 6: Reaction to a high and subite load at DB1.

Figure 7: Not controlled: Response times on DB0 increases rapidly while the number of
users increases (peaks are on DB0).

the fact that data are moved from DB0 to DB1. That is, it will
take more time to DB1 to store arriving data and to process
afterwards transactions on such data. Moreover, the workload
on DB0 is slightly more dense than the one on DB1.

2) Not controlled vs Controlled system

This experiment highlights the impact of controlling the
peak load on the performances. In this respect, we compare
our system with another one without a peak load management.
Results of such comparison are shown on Figures 7 and 8.
To this end, the load is gradually increasing from 500 to
1500 users at regular intervals. As expected, the response time
increases drastically with a non-controlled system as pointed
out by Figure 7. Meanwhile, the response time increases in a
logarithmic fashion with our system (see Figure 8).

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 65 / 173

Figure 8: Controlled: Response times on DB0 increases slowly.

Figure 9: number of DB vs. workload variation.

3) Number of resources used

In this experiment, we aim at computing the number of
DB used when the load varies. The main goal is to check
whether the total number of DB decreases or increases when
the workload changes. The load varies from 150 to 300
concurrent users. After a while (i.e., one minute), we reduce
the number of clients till 95% of them are off. We set the
latency threshold to one second. As one can see on Figure
9, the number of DB nodes grows from 2 to 5 when the
workload is increasing. When the workload becomes lighter,
the number of DB nodes decreases till we get the initial
configuration. Our load balancing algorithm achieves to save
computing resources.

C. Futher experiments and prototype

We still conducting our experiments in a real-world cloud
environment: the Amazon EC2. In this thorough experiments,
we use the Oracle NoSQL Database for the storage layer and
each of entities (i.e., Client nodes (CN), Routeurs, Database
nodes (DB)) is embeded in a virtual machine.

The first obtained results are promising and confirm what
we got with SimJava. We will publish this results in an
extended subsequent version of this work as soon as possible.

VI. RELATED WORK

Elasticity and load balancing are essential features to opti-
mize the operation cost in data management systems deployed
on a pay-per-use cloud infrastructure, particulary when those
data concerns some social media applications. They permit
to cope with transient and unpredictable peak loads in the
involved systsem, if they are automated. In this context, several
works have been proposed to address the problem of elasticity

[6][8][9][10][11][12]. Most of these studies have adopted the
principle of a partitioned database [6][11] and live migration
to distribute the load. In particular, Carlo Curino et al. in [8],
ElasTras [6] and Albatross [12] that tackle the problem of
minimizing the operating costs of Database systems serving
multitenant cloud platforms by efficient resource sharing.

In the literature, most of the work that focused on pro-
moting elasticity in databases are accompanied by migration
techniques, and some studies have simply focused on the
migration itself. We can mention among them the work done
in Slacker [9], which uses hot Back-Up tools to copy the
database while allowing service continue during this phase.
The migration method is based on the available processing
capacity on the node source node in order to bound the
response time. It is a solution that prevents interruption of the
execution during the migration, but it is based on a Back-Up
solutions that are database dependent. However, the authors
argue that the Back-Up solution is not a problem since their
migration is in middleware. Another problem we raise is, as
in [10][11][12], the choice of moving a partition (a tenant in
this case) without specifying which one. The idea of moving
an entire partition is risky if we do not identify which one to
move. With the solution such as Zephyr [10] and Albatros
[12], the authors, after identifying the destination, propose
a lightweight migration method to move data to their new
destination. This migration technique uses an on-demand copy
during transaction processing. Thus, they prevent interruptions
during transaction processing. The main differences between
these solutions and ours are twofold: i) we identify the data to
move in order to face directly the source of the bottleneck;
and ii) we migrate only required data. More recently, Jan
Schaffner et al. propose RTP: Robust Tenant Placement for
Elastic In-Memory Database Clusters [13]. This work tackles
the minimization of operational costs by proposing algorithms
that elastically adapt the system size depending on the tenant
behavior. This work differs from ours in the way that they
consider a read-intensive workload and use replication on their
system.

More generally, there are some data management
systems recently produced (less than a decade)
[14][15][16][17][18][19][20][21]. These systems are usually
oriented to the management of web data (NoSQL, key/value,
document, etc..) or transactional data [14]. Some of them
provide elasticity mechanisms [15][16][17][18], but their
elasticity is rather related to the amount of current data. When
it becomes too large, they add a new node and place there a
part of the data. This assumes that load is evenly distributed
on all the data. This does not fit our context where the load
is biased.

Furthermore, elasticity is often coupled with load balancing
to minimize resources. In addition, such a minimization of
resources has an indirect effect that is the gain in energy
consumption. This specific objective called green computing,
is reached through the effective use of available resources.
In this context, many works was done or are being done to
develop new techniques for load balancing [22]. The purpose
of load balancing [23][24][25][26][27][28] is an efficient use
of resources by redistributing dynamically load through all
nodes in the system. Our algorithm is based on such principles
for for more effectiveness.

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 66 / 173

Moreover, some works are conducted for load-balancing
while avoiding distributed transactions across multiple parti-
tions [29][30]. These approaches balance data based on current
load level on that data. They use graph (hyper-graph in Sword)
partitioning algorithm to find a replacement that prevents data
distributed transactions. The main objective of these works is
to provide an improved throughput while providing fault tol-
erance and scalability for distributed OLTP data management
systems. They do not reflect the economy of resources used
as we do.

VII. CONCLUSION AND FUTURE WORK

We propose to exploit the social structure of online media
to face transient heavy workload. Our solution monitors the
load level within the database layer and identifies the hot data,
which are the sources of peaks load when overload happens.
After identifying the origins of peaks load, we proceed by mi-
grating parts of the hot data among the database nodes, with the
goal of keeping the transactions response time under a given
value. In order to fully make the identification of the sources of
peaks load, and choose the right destinations for migration, we
have developed fine-grain identification model. Furthermore,
we leverage on the social user network to anticipate the load
of popular data mostly owned by users with high centrality
degree. This allows for early data migration while prevent-
ing cascading migration. We validate our approach through
experimentation with a synthetic dataset. These experiments
show promising performances in terms of resources saved
and response time guaranty. Ongoing works are conducted to
evaluate our solution on a real-world database workloads for
social applications. To this end, we are experimenting on top of
Amazon EC2 cloud, using Oracle KVLite [31] for data storage
and access at each DB node. We are using the data and the
workload from the LinkBench [1] benchmark.

REFERENCES

[1] T. G. Amstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan,
“Linkbench: a database benchmark based on the facebook social graph,”
in Intl Conf. on Management of Data (SIGMOD), 2013, pp. 1185–1196.

[2] M. E. J. Newman, “Fast algorithm for detecting community structure
in networks,” Physical Review E, vol. 69, no. 6, Jun 2004, pp. 1–5.

[3] S. Fortunato, “Community detection in graphs,” Physics Reports, vol.
486, no. 3-5, February 2010, pp. 75–174.

[4] J. M. McPherson and J. R. Ranger-Moore, “Evolution on a dancing
landscape: Organizations and networks in dynamic blau space,” Social
Forces, vol. 70, 1991, pp. 19–42.

[5] C. Curino, E. Jones, R. A. Popa, N. Malviya, E. Wu, S. Madden,
H. Balakrishnan, and N. Zeldovich, “Relational cloud: A database
service for the cloud,” in Biennial Conf. on Innovative Data Systems
Research, 2011, pp. 235–240.

[6] S. Das, D. Agrawal, and A. El Abbadi, “Elastras: An elastic, scalable,
and self-managing transactional database for the cloud,” ACM Trans.
Database Syst., vol. 38, no. 1, 2013, pp. 5:1–5:45.

[7] F. Howell and R. Mcnab, “simjava: A discrete event simulation library
for java,” in Intl Conf. on Web-Based Modeling and Simulation, 1998,
pp. 51–56.

[8] C. Curino, E. P. Jones, S. Madden, and H. Balakrishnan, “Workload-
aware database monitoring and consolidation,” in Intl Conf. on Man-
agement of Data (SIGMOD), 2011, pp. 313–324.

[9] B. Sean Kenneth, C. Yun, M. Hyun Jin, H. Hakan, and J. S. Prashant,
“"cut me some slack": latency-aware live migration for databases,” in
Intl Conf. on Extending Database Technology (EDBT), 2012, pp. 432–
443.

[10] A. J. Elmore, S. Das, D. Agrawal, and A. E. Abbadi, “Zephyr: Live
migration in shared nothing database for elastic cloud platforms,” Intl
Conf. on Management of Data (SIGMOD), 2011, pp. 301–312.

[11] M. Umar Farooq, L. Rui, A. Ashraf, S. Kenneth, N. Jonathan, and
R. Sean, “Elastic scale-out for partition-based database systems,”
in IEEE International Conference on Data Engineering Workshops
(ICDEW), 2012, pp. 281–288.

[12] S. Das, S. Nishimura, D. Agrawal, and A. El Abbadi, “Albatross:
lightweight elasticity in shared storage databases for the cloud using
live data migration,” Proc. VLDB Endow., vol. 4, no. 8, 2011, pp. 494–
505.

[13] J. Schaffner, T. Januschowski, M. Kercher, T. Kraska, H. Plattner,
M. J. Franklin, and D. Jacobs, “Rtp: robust tenant placement for elastic
in-memory database clusters,” in Intl Conf. on Management of Data
(SIGMOD). ACM, 2013, pp. 773–784.

[14] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik,
E. P. C. Jones, S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and
D. J. Abadi, “H-Store: a high-performance, distributed main memory
transaction processing system,” Proc. VLDB Endow., vol. 1, no. 2, 2008,
pp. 1496–1499.

[15] I. VoltDB, “Voltdb,” Retrieved on March 2014. [Online]. Available:
http://voltdb.com

[16] I. Basho Technologies, “Riak,” Retrieved on March 2014. [Online].
Available: http://docs.basho.com

[17] F. Apache Software, “Apache hbase,” Retrieved on March 2014.
[Online]. Available: http://hbase.apache.org/

[18] I. CouchBase, “Apache couchdb,” Retrieved on March 2014. [Online].
Available: http://www.couchbase.com/

[19] F. Apache Software, “Apache couchdb,” Retrieved on March 2014.
[Online]. Available: http://couchdb.apache.org/

[20] m. Inc., “mongodb,” Retrieved on March 2014. [Online]. Available:
http://www.mongodb.org/

[21] I. Amazon Web Services, “Amazon dynamodb,” Retrieved on March
2014. [Online]. Available: http://aws.amazon.com/fr/dynamodb/

[22] I. C. Nidhi Jain Kansal, “Cloud load balancing techniques: A step
towards green computing,” International Journal of Computer Science
Issues (IJCSI), vol. Vol. 9, Issue 1, No 1, 2012, pp. 238–246.

[23] A. M. Nakai, E. Madeira, and L. E. Buzato, “Load balancing for
internet distributed services using limited redirection rates,” IEEE Latin-
American Symposium on Dependable Computing (LADC), 2011, pp.
156–165.

[24] Y. Lua, Q. Xiea, G. Kliotb, A. Gellerb, J. R. Larusb, and A. Greenber,
“Join-idle-queue: A novel load balancing algorithm for dynamically
scalable web services,” Intl Journal on Performance evaluation, 2011,
pp. 1056–1071.

[25] H. Mehta, P. Kanungo, and M. Chandwani, “Decentralized content
aware load balancing algorithm for distributed computing environ-
ments,” in Intl Conf. Workshop on Emerging Trends in Technology
(ICWET), 2011, pp. 370–375.

[26] B. Jasma and R. Nedunchezhian, “A hybrid policy for fault tolerant
load balancing in grid computing environments,” Journal of Network
and Computer Applications, 2012, pp. 412 – 422.

[27] G. You, S. Hwang, and N. Jain, “Scalable load balancing in cluster
storage systems,” in Middleware, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2011, vol. 7049, pp. 101–122.

[28] H. T. Vo, C. Chen, and B. C. Ooi, “Towards elastic transactional cloud
storage with range query support,” VLDB Endow., 2010, pp. 506–514.

[29] C. Curino, E. Jones, Y. Zhang, and S. Madden, “Schism: a workload-
driven approach to database replication and partitioning,” VLDB En-
dow., vol. 3, no. 1-2, 2010, pp. 48–57.

[30] Q. Abdul, K. Kumar, and A. Deshpande, “Sword: Scalable workload-
aware data placement for transactional workloads,” in Intl Conf. on
Extending Database Technology (EDBT), 2013, pp. 430–441.

[31] C. Oracle, “Oracle nosql database,” Re-
trieved on November 2013. [Online]. Available:
http://www.oracle.com/technetwork/products/nosqldb/overview/index.html

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 67 / 173

Sample Trace: Deriving Fast Approximation for Repetitive Queries

Feng Yu

Department of Computer Science

and Information System

Youngstown State University

Email: fyu@ysu.edu

Wen-Chi Hou

Department of Computer Science

Southern Illinois University Carbondale

Email: hou@cs.siu.edu

Cheng Luo

Department of Mathematics and

Computer Science

Coppin State University

Email: cluo@coppin.edu

Abstract—Repetitive queries refer to those queries that are likely
to be executed repeatedly in the future. Queries such as those
used to generate periodic reports, perform routine summarization
and data analysis belong to this category. Repetitive queries can
constitute a large portion of the daily activities of a database
system, and thus deserve extra optimization efforts. In this paper,
we propose to record information about how tuples are joined
in a repetitive query, called the query trace. We prove that the
query trace is sufficient to compute the exact selectivities of
joins for all plans of a given query. To reduce the space and
time overheads in generating the query trace, we propose to
construct only a sample of the query trace, called a sample
trace, which can be much smaller than a (complete) query trace.
A special operation, called a sample outer join, is designed to
accomplish this feat. Accurate estimations of join selectivities,
with associated confidence intervals, can be derived easily using
the sample trace. Extensive experiments show that the sample
trace can be constructed efficiently and be a controllable trade-off
between accuracy and efficiency in estimations of join selectivities
for repetitive queries.

Keywords-query optimization, query re-optimization, trace, sam-
pling method, sample trace

I. INTRODUCTION

Query re-optimization aims to refine execution plans of
queries. There has been some progress made on this subject
recently. In the literature, some [1–3], have focused on refining
execution plans on-the-fly for currently running queries, while
others [4–8], etc., on refining cost estimation for future queries.
In this paper, we are interested in identifying useful statistics
for refining cost estimation for future queries, similar to the
latter.

To refine cost estimation for future queries, a common
approach is to collect actual selectivities [7], [8], and some
other statistics of the operators [5] and use them to adjust
cost estimation for future queries. Unfortunately, selectivities
of joins obtained from one plan of a query may not be sufficient
for estimating selectivities of joins of another plan of the
same query because as the join order changes, the selectivities
of joins change, not to mention the selectivities of joins of
other queries. The problem is exacerbated by adding selection
predicates to the queries (to specify the tuples of interest). It is
probably difficult to gather all information that may be needed
for estimating selectivities of joins for all plans of all possible
queries. Therefore, in this research, we set a more realistic
goal by restricting ourselves to considering only a subset, but
a large and frequently used subset, of queries, called repetitive

queries.
Repetitive queries refer to those that are likely to be

posted repeatedly in the future. Many useful queries, such as
those used for generating periodical reports, performing routine
maintenances, summarizing and grouping data for analysis,
are repetitive queries. They are often stored in databases for
convenient reuses for the long term. Any sub-optimality in
the execution plans of such queries may mean repetitive and
continued waste of system resources and time. Moreover, as
new queries are continuously being developed, more queries
become repetitive queries. Usually, the longer a database is
in production, the greater the number of repetitive queries is
in the database; their executions can constitute a large part
of daily activities of a database system. The optimality of
execution plans of repetitive queries has a tremendous effect
on the performance of the system and thus deserves more
optimization efforts.

Unlike much of the existing re-optimization work that
focuses on refining physical execution plans of queries, our
research focuses on refining logical execution plans (or the
join order) of queries. Selectivities obtained from previous
executions can be very useful for selecting an efficient access
method (e.g., table scan and index access) and join method
(e.g., nested-loop, sort-merge, etc.), that is, physical plans,
but they may not be sufficient to estimate the selectivities of
joins of the query in other join orders accurately without using
simplifying assumptions, such as attribute independence and/or
distribution uniformity. Our approach here focuses on how to
gather sufficient information for computing the selectivities of
joins for all plans of a query accurately.

In this paper, we continue to study the query or join
trace [9], [10] that records information about how tuples are
joined in the query. We have designed operators to gather such
information so that the exact join selectivities in all join orders
for a query can be computed. To reduce the overheads incurred
in collecting a query trace, we design an innovative sample
scheme that generates only a sample of the query trace. The
sampling scheme is very effective in reducing overheads and
the experimental results have shown that the sample trace is
very accurate. With accurate selectivity estimations, running
repetitive queries in the most efficient ways becomes possible.

The rest of the paper is organized as follows. Section II
discusses previous work in relation to re-optimization. Section
III introduces the query trace. The relationships between the
traces and selectivities of queries with acyclic join graphs are

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 68 / 173

discussed in Sections IV. In Section V, we discuss deriving
a sample of the trace and using the sample trace to estimate
the selectivity of an arbitrary subquery. The sample trace is
empirically evaluated in Section VI. Section VII presents the
conclusions and future work.

II. LITERATURE SURVEY

The work in query re-optimization can be classified into
two categories: (1) re-optimizations of current (or ongoing)
queries and (2) re-optimization of future queries. Our work
falls into the second category as we try to optimize the future
executions of repetitive queries.

There has been much work that falls into the first category.
ReOpt [3] discussed re-optimization of join queries. Statistics
are collected at run-time and ad hoc heuristics are used to
determine whether or not to re-optimize by either changing
the execution plan or improving the resource allocations for
the remainder of the execution. POP [11] improved upon
ReOpt [3] by computing a more rigorous validity range for
an input to a join within which the plan is valid. When
the actual cardinality falls outside the validity range, a re-
optimization is triggered. Rio [1] further improved on POP
by computing interval estimates, instead of point estimates, of
the cardinalities. Within the intervals, they selected robust and
switchable plans to avoid repeated re-optimization and loss of
earlier pipelined work.

The second category includes [4], [11–15] Chen et al.
[14] first used query feedback to refine the data distribution,
represented by a linear combination of “model function”. Only
1-dimensional distributions were considered. Aboulnaga et al.
[4] used the actual range selectivities obtained from queries
to adjust histograms. By splitting high frequency buckets and
merging similar consecutive buckets, histograms are tuned.
Lim et al. [6] used actual selectivities to tune bucket frequen-
cies and query workloads to determine what set of histograms
to build. All these approaches are mainly concerned with
selection queries.

The pay-as-you-go approach [16] improves the idea of
LEO [7], [8] with proactive monitoring and plan modifications.
Nevertheless, it does not collect enough information needed for
estimating arbitrary logical execution plans, and it must rely
on repetitive executions of the query to collect complementary
cardinality information.

Microsoft Index Wizard [17] recommends the database
administator (DBA) on indexes. It is similar to DB2 Advisor
[18] and Oracle SQL Access Advisor [19] that are limited to
access path recommendations rather than selections of logical
execution plans.

Xplus [20] enumerates plans and their neighborhoods to
search for alternative plans with lower cost. However, it may
only find plans with local minimum values that may not
necessarily be the optimal plan.

Oracle’s Automatic Tuning Optimizer (ATO) [21] performs
SQL Profiling and what-if analysis on selected high load SQL
statements. SQL Profiles are used with other statistics to build
a well-tuned plan. However, it may not have sufficient statistics
that are needed for cost estimation of all plans of the query,
and must generate auxiliary information for estimations, which
can be time-consuming and inaccurate.

In this research, we are interested in gathering sufficient in-
formation about a query during execution so that an optimizer
can use the information to find the best join order, or the best

logical execution plan, for the query. Existing re-optimiation
works, such as POP, Rio, and LEO can be very effective
in refining physical execution plans of queries, e.g., access
methods (e.g., table scan, and index access and join methods
(e.g., nested loop, sort-merge, and hash join using the actual
selectivities obtained from the feedback. However, they may
fall short of optimizing logical execution plans of the queries
because as the join orders change, the selectivities of joins in
alternative plans change too. It requires more information than
just the selectivities of operators of the current plan to estimate
the selectivities of joins of alternative plans accurately.

III. QUERY TRACE

When a query is being processed, information about how
tuples are joined is gathered. We intend to use this information,
called the query or join trace, to estimate selectivities of joins
in all execution orders.

We use tuple IDs to identify matching tuples in the joins
of a query in the trace. To create the trace of a query, an
ID attribute, Ri-ID, is added to (the schema of) each relation
Ri. The added ID attributes are to be included in the output
(schema) of all operations to identify tuples that contribute to
the output. For example, in the join of two relations R1 and R2,
a result tuple, besides its normal set of attributes, will have two
additional attributes: R1-ID and R2-ID, whose values identify
the pairs of tuples that match in the join of R1 and R2. It is
noted that we do not need to add an ID attribute physically
to (the schema of) a relation on disk, but just append an ID
value when a tuple flows into the join operation.

In the following, we use an example to show how query
traces look like in their simplest form and how they are
generated. More complicated examples will be discussed in
subsequent sections, including using other operators, such as
outer joins, or designing new operators, such as extended outer
joins, to gather sufficient information in the trace for different
types of queries.

Example 1. (Trace) Consider a left-deep tree execution plan
P = ((R1 ⋊⋉ R2) ⋊⋉ R3) ⋊⋉ R4. To generate the trace, an
ID attribute is added to every relation and the attribute is to
be preserved in the outputs of all operators. Thus, the result
of R1 ⋊⋉ R2, as shown in Fig. 1(b), besides its normal set
of attributes, denoted by Result-Attrs, has additional attributes
R1-ID and R2-ID, called the trace of R1 ⋊⋉ R2, denoted by
T (R1 ⋊⋉ R2).

Once a query is completely processed, we can extract the
final trace, e.g., T (((R1 ⋊⋉ R2) ⋊⋉ R3) ⋊⋉ R4) in Example
1. Keeping the final trace is enough to derive the selectivities
of joins in all execution orders Consequently, we shall retain
only the final trace for selectivity re-estimation. Hereafter, the
trace of a query refers to the final trace of the query, unless
otherwise stated.

IV. SELECTIVITY ESTIMATION FOR ACYCLIC JOIN

GRAPHS USING TRACE

Let Q be a query with an acyclic join graph G(V,E) and
P an execution plan of the query. Let T (P) be the final trace
of P . Let G′(V ′, E′) be a vertex-induced connected subgraph
of G(V,E), where V ′ = {Ri1 , ..., Rim} ⊆ V and E′ ⊆ E,
representing a subquery Q′ of Q. We propose to compute the
exact selectivity of Q′ as

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 69 / 173

R1 R2 R3 R4

1

2

3

a

b

A

B

I

II

(a) Matching of Tuples

Result-Attrs R1-ID R2-ID

... 1 a

... 2 b

... 3 b
(b) Result and Trace of R1 ⊲⊳ R2

R1-ID R2-ID R3-ID

1 a A

2 b B

3 b B
(c) Trace of (R1 ⊲⊳ R2) ⊲⊳ R3

R1-ID R2-ID R3-ID R4-ID

1 a A I

2 b B II

3 b B II
(d) Trace of ((R1 ⊲⊳ R2) ⊲⊳ R3) ⊲⊳ R4

Figure 1. Query Traces with Tuple IDs

s̃el(Q′) =
|πRi1

-ID,...,Rim -IDT (P)|

|Ri1 | × ...× |Rim |
(1)

where πRi1
-ID,...,Rim -IDT (P) is the projection of trace

T (P) on attributes Ri1 -ID, ..., Rim -ID, with duplicates re-
moved.

As we shall discuss later that trace tuples, generated
by other operators (e.g., (extended) outer joins), could have
null values in some of the projected ID components Ri1 -ID,
... ,Rim-ID, and such tuples shall not be accounted for in
|πRi1

-ID,...,Rim -IDT (P)|
The cardinalities of the input relations |Ri1 |, ..., |Rim | can

be obtained easily. If Rij , 1 ≤ j ≤ m, is a base relation,
|Rij | is certainly known. If Rij represents a relation that is
immediately preceded by some selections and projection, |Rij |
can be obtained by counting the number of tuples flowing into
the join operation. Another possible way to compute |Rij | is
just to count the numbers of unique IDs in the respective ID
columns in the final trace. Thus, without regard to the access
methods used to retrieve tuples from relations, such as table
scan, index access, etc., exact |Rij | can always be obtained.

A. No Dangling Tuples in the Joins
Here, we assume no dangling tuple exists in any of the

joins in the query. The join relationships in Fig. 1(a) satisfy
this condition. Now, let us see how accurate (1) derives the
selectivities.

Example 2. (No Dangling Tuple). Consider the query and
plan in Example 1. Given the (final) query trace in Fig. 1(c),
the selectivities of R1 ⋊⋉ R2, R2 ⋊⋉ R3, and R3 ⋊⋉ R4, are
derived, by (1), as 1

2
, 1

2
, and 1

2
, respectively, which are the exact

selectivities of the respective joins. The derived selectivities
of (R1 ⋊⋉ R2) ⋊⋉ R3(= (R2 ⋊⋉ R3) ⋊⋉ R1 = (R3 ⋊⋉ R2) ⋊⋉

R1), (R3 ⋊⋉ R4) ⋊⋉ R2(= (R3 ⋊⋉ R2) ⋊⋉ R4 = (R4 ⋊⋉ R3) ⋊⋉
R2), are all 1/4; again they are all exact.

It is not a coincidence that the estimated selectivities are
exact. In fact, we can prove that if there is no dangling tuple
in any join of the query, (1) derives the exact selectivities of
all possible subqueries.

Theorem 1 (Exact Estimation without Dangling Tuples).
Let P be an execution plan of a query Q with a connected
acyclic join graph G(V,E). Let Q′ be a subquery of Q that has
a vertex-induced connected join subgraph G′(V ′, E′), V ′ =
{Ri1 , ..., Rim} ⊆ V . If there is no dangling tuple in any join
of P , (1) gives the exact selectivity of Q′ from T (P).

Proof: Please see Appendix A.

B. Dangling Tuples in Joins
Now, let us consider joins with dangling tuples. Dangling

tuples are lost in the joins. To retain matching information
about dangling tuples, we replace the joins in the original query

by the full outer joins (
◦
⋊⋉). Fig.2(c) to 2(e) show the traces

generated at different stages of query execution, where the
joins are replaced by the full outer joins. The trace in Fig.
2(c) is the same as if it were generated by a join because
there is no dangling tuple in the join. The trace in Fig. 2(d)
retains information about dangling tuples b in R2 and B in R3

by the outer join.
The estimated selectivities for R1 ⋊⋉ R2, R2 ⋊⋉ R3,

and R3 ⋊⋉ R4 are now, by (1), 1

2
(= 2

2×2
), 1

4
(= 1

2×2
),

and 1

2
(= 2

2×2
), respectively, which are exact. Note that, as

mentioned earlier, a trace tuple having a null for any of
the projected attributes is not accounted for in the respective
|πRi1

-ID,...,Ri1
-IDT (P)| because a null in a Rij -ID column of

a trace tuple indicates that there is no match found in Rij

for the respective combination of tuples to generate an output
in the (sub)query. One can easily verify that the estimated
selectivities for all other subqueries are all exact.

Theorem 2 (Exact Estimation with Dangling Tuples). Let
P be an execution plan of a query Q with a connected
acyclic join graph G(V,E). Let Q′ be a subquery of Q that
has a vertex-induced connected join subgraph G′(V ′, E′),
V ′ = {Ri1 , . . . , Rim} ⊆ V . (1) gives the exact selectivity
of Q’ from the trace obtained by replacing the joins in the
query with the full outer joins, denoted by T (P).

Proof: Please see Appendix B.
For simplicity, hereafter an outer join refers to a full outer

join, unless otherwise stated. Note also that we have used
T (P) to denote the trace of a query, regardless of whether
the trace is generated by the joins, outer joins, or even other
operators (to be discussed shortly).

V. SAMPLE TRACE AND SELECTIVITY ESTIMATION

Dangling tuples are retained in the outer and extended
outer joins. Thus, the result trace can contain more tuples than
the query result. This situation is exacerbated when relations
are preceded by selection predicates, which can eliminate
matching tuples from operand relations. In this section, we
discuss a sampling design that not only can significantly
reduce the size of result trace, but it also can provide accurate
selectivity estimations.

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 70 / 173

R1 R2 R3 R4

1

2

a

b

A

B

I

II

(a) Matching of Join Attribute Values

R1-ID R2-ID R3-ID R4-ID

1 a A I
(b) No Information about Dangling Tuples

R1-ID R2-ID

1 a

2 b
(c) T (R1 ⋊⋉ R2) Generated by Outer
Joins

R1-ID R2-ID R3-ID

1 a A

2 b

B
(d) T ((R1 ⋊⋉ R2) ⋊⋉ R3) Generated by Outer Joins

R1-ID R2-ID R3-ID R4-ID

1 a A I

2 b

B II
(e) T (((R1 ⋊⋉ R2) ⋊⋉ R3) ⋊⋉ R4) Generated by Outer Joins

Figure 2. Dangling Tuples in Relations

A. Sample Trace
A set of uniform random sample tuples is designated for

each relation. Instead of retaining all dangling tuples in the
trace, we keep only those dangling tuples that are related to
sample tuples. Certainly, query result tuples must be kept as
before. This partial trace is called a Sample Trace.

Example 3. (Sample Trace) Consider Fig. 3(a). Assume tuple
1, a, B, and I (in green and with asterisk) are picked as sample
tuples respectively from R1, R2, R3, and R4. We intend to
generate trace tuples only for query result tuples and dangling
tuples that are related to the sample tuples. In other words,
only those trace tuples containing any of 1, a, B, I, or result
tuples will be generated. That is, only the first and third rows
of the original trace (red lines in Fig. 3(a)) will be generated
to be the Sample Trace, as shown in Fig. 3(b).

Definition 1. (Sample Trace) Given a join query Q with the
plan (((R1 ⋊⋉ R2)... ⋊⋉ Ri)... ⋊⋉ Rn), and {Si}

n
i=1

are the
simple random samples of {Ri}

n
i=1

. The Sample Trace of Q,
T ∗, is the subset of the trace tuples of Q that are generated
by sample tuples from {Si}

n
i=1

.

To generate such a sample trace, the outer join operator
must be modified. The modified operator is called a Sample
Full Outer Join or just a Sample Outer Join. If the input
tuple is a sampled tuple or its joinable with a sample tuple,
then the sample outer join performs same as an outer join;
otherwise, it performs like the ordinary join operation. That
is, a dangling tuple in a join will become a result tuple of
the sample outer join only if it is a sample tuple from a base
relation or it is an intermediate result tuple derived from a
sample tuple. Certainly, a pair of match tuples generates an
output tuple in the sample outer join, like in an ordinary join.

R1 R2 R3 R4

1∗

2

a∗

b

A

B∗

I∗

II

(a) Sampled Tuple IDs with Asterisks and in Green

R1-ID R2-ID R3-ID R4-ID

1 a A I

B II
(b) Sample Trace with Tuple IDs

Figure 3. An Example of Sample Trace

1: for each tuple tr ∈ Rr do
2: for each match tl ∈ Rl do
3: output a result tuple t
4: tag[t]= tag[tl] OR tag[tr]
5: if no match found in Rl and tag[tr]=1 then
6: output a result tuples with nulls for all attributes

of Rr

7: end if
8: end for
9: end for

10: for each tuple tl ∈ Rl that found no match in Rr and
tag[tl]=1 do

11: Output a result tuple with null for all attributes of Rl.
12: end for

Figure 4. Algorithm of Sample Outer-join

Figure 4 describes the procedure of Sample Outer-join (Rl,
Rr). Let Rl and Rr be the left and right operand relations of
a sample outer join. A boolean tag tag[t] is associated with
each tuple t, with tag[t]=1 indicating that t is a sample tuple
or is derived from a sample tuple; tag[t]=0, otherwise.

B. Selectivity Estimation
Consider a query Q with the plan (((R1 ⋊⋉ R2)... ⋊⋉

Ri)... ⋊⋉ Rn). Let T ∗ be its sample trace generated by
replacing the joins with the sample outer joins. Given a
subquery q involving Ri1 ,..., Rij , ... , Rik , 1 ≤ j ≤ k,
we attempt to estimate the result size of q using T ∗. More
precisely, we will use only a subset of T ∗ that is related to the
sample tuples from Ri1 , to estimate the query size.

Let Si1 be the set of IDs of sample tuples from Ri1 . We
denote the subset of T ∗ that is related to the sample tuples
from Ri1 by T ∗

i1
, that is, T ∗

i1
= σRi1

-ID∈Si1
(T ∗). Let ni1 be

the number of result tuples of q generated by the sample tuples
from Ri1 . It can be observed that

ni1 =

∣∣∣∣∣∣

∏

Ri1
−ID,...,Rik

−ID

T ∗
i1

∣∣∣∣∣∣
(2)

where
∏

is a projection operation. As mentioned, a tuple
with a null in any of the attributes Ri1 -ID,..., Rik -ID will be
removed in the above projection. Our estimation formula for
the subquery q is stated in the following theorem.

Theorem 3 (Unbiased Estimation with Sample Trace). Con-
sider a query Q with the plan (((R1 ⋊⋉ R2)... ⋊⋉ Ri)... ⋊⋉ Rn),
and a subquery q involving Ri1 ,..., Rij , ... , Rik , 1 ≤ j ≤ k.

62Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 71 / 173

The query result size of q, Yq , is estimated as

Ŷq = ni1

|Ri1 |

|Si1 |
(3)

which is an unbiased estimator of the query result size of
subquery q. Here, |Ri1 | and |Si1 | are the sizes of Ri1 and
Si1 , respectively. And ni1 is described in (2).

Proof: Please see Appendix C.
By Theorem 2.2 in [22], we get the variance of the query

estimation using sample trace in the following theorem.

Theorem 4 (Variance of Estimator). Let

S2 =

∑|Ri1
|

j=1
(Yj − Y q)

2

|Ri1 | − 1

in which Yj is the total number of result tuples generated

by the jth tuple in relation Ri1 in subquery q, and Y q =
1

|Ri1
|

∑|Ri1
|

j=1
Yj . The variance of the query size estimation for

subquery q using sample trace is

V ar(Ŷq) =
|Ri1 |

2

|Si1 |
S2

(
1−

|Si1 |

|Ri1 |

)

We can also get an unbiased estimation of V ar(Ŷq) from
the values in the sample relations. By Theorem 2.4 in [22], we
have the following theorem.

Theorem 5 (Approximation of Variance). Let

s2 =

∑|Si1
|

j=1
(yj − y)2

|Si1 | − 1

in which yj is the total result tuples generated by the jth

tuple in the sample relation Si1 , and y =
ni1

|Si1
| An unbiased

estimation of V ar(Ŷj) is

v(Ŷq) =
|Ri1 |

2

|Si1 |
s2

(
1−

|Si1 |

|Ri1 |

)

It is usually assumed that the estimated value Ŷq is nor-
mally distributed about the corresponding true query result size
Yq. When this assumption holds, by Central Limit Theory [22],
we derive the confidence interval of Yq as follows.

Theorem 6 (Confidence Interval of Yq). The associated
confidence interval of Yq can be computed as

(
Ŷq − tp

√
v(Ŷq), Ŷq + tp

√
v(Ŷq)

)

where v(Ŷq) is in Theorem 5 and tp is the normal deviate
corresponding to the desired probability p.

VI. EXPERIMENTAL RESULTS

The experiments will focus on the feasibility of using
sample traces by examining their estimation accuracy and
construction overheads, including space and time. We replace
the joins in a query by sample outerjoins to construct the
sample trace and use it to estimate the selectivities of joins in
all possible orders for the query. All programs are implemented
in Java on a X86 Linux Desktop, equipped with a 3.4 GHz
CPU, a 4GB RAM, and a 500GB hard drive (7200rpm, buffer
size 16MB). All data, including datasets, test queries, and

intermediate query results, is materialized on a local hard drive.
To facilitate the evaluation of sample outerjoins, we use index
files.

A. Datasets and Sampling Ratios
We conducted experiments on both synthetic data — the

TPC-H skewed datasets [23] , and real-life data — the DBLP
dataset [24]. We generated 1GB TPC-H datasets with different
skew factors of z =0.5, 1, and 1.5. Each TPC-H dataset has
8 relations. The DBLP database listed more than 1.3 million
articles in computer science. The DBLP dataset sources from
a relational enhancement of the original DBLP data, named
DBLP++ [25]. The many-many relationship between “author”
and “paper” has been replaced by introducing an “author of”
relation and two many-one relationships: from “author of” to
“author”, and “author of” to “paper”, as it is often did in
relational databases.

Sampling ratio indicates the fraction of tuples that are sam-
pled to construct the sample trace. We performed experiments
with sampling ratios from 0.1%, 0.2%, ..., to 1% to test the
average performance, as shown in Fig. 5.

B. Test Queries
A set of test queries is constructed for each dataset. For

the TPC-H datasets, we chose a subset of the original TPC-
H benchmark queries that contain joins of 3 to 8 selections.
The total number of queries is 15 from which we construct
50 subqueries, with different join orders, to examine the
accuracy and overheads. For the DBLP dataset, we generated
5 queries that involved joins of all relations in the database.
20 subqueries are tested. Note that, selection predicates are
deployed on relations. The ranges of selection predicates are
randomly generated to examine the average performance of
the sample traces under complex selection conditions.

C. Space Performance
Besides the query result tuples, the sample outer join

retains dangling tuples that are related to the sample tuples
in evaluation, which contributes to the space overhead.

The space overhead, denoted SO, of the sample trace is
calculated as

SO =
#{intermediate dangling tuples}

#{intermediate query result sizes}
× 100%

in which “#{}” denotes the cardinality of a set, and “interme-
diate” means that we account for all sample traces generated
during the intermediate phases of a query.

The space overheads for datasets TPCH1G05 and
TPCH1G1 are very close. It is because their skew factors
are relatively low (z = 0.5 and 1). When the skew factor z
increased to 1.5 (i.e., very skewed) in TPCH1G15, the space
overhead in Fig. 5(a) grew noticeably higher than the other
two low skewed TPC-H datasets (z = 0.5 and 1). Under the
same selection ranges in the test queries, greater skew factor
produced more dangling tuples, as explained earlier.

Results on the DBLP dataset are similar. The space over-
head increased with the increase of the sampling ratio. The
space overhead was affected by the skewness of the dataset
and the selection criteria of the queries.

D. Accuracy Performance
The results of the accuracy tests are shown in Fig. 5(b). We

use the absolute relative error, or relative error, E, to evaluate

63Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 72 / 173

0.2 0.4 0.6 0.8 1

0

5

10

15

20

25

Sampling Ratio (%)

S
p
ac

e
O

v
er

h
ea

d
(%

)

TPCH1G05 TPCH1G1

TPCH1G15 DBLP

(a) Space Overhead Tests

0.2 0.4 0.6 0.8 1

5

10

15

Sampling Ratio (%)

R
el

at
iv

e
E

rr
o
r

(%
)

TPCH1G05 TPCH1G1

TPCH1G15 DBLP

(b) Estimation Relative Error

0 20 40 60 80 100
0

2

4

6

8

10

12

Number of Estimates

R
el

at
iv

e
E

rr
o
r

(%
)

TPCH1G05 TPCH1G15

(c) Bias Tests Sample Ratio = 0.1%

0 20 40 60 80 100
0

2

4

6

8

10

12

Number of Estimates

R
el

at
iv

e
E

rr
o
r

(%
)

TPCH1G05 TPCH1G15

(d) Bias Tests Sample Ratio = 1%

Figure 5. Sample Trace Tests on Multiple Datasets

TABLE I. AVERAGE PERFORMANCE

TPCH1G05 TPCH1G1 TPCH1G15 DBLP

Space Overhead (%) 6.26 6.32 13.68 10.40

Construction Time (s) 0.06 0.06 0.05 0.30

Time Overhead (%) 1.10 1.12 1.06 5.90

Relative Error (%) 2.62 5.41 10.76 5.56

the accuracy of using a sample traces, which is defined as
follows.

E =

∣∣∣∣∣
Ŷ Est − Y Act

Y Act

∣∣∣∣∣× 100%

where Y Act denotes the actual query result size and Ŷ Est is
the estimated result size.

To evaluate the average performance, for each test query,
we generated 10 sets of sample traces, and use them to estimate
the sizes of the subqueries of these test queries.

As shown in Fig. 5(b), the relative errors of all datasets de-
creased gradually as the sampling ratio increased. The relative
errors for datasets TPCH1G05 (z = 0.5), TPCH1G1 (z = 1.0),
and DBLP decreased more smoothly than the relative errors for
TPCH1G15 (z = 1.5), which has a higher skew factor than
others. In general, it is more difficult to represent a skewed
distribution than a smooth distribution. Therefore, the more
skewed the data, the higher the sampling ratio is needed to
achieve the same accuracy.

E. Average Performance
The average performances of sample trace on all datasets

are listed in Table I. Note that the minimum sampling ratio
is 0.1% and the maximum is 1%. The space overheads are
less than 13.68%, and construction times are no more than 0.3
seconds. In addition, under a low sampling ratio, the maximum
relative error is 10.76%, which occurred on TPCH1G15 dataset
when the sampling ratio is 0.1%.

In summary, with a small amount of samples (e.g., ≤
1%), accurate estimation of subquery result sizes (e.g., ≤
10%) can be obtained, even for highly skewed data. And
the time and space overheads are mostly small, around 1%
and 10%, respectively. The experimental results confirm that
sample trace can be a viable approach for re-estimation of
selectivities for repetitive queries. It is effective and accurate.

F. Bias Test of the Sample Trace Estimator

In Section V, we proposed using Ŷq to estimate a subquery
with sample trace, which is proved to be unbiased in Theorem

3. Here we empirically validate the unbiasedness of Ŷq . For
demonstrative purpose, we choose one query and one of
its subqueries from previous test queries. We performed the

unbiased tests on two datasets TPCH1G05 and TPCH1G15,
where the sample ratios are equal to 0.1% and 1%, respectively.
A subquery is estimated using a different sample trace of the
same sample ratio. We generated 100 sample traces for this
purpose. To demonstrate the variation tendency of bias when
the number of estimations increases, we average the first i
estimation values by absolute average relative error defined as

Ei =

∣∣∣∣∣∣

∑i
j=1

Ŷ Est
qj

i
− Y Act

q

Y Act
q

∣∣∣∣∣∣
× 100%

where i ≥ 1, Y Act
q is the actual subquery size, Ŷ Est

qj
is the

estimated value derived from the jth sample trace. For an
unbiased estimator, the absolute average relative error should
approach 0 as i (the number of tries) increases [22].

As observed in Fig 5(c) and Fig 5(d), the errors on both
TPCH1G05 and TPCH1G15 approached 0 as the number of
estimations increased. The experiments validate the earlier
proof of the unbiasedness of the sample trace estimator. Note
that when the skew factor is relatively higher, in TPCH1G15,
the relative errors are generally higher. Also, the error curves
in Fig 5(d) converged smoother than those in Fig 5(c), where
the sample ratios are equal to 1% and 0.1%, respectively.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed utilizing information about how
tuples are matching in the joins in a query, called the query
trace, and estimate selectivities of all subqueries of a repetitive
query. To gather sufficient information in the traces, we used
the full outerjoins for queries with acyclic join graphs. We
have shown that the exact selectivities of joins in all execution
orders of the query can be computed from its trace.

To reduce the overheads incurred in collecting traces,
we enhanced the outerjoins with sampling capability so that
a random sample of the trace can be obtained efficiently.
Experimental results have shown that with a small amount of
sample tuples, accurate selectivity estimations can be obtained.
Sample traces can be a very efficient and effective tool for the
re-optimization of repetitive queries.

For future work, we would like to give an estimated sample
size to get a satisfying estimation confidence interval with

64Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 73 / 173

efficient space budget. We are also interested in, for highly
skewed data, how to use adaptive sampling on the relations to
construct the adaptive sample trace.

REFERENCES

[1] S. Babu, P. Bizarro, and D. DeWitt, “Proactive re-optimization,” SIG-
MOD ’05, (New York, NY, USA), ACM, 2005, pp. 107–118.

[2] N. Kabra and D. J. DeWitt, “Efficient mid-query re-optimization of sub-
optimal query execution plans,” SIGMOD ’98, (New York, NY, USA),
ACM, 1998, pp. 106–117.

[3] V. Markl, V. Raman, D. Simmen, G. Lohman, H. Pirahesh, and M. Cil-
imdzic, “Robust query processing through progressive optimization,”
SIGMOD ’04, 2004, pp. 659–670.

[4] A. Aboulnaga and S. Chaudhuri, “Self-tuning histograms: building
histograms without looking at data,” SIGMOD Rec., vol. 28, June 1999,
pp. 181–192.

[5] S. Chaudhuri, V. Narasayya, and R. Ramamurthy, “Diagnosing estima-
tion errors in page counts using execution feedback,” (Washington, DC,
USA), IEEE Computer Society, 2008, pp. 1013–1022.

[6] L. Lim, M. Wang, and J. S. Vitter, “Sash: a self-adaptive histogram set
for dynamically changing workloads,” VLDB ’2003, VLDB Endow-
ment, 2003, pp. 369–380.

[7] V. Markl, G. M. Lohman, and V. Raman, “LEO: An autonomic query
optimizer for DB2,” IBM Syst. J., vol. 42, Jan. 2003, pp. 98–106.

[8] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil, “LEO - DB2’s
learning optimizer,” VLDB ’01, (San Francisco, CA, USA), 2001,
pp. 19–28.

[9] F. Yu, W.-C. Hou, C. Luo, Q. Zhu, and D. Che, “Join selectivity re-
estimation for repetitive queries in databases,” in Database and Expert
Systems Applications, vol. 6861 of Lecture Notes in Computer Science,
pp. 420–427, 2011.

[10] F. Yu, Constructing Accurate Synopses for Database Query Optimiza-
tion and Re-optimization. PhD thesis, Carbondale, IL, USA, 2013.

[11] K. Ono and G. M. Lohman, “Measuring the complexity of join
enumeration in query optimization,” VLDB ’97, (San Francisco, CA,
USA), 1990, pp. 314–325.

[12] N. Bruno, S. Chaudhuri, and L. Gravano, “Stholes: a multidimensional
workload-aware histogram,” SIGMOD ’01, (New York, NY, USA),
ACM, 2001, pp. 211–222.

[13] S. Christodoulakis, “Implications of certain assumptions in database
performance evauation,” ACM Trans. Database Syst., vol. 9, June 1984,
pp. 163–186.

[14] C. M. Chen and N. Roussopoulos, “Adaptive selectivity estimation using
query feedback,” SIGMOD ’94, (New York, NY, USA), ACM, 1994,
pp. 161–172.

[15] V. Poosala and Y. E. Ioannidis, “Selectivity estimation without the
attribute value independence assumption,” VLDB ’97, 1997, pp. 486–
495.

[16] S. Chaudhuri, V. Narasayya, and R. Ramamurthy, “A pay-as-you-go
framework for query execution feedback,” Proc. VLDB Endow., vol. 1,
Aug. 2008, pp. 1141–1152.

[17] S. Chaudhuri and V. R. Narasayya, “An efficient cost-driven index
selection tool for microsoft sql server,” VLDB ’97, (San Francisco,
CA, USA), 1997, pp. 146–155.

[18] G. Valentin, M. Zuliani, D. C. Zilio, G. Lohman, and A. Skelley, “DB2
advisor: An optimizer smart enough to recommend its own indexes,”
ICDE ’00, (Washington, DC, USA), IEEE Computer Society, 2000,
pp. 101–.

[19] O. W. Paper, “Oracle coporation: Performance tuning using the sql
access advisor.” http://otn.oracle.com, 2003.

[20] H. Herodotou and S. Babu, “Xplus: a sql-tuning-aware query optimizer,”
Proc. VLDB Endow., vol. 3, Sept. 2010, pp. 1149–1160.

[21] B. Dageville, D. Das, K. Dias, K. Yagoub, M. Zait, and M. Ziauddin,
“Automatic sql tuning in oracle 10g,” VLDB ’04, VLDB Endowment,
2004, pp. 1098–1109.

[22] W. G. Cochran, Sampling Techniques, 3rd Edition. John Wiley, 1977.

[23] S. Chaudhuri and V. Narasayya, “Program for tpc-d data generation
with skew..” ftp://ftp.research.microsoft.com/users/viveknar/tpcdskew.

[24] M. Ley, “The DBLP computer science bibliography.” http://www.
informatik.uni-trier.de/∼ley/db/.

[25] J. Diederich, “FacetedDBLP.” http://dblp.l3s.de/dblp++.php. [Retrieved
Dec, 2013].

APPENDIX

A. Proof of Theorem 1
Proof: We show that there is a one-to-one correspondence

between a result tuple of πRi1
-ID,...,Rim -IDT (P) and a result

tuple of Q′.
“⇒” By the construction of the trace, for each edge

(Ri, Rj) in E, the Ri-ID and Rj-ID record the matches in
T (P). Let S be a set of tuples {ti1 , . . . , tim}, tij ∈ Rij ∈ V ′,
whose IDs appear in a result tuple of πRi1

-ID,...,Rim -IDT (P).
For each edge (Rij , Rik) ∈ E′, 1 ≤ j, k ≤ m, tij and tik must
match in their join attribute values because their IDs appear
in the same trace tuple. That is, the set of tuples S satisfies
all the join predicates placed between relations in V ′ and thus
can generate a result tuple in Q′ by joins. Moreover, the joins
of {ti1 , . . . , tim} cannot generate more than one tuple.

“⇐” Let S′ = {t′i1 , . . . , t
′
im
}, t′ij ∈ Rij ∈ V ′ be a set

of tuples that generates a result tuple in Q′. With joinable
tuples from V − V ′ (they always exist because there is
no dangling tuples in any join), S′, following plan P , can
generate at least one result tuple in Q. Since S′ has no null
tuple, their corresponding IDs must appear as a result tuple
of πRi1

-ID,...,Rim -IDT (P). The projection πRi1
-ID,...,Rim -ID will

retain only one set of IDs corresponding to {t′i1 , ..., t
′
im
} in

πRi1
-ID,...,Rim -IDT (P).

B. Proof of Theorem 2
Proof: We show that there is a one-to-one correspondence

between a result tuple of πRi1
-ID,...,Rim -IDT (P) and a result

tuple of Q′.
“⇒” Same arguments as in ⇒ of Theorem 1.
“⇐” Let S′ = {t′i1 , ..., t

′
im
}, t′ij ∈ Rij ∈ V ′ be a set

of tuples that generates a result tuple in Q’. With joinable
tuples or null tuples (if there are no joinable tuples) from the
relations V − V ′, S′, following plan P , can generate at least
one result tuple in the query derived from Q in which all joins
are replaced by full outer joins; and all these result tuples
must have valid IDs for all Ri-ID attributes, Ri ∈ V ′, since
there is no null tuple in S′. Since duplicates are eliminated in
πRi1

-ID,...,Rim -ID(T (P)), S′ can only produce one result tuple

in πRi1
-ID,...,Rim -ID(T (P)).

C. Proof of Theorem 3
Proof: First of all, we denote the query result size of q

by Yq. The total result tuples in the subquery q generated by
the jth tuple of Ri1 is denoted by nj . i.e. In relation Ri1 ,
its jth tuple generated nj result tuples in the final result of
subquery q. The query result size of q equals the sum of
result tuples generated by each tuple on relation Ri1 . Thus

Yq =
∑|Ri1

|
j=1

nj . Also note that Si1 is a simple random sample
without replacement of Ri1 . And ni1 is the sum of result tuples

generated by Si1 . By Theorem 2.1 of [22], we have Ŷq is an
unbiased estimator of Yq.

65Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 74 / 173

Efficient Aggregate Cache Revalidation in an In-Memory Column Store

Stephan Müller, Lars Butzmann, Hasso Plattner
Hasso Plattner Institute

University of Potsdam, Germany
Email: {stephan.mueller, lars.butzmann, hasso.plattner}@hpi.uni-potsdam.de

Abstract—Modern enterprise applications do not separate be-
tween online transactional processing and online analytical pro-
cessing anymore. To ensure fast response times for expen-
sive analytical queries, we implemented an aggregate cache in
an columnar in-memory database. The separation into read-
optimized main and write-optimized delta storage is exploited
to cache only the aggregates based on the main storage and
aggregate all records in the delta storage on-the-fly. This works
with insert-only workloads, but not with deletes and updates that
invalidate records in the main storage and consequently invalidate
a cached aggregate. In this paper, we introduce an approach to
revalidate a cached aggregate using efficient bit vector operations.
A revalidation is superior to an invalidation since the old cached
aggregate is reused. A further contribution is an evaluation of
the influence factors that determine whether to invalidate or
revalidate a cached aggregate. Our implementation shows that an
aggregate cache revalidation outperforms an invalidation when
less than 50% of the relevant records are invalidated.

Keywords-Aggregation, Materialized View Maintenance, In-
Memory Data Base, Bit Vector

I. INTRODUCTION

Several decades ago, database vendors decided to separate
online transactional processing (OLTP) and online analytical
processing (OLAP) systems due to performance issues. They
created systems that were only optimized for a specific work-
load, either OLTP or OLAP. With improving hardware, e.g.,
multi-core CPUs and terabytes of main memory, database man-
agement systems (DBMS) are changing [1]. Further, today’s
enterprise applications have mixed workloads running both,
transactional and analytical, workloads [2]. An example is
the available-to-promise check (ATP). Stock movements in
a warehouse represent transactional queries whereas the ATP
check itself is an analytical query aggregating over the product
movements to determine the earliest possible delivery date
for a customer [3]. Other applications that require a DBMS
to handle mixed workloads are the dunning process where
the application determines which customers have outstanding
payments and accounting applications that calculate the profit
and loss statement based on the aggregated records.

One technique to speed up the execution of expensive
analytical queries is the use of materialized views [4]. A view
defines a function from a set of base tables to a derived
table and is recomputed every time the view is referenced. A
materialized view stores the result of a view in the database and
therefore does not require a recomputation. All materialized
views that contain an aggregation [5] in its definition are called

aggregates in this paper. Such pre-calculated results provide
fast access to the data and reduce the overall load on the
system. However, the benefit of speed comes with one tradeoff
called materialized view maintenance.

Each time the underlying base tables are modified, a
materialized view gets stale meaning the returned result is
not up-to-date. The process of updating the materialized view
in case of changes to the underlying base tables is called
materialized view maintenance. This process was discussed
in academia [6]–[8] and industry [9], [10]. However, the
research is focused on data warehousing [8], [11], [12] and not
on modern database architectures running mixed workloads.
Compared to data warehouses, where maintenance downtimes
may be feasible, transactional applications in mixed workload
environments require high availability and throughput at any
time.

In this paper, we introduce a mechanism to cache and
revalidate analytical queries in the context of columnar in-
memory databases (IMDBs). Columnar IMDBs got increased
attention in the recent years since they are able to handle mixed
workloads in a single system [1], [13]–[15]. Our work is based
on [16] that introduced an aggregate cache for a columnar
IMDB. The aggregate cache is a non-persistent caching engine
inside the database. Like a materialized view, the aggregate
cache consists of query results that are stored to speed up the
access times. It leverages the main-delta architecture which
separates a table into a read-optimized main storage and a
write-optimized delta storage (cf. Figure 1). The idea of the
aggregate cache is to cache only the main storage and unite
the cached aggregate with the newly added records in the delta
storage. This process is more efficient in many cases compared
to calculating the complete result again. From the aggregate
cache perspective, delete and update operations are equal and
therefore called invalidations throughout this paper.

The aggregate cache guarantees that all results are up-
to-date and it will never return a stale result. The aggregate
cache consists of cache entries, each representing one unique
aggregate query. A cache entry is created upon request and can
be deleted upon request. Further, the cache entries are deleted
in case the database shuts down or lacks main memory. For
the future, we plan to include a mechanism into the cache that
decides which queries are worth to cache and which are not.

For our evaluation, we have chosen a scenario of an ATP
application. In our implementation, the application relies on a
single, denormalized database table called Facts that contains
all stock movements in a warehouse. Every movement consists

66Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 75 / 173

of an unique transaction identifier, the id of the product being
moved, the date and the amount. The amount is positive if
goods are put in the warehouse and negative if goods are
removed from the warehouse. The aggregate that is based on
the table Facts groups the stock movements by product and
date and sums up the total amount per date and product. A
detailed description of the ATP application can be found in
our earlier work in [3]. We manually define the queries that
will be cached and do not address the view selection problem
[17] in the scope of this paper. We focus on the SUM and
COUNT aggregation function as this is the dominant aggregate
function in our introduced application. The aggregate cache
also supports the standard SQL aggregate functions AVG,
MIN, and MAX.

The paper is structured as follows: Section II gives a brief
overview of related work in the area of materialized view
maintenance. Section III explains the aggregate cache in detail
including the algorithm and architecture. Section IV introduces
the revalidation mechanism using the transaction manager
and the incremental maintenance of a cached aggregate. In
Section V, we analyze the cost factors of a revalidation.
Section VI shows our experimental evaluation and Section VII
concludes the paper with our main findings.

II. RELATED WORK

Materialized view maintenance has been analyzed in
academia [6]–[8] and industry [9], [10]. Blakely et al. were
one of the first to propose a concept of incremental view
maintenance [6] and Zhou et al. introduced a lazy view main-
tenance approach using delta tables [10]. These approaches
are the foundation of our work. However, all work was done
using traditional relational databases or even data warehouses
with fewer restrictions [8], [11], [12]. In the context of this
paper, we focus on enterprise applications consisting of OLTP
and OLAP queries that require high availability and high
throughput. The aggregate cache leverages the main-delta
architecture that has not been evaluated before. To the best
of our knowledge, an efficient maintenance strategy that is
able to handle mixed workloads by leveraging available data
structures of a columnar IMDB does not exists so far.

III. AGGREGATE CACHE

The aggregate cache leverages the concept of the main-
delta architecture as introduced in [16]. Separating a table
into a main and delta storage has one main benefit. The
separation allows to have a read-optimized main storage for
faster scans and a write-optimized delta storage for high insert
throughput. All inserts are inserted into the delta storage
and are periodically propagated into the main storage in an
operation called merge [18]. The fact that the main storage
is only growing with a merge operation is leveraged by the
aggregate cache so that only the results of the main storage
are cached. All records from the delta storage are aggregated
on-the-fly and united with the corresponding cached aggregate.

A. Architecture

The aggregate cache is located inside the column store en-
gine of SanssouciDB (cf. Figure 1). There is a single aggregate
cache manager instance that manages all cache entries. A cache

SanssouciDB

Storage

Query Processor

Delta

Aggregate Cache Manager
SQL

Main

Transaction Manager

Cache Metrics
K 1 M 1
K 2 M 2

K n M n

Cache Entries
K 1

● ● ●

A 1
K 4 A 4

K n A n

Bit Vectors
B
V
1

B
V
2

B
V
n

● ● ●

● ● ●

Figure 1. The internal architecture of SanssouciDB [2] with the main and
delta storage, the aggregate cache manager and the transaction manager.

AggregateCacheKey,

Product,

1,

2,

3,

4,

Groups,

CacheEntry+

DirtyCounter+
Bitvector+

SUM(AMOUNT),
,

20,

40,

10,

50,

,

Aggregates,

COUNT(*),
,

20,

40,

10,

50,

,

Month,

January,

January,

February,

March,

ATP:FACTS_219_PRODUCT0_MONTH0_"YEAR",=,2013,

Figure 2. The structure of a cache entry for the ATP scenario.

entry consists of a key and a value. The key is composed of
the table name, the group by columns, the where condition and
the aggregates. The value is a complex structure consisting
of the group by values and the corresponding aggregates.
Additionally, relevant meta information about a cache entry,
e.g. its creation time and its size, are stored in a structure called
cache metrics. A detailed illustration is shown in Figure 2.

B. Insert-only Scenario

Insert-only scenarios, where the application does not
change any previously inserted data, are beneficial for the
aggregate cache because of a non-changing main storage.
There, deletes and updates are replaced by logical updates
using differential values. This restriction can be a result of
legal requirements or the business logic behind an applica-
tion. An insert-only scenario never invalidates the cache and
therefore uses its full potential. With each merge operation,
the cache entries can either be incrementally maintained using
the records from the delta storage or invalidated in case they
are not used anymore. The decision whether to maintain or
invalidate a cache entry can be made based on a combination
of known cache replacement algorithms, e.g. LRU or LRFU,
and the benefit and resource requirements of a cache entry.

C. Cache Invalidation

Only a subset of applications have insert-only workloads.
Most enterprise applications need to make changes to their

67Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 76 / 173

TABLE I. CONSOLIDATED BIT VECTORS OF TWO TRANSACTIONS
RUNNING WITH TRANSACTION LEVEL SNAPSHOT ISOLATION. T1 HAS

DELETED THE RECORD WITH ID 2.

Facts Bit Vector
Id Product Date Amount T1 T2

1 Tire 3/1/2013 10 1 1
2 Tire 3/7/2013 20 0 1
3 Brakes 3/3/2013 5 1 1
4 Tires 3/12/2013 30 1 1

data which affect the cache entries. According to an analysis of
Krueger et al. [18], their analyzed customer workload consisted
of 8% delete and update queries. In contrast, the TPC-C
benchmark [19] consists of 35% delete and update queries.
Even a minor change in the main storage where only a single
record is updated or deleted invalidates the cache entries that
are based on that record. An invalidation equals a complete
recalculation of the result which is the least efficient way to
handle such behavior. In this paper, we present a solution that
is able to reuse the stale cache entries by extracting information
from the transaction manager.

1) Transaction Manager: Transactions are a main function-
ality of a RDBMS. The transaction manager is responsible that
the database has a consistent state after each transaction and
ensures the ACID properties. One mechanism to implement
concurrent transaction handling is multi version concurrency
control (MVCC) [20]. Using MVCC, multiple transactions
can run simultaneously and each have their own visibility on
the database. In SanssouciDB (cf. Figure 1), the transaction
manager creates a bit vector representing the visibility of a
table for an incoming query based on its transaction token.

2) Visibility Bit Vector: Each table has four bit vectors,
two for the main storage and two for the delta storage. For
the aggregate cache, only the main storage bit vectors are
relevant since a cache entry is only based on them. One bit
vector contains the information about visible records (create
bit vector) and the other bit vector the information about
invalidated records (delete bit vector). The combination of
both (using an exclusive OR) creates a bit vector which is
called consolidated bit vector. It contains the actual visibility
for a specific transaction. An example for two consolidated
bit vectors is shown in Table I. Two transactions are running
concurrently and query the table Facts with four records. In
the beginning, all four records are visible to both transactions
(consolidated bit vector 1111). Transaction T1 deletes the
record with Id 2. Consequently, the bit at index 2 changes
from visible to not visible for all further operations inside T1
(invalidated bit vector 0100 and consolidated bit vector 1011).
Transaction T2 started at the same time as T1. Depending
on the isolation level, T2 can read the record with Id 2
(consolidated bit vector 1111 with transaction level snapshot
isolation) or cannot read it after the delete (consolidated bit
vector 1011 with statement level snapshot isolation).

IV. CACHE REVALIDATION

To prevent an invalidation of cached aggregates in case
of invalidations in the main storage, the aggregate cache has
to provide the functionality to calculate the modifications
between the cache entry creation and its usage. Since the
previously introduced transaction manager is responsible for

the visibility of records in a table, the aggregate cache can
leverage that information to extract the invalidations.

A. Bit Vector Comparison

With each cache entry creation, a consolidated bit vector
is stored as a snapshot of the database (cf. Figure 2). To
further optimize the usage of a bit vector, only the bits after
applying the WHERE clause of a query are used. We call
theses bits relevant bits. Additionally, a version counter called
dirty counter is stored. The dirty counter is an integer value
from the transaction manager that is incremented with each
invalidation.

In Figure 3, the enhanced aggregate cache algorithm is
displayed in detail. Compared to first version (without the
grey colored boxes), the steps until the AggCache Lookup
step are the same. In the next step, in case a cache entry
was found, the dirty counter of the cache entry is compared
with the current dirty counter of the table to determine if
there has been an invalidation or not. In case the dirty counter
has changed, the consolidated bit vector of the cache entry is
compared to the current delete bit vector (retrieved from the
transaction manager) using a bitwise AND to determine the
relevant invalidations. The result is a bit vector containing all
changes since the cache entry creation. If that bit vector has no
bits set, e.g., the invalidated records did not affect the cache
entry due to the filters in the WHERE clause, the cache entry is
still up-to-date and nothing has to be done. If at least one bit is
set, the aggregate query has to be executed on the main storage
using only the bit vector containing the relevant invalidations.
The output is a query result containing all the information that
has to be subtracted from the cached aggregate to provide an
up-to-date result. In IV-C, we explain how this information can
be used for the incremental maintenance of cached aggregates
and maintenance timings.

B. Bit Vector Compression

Storing a bit vector for each cache entry requires additional
memory. To reduce the required amount, the aggregate cache
can use different compression techniques. The characteristic of
a bit vector is beneficial for compression due to its limitation
of only two distinct values (0 and 1). If the characteristic of
the application that is using the table is known, the aggregate
cache can leverage that knowledge to choose the optimal com-
pression techniques. Based on Abadi et al. [21], we propose
three compression techniques that are most suitable for bit
vectors. All techniques require to provide direct comparisons
of two bit vectors without additional decompression overhead.

1) Prefix/Suffix Encoding: Prefix or suffix encoding is a
simple compression technique where the first or last sequence
of the same value is replaced by two single values, the value
itself and its number of occurrences. For bit vectors, this
technique is useful if the deleted values are at the beginning or
end of the bit vector. Depending on the location of the deleted
values, prefix or suffix encoding is applied.

2) Run-length Encoding: Like prefix encoding, run-length
encoding replaces a sequence of the same value by two
single values, the values itself and its number of occurrences.
Unlike prefix encoding, this can be done for any sequence
in the bit vector. This possibility makes run-length encoding

68Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 77 / 173

[AggCache == ON][AggCache == OFF]

Run Query w/o
Aggregate Cache

Create
AggregationCacheKey

AggCache Lookup

[found == true][found == false]
Create Cache

Entry

Fill Cache Entry

Use Cache Entry

Aggregate Delta
Storage on-the-fly

Combine
Results

Check Preconditions

[fullfilled == false]

[fullfilled == true]

Check Dirty Counter

[changed == false]

[changed == true]
Get Delete
Bit Vector

Transaction
Manager

Compare the
Bit Vectors

Query Main Storage
using the Result

Get Delete
Bit Vector

Incrementally Maintain
Cache Entry,

Update Bit Vector

[maintain == true]

[maintain == false]

[result == 0]

[result != 0]

Figure 3. Activity diagram that visualizes the algorithm of the aggregate
cache with the revalidation. The enhancements are colored in grey.

superior compared to prefix encoding. However, in case the
number of deleted values is high and the bit vector shows
the characteristic of an alternating pattern, the benefit of this
technique decreases.

3) Cluster Encoding: Cluster encoding divides a bit vector
into clusters of fixed size. Clusters that only contain equal
values (only 0 or only 1) can be compressed and replaced by
a single value. Clusters with mixed values (containing 0 and
1) are not replaced. The result is a new smaller vector. To
remember which clusters have been compressed, an additional
bit vector is created. Since the size of the cluster is not fix,
it can be chosen based on the table size and the application
characteristic.

The resulting compression ratio of each technique depends
on the characteristic of the bit vector. A bit vector is influenced
by the filter conditions in the WHERE clause that determines
the ratio of relevant bits compared to the table size. Second, the
application characteristic, e.g., are there bulk deletes or single
deletes randomly distributed over the table. The automatic
determination of the optimal compression technique based on
the bit distribution is part of our future work.

C. Incremental Maintenance Timing

The maintenance of a cache is always a challenge. One
crucial requirement for cache maintenance is to know what has
changed. Using the introduced mechanism from Section IV-A,
the aggregate cache is able to determine the modification that
occurred between the cache entry creation and the current point

in time. Having that information enables the aggregate cache
to incrementally maintain a cache entry. In the following, we
introduce four different maintenance timings.

1) Immediate Maintenance: Immediate maintenance, also
known as eager maintenance, maintains all cache entries with
each invalidation in the main storage. A maintenance is done
even if the cache entry is not accessed in the meantime. The
benefit is that the cache entries are always up-to-date and
do not require any additional calculation when the cache is
accessed. The disadvantage is a significant overhead for work-
loads with higher insert ratios since more time for maintenance
is required than a cache access can save. Additionally, the
maintenance has to be done for all cache entries that are
based on the modified table which increases the amount of
maintenance with an increasing number of cache entries. If n
cache entries are based on a table and one record is invalidated,
n cache entries have to be maintained. In our previous work,
we have evaluated this timing in the context of materialized
views and showed that it is inferior to other maintenance
timings [22].

2) Deferred Maintenance: Deferred maintenance, also
known as lazy maintenance, maintains a cache entry with each
cache access. As a result, a cache entry is up-to-date after
each cache access. With this maintenance timing, the cost of a
maintenance is with the actual cache access, and not with the
delete or update. In their work, Zhou et al. [10] introduced lazy
maintenance in the context of materialized views for Microsoft
SQL Server, with the same motivation of shifting the costs
towards the the view access. They also proposed to perform
the maintenance in periods of lower loads to reduce the actual
overhead during the view access.

3) Periodical Maintenance: Periodical maintenance is a
lazy form of deferred maintenance. The maintenance can be
based on different criteria. One criteria is a certain number
of cache accesses. In that case, a cache entry is maintained
every N cache accesses. N can be chosen depending on the
workload characteristic. A second criteria is a certain threshold
of the invalidation ratio. If that ratio is reached, a maintenance
is performed. With a periodical maintenance, the cache entry
is not up-to-date at all times, as shown in the scenario where
an execution on the main storage is required with each cache
access.

4) Merge Operation Maintenance: This strategy does not
maintain the cache entry between two merge operations. After
a cache entry creation, it always revalidates the cache entry
using the additional execution on the main storage to return
the correct query result. Due to the missing maintenance,
this strategy should only be used for cache entries where the
base data never gets invalidated. In that case, the additional
main storage run is not required. A second use case for this
strategy can be a less strict freshness of the cache entry. If an
application only requires a rough estimation that can be based
on ’older’ data, this approach is sufficient. So far, we have not
implemented a functionality to return old cache entries.

D. Merge Operation

The aggregate cache relies on the main-delta architecture.
With the periodical merge operation, the delta storage is
merged into the main storage and all deleted values in the main

69Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 78 / 173

storage are removed. The aggregate cache has to react to that
change. There are three possibilities how the aggregate cache
can react. Each cache entry can have its own strategy based on
the decision of the aggregate cache. First, a cache entry can be
invalidated and is removed from the aggregate cache. Second,
a cache entry can be incrementally maintained. In that case,
the delta storage has to be added to the cache entry and the
invalidated records from the main storage have to be subtracted
from the cache entry. Third, the old value of the cache entry is
ignored and the aggregate query recalculates the cache entry
after the merge operation has completed.

E. Aggregate Functions

Aggregate functions can be divided into two categories,
functions that are self-maintainable and functions that are not
self-maintainable [23]. Looking at the standard aggregation
function, SUM, COUNT, AVG (using SUM and COUNT) are
self-maintainable with regards to inserts, deletes and updates.
MIN and MAX are only self-maintainable with regards to
inserts, but not with regards to deletes and updates because
the information about the second highest/lowest value is not
available. However, to overcome this issue, the database can
store the n highest/lowest values, also known as MaxN/MinN.
Using a data structure to store additional values enables an
incremental maintenance until the data structure is empty and
has to be refilled.

F. Joins

Joins are a concept that combines records of multiple
tables into one result. The combination is based on a common
field, the join condition, among the tables. Even though the
aggregate cache implementation does not support joins yet,
we suggest a concept how the handling of joins can be done.
Equally to the algorithm for a single table, a cache entry of a
join query consists only of the result on the main storages. To
return the complete result, three joins are required which are
combined with the cache entry. First, both delta storages of the
two tables have to be joined. Second, the delta storage of table
A has to be joined with the main storage of table B. Third,
the delta storage of table B has to be joined with the main
storage of table A. The join between the two main storages is
the most expensive join because most records are in the main
storage (a ratio of >100:1 [24]). The three other joins involve
the smaller delta storages and therefore are cheaper.

Teorey et al. [25] introduced three types of relationships
for relational databases: one-to-one, one-to-many, and many-
to-many. The most frequently used type is the one-to-many
relationship which is used to normalized database tables. For
invalidations, the location of the invalidations is important. In
case the invalidations only happen in one table, a single join
is required to perform a maintenance. In case the invalidations
happen in both tables (in a two table scenario) three joins are
required. The third join makes sure that no values are removed
twice, e.g., if records with the same join key from both tables
are invalidated. In summary, a maintenance can vary between
one join and three joins depending on the location of the
invalidation. However, further knowledge about the application
can reduce the complexity. An further implementation and
evaluation has to verify this assumption and are part of the
future work.

V. COST ANALYSIS INVALIDATION VS. REVALIDATION

In most cases, a cache revalidation is beneficial compared
to a complete recalculation because less data has to be ac-
cessed. However, a revalidation is not always the best solution,
especially after large bulk deletes. Comparing the revalidation
process with the recalculation process shows that the only
difference is the input bit vector used for the aggregate query.
The aggregate query itself, the query processing steps and the
used data structures are the same. As a result, the only cost
factor is the number of accessed records in the main storage.
For a revalidation, it is the number of relevant invalidations
in the main storage. For a recalculation, it is the number of
relevant visible records in the main storage. For a decision in
favor of an invalidation or revalidation, the aggregate cache
has to determine the InvalidationRatio respectively Benefit.
The InvalidationRatio describes the relation of relevant invali-
dated records to relevant visible records at cache creation (cf.
Equation 1). If less than half of the records are invalidated,
it is beneficial to revalidate the cache entry. If more than
half of the records are invalidated, an invalidation performs
better (cf. Equation 3). The parameter α represents a factor
which is required to combine the changes with the groups
the cached result. Combining the two lists of results has
a linear complexity. The factor will be further analyzed in
Section VI-A.

InvalidationRatio =
numSetBits(Bvvisible ∧Bvdelete)

numSetBits(Bvvisible)
(1)

Benefit =
1

2
− InvalidationRatio− α (2)

Strategy(Benefit) =

{
Revalidation Benefit ≥ 0

Recalculation Benefit < 0
(3)

The function numSetBits returns the number of set bits
for a given bit vector. Bvvisible is the bit vector for relevant
visible records at cache creation time, e.g. 00111011. Bvdelete
is the current delete bit vector, e.g. 11100101. The bitwise
AND would be 00100001 with 2 bits set. The resulting
InvalidationRatio is 0.4 and consequently a revalidation is
more beneficial.

VI. EXPERIMENTAL EVALUATION

We implemented the aggregate cache in SanssouciDB but
believe that the implementation in other columnar IMDBs
with a main-delta architecture such as SAP HANA [26] will
lead to similar results. Figure 1 illustrates the architecture
of our implementation. The data and workloads we used are
based on customer data and are parametrized to simulate
different scenarios and patterns. The basic schema from our
ATP scenario is shown in Table I with four columns.

All experiments and benchmarks have been conducted on
a server featuring 8 CPUs (Intel Xeon E5450) with 3GHz and
12MB cache each. The entire machine was comprised of 64GB
of main memory. Every benchmark in this section is run at
least three times and the displayed results are the median of
all runs.

70Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 79 / 173

 1

 10

 100

 1000

0 Invalidations 10 Invalidations 100 Invalidations 1,000 Invalidations

W
or

kl
oa

d
Ex

ec
ut

io
n

Ti
m

e
in

 s

Number of Invalidations

1,000 Aggregate Queries - 10M Main, 0M Delta
No Cache Recalculation Revalidation

Figure 4. A revalidation outperforms an invalidation. The benefit of a
revalidation increases which an increasing number of deletes.

A. Invalidation vs. Revalidation

To show the benefit of a revalidation, we use four work-
loads with different invalidation behavior. A single OLAP
query is executed 1,000 times. The different workloads vary in
their number of invalidations. To have comparable execution
times, the time for the delete operations will not be included
into the measurement. The deferred maintenance timing is the
default for all benchmarks. As seen in Figure 4, we compare
the recalculation and revalidation strategy with the non-caching
strategy to make the results more plausible. The non-caching
strategy has equal query execution times since no caching is
done and the OLAP query has to run 1,000 times. For the other
two strategies, the query execution times vary depending on the
invalidation behavior. With an increasing number of deletes,
the difference between a revalidation and an recalculation
increases, in favor for a revalidation. If a delete operation is
always between two cache accesses (1,000 invalidations), a
recalculation looses all its benefits compared to a non-caching
strategy.

B. Run-Time Analysis

The runtime of accessing a cached aggregate can be divided
into four steps: a) Bit vector comparison b) Main storage
access and aggregate calculation c) Maintenance d) Cache
entry retrieval All four steps are required for the revalidation
strategy using a deferred maintenance timing. Steps 2 and
4 are used for the cache entry creation as well as cache
entry recalculation (both are identical operations). The goal of
this experiment is to measure the detailed costs for a cache
entry creation respectively recalculation, and a cache entry
revalidation. We also measure the costs for a cache access
without a revalidation. A revalidation is measured using two
scenarios with invalidation ratios of 1% and 10%.

Figure 5 shows the absolute results of the experiment with
a logarithmic y-axis. The time to retrieve the cache entry
is nearly the same for all. The maintenance costs for the
revalidation strategy is also equal and not influenced by the
invalidation ratio. Surprisingly, the comparison of bit vectors is
so fast that the logarithmic y-axis cannot display it (the actual
value 1ns). The main cost factor is the main storage access. For

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

Cache Creation

Cache Access (no invalidation)

Cache Revalidation 1% invalidated

Cache Revalidation 10% invalidated

To
ta

l E
xe

cu
tio

n
Ti

m
e

in
 s

1 Aggregate Query - 10M Main, 0M Delta

Cache Retrival
Maintenance

Main Storage Access
Bit Vector Comparison

Figure 5. A benchmark that visualizes the run-time analysis of the different
cache operations.

the revalidation, the time for accessing the main storage is the
only time which increases with an increasing invalidation ratio.
Comparing all four operations, the cache creation respectively
recalculation is by far the most expensive operation.

C. Invalidation Ratio

Figure 5 indicated that the performance of the revalidation
depends on the number of invalidated records. This experiment
measures the execution time of a revalidation for invalidations
ratios ranging from 0% to 70%. The results are compared to a
recalculation. Based on the introduced InvalidationRatio from
Section V, we assume that both approaches are break-even
(have the same performance) when the invalidation ratio is
approximately 0.5. Further, we measure the influence of the
result size using aggregate queries with 100 and 10k groups.

The experiment in Figure 6 confirms that the performance
increases linearly with an increasing number of invalidations.
The results also confirm the Benefit we have introduced with
Equation 3. For small group size of 100, the ratio is approxi-
mately 0.5. At a ratio of 0.5 respectively 50%, a revalidation
has the same performance as a recalculation. This point is
also known as the break-even point. For the query with the
larger group of 10k, the break-even point has shifted towards a
smaller ratio. The performance of the revalidation is influenced
by the size of groups since the revalidation has to match the
groups of a cache entry to the groups of a revalidation. This
process has linear complexity because each item of the group
is accessed once (using a hash-based approach).

D. Non-Relevant Invalidations

As explained in Section IV-A, the consolidated bit vector
includes the information about relevant visible records. Fig-
ure 7 shows the benefit of that information in case non-relevant
records are invalidated. Having this optimized bit vector, the
aggregate cache is able to skip the main storage access in case
the bit vector comparison produces a result containing only 0
(Figure 3). In contrast, the standard bit vector is not aware of
that information and has to access the main storage until the
query processor finds out that the result is empty. However,

71Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 80 / 173

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

0 1 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Si
ng

le
 Q

ue
ry

 E
xe

cu
tio

n
Ti

m
e

in
 s

Percentage of Invalidated Records in Main Storage

1 Aggregate Query - 10M Main, 0k Delta

No Cache 100 Groups
Aggregate Cache 100 Groups

No Cache 10k Groups
Aggregate Cache 10k Groups

Figure 6. An experiment analyzing the influence of the number of invalidated
records and the number of aggregate groupings on a revalidation.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

0 10 20 30 40 50 60

Q
ue

ry
 E

xe
cu

tio
n

Ti
m

e
in

 s

Percentage of Invalidated Records in Main Storage

1 Aggregate Query - 10M Main, 0M Delta

Cache Entry-based
Transaction Manager-based

Figure 7. An experiment using on-relevant delete operations.

the experiment shows that despite an increasing number of
invalidations on the main storage, the query execution time
using the standard bit vector is constant.

E. Maintenance Timing

In this paper, four maintenance timings for the aggregate
cache are proposed (Section IV-C). Each timing has different
maintenance costs that are influenced by three cost factors. In
the following experiment, we focus on one cost factor. Based
on the analysis of workloads we had access to, the ratio of
invalidations to aggregate queries is the driving factor for the
maintenance costs.

The experiment (cf. Figure 8) has five different aggregate
queries which are executed 200 times each. The invalidations
are distributed uniformly and always invalidate records that are
part of the cache entries. The periodic timing has an n of 20
that revalidates a cache entry every 50 accesses.

As expected, all four timings have the same execution
time in case no invalidations happen. For 10 invalidations,
which occur every 100 aggregate queries, all timings create
maintenance costs. The merge timing always has to access the
main storage after the first invalidation, but does not maintain
the cache entry. As a result, the costs are high, even though the

 1

 10

 100

 1000

 10000

0 Invalidations 10 Invalidations 100 Invalidations 1,000 Invalidations

W
or

kl
oa

d
Ex

ec
ut

io
n

Ti
m

e
in

 s

Number of Invalidations

1,000 Aggregate Queries - 10M Main, 0M Delta

Immediate
Deferred
Periodic

Merge

Figure 8. A comparison of the four proposed maintenance timings.

number of invalidations is low. The eager timing has to main-
tain five cache entries with every invalidation. This results in
50 revalidations. The deferred and periodic timing have lowest
maintenance costs since they both require 10 revalidations. For
the periodic timing, it is the best case since the revalidation of a
cache entry is actually done right after the invalidation. With
100 invalidations (every 10 aggregate queries), the costs of
the merge timing increase further. The costs for the eager and
deferred time increase linearly. The periodic timing has a more
than linear increase because the timing of the maintenance
is not optimal. With 1,000 invalidations (one every aggregate
query), the costs for the deferred, periodic and merge timing
are the same. The eager timing has five times the maintenance
costs of the other timings caused by the five cache entries.
With only a single entry, the costs would be equally to the
others.

In conclusion, the deferred maintenance timing is superior
over the other timings. The costs of maintenance using an eager
timing increase with an increasing number of cache entries. A
periodic or merge timing might be applicable for workloads
with a high number of invalidations, but the performance does
never beat the deferred timing.

F. Mixed Workload Benchmark

The CH-benCHmark created by Cole et al. [27] is a
mixed workload benchmark combing the TPC-C and TPC-
H benchmark. Based on their work and the available data
generator, we created scenarios using three different scale
factors (1, 10, 50), Since the aggregate cache does not support
joins yet, we are only able to use five of the OLAP queries.

In Figure 9, the revalidation algorithm is compared with
the recalculation and a non-caching strategy (for better com-
parability). A scale factor of 50 creates 60M records in the
order line table. The number of queries was fix for all three
scale factors. The workload contains 3561 inserts, 230 updates,
and a total of 380 aggregate queries. Each of the five aggregate
queries was executed 76 times. The revalidation algorithm uses
the lazy maintenance timing as this is the best performing
timing (cf. Figure 8).

The results show that a revalidation outperforms a re-
calculation for all scale factors. A revalidation is up to 5

72Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 81 / 173

 1

 10

 100

 1000

1 10 50

W
or

kl
oa

d
Ex

ec
ut

io
n

Ti
m

e
in

 s

Scale Factor

380 Aggregate Queries, 230 Updates, 3561 Inserts

No Cache
Recalculation
Revalidation

Figure 9. The CH-benCHmark [27] results.

times faster (scale factor 50). The results indicate that the
performance advantage increases with an increasing scale
factor. This validates the efficiency of the proposed revalidation
algorithm.

VII. CONCLUSION

In this paper, we have introduced an efficient strategy to
revalidate cached aggregates in an in-memory column store.
Based on the existing insert-only implementation, we have
explained the idea of the aggregate cache and motivated the
necessity of a cache revalidation strategy for mixed workloads
with updates and deletes. Using the available information from
the transaction manager, the aggregate cache is able extract
the information of invalidated records. A bit vector containing
snapshot information of the database is added to the cache
entry. To keep the cache entry size as small as possible, we
have proposed three compression techniques that reduce the
required amount of memory for a bit vector. We have compared
the process of a recalculation with a revalidation and created
a cost function to determine the optimal decision between the
two. In our evaluation using an ATP scenario consisting of
transactional as well as analytical queries, the experiments
reveal that a revalidation outperforms an recalculation up to
an invalidation ratio of 50%. The influencing factor of the
revalidation is the number of relevant invalidated records. Our
optimization to include the filter conditions into the bit vector
reduce the amount of maintenance significantly.

In our future work, we plan to include the support for joins
into the aggregate cache. Existing admission and evictions
strategies can be extended by run-time information of the
aggregate cache manager, for example the execution time or
the result size. Also, an evaluation of our algorithm using
other database architectures without a main-delta architecture
is subject to further research.

REFERENCES

[1] H. Plattner, “A common database approach for oltp and olap using an
in-memory column database,” in SIGMOD, 2009, pp. 1–2.

[2] ——, “Sanssoucidb: An in-memory database for processing enterprise
workloads,” in BTW, 2011, pp. 2–21.

[3] C. Tinnefeld, S. Müller, H. Kaltegärtner, S. Hillig, L. Butzmann,
D. Eickhoff, S. Klauck, D. Taschik, B. Wagner, O. Xylander, A. Zeier,
H. Plattner, and C. Tosun, “Available-to-promise on an in-memory
column store,” in BTW, 2011, pp. 667–686.

[4] D. Srivastava, S. Dar, H. Jagadish, and A. Levy, “Answering queries
with aggregation using views,” in VLDB, 1996.

[5] J. M. Smith and D. C. P. Smith, “Database abstractions: Aggregation,”
Commun. ACM 1977.

[6] J. A. Blakeley, P.-A. Larson, and F. W. Tompa, “Efficiently updating
materialized views,” in SIGMOD, 1986, pp. 61–71.

[7] A. Gupta and I. S. Mumick, “Maintenance of materialized views:
Problems, techniques, and applications,” IEEE Data Eng. Bull. 1995.

[8] D. Agrawal, A. El Abbadi, A. Singh, and T. Yurek, “Efficient view
maintenance at data warehouses,” in SIGMOD, 1997.

[9] R. G. Bello, K. Dias, A. Downing, J. J. F. Jr., J. L. Finnerty, W. D.
Norcott, H. Sun, A. Witkowski, and M. Ziauddin, “Materialized views
in oracle,” in VLDB, 1998, pp. 659–664.

[10] J. Zhou, P.-A. Larson, and H. G. Elmongui, “Lazy maintenance of
materialized views,” in VLDB, 2007, pp. 231–242.

[11] Y. Zhuge, H. Garcı́a-Molina, J. Hammer, and J. Widom, “View mainte-
nance in a warehousing environment,” in SIGMOD, 1995, pp. 316–327.

[12] H. Jain and A. Gosain, “A comprehensive study of view maintenance
approaches in data warehousing evolution,” SIGSOFT Softw. Eng.
Notes 2012.

[13] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden, “Hyrise: a main memory hybrid storage engine,” in VLDB,
2010, pp. 105–116.

[14] A. Kemper, T. Neumann, F. F. Informatik, T. U. Mnchen, and D-
Garching, “Hyper: A hybrid oltp&olap main memory database system
based on virtual memory snapshots,” in ICDE, 2011.

[15] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S. Mullender, and
M. L. Kersten, “Monetdb: Two decades of research in column-oriented
database architectures,” IEEE Data Eng. Bull. 2012.

[16] S. Müller and H. Plattner, “Aggregates caching in columnar in-memory
databases,” in 1st International Workshop on In-Memory Data Manage-
ment and Analytics (IMDM), in conjunction with VLDB 2013, Riva del
Garda, Trento, Italy, 2013.

[17] H. Gupta, “Selection of views to materialize in a data warehouse,” in
ICDT, 1997.

[18] J. Krueger, C. Kim, M. Grund, N. Satish, D. Schwalb, J. Chhugani,
H. Plattner, P. Dubey, and A. Zeier, “Fast Updates on Read-Optimized
Databases Using Multi-Core CPUs,” in VLDB, 2012.

[19] F. Raab, “TPC-C - the standard benchmark for online transaction
processing (OLTP),” in The Benchmark Handbook, 1993.

[20] P. A. Bernstein and N. Goodman, “Concurrency control in distributed
database systems,” ACM Comput. Surv., vol. 13, no. 2, Jun. 1981, pp.
185–221.

[21] D. Abadi, S. Madden, and M. Ferreira, “Integrating compression and
execution in column-oriented database systems,” in Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data,
ser. SIGMOD ’06. New York, NY, USA: ACM, 2006, pp. 671–682.

[22] S. Müller, L. Butzmann, K. Howelmeyer, S. Klauck, and H. Plattner,
“Efficient view maintenance for enterprise applications in columnar in-
memory databases,” in EDOC, 2013, pp. 249–258.

[23] I. S. Mumick, D. Quass, and B. S. Mumick, “Maintenance of data cubes
and summary tables in a warehouse,” in SIGMOD, 1997.

[24] H. Plattner and A. Zeier, In-memory data management: an inflection
point for enterprise applications. Springerverlag Berlin Heidelberg,
2011.

[25] T. J. Teorey, D. Yang, and J. P. Fry, “A logical design methodology
for relational databases using the extended entity-relationship model,”
ACM Comput. Surv., vol. 18, no. 2, Jun. 1986, pp. 197–222.

[26] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner,
“SAP HANA database: data management for modern business applica-
tions,” SIGMOD, 2011.

[27] R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper, S. Krompass,
H. Kuno, R. Nambiar, T. Neumann, M. Poess, K.-U. Sattler, M. Seibold,
E. Simon, and F. Waas, “The mixed workload ch-benchmark,” in
Proceedings of the Fourth International Workshop on Testing Database
Systems, ser. DBTest ’11. New York, NY, USA: ACM, 2011, pp.
8:1–8:6.

73Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 82 / 173

Enterprise Data Solution Leveraging Data
Warehousing for Big Data Veracity at Saudi

Aramco

Muhammad Shehryar Khakwani
Upstream Database Services Division

Saudi Aramco
Dhahran, Saudi Arabia

e-mail: muhammad.khakwani@aramco.com

Abstract— This paper deals with the challenge faced by large
organizations of establishing Big Data veracity, for maximizing
their return on investment. Large enterprises, whether
commercial or government, are collecting data at an
unprecedented rate. Nowadays, data entry is not limited to
traditional back office transactions; increasingly, data is
gathered from sensors installed in physical assets and
transmitted in real-time over large networks. Data technology
professionals approach this new wealth of data at various
levels defining innovative techniques and applying them in
areas of data storage, data warehousing, data mining, semantic
logic algorithms, complex event processing etc. For business
stakeholders, the benefit is not in the increasing speeds of data
acquisition, nor in the variety of data gathered. Return on
investment is realized when the data is transformed into
information which decision-makers can trust for making
operational and analytical decisions, giving the organization a
competitive advantage. Data Warehousing plays a critical role
in assessing Big Data veracity, identifying problem areas, and
building the trust needed for decision-making.

Keywords- Big Data; Veracity, Data Warehouse; Oil and
Gas.

I. ENTERPRISE DATABASES

Enterprises today retain more data than they did a decade
ago. Databases supporting large enterprises no longer obtain
data only from traditional back office data entry systems.
Businesses realized the competitive advantage that can be
provided by useful and timely information, and fuelled the
drive for building efficient data gathering systems. These
systems succeeded in streamlining and automating data
gathering, in many cases eliminating manual data entry,
providing businesses quicker data access, thereby giving rise
to Big Data. Gartner Inc. defines Big Data as “high-volume,
high-velocity and high-variety information assets that
demand cost-effective, innovative forms of information
processing for enhanced insight and decision making [1].”

Enterprises moved towards a host of best-of-breed
technologies, adopting ones best suited to address a
particular need, and in their wake left large volumes of data,
in varying formats, arriving at various frequencies. The
resulting complexity creates new data management issues for

businesses to deal with today. More companies than ever
want practical application of Big Data concepts to data sets
which are too large to handle with traditional systems [2].
Businesses serious about successfully extracting value from
Big Data initiatives will no longer have the luxury of treating
data stores with outdated data management policies.
Successful enterprises will incorporate policies and practices
for dealing with Big Data as part of their comprehensive data
governance strategies.

This paper is based on real occurrences in the industry. It
describes the situation at Saudi Aramco before Big Data, the
introduction of real-time data gathering which resulted in the
arrival of Big Data, the problem posed by data veracity, and
the critical role Data Warehousing played in dealing with it.
It concludes with the use of data warehousing which
provides a feasible and implementable solution towards
establishing veracity for Big Data.

II. BIG DATA VERACITY CURRENT SITUATION

The industry today is struggling with Big Data for its
volume and velocity, and veracity has emerged more
recently. It is only recently that the big data is characterized
not only along the three “V”s, volume, variety and velocity,
but also along a fourth “V”, veracity [3]. IBM recognizes this
as establishing trust presenting a huge challenge as the
variety and numbers of source grows [4].

III. SAUDI ARAMCO UPSTREAM DATA

Saudi Aramco has produced oil since the 1930s, and is
currently the world’s prevalent oil producer. It remains
committed to serving the world’s energy needs, and
maintaining its standing among the leading energy
companies. In order to achieve its objectives, conduct safe
operations, and optimize production strategies, Saudi
Aramco committed to investing in Information Technology
several decades ago.

Production and Reservoir engineers have been gathering
and analyzing scientific data for decades at Saudi Aramco.
Data acquisition can be categorized in two broad categories,
traditional data gathering, and more recently, real-time
streaming data gathering.

74Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 83 / 173

A. Traditional Data Gathering

Oil companies have collected data to manage their
upstream assets, and Saudi Aramco has been on the forefront
of such efforts. Engineers require geo-scientific data such as
fluid production rates, well and formation pressure readings,
and rock properties to make decisions for harvesting
hydrocarbons properly. This data is typically acquired by
production engineers conducting operations on wells in
oilfields, using various gauges to record measurements. The
data gathered during operations is entered in a master
database, where it is verified for accuracy by ranking
engineers. An engineer compares the readings taken to
previous measurements, checks nearby wells, and takes into
account subsurface factors before approving the values for
use.

These processes for gathering and validating data have
been in place for years, and have matured over time. Tried
and tested, dependable systems upload and retrieve data.
Consequently, the trust, or for lack of a better term, feel for
these values, has also been intrinsically built over the years.

Geoscientists and decision-makers who rely on geo-
scientific data to make critical decisions feel far more
comfortable when the data they are considering has been
reviewed, validated, and signed-off by a qualified engineer.
This is especially true when dealing with scientific data
related to subsurface measurements; earth can be quite
finicky to deal with at the best of times!

This sentiment of having trust in numbers before taking
appropriate action is not surprising; I myself trust medical
lab test results for my annual checkup after my doctor has
looked them over, considered similar tests from years past,
my condition at the time, and given his approval for the lab
work.

The key point here is that trusting data quality, accuracy,
reliability, i.e., its veracity, is built into processes for
traditional data gathering.

B. Real-Time Streaming Data Gathering

Real-time monitoring of well performance is a complex,
multi-departmental and very expensive undertaking at Saudi
Aramco [5]. Real-time data gathering in the digital oilfield is
based on the premise that getting information faster will alert
to potential problems earlier, enable timely intervention,
thereby saving costs, and inevitably resulting in safer
operations.

For oil and gas producers, real-time streaming data is
gathered during drilling and producing operations. Sensors
may be installed on surface, for example on pipelines to
measure the rate of fluid passing through it, or installed deep
inside oil and gas wells to check subsurface temperature and
pressure at reservoir conditions. These sensors provide a
constant data feed for the ever-changing big picture of a
modern day digital oilfield.

This real-time, or near real-time, monitoring of assets
generated a lot of interest within the user community. There
was a real push from the business to unlock the potential
from getting information faster.

IV. DIGITAL OILFIELDS GENERATE BIG DATA

Real-time data is transmitted from oilfields as a continual
stream, and consumed by software systems for alerting,
reporting, analysis, and ideally providing a visual up-to-the-
minute representation. As more and more oilfields were
equipped with sensors, data started to flow in steadier,
stronger streams; Big Data had arrived. Tens of thousands of
readings started streaming in from sensors installed across
thousands of assets.

A. Determining Data Properties

To establish whether indeed it is Big Data, let us examine
the properties of incoming data. The data is machine
generated and arrives as key-value pairs at a very high
frequency, so it has high velocity. The numerous types of
sensors transmit different readings such as reservoir pressure,
flow rates, temperature etc., so it has a diverse variety of data
types. At Saudi Aramco, this activity certainly generates an
increasingly large volume of data.

B. Determining Critical Success Factors

Projects which introduce new technology, with an aim to
transform traditional business practices, normally encounter
unanticipated problems. Success requires recognizing
problems early, and reacting effectively. This holds true
when executing Big Data projects in larger, mature
enterprises. Unforeseen challenges will need to be addressed
during project execution.

1) Technical Factors
For Information Technology (IT) professionals, focus

quickly shifts to IT related concerns like calculating storage
capacity for incoming streams, efficiently indexing key-
value pairs, and minimizing retrieval time for display on
large monitors. While these and other activities like
procuring the right hardware, accurately estimating and
accounting for scaling volumes of data, configuring the
systems to optimally run with low latency, are all important
factors, they do not, by themselves, declare a successful Big
Data implementation.

2) Business Factors
It is vital that success factors be defined from a business

perspective. Our measure of success is whether the engineers
and geoscientists are able to utilize the information,
transform their processes, conduct better analyses, and add
value to the bottom line.

C. Problems Encountered

The first set of problems to overcome tended to be
technical in nature. The networks needed to be extended to
reach all the assets; oilfields tend not be in the most
hospitable areas. The bandwidth capacity needed to be
upgraded to handle large volumes of incoming data, and
clusters of servers procured to receive and store the data.

Careful capacity planning, savvy cost estimates, and
forthright communication with management to secure
funding are essential parts of providing a satisfactory
technical infrastructure. These are reasonably predictable
issues, and experienced project managers are able to address
these given adequate resources.

75Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 84 / 173

Where Big Data projects differ are when dealing with
uncertainty and dealing with earth sciences compounds the
problem. Uncertainty is an undeniable reality when dealing
with Big Data. Managing uncertainty and establishing trust
are key to extracting value from Big Data [3].

The problem which proved to be critical turned out to be
an intangible one. The single most important factor that lies
between success and failure, and the hardest to achieve, turns
out to be data veracity: establishing trust.

V. PROBLEMS DETERMINING VERACITY IN DATA

It soon became evident that real-time data could not be
treated as “the same thing a lot faster”. Though Big Data
was similar in its look and feel to conventional data, it
needed to be treated differently.

Traditional data collection allows engineers to study and
validate the data, determine its usefulness and only keep the
most reliable data. Those using the data trust its quality and
base their decisions on it. It is not possible to give the same
level of care to high velocity data. It is unreasonable to
continue to try and monitor that amount of data using manual
processes.

Following are a few select examples from real life which
show the different types of problems encountered when
dealing with data veracity in real-time:

A. Validity Domains and Ranges

One of the first data validation actions when dealing with
data is to establish validity ranges for incoming values. Valid
value domains, and ranges, were determined after studying
existing patterns of data gathered traditionally. Subject
matter experts were consulted and acceptable values defined.
For example, fluid pressure readings should lie within 1,500
to 4,000 psi for flowing wells.

In reality, it was never as simple as an absolute range.
What the users really wanted were ranges which were put in
context after considering various factors. For instance,
consider the geographical locations of wells, take into
account the preceding 24 hours, examine some other relevant
factors and then apply a range of values for determining
validity. These were all the checks that the engineer carried
out when taking readings manually.

For Big Data this can be problematic since the volume of
data arrival can prevent extensive checking – if everything is
not checked very quickly, a lot more data is waiting in the
queue. At a technical level one has to be very careful in
writing extremely efficient code, and make smart choices
about what can be verified in a very short period of time.

B. Good Spikes Bad Spikes

In general values that are out of a given range are
excluded when reporting. The sensors are installed in harsh
conditions, above and below the surface; they may need to
be re-calibrated etc. However, what may look erroneous at
first, may turn out to be correct. While conducting a data
review for streaming data with senior field engineers, a set of
wells was chosen and data analyzed. An analyst noticed
some spikes in production rates and pointed them out. The

field engineers asked for the time of day when the spikes
occurred, and then mentioned that the wells during that time
were being adjusted and tested for choke settings which
would have caused these spikes in rates. A choke is a heavy
steel nipple inserted in production tubing used to restrict
flow and control pressure [6]. Had these readings been taken
through traditional methods, the engineer taking the readings
would have been aware of the operations being conducted
and taken that into account when validating the data.

Clearly there is a dependency between production rates
and choke settings on a well. If the well has sensors for
choke settings, then there is a dependency between streaming
data readings. If the well is sending production rates only,
then engineers must provide the data for choke settings using
traditional gathering means. However, by the time data is
entered by the engineer using traditional methods, it may be
too late for verifying the streaming high velocity data.

C. Conflicting Values

In situations, similar to the ones mentioned above, where
there is a dependency, applying verification rules can be
problematic. There are several instances of inter-dependent
streaming values. Consider two sensors, one indicating
whether the well is flowing, and another measuring the fluid
rate. The majority of the time these will be consistent. There
are cases when one indicates the well is flowing, and the
other shows a production rate of zero. Which one is now
correct? Which sensor value do you trust?

For a decision-maker who wants to determine the volume
of fluid produced and take appropriate action, this poses a
confidence problem. Increasing or decreasing volumes of
fluid require different actions. Conflicting results
immediately cause a loss of confidence in the entire data set.
Yes, there are techniques where running mathematical
algorithms, or checking a third or fourth set of variables
determines the veracity among the conflicting variables, but
decision-makers hesitate before authorizing expensive action
if results are murky. This is understandable especially where
expensive decisions are at stake. Consider this: would you
make an investment and buy a stock if you were told the
streaming price you see is 90% correct, only a 10% chance
that it is not the actual stock price?

D. Suspiciously Correct

Another case which crops up when dealing with Big Data
shows values that seem perfectly valid, fall within defined
validity ranges, but raise suspicion. These may come from a
sensor which is transmitting the same value for a period of
time, or the value is within a very narrow range over an
extended period. Typically this unsettles the data consumer,
because he is not sure whether the sensor is malfunctioning
or ‘stuck’ and transmitting the same pattern repeatedly. It is
hard to distinguish if the fluid rate really did remain constant,
or whether the sensor transmitting data malfunctioned during
the period of time. If the values are repetitive for a short
period, that may be acceptable, but if it is absolutely constant
for a longer period of time then something is likely wrong.
When determining veracity, it is difficult to determine
exactly when incorrect readings began being transmitted?

76Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 85 / 173

How far back in time does the problem go with readings
from a sensor, and whether to fix the data or discard the
readings?

E. Multiple Truths

As strange as this statement may sound, real life deals
with multiple truths. When dealing with the scale of
enterprise level data, the Big Data picture is usually
composed of smaller pieces of information obtained from
different data stores. Resolving these differences does not
necessarily identify only one trusted source.

For instance, analyzing data elements from a well, and
cross checking against spreadsheets and charts recorded by
engineers, does not show one source always being correct
over the other. There are cases where the sensors showed
conditions which the engineers missed, and vice versa where
the engineers had more accurate information and better
observations.

In one case, while visiting engineers in the field for this
project, sensors were transmitting very low fluid rates. The
field engineer saw this and instructed the values be ignored,
since the well had been shut-in the previous day, and
therefore the fluid flow rate should be recorded as zero. In
other cases, sensors showed more accurate choke setting
information than data entered manually.

Clearly establishing criteria for acceptance is the key to
data veracity. In real life, especially when dealing with large
databases which input data from a variety of sources,
defining a comprehensive set of rules which can always be
applied programmatically is not straightforward.

VI. DATA WAREHOUSING– CRITICAL FIRST STEP

Large enterprises deal with various facets of data
management simultaneously. Problems do not lie neatly
within a single Data Governance domain such as Data
Ownership, Data Quality, Data Mining, Data Integration, or
High-volume Streaming. An enterprise solution must draw
on various disciplines within data management to provide an
effective solution. For a large enterprise like Saudi Aramco,
spread out over a vast geographical area, with physical and
data assets handled by multiple organizations, the challenge
was to gain an effective overall understanding.

Data warehousing provides an all-inclusive view of data.
The introduction of a data warehouse into the Big Data
architecture fulfilled a critical need to bring disparate data
sets together in order to establish veracity.

Data warehousing provides an overall understanding of
data associations by placing facts together and along a
consistent time dimension. A data mart which pulls data
from various sources and lets the users check for accuracy
goes a long way towards dealing with data veracity. Fig. 1
shows a conceptual view of a data warehouse bringing
together real-time and traditionally collected mastered
databases to provide a unified view.

Figure 1. Consolidate data sources for understanding

A. Data Transformation: Smoothing Out Time

At first look, data warehousing seems exactly the wrong
approach to the problem. Data warehouses are centered on
data cubes with well-defined dimensions, where time plays a
crucial role in setting up a data warehouse. When dealing
with big projects generating big data arriving from multiple
data sources, the time grain is completely askew because the
velocity of the two data sources (conventional and real-time)
is so different. In large industrial applications, data origins
spanning multiple organizations cannot be taken in isolation.
The two data sets need to be considered to supply context,
from a user’s perspective.

The time problem is tackled by agreeing on a common
baseline for time on the fact table. In our case, it turned out
to be a day since users wanted to construct a daily picture for
each well. These meant taking readings coming in at various
intervals; some arriving every few minutes, others ever few
seconds, and aggregating them into a daily summary in the
data warehouse.

A key point here is to include only those factors that
establish veracity and are utilized for analysis. It would be
exhaustive to do this for every type of reading. For instance
only flow rates, pressures and choke settings were
considered, and many other readings like pump vibrations
and temperature sensor readings were ignored. Many data
elements do not add value to the process of establishing
veracity. It is very important to consult subject matter experts
from users for determining what is important to gain their
confidence – remember the end goal is to have them use this
for better decision-making.

We defined our fact table to contain information for
every calendar day, complementing each streaming value
aggregate with the latest values from the master data store,
and essentially constructed a “big picture of big data”.

77Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 86 / 173

B. Advantages of Data Warehouse

There are several advantages to introducing a data
warehouse in the architecture and leveraging it to gain a
better understanding of Big Data. These include:

 Consolidating Information: The advantage of a
Relational Online Analytical (ROLAP) design is that
it puts the relevant data on one row in the fact table.
The Extract Transform Load (ETL) which populates
the data warehouse processes data for each well,
every day, consolidating data collected from sensors
displayed side by side with the latest values available
from traditional data sources.

 Consistent Timeline: When ETL constructs a daily
picture, it solves a major problem of what to do with
data collected over time using different methods.
Enterprises that have collected data over years, and
choose to modernize sanctioning mega-projects
using the latest technology cannot simply discard the
values they obtained earlier. All valid data collected
over time must be made available to users. The data
warehouse can construct data from when it first
becomes available in the traditional data store, and
continue to add information from when the wells are
instrumented to provide streaming data.

 Consolidating Sources: Once the data is available in
a data warehouse, it becomes much easier to spot
data anomalies. Data from different sources,
collected by multiple professionals, and under the
ownership of various organizations is now available
in one place to look over. This goes a long way
towards establishing data veracity.

 Perform Analysis: Having the data in a data
warehouse lends itself naturally to running analytical
queries. Aggregated values from streaming data
which seem suspect are easily picked up, and when
necessary one can drill down to the actual readings
and analyze a manageable set of information. For
instance, it is easy to run SQL queries and check for
pressure drops over a threshold, say 5 or 10% in
daily averages and look closely at the days where
data patterns do not align. The advantage gained is
that while one can scan real-time data stores, base
lining and transforming data into a warehouse makes
it far more manageable. This makes it easier to scan
for missing data, and search for patterns where data
does not fit with the rest of the readings.

C. Visual Representation

If a picture is worth a thousand words, then visualization
must be worth at least a thousand data points. There are
several tools available which allow quick visualization using
charts and graphs to analyze data in data warehouses. Having
the data in one unified data source makes it possible for
applications to perform better data analysis and generate
comprehensive reports readily. Reporting tools do not have
to run exclusively either on streaming, or master data stores,
placing the onus on the user to merge the results. Instead
reports are built on a correlated data set, stored in fact tables

in a data warehousing structure, and presented as a unified
view to the end user. Fig. 2 shows a visual representation of
streaming data (shown in green, and traditionally gathered
data shown in red) placing them next to each other. This
makes it easier to identify the outlier scattered values, and
those that should be considered.

VII. FIXING PROBLEMS SHOWN BY WAREHOUSING

Data warehousing will make it easier to identify, but not
resolve the data issues. Business does not get the intended
return on investment until the underlying problems are fixed.
When dealing with Big Data, getting the data actually fixed
turned out to have its own peculiarities. Some of these
characteristics of Big Data fixes include:

A. Technical Challenges

Applying a data fix on voluminous large data sets poses
technical problems. Unlike traditional data where incorrect
values are updated easily to reflect the correct value,
typically, one does not change or update streaming data
values generated from sensors, even if they are wrong. They
are left alone; instead validation or logic is applied to
determine which values to ignore. Sometimes even the
validation logic is modified. It does not happen often, but
occasionally, engineers do change their minds. If at first they
allowed pressure values that fell within a range of 3,000 to
3,500 psi, they may ask us to relax validation rules to include
values up to 4,000. In this case, we needed to back up and re-
process an awful lot of data. Such re-processing, or re-
summarization, crunches through a lot of numbers, and
sometimes takes days to complete. In such cases, process
data fixes going backwards in time, fixing the latest values
first, and keep walking back in history until all the required
re-processing is complete. Users tend to work mostly with
the latest data, so it is prudent to fix that first.

B. Replacing Sensors

Not all data problems are software related, some involve
replacing hardware. Given enough time, nearly all machines
malfunction. Once a particular sensor is giving faulty data, it
needs to be replaced. For energy companies, dealing with
earth and subsurface structures, equipment is often installed
in harsh physical conditions; thousands of feet below the

Figure 2. Plotting Traditional and Streaming Data[7]

78Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 87 / 173

surface, or remote locations with extreme climate conditions.
Therefore, swapping faulty equipment might not be a simple
operation to carry out. Frequently, the equipment is not
easily accessible. Surface sensors are relatively easy to
replace, but those installed sub-surface in wells may require
a rig to be sent on site, shut the well, and perform a work
over. For this reason, sensor packs lately have redundant
sensors installed; in case of a faulty sensor, just ignore the
data it sends, until the work can be carried out, preferably
with other work being done on the well, to minimize the cost
of intervention.

C. Changing Practices

Validating high volume, machine-generated data, in
order to build the level of trust necessary for achieving
business goals requires changing some practices, and
developing new procedures. Before users make decisions
based on this data for optimizing daily operations, or use the
data for metrics in key performance indicators, or perform
analysis, or use it for simulation modeling, or for creating
production profiles, they must have confidence in the
numbers they are dealing with.

Engineers who are validating data may need to be a little
more meticulous. At first, it may require spending more time
on data validation than they are used to, or have to do it more
frequently than they were used to doing it in the past. This is
difficult to sell, because people expect modernization and
smart sensors to reduce their workload, not add more tasks to
an already busy day.

Modernization is a transition. It is a commitment, and
will result in a better way of doing things, but not without
growing pains. For Big Data projects, anticipate changing
how work is carried out, and prepare for it by defining a
process for updating business practices. This makes it easier
to implement improvements on how organizations function
and results in new streamlined practices, moving them
towards the overall objective of greater efficiency.

VIII. CONCLUSION AND FUTURE WORK

Leveraging the power of data warehousing for helping
establish data veracity for Big Data is a feasible and
implementable solution. Most large organizations already
have some data warehousing implemented; the important
step to take is to make it part of the information architecture.

Digitizing an oilfield is not simply a matter of installing
sensors to receive data. Equally important is strategy which
recognizes the business goals and defines a framework on
achieving them. In order to maximize a return on investment,
and realize the benefits, information technology must play a
role of shielding the end user from technical jargon and
deliver information in a way that is easy to use, and

integrates seamlessly with traditionally collected data. Such a
solution would provide a holistic strategy and encompass
applications which integrate wholly into an upstream
engineer’s analytical processes.

There is plenty of work planned in the future after
combining high frequency machine generated data with
traditional structured data. There still remains the added
value of combining the structured dataset now stored in a
data warehouse with unstructured or semi-structured data.
Upstream geoscientists in the oil and gas sector complement
the structured data gathered in databases, with documents,
observer logs, surface maps, subsurface maps, and a wide
variety of schematics showing geological formations,
subsurface contours, fluid migrations etc. A future Big Data
solution envisions including all of these unstructured data
items with the structured data gathered.

Large enterprises sanction Big Data projects and in doing
so commit significant investment and resources to the effort.
Some benefits are realized early for operational alerting of
any outage or anomaly that requires immediate attention.
The gain is fully realized only when this data is filtered and
transformed into information which helps analyze trends to
manage core assets such as hydrocarbon reservoirs, and
wells over a long term, enhancing value in operational,
tactical and strategic planning. For large enterprises, the road
to harnessing the full potential of Big Data is long, but worth
the journey.

.

ACKNOWLEDGMENT

The author would like to thank Yasir Rafie for his
valuable comments.

REFERENCES

[1] Gartner Inc. http://www.gartner.com/it-glossary/big-data/ , retrieved

on March 10, 2014.

[2] D. Bartik, “Big Data: Dead by Definition, Alive in Practice”
Information Week, http://www.informationweek.com , retrieved on
Feb. 13, 2014.

[3] T. Lukoianova, and V. Rubin, “Veracity Roadmap: Is Big Data
Objective, Truthful and Credible?” Advances In Classification
Research Online, 2014, doi:10.7152/acro.v24i1.14671.

[4] IBM Inc.
http://www.ibm.com/developerworks/bigdata/karentest/veracity.html
, retrieved on March 10, 2014.

[5] W. Wolfe, “Real Time Well Data Gathering and Analysis”
unpublished.

[6] R. D. Langenkamp, The Illustrated Petroleum Reference Dictionary,
PennWell Publishing, Tusa, 1980, p. 28.

[7] U. Nahdi, “Integrating Live and Conventional Data” unpublished.

79Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 88 / 173

Parallel In-Memory Distance Threshold Queries on Trajectory Databases

Michael Gowanlock
Department of Information and Computer Sciences and

NASA Astrobiology Institute
University of Hawai‘i, Honolulu, HI, U.S.A.

Email: gowanloc@hawaii.edu

Henri Casanova and David Schanzenbach
Department of Information and Computer Sciences

University of Hawai‘i, Honolulu, HI, U.S.A.
Email: henric@hawaii.edu, davidls@hawaii.edu

Abstract—Spatiotemporal databases are utilized in many applica-
tions to store the trajectories of moving objects. In this context,
we focus on in-memory distance threshold queries that return
all trajectories found within a distance d of a fixed or moving
object over a time interval. We present performance results for a
sequential query processing algorithm that uses an in-memory R-
tree index, and we find that decreasing index resolution improves
query response time. We then develop a simple multithreaded
implementation and find that high parallel efficiency (78%-90%)
can be achieved in a shared memory environment for a set
of queries on a real-world dataset. Finally, we show that a
GPGPU approach can achieve a speedup over 3.3 when compared
to the multithreaded implementation. This speedup is obtained
by abandoning the use of an index-tree altogether. This is an
interesting result since index-trees have been the cornerstone of
efficiently processing spatiotemporal queries.

Keywords-spatiotemporal databases; query parallelization.

I. INTRODUCTION

Many applications require analyzing moving object tra-
jectories (e.g., users with Global Positioning System devices,
animals in ecological studies, stellar bodies in astrophysical
simulations). Two relevant queries over moving object trajec-
tories, which we term distance threshold queries, are: (i) Find
all trajectories within a distance d of a given fixed point over
a time interval [t0, t1]; and (ii) Find all trajectories within a
distance d of a given trajectory over a time interval [t0, t1].

For instance, consider an astrobiology application that
studies the habitability of the Milky Way [1]. The Milky
Way is expected to host many rocky low-mass planets, some
of which may be able to support complex life. The dangers
to complex life include transient radiation events, such as
supernovae, or close encounters with flyby stars. To model
habitability one must quantify these events, which can be
formulated as distance threshold queries: (i) Find all stars
within a distance d of a supernova explosion, modeled as a
fixed point, over a short time interval t; and (ii) Find the stars,
and corresponding time periods, that host a habitable planet
and are within a distance d of a moving star, s, over the star’s
lifetime ts. Given that a dataset of the Milky Way may contain
billions of stellar trajectories, distance threshold queries must
be performed efficiently.

Our objective is to design efficient distance threshold query
processing algorithms, and we make the following contribu-
tions:

1) We propose a sequential algorithm that relies on an
efficient trajectory indexing strategy.

2) We investigate parallelization in a multi-proc/multi-core
environment and a General-Purpose computing on Graph-
ics Processing Units (GPGPU) environment. The con-
trasting architectures require different algorithms and data
structures to achieve good performance.

3) We outline performance bottlenecks and suggest methods
for their resolution in a distributed memory environment.

II. RELATED WORK

A trajectory is a set of points traversed by an object over
time. Linear interpolation is used when processing queries that
fall in between the points (i.e., one assumes that the points are
connected by line segments). Most works on moving object
databases propose sequential query processing algorithms that
utilize an R-tree index [2] or variations of it (e.g., TB-trees [3],
STR-trees [3], 3DR-trees [4], and SETI [5]). The R-tree
indexes spatiotemporal data using hyperrectangular minimum
bounding boxes (MBBs), where each line segment belonging
to a trajectory is stored in one MBB at a leaf node. The non-
leaf nodes contain the dimensions of the MBB that contains
all MBBs in its sub-tree. Given a query MBB, an index search
returns all leaf node MBBs that overlap the query MBB.

Except in [6], distance threshold queries have received little
attention. The most related queries are k Nearest Neighbors
(kNN) queries [7], [8], [9], [10]. In some sense a distance
threshold query is a kNN query with an unknown value of k,
since there is no a-priori limit to the number of query matches.
Therefore, kNN query processing algorithms cannot be applied
to process distance threshold queries.

III. SEQUENTIAL IMPLEMENTATION

In this section we evaluate a sequential implementation
of the TRAJDISTSEARCH distance threshold query processing
algorithm that we proposed in [11]. Given a query trajectory
line segment over a temporal extent, a query MBB is computed
based on the query threshold distance. TRAJDISTSEARCH then
searches a trajectory index for MBBs that overlap the query
MBB. TRAJDISTSEARCH is implemented in C++, re-using an
R-tree index implementation based on that initially developed
by A. Guttman [2] with source code available at [12].

80Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 89 / 173

We run TRAJDISTSEARCH on one core of a dedicated 3.46
Ghz Intel Xeon W3690 processor with 12 MB L3 cache and
sufficient memory to store the entire index. We average query
response time over 3 trials. The variation among the trials
is negligible so that error bars in our results are not visible.
We ignore the overhead of loading the R-tree from disk into
memory, which can be done once before all query processing.
We measure the response time of TRAJDISTSEARCH for the
following datasets and queries, which are available at [13]:

• S1: A 4-D (3 spatial + 1 temporal) dataset, Galaxy,
containing star trajectories (for the application described
in Section I), with 1,000,000 trajectory segments cor-
responding to 2,500 trajectories of 400 timesteps each.
The query consists of 100 trajectories for 100% of their
temporal extent, with a variable query distance d.

• S2: Three 4-D synthetic datasets, Random, with trajecto-
ries generated via random walks, with ∼1,000,000 (1M),
∼3,000,000 (3M) and ∼5,000,000 (5M) line segments
corresponding to 2500, 7500 and 12500 trajectories,
respectively. The query consists of 100 trajectories for
100% of their temporal extent, with a fixed query dis-
tance, d = 15.

One indexing approach is to assign each trajectory segment
to its own MBB, minimizing index overlap, but maximizing the
number of entries in the index. By assigning multiple trajectory
segments to an MBB, index traversal time is decreased as
the index contains fewer entries. However, a larger number
of candidate segments is returned, many of which may not
overlap the query MBB, leading to higher segment processing
times. To explore the effect of varying the index resolution, for
each trajectory we place its first (temporally) r segments in an
MBB, its next r segments in another MBB, and so on. r = 1
corresponds to using a single MBB per trajectory segment.
Figure 1 plots response time vs. r for S1 and S2. A small r
value can lead to high response times. In Figure 1 (a) with
a value of r = 12, the response time with d = 5 is 31.6 s
in comparison to 186.5 s for r = 1, or a factor of 5.9 faster.
Grouping multiple line segments into MBBs in this manner
ensures that line segments of a trajectory are temporally
contiguous. We also attempted to split trajectories so as to
minimize MBB volumes using the MergeSplit algorithm [14],
but saw no performance improvement (see full details in [11]).

IV. SHARED-MEMORY PARALLEL IMPLEMENTATION

A. Multi-core OpenMP

TRAJDISTSEARCH can be easily parallelized using
OpenMP in a shared-memory setting because iterations of
its outer loop are independent. Figure 2 shows the response
time on the 6-core platform described in the previous section
vs. the number of threads for S1 and S2 with r = 12 and
r = 10, respectively (i.e., the “best” r values for the sequential
implementation). We see high parallel efficiency (78%-90%),
with parallel speedup between 4.69 and 5.44 with 6 threads
for query distances ranging from d = 1 to d = 5.

B. GPGPU with OpenCL

In TRAJDISTSEARCH, the R-tree is used to reduce the
number of line segments that must be processed. Unfortu-
nately, the index-tree traversal is memory-bound with non-

 0

 50

 100

 150

 200

 2 10 18 26

T
im

e
 (

s
)

Segments/MBB

Distance: 1
Distance: 2
Distance: 3
Distance: 4
Distance: 5

(a) Galaxy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2 10 18 26 34 42 50 58

T
im

e
 (

s
)

Segments/MBB

1M
3M
5M

(b) Random datasets

Figure 1. Response time vs. the r for (a) S1 for the Galaxy dataset for
various query distances; and (b) S2 for the Random-1M, 3M, and 5M

datasets and a query distance of 15.

deterministic execution paths due to branches, making efficient
execution on a GPU challenging. As a result, we completely
forego the use of the index-tree entirely so as to exploit
the massive parallelism of the GPU. In the GPU version of
TRAJDISTSEARCH, all line segments of each trajectory in
the dataset are stored in the GPU’s global memory once and
for all before all query processing. These line segments are
sorted temporally based on their start times (line segments of
a trajectory may not be stored contiguously). On the host, for a
specified number of bins, B, we bin these line segments, where
each bin is defined by a range of start times and consists of
the indices of the first and last segments in the bin.

1) Constant Sized Query Batches: We develop a GPU
kernel that processes a set Q of N query line segments, initially
stored on the host. The host first sorts the line segments in Q by
their start times, and determines the relevant contiguous bins
that contain entry line segments that may overlap temporally
with at least one query line segment. Let E denote the entry
line segment index range corresponding to this set of bins.
Larger values of B (i.e., smaller bins) mean a more expensive
computation for E but a more precise value for E (i.e., a
smaller range). Our GPU kernel takes as input E and Q, where
each GPU thread is responsible for one line segment in E, and
computes whether any of the segments in Q are within distance
d of that line segment. This brute-force search returns relevant
time intervals annotated with the IDs of the trajectories that are
within the query distance. This kernel can be invoked multiple
times to overlap communication and computation.

81Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 90 / 173

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6
 1

 2

 3

 4

 5

 6

 7

 8

T
im

e
 (

s
)

S
p

e
e

d
u

p

Threads

Distance: 1
Speedup Distance: 1

Distance: 3
Speedup Distance: 3

Distance: 5
Speedup Distance: 5

(a) Galaxy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 1 2 3 4 5 6
 1

 2

 3

 4

 5

 6

 7

 8

T
im

e
 (

s
)

S
p

e
e

d
u

p

Threads

1M
Speedup 1M

3M
Speedup 3M

5M
Speedup 5M

(b) Random datasets

Figure 2. Response time vs. number of threads (a) S1 for the Galaxy
dataset for various query distances and r = 12; and (b) S2 for the

Random-1M, 3M, and 5M datasets, with a query distance of 15 and r = 10.

We implemented the above kernel in OpenCL and executed
it on the platform described in Section III equipped with an
Nvidia Tesla C2075 GPU device. Figure 3 (a) plots response
time vs. B for dataset/query S1 and for a query distance
d = 5, and for various values of N . For the results in this
figure we only consider one workqueue with a single kernel
(1 CPU thread), so that there is no overlap of computation
and communication. We find that a value of N = 125 leads
to the best performance, independently of the number of bins.
We also see that too small a number of bins leads to high
response time because the index range E is unnecessarily large.
The response time plateaus around B = 5000. Figure 3 (b)
shows similar results but with 3 workqueues each running an
instance of the kernel, thus allowing overlap of computation
and communication (using more workqueues leads to no
further improvements in our experiments). We see the same
trends in terms of the number of bins B. Using N = 100
or N = 125 leads to the lowest response time overall. The
performance gain due to overlap is significant. For instance,
with B = 5000 and N = 125, the response time in Figure 3(a)
is 2.75s while that in Figure 3(b) is 2.07s, or 24.7% faster.

In comparison to the initial sequential implementation, still
for dataset/query S1, using r = 1 (Figure 1 (a)) for d = 5, the
GPU implementation using a single kernel (Figure 3 (a)) gives
a speedup of over 67. Considering the best value of r = 12 for
S1, and the multithreaded CPU implementation with 6 threads,
we obtain a speedup using the GPU of over 2.5 with a single
kernel, and a speedup of over 3.3 when using 3 workqueues.

 2

 2.5

 3

 3.5

 4

 500 2000 3500 5000 6500 8000 9500

T
im

e
 (

s
)

Number of Bins (B)

50 Queries
75 Queries

100 Queries
125 Queries
150 Queries
175 Queries
200 Queries

(a)

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 500 2000 3500 5000 6500 8000 9500
T

im
e

 (
s
)

Number of Bins (B)

50 Queries
75 Queries

100 Queries
125 Queries
150 Queries
175 Queries
200 Queries

(b)

Figure 3. Response time vs. B for S1 with various N values and d = 5; (a)
1 work queue and kernel instance; (b) 3 work queues and kernel instances.

2) Variable Sized Query Batches: One drawback of con-
stant sized query batches is that, due to temporal properties of
the dataset, the batch may temporally overlap with a large entry
index range E but each individual query may overlap only a
small subset of E, thus leading to wasteful computations. We
propose here an approach that uses variable sized batches to
reduce the number of these wasteful calculations. We group
queries according to their temporal properties by sorting them
temporally, as in the previous approach, but then binning them
in the same manner as the entries described in Section IV-B.
More precisely, each query line segment is assigned to one of
C query bins. Each of the C bins is mapped onto the indices
of the B entry bins for which the C bins overlap temporally.
We construct query batches as contiguous sets of S query bins
(batches contain different numbers of queries), which are sent
to the GPU for each kernel invocation.

Figure 4 (a) plots response time vs. S for dataset/query
S1 with d = 5. To compare with Figure 3 (a), we have
plotted the average number of queries per kernel execution
in Figure 4 (b). We observe that this approach performs
slightly worse than the constant sized query batch approach
(Figure 3 (a)). We attribute this to two factors: (i) the additional
overhead required to construct the C query bins, and (ii) the
fact that this particular dataset has roughly the same number
of active trajectory segments at any given time. Elaborating
on (ii), if the dataset contained short punctuated time periods
where there are many relevant trajectories, and other periods
with few relevant trajectories, then the variable sized query

82Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 91 / 173

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

T
im

e
 (

s
)

Query Bin Chunk Size (S)

1500 Query Bins
2000 Query Bins
2500 Query Bins
3000 Query Bins
3500 Query Bins
4000 Query Bins
4500 Query Bins

(a)

 0

 200

 400

 600

 800

 1000

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

A
v
e

ra
g

e
 N

u
m

b
e

r
o

f
Q

u
e

ri
e

s

Query Bin Chunk Size (S)

1500 Query Bins
2000 Query Bins
2500 Query Bins
3000 Query Bins
3500 Query Bins
4000 Query Bins
4500 Query Bins

(b)

Figure 4. (a) Response time vs. S for S1 with various C values, d = 5,
B = 7500, with 1 work queue and kernel instance; (b) the average number

of queries per kernel execution vs. S for the results in the upper panel.

batch approach would likely outperform the constant sized
query batch approach, since on average each kernel instance
would be given a smaller E range. One such application would
be the trajectories of vehicles, where the number of active
trajectories at a given time, unlike in the case of stars in the
galaxy, is influenced by human activities, such as rush hour,
daytime, nighttime, etc.

V. DISCUSSION AND CONCLUSIONS

This work in progress studies in-memory distance threshold
queries for moving object trajectory databases. For a sequential
implementation, a natural and effective approach is to use
an index tree and to group multiple trajectory line segments
into MBBs. We have shown that the resulting algorithm can
be parallelized efficiently on a multi-core platform. A future
work direction is to consider distributed memory environments
with multiple multi-core nodes. The global index could be
partitioned across the nodes, with however a high risk of load
imbalance that would lead to deeper tree traversals for some of
the nodes. In this context, it would be interesting to study the
impact of index resolution on load balancing, possibly leading
to a solution that uses different index resolutions on different
nodes.

We have shown that GPGPU can lead to efficient distance
threshold query processing provided queries are processed in
batches of appropriate size and the use of the R-tree index is
abandoned. For the queries/datasets used in our experimental

evaluation we have found that the GPU can provide a speedup
of over 3.3 when compared to a multi-threaded R-tree based
implementation that uses 6 cores. An important result is that
our brute-force GPGPU approach outperforms the traditional
search-and-refine strategy that uses the popular R-tree index.
Future work in this direction may investigate the use of a
GPU implementation of the R-tree [15], and possibly using
hybrid approaches for splitting up the execution of the query
processing algorithm between the host and the GPU device.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Aeronautics and Space Administration through the
NASA Astrobiology Institute under Cooperative Agreement
No. NNA08DA77A issued through the Office of Space Sci-
ence.

REFERENCES

[1] M. G. Gowanlock, D. R. Patton, and S. M. McConnell, “A Model
of Habitability Within the Milky Way Galaxy,” Astrobiology, vol. 11,
2011, pp. 855–873.

[2] A. Guttman, “R-trees: a dynamic index structure for spatial searching,”
in Proc. of ACM SIGMOD Intl. Conf. on Management of Data, 1984,
pp. 47–57.

[3] D. Pfoser, C. S. Jensen, and Y. Theodoridis, “Novel Approaches in
Query Proc. for Moving Object Trajectories,” in Proc. of the 26th Intl.
Conf. on Very Large Data Bases, 2000, pp. 395–406.

[4] Y. Theodoridis, M. Vazirgiannis, and T. Sellis, “Spatio-Temporal Index-
ing for Large Multimedia Applications,” in Proc. of the Intl. Conf. on
Multimedia Computing and Systems, 1996, pp. 441–448.

[5] V. P. Chakka, A. Everspaugh, and J. M. Patel, “Indexing large trajectory
data sets with seti,” in Proc. of the Conf. on Innovative Data Sys.
Research, 2003, pp. 164–175.

[6] S. Arumugam and C. Jermaine, “Closest-point-of-approach join for
moving object histories,” in Proc. of the 22nd Intl. Conf. on Data
Engineering, 2006, pp. 86–95.

[7] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Nearest
neighbor search on moving object trajectories,” in Proc. of the 9th Intl.
Conf. on Advances in Spatial and Temporal Databases, 2005, pp. 328–
345.

[8] E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, “Algorithms
for Nearest Neighbor Search on Moving Object Trajectories,” Geoin-
formatica, vol. 11, no. 2, 2007, pp. 159–193.

[9] Y.-J. Gao, C. Li, G.-C. Chen, L. Chen, X.-T. Jiang, and C. Chen,
“Efficient k-nearest-neighbor search algorthims for historical moving
object trajectories,” J. Comput. Sci. Technol., vol. 22, no. 2, 2007, pp.
232–244.

[10] R. H. Güting, T. Behr, and J. Xu, “Efficient k-nearest neighbor search
on moving object trajectories,” The VLDB Journal, vol. 19, no. 5, 2010,
pp. 687–714.

[11] M. Gowanlock and H. Casanova, “In-Memory Distance Threshold
Queries on Moving Object Trajectories,” in Proc. of the Sixth Intl. Conf.
on Advances in Databases, Knowledge, and Data Applications, 2014.

[12] http://www.superliminal.com/sources/sources.htm, accessed 5-
February-2014.

[13] http://navet.ics.hawaii.edu/%7Emike/datasets/DBKDA2014/datasets.zip,
accessed 12-February-2014.

[14] M. Hadjieleftheriou, G. Kollios, V. J. Tsotras, and D. Gunopulos,
“Efficient indexing of spatiotemporal objects,” in Proceedings of the 8th
International Conference on Extending Database Technology: Advances
in Database Technology, 2002, pp. 251–268.

[15] L. Luo, M. D. F. Wong, and L. Leong, “Parallel implementation of
R-trees on the GPU,” in ASP-DAC, 2012, pp. 353–358.

83Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 92 / 173

A Database Synchronization Approach for 3D Simulation Systems

Martin Hoppen, Juergen Rossmann

Institute for Man-Machine Interaction
RWTH Aachen University

Aachen, Germany
Email: {hoppen,rossmann}@mmi.rwth-aachen.de

Abstract—Equipping a three-dimensional (3D) simulation system
with database technology provides many advantages: Simulation
models can be managed more efficiently than with files, temporal
databases can be used to log simulation runs, and active databases
provide a means for communication. Thus, we use a central
database to share simulation models from different fields of
application from space missions to forestry. To enable real-
time access, each simulation client caches the model to its local
runtime simulation database. For that purpose, each pair of
databases must be synchronized. After a synchronization on
schema level, each client replicates data on-demand. In this
publication, we present an approach that uses both databases’
notification services to keep master copies in sync with their
replicate copies. State machines are used to model the approach.

Keywords–Database Synchronization; 3D Simulation; Dis-
tributed Database.

I. INTRODUCTION

Simulation applications in general and 3D simulation appli-
cations in particular all follow the basic principle of applying
simulation techniques to a corresponding model. Hence, the
field is called modeling and simulation. A simulation model
however needs some kind of data management. Up to now,
files are still common for this task. In [1], we present a
database-driven approach to overcome the associated disadvan-
tages. Here, a central database is used to manage the shared
simulation model, while simulation clients perform an on-
demand replication of the model to their respective local, real-
time capable runtime database. The central database is even
used as a communication hub to drive and log distributed 3D
simulations.

In this paper, we add a detailed description of the
notification-based synchronization approach used in this sce-
nario. Its specification however should be preferably universal
to allow for its adoption with different database systems. For
that purpose, general requirements towards the two involved
database systems – generically referred to as ExtDB (the
central database) and SimDB (the runtime simulation database)
– were compiled [2]. They incorporate methods adopted from
Model-Driven Engineering (MDE) [3] and allow to use the
concepts of the Unified Modeling Language (UML) to give
generalized method specifications for the different components
of the overall approach [4]. Thus in this paper, the synchroniza-
tion approach will also be presented using UML metaclasses.

The synchronization approach relies on change notifica-
tions. Hence, ExtDB and SimDB need an according service.

Using the notifications, the state of synchronization between
both databases is monitored and modeled in a state machine for
each pair of master and replicate copy. For resynchronization,
transactions are scheduled and either executed or canceled
out. Furthermore, notifications are used to confirm transactions
and to detect change conflicts. A particular challenge in this
scenario is to keep the state machine models stable, i.e., not
to miss or misinterpret notifications.

The rest of this paper is organized as follows: In Sec-
tion II, the foundations of the database-driven approach for
3D simulation are recapitulated. Section III summarizes the
system requirements and the applied approach for method
specifications using the UML metamodel. Both sections pave
the way for the main Section IV where we present the
notification-based synchronization approach. In Section V,
exemplary applications are shown and Section VI presents
some work related to our own. Finally, in Section VII, we
conclude our work and present some future work.

II. DATABASE-DRIVEN 3D SIMULATION

Using a central database (ExtDB) to manage a shared sim-
ulation model has several advantages. In contrast to a classical
file based approach, databases provide a very efficient data
management, well-defined access points, e.g., using a query
language or an Application Programming Interface (API), a
consistent data schema for structured data, and concurrent
access for multiple users. This allows to persist the current state
of a 3D simulation model comprising its static (e.g., building,
tree, work cell) as well as dynamic (e.g., vehicle, robot) parts.
During a simulation run, the state of its model’s dynamic parts
changes. This is an inherent property of simulation. To capture
this process over time, a temporal database [5] can be used.
Here, any change to the simulation model causes the previous
state’s conservation as a version. Altogether, this also allows to
persist the course of the simulation itself. Besides these more
or less passive activities, a database can also be used as an
active part of the simulation. One approach is to use it as an
active communication hub. An active database [5] is needed
that can provide the necessary change notifications to inform
clients of changes to the shared simulation model.

However, a steady, direct data exchange with ExtDB is
not advisable for 3D simulation. This would lack real-time
capabilities and impose a strong coupling on each and every
component of the simulation system with the utilized database
system. Instead, we use an approach that combines ExtDB with
a local runtime database (SimDB) for each simulation client.

84Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 93 / 173

The lower part of Figure 1 shows the principle structure of
this approach for a single pair of ExtDB and SimDB instance.
By replicating required contents from ExtDB to SimDB, the
simulation system can use the cached copies and the nature of
ExtDB can be hidden away.

ExtDB	

general

ValueSpec. (VS) Slot (Sl)

Class (Cl) Association (As)

Property (Pr)
name : String
isComposite : Bool. classifier

definingFeature

value

UML	

Sc
he

m
a	
	

M
ap
pi
ng
	

In
st
an

ce
	 	

M
ap
pi
ng
	

SimDB	
…

…

…

…

“ExtDB-CL”

“ExtDB-IS”

“SimDB-CL”

“SimDB-IS”

Classifier (CL)
name : String
isAbstract : Bool.

InstanceSpec. (IS)

Transf. Transf.

Figure 1. Principle structure of the approach for database-driven 3D
simulation.

The two databases are synchronized on schema and data
level. During the former, the schema description is transfered
from ExtDB to SimDB so both systems ”speak the same
language.” This builds up a schema mapping between the
databases and is done once during system startup. Note how-
ever that this does not imply a semantic mapping like mapping
an address represented by a single string to a fielded address
representation (name, street, etc.). Instead, only the different
modeling concepts (i.e., the utilized metaclasses) are mapped.

During runtime, data is loaded, i.e., replicated, from ExtDB
to SimDB. Here, based on the schema mapping, the appropri-
ate schema components are instantiated, values are copied, and
an instance mapping is stored to keep the relationship between
master and replicate copy. Copies no longer required can also
be unloaded, i.e., removed from SimDB provided they have
not been changed. Changes are tracked and resynchronized to
keep both master and replicate in sync. This is realized using
notification services of ExtDB and SimDB. The approach is
presented in detail in Section IV.

III. SYSTEM REQUIREMENTS

To generalize the approach system requirements were iden-
tified [2]. The aim is to make it universally available for
different implementations of ExtDB and SimDB. A general
compatibility of the two databases’ modeling concepts is stip-
ulated using both their metamodels. A database’s metamodel
represents its abstract syntax (modeling concepts). Their com-
patibility can then be expressed with a model transformation,
e.g., using the ATL Transformation Language (ATL) [6].

To provide a common basis for arbitrary database meta-
models, a pivotal metamodel with transformations from and to
both databases’ metamodels is stipulated as well. The pivot’s
metaclasses can be used to indirectly refer to SimDB’s or

ExtDB’s metaclasses using the demanded mapping. In the
context of 3D simulation, Geographic Information Systems
(GIS), Computer-Aided Design (CAD), or other 3D software,
an object-oriented modeling is advisable, as such data usually
consists of a huge number of hierarchically structured parts
with interdependencies [5]. Thus, the UML (language unit
classes) is a reasonable choice for a pivot. Figure 1 gives
an overview. It also comprises the mainly utilized UML
metaclasses. Altogether, this allows to generically refer to
the structure of SimDB and ExtDB using UML concepts.
Therefore, the method specification in the next section uses
concepts like object, link, class, or property although including
any database metamodel that can be mapped to the UML meta-
model. Note, however, that this mapping to UML structures is
conceptually needed to show the databases’ compatibility and
to obtain a means for generalized method specifications. The
actual implementation of the synchronization approach is done
on API or query language level – in particular to ensure real-
time capabilities.

IV. NOTIFICATION-BASED DATABASE SYNCHRONIZATION

Following the definition in [5], the presented scenario, i.e.,
the combination of SimDB and ExtDB, would be a distributed
database (DDB). Similar to a distributed database management
system (DDBMS), our approach aims at transparency of the
distribution. However, it is a special case in which SimDB is a
cache for ExtDB. Simulation clients access the shared simula-
tion model only via SimDB. The nature and (for the most part)
the existence of ExtDB are hidden away. The master copy of
the simulation model is stored in ExtDB. In contrast, a classical
DDB is accessed as a whole from the outside and the DDBMS
hides away its distributive nature. Important DDB concepts are
fragmentation, allocation and replication, as well as autonomy
and heterogeneity. We use horizontal fragmentation splitting
up object sets (but not objects themselves) between the central
ExtDB and the connected SimDBs. All fragments are allocated
to ExtDB. Further allocation, i.e., replication, to the different
SimDBs is realized on-demand as shown in [4]. While ExtDB
is fully autonomous SimDB is limited to the schema adopted
from ExtDB. As both databases usually are different systems
– e.g., SimDB is a runtime database – the assumed DDB is
heterogeneous.

One ore more instances of SimDB have a star-shaped
connection to one instance of ExtDB. Changes are syn-
chronized independently between each pair of SimDB and
ExtDB. Differences in between such a pair are resynchro-
nized periodically but not synchronously. Thus, we have a
similar scenario as described in [7] for replication servers
with asynchronous replication. However, in contrast to mobile
databases, the connection is always kept alive and resynchro-
nization is typically short-term. Furthermore, there is no global
transaction or recovery manager. Changes to ExtDB by any
client or to SimDB by any client component are committed
without control of the synchronization component, which can
merely monitor such changes. Thus, following durability (as
in Atomicity, Consistency, Isolation, Durability (ACID)) they
cannot be undone. Durability is important as an online (i.e.,
live) 3D simulation cannot be reset in the middle of a run.

One way to treat concurrent changes is an active concur-
rency control using locks. For distributed concurrency control,

85Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 94 / 173

one approach is to choose a so called distinguished copy which
holds a representative lock for all its replicate copies [5]. In
our case, the master copies in ExtDB could be adopted for
this purpose as they are shared among all clients. However,
locking is not recommendable here as acquiring locks would
be time-consuming (as an ExtDB access would be necessary
each time) and possible deadlocks may interrupt a running
simulation.

We therefore developed a lock-free approach using noti-
fications. For each pair of SimDB and ExtDB, the mecha-
nism monitors changes by listening to the notifications. For
resynchronization, it schedules transactions of the respective
database. Due to the monitoring approach, they can only
comprise a single data operation. The approach is similar to op-
timistic concurrency control (OCC) [7]. However, transactions
cannot be rolled back when changes are conflicting. Instead,
conflicts are only implicitly resolved: The last client changing
a value is given precedence. Altogether, it is crucial that the
synchronization component always knows about the state of
synchronization for each copy. However, besides resynchro-
nization and passive monitoring, the mechanism cannot and
must not intervene, e.g., by rejecting changes as mentioned
above.

A. Change Tracking

For each pair of SimDB and ExtDB, a change tracking
component connects to the notification services of SimDB
for so-called internal notifications and of ExtDB for so-
called external notifications. Notifications include insertions
and removals of objects and links, as well as updates of object
properties. A link between objects can only be removed or
inserted but not updated, as its identity is only derived from
the connected objects (and the corresponding association on
schema level).

For the sake of simplicity, external notifications from
ExtDB are abbreviated as extInsert, extUpdate, and ex-
tRemove, internal notifications from SimDB as simInsert,
simUpdate, and simRemove, accordingly. During runtime,
these notifications are evaluated. Depending on the current
state of the corresponding pair of master and replicate copy
represented by an instance mapping entry, a transaction may be
scheduled that can later be used to resynchronize the detected
change from the one to the other database. A scheduled
transaction comprises one data operation with its kind (insert,
remove, or update), the affected instance (object or link) or
its id, and for updates the affected property. A transaction
for transferring a change from SimDB to ExtDB is called
an out-bound transaction and will be abbreviated with the
prefix sim2ext. For example, when detecting an object insertion
within SimDB by a simInsert notification, a new sim2extInsert
out-bound transaction may be scheduled. Its (future) execution
will insert an equivalent object of the corresponding ExtDB-
Classifier (using the schema mapping) into ExtDB. Here, the
current property values are retrieved from the SimDB object’s
slots and are replicated for the new ExtDB object. Finally, the
new object complements the corresponding instance mapping
entry with its identifier. This can be seen as the comple-
menting operation to the loading of objects. Links are treated
accordingly but without the need for property value replication.
An instance’s removal (object or link) from SimDB, notified

by a simRemove notification, may lead to a sim2extRemove
transaction whose (future) execution will remove the asso-
ciated ExtDB instance. A simUpdate notification signals the
change of a SimDB object’s property and may be scheduled
as a sim2extUpdate transaction to transmit the value change
from SimDB to ExtDB. Similar to sim2extInsert transactions,
a sim2extUpdate transaction’s execution retrieves the current
value of its corresponding property from SimDB and replicates
it to ExtDB.

Accordingly, external notifications may lead to the schedul-
ing of in-bound transactions for resynchronizing global
changes from ExtDB to SimDB. They are prefixed by ext2sim:
ext2simInsert, ext2simRemove, and ext2simUpdate. Responses
to external notifications are mostly identical to their internal
counterparts. However, due to the nature of SimDB being a
cache for ExtDB, a variation applies when treating external
insertions. New objects or links within ExtDB may be handled
by different strategies. They may be ignored or subsequently
taken into account by a loading transaction (ext2simInsert).
In this paper, the latter approach is chosen. Alternatively, one
could consider to reevaluate previously executed queries to
determine the “interest” in the new instance.

Altogether, instance mapping entries (i.e., pairs of master
and replicate copy) can be seen as to reside in a certain state
of synchronization. This can be modeled as a state machine
in statechart notation [8] for each object’s or link’s instance
mapping entry. For objects, this state machine is given in Fig-
ure 2 (it is similar for links). It may be in a synchronous state
(Synced), a Loading or Unloading state, a state representing its
absence or non-management (NonManaged), or a transaction
state (ext2simInsertPending, ext2simRemovePending, etc.). For
update transactions, the synchronization states of an object’s
properties are concurrently modeled in the sub states of state
UpdatesPending shown in Figure 5.

ObjectSynchronization extRemove, extUpdate

extUpdate, startLoad

extRemove [inExec]

extInsert

extRemove

simRemove

simInsert

simRemove [inExec]startLoad loadFailed simRemove

extRemovesimRemove

extUpdate,
extRemove,
simUpdate

extUpdate,
extRemove

simInsert

simInsert
unload-
Failed

startUnload

extInsert

simRemoveextRemove

allUpdatesSynced
extUpdate,
simUpdate

extRemove simRemove

simUpdate, extUpdate

simUpdate extUpdate

simUpdate

NonManaged
ext2sim-

InsertPending
sim2ext-

InsertPending

ext2sim-
RemovePending

sim2ext-
RemovePending

Synced

Loading Unloading

UpdatesPending

Figure 2. Synchronization states of an object’s instance mapping.

An exemplary chain of events depicted in Figure 3 would
be the insertion of a new door object into SimDB leading

86Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 95 / 173

to a transition guarded by simInsert from the initial state
NonManaged to state sim2extInsertPending shown in Figure 4.
Here, a sim2extInsert transaction is scheduled for the new
object. When the transaction is executed (see Subsection IV-C),
an equivalent object is inserted into ExtDB eventually causing
the database to issue an extInsert notification. In turn, this
event triggers a transition from the sim2extInsertPending to
the Synced state. Thus, the extInsert event confirms the in-
sertion into ExtDB and is used as a receipt to acknowledge
a transaction’s successful execution. This is especially useful
for handling concurrent changes within SimDB and ExtDB
occurring during other transaction’s execution.

ExtDB	

a	 :	 Door	 a	 :	 Door	

SimDB	
simInsert

 sim2extInsert	

extInsert

open = false open = false
2	 1	

Figure 3. Exemplary insertion of a door object into SimDB and subsequent
synchronization to ExtDB using a sim2extInsert transaction.

simInsert

extInsert

NonManaged	 sim2ext-‐
InsertPending	

Synced	

Figure 4. Excerpt from Figure 2 for the state transitions accompanying the
exemplary insertion depicted in Figure 3.

The receipt handling mechanism is also used to handle mu-
tual changes that cancel each other out. An example are mutual
removals: An instance is, e.g., first removed from ExtDB and
subsequently from SimDB by independent processes. Thus, a
previously scheduled ext2simRemove transaction with pending
execution (in state ext2simRemovePending) is canceled out by
the incoming simRemove notification for the same instance.
The event causes a transition to the NonManaged state.

Property changes are modeled in Figure 5. The Update-
sPending state encapsulates a sub state structure for managing
property updates. Primarily, it contains a super state UpdatesPr
with concurrent regions for each of the object’s properties,
e.g., region UpdatesPri for the object’s ith property. A re-
gion for Property Pri has three states representing an un-
changed property value (SyncedPri), a property value changed
within SimDB (sim2extUpdatePendingPri), and a property
value changed within ExtDB (ext2simUpdatePendingPri). Fur-
ther updates to the object’s value for Pri can be ignored
when they stem from the same database (i.e., both SimDB
or both ExtDB), as the new value has to be transferred to
SimDB, anyway. However, a subsequent update to the same
property from within SimDB causes a change conflict (see
Subsection IV-B). The modeled strategy is to give precedence
to the more recently notified change. Thus, a transition to
sim2extUpdatePendingPri is triggered. When the transaction
implicitly scheduled on entering one of the update states
is executed, a notification is needed as a receipt. However,
in contrast to insert or remove transactions, there is no
“natural” counterpart for update transactions. An executed

ext2simUpdate transaction causes a simUpdate notification that
is indistinguishable from any other third party changes. Thus,
before execution, an “inExec” flag is set. For ext2simUpdate,
the next simUpdate notification for Pri will trigger a transition
back to the synced state of this property (the inExec flag will
be reset). When all concurrent regions are in their respective
synced state, a synchronized (in terms of concurrency) transi-
tion to the Done state is triggered (modeled by the vertical bar).
On entering this state, the allUpdatesSynced event is raised
triggering a transition from the super state UpdatesPending to
the Synced state (see Figure 2).

UpdatesPending

UpdatesPr

extUpdate

[Pr=Pri & inExec]

simUpdate [Pr=Pri] extUpdate [Pr=Pri]

simUpdate

[Pr=Pri & inExec]

extUpdate [Pr=Pri]simUpdate [Pr=Pri]

simUpdate [Pr=Pri]

extUpdate [Pr=Pri]

UpdatesPri

UpdatesPrj

...

sim2ext-
UpdatePendingPri

ext2sim-
UpdatePendingPri Done

entry/raise
allUpdatesSynced

... ...

SyncedPri

SyncedPrj

/repeat incoming event

Figure 5. Sub structure of state UpdatesPending from Figure 2 for property
updates.

In some situations, events may also be ignored. Within the
state machines, this may be modeled as self-transitions. For
example, in sim2extRemovePending, further extUpdate events
from ExtDB can be ignored as the corresponding object will
be removed from ExtDB, anyway.

B. Change Conflict Handling

As mentioned above, changes (insertions, removals, and
updates) from ExtDB and SimDB may conflict when they
occur to the same instance (and property) before executing
the corresponding transaction. For example, in a city scenario,
a building’s street number is locally changed within SimDB
causing a sim2extUpdate transaction. Before this change is
made persistent and globally available within ExtDB by exe-
cuting the transaction in a resynchronization run, the very same
number is changed within ExtDB (e.g., by another simulation
client). Following the strategy modeled above, the previous
change is omitted and instead a new ext2simUpdate transaction
is stored.

In general, different strategies to handle such situations
could be thought of. First of all, conflicts can be avoided
beforehand by giving only mutual exclusive write access to
instances. This approach could be used in distributed simula-
tion scenarios where separate objects are simulated by different
clients without interaction. This can be managed by a superor-
dinate simulation control. Avoiding the occurrence of conflicts
could also be realized by explicitly locking changed instances
or their property value in the respective other database. How-

87Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 96 / 173

ever, this may stall or even reset a simulation run as mentioned
above.

Thus, a monitoring, i.e., reactive handling of change con-
flicts as mentioned above is inevitable. The presented methods’
strategy is embedded in the given state machines. For change
conflicts, two scenarios can be distinguished: A conflict may
either occur before or during a transaction’s execution. Before
executing a transaction, conflict handling can be realized
straightforward. It is modeled with simple transitions within
the state machines. One example is the precedence for more
recently notified updates as shown above. Another strategy is
that object removals are final and thus “always win”. Id est, a
pending remove transaction for an object precedes all update
events for the object. For pending object insertions, conflicts
cannot occur as the corresponding object does not exist in the
respective other database.

As long as a transaction is still pending, incoming events
can always be processed by state transitions to reflect the rela-
tion between SimDB and ExtDB. In a resynchronization run,
the current state of each state machine is evaluated (compare
Subsection IV-C). If a state with pending transaction T1 is
determined T1 is executed. However, this decision is made
independently at each client. A notification from a previously
committed, conflicting transaction T2 may arrive just after
T1’s execution is started. In some cases, T1 may still be
abortable. But the notification may just as well arrive when T1
commits. So, while native transactions of the utilized database
management systems (DBMSs) themselves are usually isolated
the decision to start a pending transaction is not. This limits
transaction isolation (i.e., ACID properties) in the distributed
system.

The same applies to the reading of property values. Objects
can be removed, and links can be removed and inserted based
only on the information from the corresponding notification.
For object insertions and property updates however, the current
state of the respective source database has to be retrieved
as notifications themselves do not contain the corresponding
values. Thus, when such a transaction is executed the source
values may have already been changed by subsequent trans-
actions whose notifications may either have not yet arrived or
transaction execution may already have started as described
above. This also limits transaction isolation.

Thus, a strategy had to be found for dealing with such sit-
uations. Otherwise, scenarios where a change in one database
is neither reflected within the other database nor within the
instance mapping’s state machine may occur. For example, a
property value is changed in ExtDB, but its instance mapping’s
state machine is in state Synced although SimDB still holds
the previous value.

The primary instrument to handle such interfering changes
is the aforementioned usage of notifications as receipts. For
that purpose they must have the following features:

1) A notification’s arrival guarantees the corresponding
operation to be executed.

2) The order of arrival of a single database’s notifi-
cations is identical to the execution order of the
corresponding operations.

3) Between one running instance of SimDB and ExtDB

there is at most one transaction being executed at a
time (see Subsection IV-C).

Based only on these assumptions, a conflict management
can be stable. However, one should keep in mind:

1) A notification not yet received does not imply that
the corresponding operation is not yet executed (no-
tifications may be delayed).

2) On arrival of a notification, the current state within
the database must not be consulted for further state
transitions. By time of arrival it may already have
been changed several times.

3) The order of arrival between notifications from
ExtDB and notifications from SimDB is arbitrary.

Based on these considerations, a special event handling
can be implemented to process the queued events after a
transaction’s execution. As stated above, the main problem are
notifications arriving between the start of a transaction’s exe-
cution and the arrival of the corresponding receipt notification.
For a proper event handling, these events must sometimes be
reordered. To be precise, they are captured and reinserted into
the event queue just after the receipt event. This ensures their
correct processing in terms of state transitions. The procedure
is necessary for object or link insertions, link removals, object
updates, and object or link loading. In the state machines,
transitions with italic text particularly model this case. In the
sub states of UpdatesPending, this highlighting is omitted as
the same transitions are needed for standard and for this special
event handling.

One example are updates (Figure 5). A property’s update
transaction can be examined separately as updates of different
properties are independent from each other. Table I lists an
exemplary sequence of events for some integer property and
the associated actions, statemachine states, values in SimDB
and ExtDB, and emitted notifications. In the example, the
local property’s slot value in SimDB is updated several times
even while changes are replicated to ExtDB. Notifications
are used to ensure that all updates are reflected within the
statemachine’s current state.

Initially (step #1), SimDB and ExtDB are in sync at value
10. The value in SimDB is changed to 20 (#2) and the cor-
responding simUpdate notification (a) triggers a statemachine
transition (#3). At some point in time, the client starts the
resynchronization process (#4). Then, a first interfering update
(#5) changes the value to 30. As property update notifications
do not contain a value it must be retrieved from the respective
database at transaction execution time (#6). Afterwards, a
second interfering update (#7) changes the value to 40. In #8,
the read value 30 is replicated to ExtDB. As mentioned above,
the order, in which notifications from SimDB and ExtDB are
received, is arbitrary. Thus, notifications simUpdate (a) and
(b) may be processed first (#9, #10). As the ”inExec” flag
is set, all notifications are stored (instead of ignored without
the ”inExec” flag being set) until the corresponding receipt
notification extUpdate is processed in #11. Subsequently, the
flag is reset and both stored notifications are reinserted into
the event queue. While the receipt notification eventually
yields a transition back to the Synced state (#12), notification
reinsertion causes the necessary transition back to the state
of pending updates (#13) to replicate the value of 40 from

88Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 97 / 173

TABLE I. EXAMPLE OF A LOCAL INTERFERING UPDATE OF SOME INTEGER PROPERTY WITHIN A SINGLE SIMDB.

action statemachine SimDB val. ExtDB val. notification
1 (initial state) Synced 10 10

2 update 10 → 20 in SimDB 20 simUpdate (a)

3 process event simUpdate (a) → UpdatesPending / sim2extUpdatePendingPri
4 start resync inExec := true

5 update 20 → 30 in SimDB (1st interference) 30 simUpdate (b)

6 read current value from SimDB

7 update 30 → 40 in SimDB (2nd interference) 40 simUpdate (c)

8 execute transaction sim2extUpdate 30 extUpdate

9 process event simUpdate (b) [inExec=true] ⇒ store simUpdate (b)

10 process event simUpdate (c) [inExec=true] ⇒ store simUpdate (c)

11 process event extUpdate → UpdatesPending / SyncedPri → Done allUpdatesSynced

inExec := false

reinsert simUpdate (b) and simUpdate (c) in event queue

12 process event allUpdatesSynced → Synced

13 process event simUpdate (b) → UpdatesPending / ext2simUpdatePendingPri
14 process event simUpdate (c) (self-transition)

15 start resync

SimDB to ExtDB. The additional simUpdate notification (c)
only yields a self-transition (#14) as an update is already
pending. Another resynchronization run would replicate the
value to ExtDB starting at #15.

This approach to capture and reinsert notifications is
needed as it is unknown whether an interfering update was
done before (#5) or after (#7) reading the current value from
SimDB in #6 to execute the sim2extUpdate transaction in #8.
Note that when only interfering updates of the first type occur,
the additional simUpdate notifications are in fact redundant.
However, this is acceptable to guarantee that no updates are
lost between SimDB and ExtDB. In case of interfering updates
from other clients to ExtDB, additional extUpdate (instead of
simUpdate) notifications are emitted. Here, notifications need
not be stored as the first extUpdate notification is simply
interpreted as the expected receipt and subsequent extUpdates
yield normal state transitions. Finally, the same store-and-
reinsert strategy is used similarly in the other use cases
mentioned above (object insertions, link removals, and object
or link loading).

Altogether, as mentioned above, this approach cannot avoid
or fix conflicts but only detect them and react on them.
However, the utilized SimDB and ExtDB themselves are
not corrupted as they provide safe standard database access
methods. Thus, only the distributed synchronization state must
be kept free of corruptions. This is ensured by the presented
approach.

C. Resynchronization

In resynchronization, all scheduled transactions are exe-
cuted to bring the two databases back in sync. This process
can be triggered in several ways. When the approach is applied
in a collaborative scenario, it can be initiated manually. For
immediate response from and to other users, it can also be
automatically triggered after each transition to a state with
pending transaction. In distributed simulation, typical access
patterns include constantly repeated changes of the same few
property values, e.g., a moving car and a moving helicopter.
In such scenarios, transactions can be aggregated within short

but arbitrary periods to lower the impact on traffic. However,
this includes a trade-off between traffic and update rate.

V. APPLICATIONS

Using the presented approach, different kinds of applica-
tions have already been realized as shown in Figure 6.

In a city scenario, a central database (ExtDB) manages
a shared simulation model with a city, a helicopter, and a
car. Two simulation clients are connected with their respective
synchronized SimDB and each control a vehicle. Changes
(e.g., the movement of the car or the helicopter) are distributed
using the methods presented in this paper. Furthermore, all
changes are automatically archived using a temporal ExtDB.
This provides an integrated log for the development of the
simulation model’s dynamic properties over time and allows
for subsequent replay, analysis, debriefing, and archiving.
Usually, such applications use amounts of files for data
management combined with a decentralized communication
infrastructure, e.g., based on the High Level Architecture
(HLA) [9], and separate logging components are needed to
archive a simulation. In contrast, we provide a more integrated
approach. This avoids divergence between data management
and the corresponding change distribution mechanism, no
separate mechanism is needed to access logged data, and a
consistent data schema provided by the central database is used
throughout the distributed system.

In another scenario, a planetary landing mission is simu-
lated. During descent, a database-managed, shared model of
the planet’s surface (i.e., an object-oriented map) is created by
different components in a distributed approach. Subsequently,
the same map can be used for (simulated) navigation. All
system components benefit from using and building up the
same shared model with a consistent schema, standardized
interfaces, and an integrated communication infrastructure
using the presented approach.

As a last example, a forest model is extracted from remote
sensing data and other geo data sources. Here, the approach
is used by the various stakeholders in the forest sector to
collaboratively generate, update, refine, analyze, simulate, and

89Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 98 / 173

Figure 6. Different applications realized using the presented approach.

simply use the highly detailed forest model managed by an
ExtDB component. Instead of directly accessing this central
database, the presented approach decouples clients from the
utilized technology of ExtDB by only accessing data from
their local SimDB database. Furthermore, the very same data
schema can be used throughout the applications reducing
”friction losses” due to (offline) data conversions.

VI. RELATED WORK

Regarding database synchronization for 3D simulation sys-
tems and similar software only few approaches can be found.
In [10], a combination of scene-graph-based 3D clients with
a federation of databases connected by the Common Object
Request Broker Architecture (CORBA) is proposed. On client-
side, a local object-oriented DBMS (OODBMS) provides an
in-memory scene object cache connected to the federation
using an Object Request Broker (ORB). Cached objects are
bidirectionally replicated to the scene graph. Concurrency
control among the federated databases and the local object
caches allows multi user interaction between the clients.

A mobile Augmented Reality (AR) system combining
distributed object management with object instantiation from
databases is described in [11]. Objects are distributed shallowly
by creating ”ghost” copies retaining a master copy only at
one site. Such a ghost is a non-fully replicated copy of its
master allowing simplified object versions to be transmitted
(e.g., with sufficient parameters for rendering). Changes to the
master copy are pushed to all its ghosts. Remote systems can
change a master copy by sending it a change request.

In [12], [13], a Virtual Reality (VR) system is combined
with an OODBMS to provide VR as a multi-modal database
interface. In [14], a revised version adds collaborative work
support. For update propagation, VR clients issue changes to
the shared virtual environment as transactions to the back-end
they are connected to. After an interference check they are
commited to the database and distributed by a separate notifi-
cation service. The system uses transactions with regular ACID
properties (e.g., for ”Create box B”) committed as a whole as
well as special continuous transactions for object movements.
For the latter, atomicity does not apply as movements are
committed incrementally to frequently propagate updates.

The ”Collaborative Urban Planner” described in [15] is
based on the multi-user Virtual Environment system DeepMa-
trix [16], extended by a relational DBMS back-end providing
persistency. Clients allow for so-called shared operations like
”rotate object” that are send to the server for distribution and
persistency. A server application provides concurrency control,
message distribution and data management. It represents the
single point of access to the database ensuring consistency
among the clients’ shared operations. The database primarily
contains meta information on shared objects (position, texture).

In [17], a ”Virtual Office Environment” contains 3D data
and semantics managed by a DBMS to allow semantic-based
queries and collaboration. Clients’ actions are issued as queries
to the shared database. Changes are distributed to all other
clients, which adopt them locally.

A ”shared mode” for database-driven collaboration is pre-
sented in [18]. In a chess application example with two players
a shared database with the game’s setting is alternately updated
by the one client while being polled for changes by the other,
which subsequently reflects the changes in his own virtual
scene instance.

Compared to our approach, [10] comes close but lacks
details and is only a proposal without known implementations.
The ghosts in [11] may suffice for rendering but are to
restricted for sophisticated simulation applications. Further-
more, not all objects are managed by the database. In [12],
[13], [14], [17], only VR-specific data and operations are
supported. [15] does not manage the model data itself using
the database. Finally, the approach in [18] is similar to our
own but only demonstrates a very limited type of change
distribution. Altogether, no other approach offers a comparably
tight integration of database technology into 3D software or
simulation systems.

Similarities to our MDE-based approach for the general
assessment of database compatibility can be found in generic
model management. [19] introduces different generic schema
operations like match, merge, translate, diff, and mapping
composition. The work gives an overview but concentrates on
tool support for semi-automatic mappings. Our own approach
can be seen as an implementation of the “ModelGen” operator
that automatically translates a schema from one metamodel
into another, including mapping creation. However, in contrast,
we provide an automatic mapping of schemata and a runtime
approach instead of a static mapping.

Another implementation is provided in [20]. A pivotal
supermodel is used to transform schema as well as data.
In [21], the same system is extended to provide runtime
transformations with read-only access. A similar approach is
taken in [22] using a proprietary pivotal graph-based repre-
sentation. [23] presents an approach for transforming schema
and data between the Extensible Markup Language (XML)
and the Structured Query Language (SQL). However, none of
these approaches use standardized metamodeling and model
transformation languages as used in our approach.

VII. CONCLUSION AND FUTURE WORK

We presented an approach for synchronizing a central
database (ExtDB) with simulation databases (SimDB) as a

90Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 99 / 173

basis for database-driven 3D simulation. After recapitulating
our previously published background of the approach, the
main contribution of this work is presented in detail: The
core method for synchronization. For each pair of master
and replicate copy it manages the state of synchronization
– modeled as a state machine. It is based on notifications
provided by both databases. On the one hand they are used
to track the changes and schedule transactions for subsequent
resynchronization. On the other hand, they are used as receipts
to acknowledge transaction execution and to detect change
conflicts. Compared to other methods for collaboration in 3D
software systems, this approach provides a tight integration of
advantages from the database field into simulation technology.
Different applications already prove its practicability.

In future, we will examine further applications, e.g., from
the field of industrial automation. Moreover, a porting of the
approach to other database systems than the current prototypes
will be reviewed. Finally, the integration of temporal databases
will be examined in further detail, especially for valid time,
bitemporal, or multi-temporal databases.

REFERENCES

[1] M. Hoppen, M. Schluse, J. Rossmann, and B. Weitzig, “Database-
Driven Distributed 3D Simulation,” in Proceedings of the 2012 Winter
Simulation Conference, 2012, pp. 1–12.

[2] M. Hoppen, M. Schluse, and J. Rossmann, “A metamodel-based ap-
proach for generalizing requirements in database-driven 3D simulation
(WIP),” in Proceedings of the Symposium on Theory of Modeling &
Simulation - DEVS Integrative M&S Symposium, ser. DEVS 13. San
Diego, CA, USA: Society for Computer Simulation International, 2013,
pp. 3:1–3:6.

[3] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software En-
gineering in Practice, ser. Synthesis Lectures on Software Engineering.
Morgan & Claypool Publishers, 2012.

[4] M. Hoppen, M. Schluse, and J. Rossmann, “Database-Driven 3D Sim-
ulation - A Method Specification Using The UML Metamodel,” in 11th
International Industrial Simulation Conference ISC 2013, V. Limère and
E.-H. Aghezzaf, Eds., Ghent, Belgium, 2013, pp. 147–154.

[5] R. Elmasri and S. B. Navathe, Database Systems: Models, Languages,
Design, And Application Programming, 6th ed. Prentice Hall Interna-
tional, 2010.

[6] F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model
transformation tool,” Science of Computer Programming, vol. 72, no.
1-2, Jun. 2008, pp. 31–39.

[7] T. Connolly and C. Begg, Database systems: a practical approach
to design, implementation, and management, internatio ed. Pearson
Education (US), 2009.

[8] D. Harel, “Statecharts: a visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, Jun. 1987, pp. 231–
274.

[9] Simulation Interoperability Standards Committee (SISC), “Standard for
Modeling and Simulation High Level Architecture (HLA) IEEE 1516,”
2000.

[10] E. V. Schweber, “SQL3D - Escape from VRML Island,” 1998. [Online].
Available: http://www.infomaniacs.com/SQL3D/SQL3D-Escape-From-
VRML-Island.htm

[11] S. Julier, Y. Baillot, M. Lanzagorta, D. Brown, and L. Rosenblum,
“Bars: Battlefield augmented reality system,” in NATO Symposium on
Information Processing Techniques for Military Systems, 2000, pp. 9–
11.

[12] Y. Masunaga and C. Watanabe, “Design and implementation of a multi-
modal user interface of the Virtual World Database system (VWDB),”
in Proceedings Seventh International Conference on Database Systems
for Advanced Applications. DASFAA 2001. IEEE Comput. Soc, 2001,
pp. 294–301.

[13] Y. Masunaga, C. Watanabe, A. Osugi, and K. Satoh, “A New Database
Technology for Cyberspace Applications,” in Nontraditional Database
Systems, Y. Kambayashi, M. Kitsuregawa, A. Makinouchi, S. Uemura,
K. Tanaka, and Y. Masunaga, Eds. London: Taylor & Francis, 2002,
ch. 1, pp. 1–14.

[14] C. Watanabe and Y. Masunaga, “VWDB2: A Network Virtual Reality
System with a Database Function for a Shared Work Environment,”
in Information Systems and Databases, K. Tanaka, Ed., Tokyo, Japan,
2002, pp. 190–196.

[15] T. Manoharan, H. Taylor, and P. Gardiner, “A collaborative analysis
tool for visualisation and interaction with spatial data,” in Proceedings
of the seventh international conference on 3D Web technology. ACM,
2002, pp. 75–83.

[16] G. Reitmayr, S. Carroll, A. Reitemeyer, and M. G. Wagner, “Deep-
Matrix - An open technology based virtual environment system,” The
Visual Computer, vol. 15, no. 7-8, Nov. 1999, pp. 395–412.

[17] K. Kaku, H. Minami, T. Tomii, and H. Nasu, “Proposal of Virtual Space
Browser Enables Retrieval and Action with Semantics which is Shared
by Multi Users,” in 21st International Conference on Data Engineering
Workshops (ICDEW’05). IEEE, Apr. 2005, pp. 1259–1259.

[18] K. Walczak and W. Cellary, “Building database applications of virtual
reality with X-VRML,” in Proceeding of the seventh international
conference on 3D Web technology - Web3D ’02. New York, New
York, USA: ACM Press, Feb. 2002, pp. 111–120.

[19] P. A. Bernstein and S. Melnik, “Model management 2.0: manipulating
richer mappings,” in Proceedings of the 2007 ACM SIGMOD interna-
tional conference on Management of data - SIGMOD ’07. New York,
New York, USA: ACM Press, Jun. 2007, pp. 1–12.

[20] P. Atzeni, P. Cappellari, and P. Bernstein, “Model-Independent Schema
and Data Translation,” in Advances in Database Technology - EDBT
2006, ser. Lecture Notes in Computer Science, Y. Ioannidis, M. Scholl,
J. Schmidt, F. Matthes, M. Hatzopoulos, K. Boehm, A. Kemper,
T. Grust, and C. Boehm, Eds. Springer Berlin / Heidelberg, 2006,
vol. 3896, pp. 368–385.

[21] P. Atzeni, L. Bellomarini, F. Bugiotti, and G. Gianforme, “A runtime
approach to model-independent schema and data translation,” in Pro-
ceedings of the 12th International Conference on Extending Database
Technology: Advances in Database Technology, ser. EDBT ’09. New
York, NY, USA: ACM, 2009, pp. 275–286.

[22] A. Smith and P. McBrien, “A Generic Data Level Implementation of
ModelGen,” in Sharing Data, Information and Knowledge, ser. Lecture
Notes in Computer Science, A. Gray, K. Jeffery, and J. Shao, Eds.
Springer Berlin / Heidelberg, 2008, vol. 5071, pp. 63–74.

[23] P. Berdaguer, A. Cunha, H. Pacheco, and J. Visser, “Coupled Schema
Transformation and Data Conversion for XML and SQL,” in Practical
Aspects of Declarative Languages, ser. Lecture Notes in Computer
Science, M. Hanus, Ed. Springer Berlin / Heidelberg, 2007, vol. 4354,
pp. 290–304.

91Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 100 / 173

Achieving High Availability in D-Bobox

Miroslav Cermak, Filip Zavoral
Faculty of Mathematics and Physics

Charles University in Prague, Czech Republic
{cermak, zavoral}@ksi.mff.cuni.cz

Abstract—Using a distributed environment for data stream pro-
cessing brings many challenges, especially when requiring an
exact result from processing of big data. A distributed system
is more vulnerable to failures as hardware crashes, software
errors, or network malfunctions. Loss of node current state
and loss of intermediate results due to node failure results in
the restart of the computation, which increases the time of the
computation and its cost and this is therefore unacceptable.
Achieving high availability (HA) of such system brings some
challenges. In this paper, we introduce our framework for parallel
and distributed processing, D-Bobox, and its requirements on
high availability implementation. We also describe the main high
availability methods used today and discuss their applicability
in our framework. Finally, we propose a solution how to obtain
high availability in D-Bobox.

Keywords–high availability; D-Bobox; stream computing; dis-
tributed computing;

I. INTRODUCTION

A new class of applications - stream processing systems
(SPS) - is given a lot of attention in the last years [1], [2], [3].
These applications have to process high amount of low latency
data streams, i.e., financial data processing, patients monitoring
using various sensors, traffic analysis, etc. Stream processing
seems to be effective not only in processing continuous data
streams, but also in processing big static data as for example
semantic databases [4]. Distributing sources and processing of
big data at multiple nodes allows better scaling of computation
performance in terms of data size. Stream processing system
that uses advantages of the distributed environment are called
distributed SPS (DSPS).

A typical approach to increase the performance of a dis-
tributed system is adding more computational nodes. However,
this also increases the risk of a failure, which has a negative
effect on the performance and dependability of a distributed
system. Faults introduce errors into computation so we get
wrong or incomplete results. However, many applications re-
quire that the system provides exact and same results each time
running on the same input data. One of such systems can be
a database system that also requires performance effectiveness
and good performance/value ratio. Therefore, the presence of
a high availability (HA) unit that handles recovery fast and
correctly with minimal impact on failure-free processing is
necessary for DSPSs.

To achieve HA in distributed stream processing systems,
following tasks must be addressed:

1) periodic and incremental backup (or replication) of
computing node state

2) error detection

3) choosing a failover node
4) lost state recovery after failure
5) manage network partition

In this work, we deal with the recovery from a node failure,
so we pay our attention mainly to tasks (1), (3) and (4) as
they have the biggest impact on the behavior and characteristic
of each of the HA methods. Since error detection is mostly
independent from the actual HA (recovery) method and the
management of network splitting and partitioning is a specific
type of failure concerning multiple nodes, we do not address
these issues in this paper.

The paper is structured as follows: in Section II, we define
recovery types according to [5]. In Section III we present
contemporary HA methods that are discussed on the selected
HA problems. The D-Bobox system is introduced in Section
IV; in Section V we propose solutions for the integration of
HA into D-Bobox.

II. RECOVERY TYPES

The ability to mask failure so it cannot be observed from
final data stream is considered the fundamental requirement
on HA algorithms. Consider a node U, that contains a set
of n input data streams (I1, .., In) and produce the output
stream O. Computation e consists of processes like consuming,
processing and producing data tuples. The data stream Oe is
the result of the computation e at the node U. According
to their handling of the Of+O’=O equality, where Of is
computation result before failure, O’ is output after recovery
and O is failure free computation output, recovery types can be
named as gap recovery, rollback recovery and precise recovery.

1) Gap recovery: is the simplest and least demanding
recovery type. It manages node replacement after node fail-
ure detection. However, input and output preservation is not
guaranteed and data loss is expected. Its main advantage is
fast recovery time and almost no slowdown of failure free
execution.

2) Rollback recovery: ensures that no information is lost
during failure. According to operators used, the rollback re-
covery can be further divided into following subtypes:

• repeatable when exactly the same tuples are generated
during recovery.

• convergent when different tuples from the same data
are generated, and these tuples converge to the original
tuples.

• divergent when different tuples from the same data
are generated, and these tuples never converge to the

92Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 101 / 173

TABLE I. OUTPUTS PRODUCED BY EACH TYPE OF RECOVERY

Recovery type Before failure After failure

Precise t1 t2 t3 t4 t5 t6 t7 . . .

Gap recovery t1 t2 t3 t6 t7 . . .

Rollback
- repeatable t1 t2 t3 t2 t3 t4 t5 . . .
- convergent t1 t2 t3 t′4 t′5 t6 t7 . . .
- divergent t1 t2 t3 t′4 t′5 t′6 t′7 . . .

original ones. This is typical for non-deterministic
operators.

3) Precise recovery: guarantees the strongest recovery by
completely masking failures, so the output after failure is same
as the output without failure.

Table I shows output streams of the mentioned recovery
types. Each stream consists of the sequence of tuples ti before
and after the failure. As we can see, precise recovery contains
a sequence that is identical to a sequence without failures.
In case of gap recovery, there are some tuples missing; they
create undesirable gaps in the data stream. The output of the
repeatable rollback recovery contains identical tuples as in
the regular output, but some of the tuples are duplicated. On
the other hand, the outputs of the convergent and divergent
rollback recoveries contain different tuples t′j after failure.
In case of the convergent recovery, different tuples became
identical to regular tuples over time.

A. Operators Classification

We distinguish four operator types according to recovery
semantics: arbitrary, deterministic, convergent-capable and
repeatable. Recovery plan type is determined by the most
common operator in it.

An operator is deterministic if it produces the same output
stream every time it starts from the same initial state and re-
ceives the same sequence of tuples on each input stream. There
are three possible causes of non-determinism in operators:
dependence on the time, dependence on the arrival order of
tuples on different input streams, and use of non-determinism
in processing (e.g., randomization).

A deterministic operator is (called) convergent-capable if
it yields a convergent recovery when it restarts from an empty
initial internal state and re-processes the same input streams,
starting from an arbitrary earlier point in time.

A convergent-capable operator is repeatable if it capable
of a repeating recovery when it restarts from an empty initial
internal state and re-processes the same input streams, start-
ing from an arbitrary earlier point in time and the operator
produces identical tuples.

III. HIGH AVAILABILITY PROTOCOLS

There are three basic approaches for achieving high avail-
ability in distributes systems: process-pairs, logging and check-
pointing. In the following section, we introduce some of the
current algorithms based on these approaches. Even when not
all of them accomplish precise recovery, they can be extended
to such level. Such extension includes for example duplicity

removal and protection from data loss. Data loss protection is
mostly done by logging messages in output buffers until they
are processed or stored by downstream (nodes further in the
data flow) nodes. In case of failure, these stored messages
are resend. Duplicity removal is protocol specific, so it is
mentioned separately with each method.

A. Passive standby

Passive standby [6], [5] method is based on the process-
pairs approach. There is a secondary node assigned to each
primary node that receives state updates (checkpoints) from
the primary node in regular intervals. In case of failure,
the secondary node takes over computation from the last
checkpoint. To achieve precise recovery, it is necessary to
resend the data sent by upstream nodes, to recreate failed
node state on the new node and ask the downstream nodes
for delivered tuples, so they are not send for the second time.

The main advantage of this method is short recovery time
consisting of reprocessing tuples received since last checkpoint
and discovering tuples that were already send by the crashed
node. However, the computing power of the regular compu-
tation is degraded, because (at least) half of the nodes are
allocated as secondary nodes and communication is increased
by sending regular checkpoints. Another possible slowdown
is introduced when using synchronous backup (primary node
does not send data until checkpoint is confirmed on secondary).
When using asynchronous backup, data loss and inconsistent
state can happen until logging of output buffers is introduced.

B. Active standby

Active standby is another version of the process-pairs
approach [6], [5], [7]. Similarly to passive standby, each
processing node has a dedicated secondary node. But unlike
passive standby a secondary node does actively obtain and
process same tuples as a primary node. Secondary node
output is then logged out instead of send further downstream.
Preventing duplicate messages by identifying the messages
received by downstream nodes before sending the same mes-
sages computed by the secondary node is necessary to achieve
precise recovery. Also, in case of non-deterministic operators,
their decisions made on primary nodes have to be logged and
sent to the secondary node, so it produces exactly the same
results.

Minimal recovery time is the main advantage of the active
standby over passive standby. That is because there is no
need to reprocess data after failure, however at the cost of
significantly higher communication, because all data must be
sent also to secondary nodes. Another extra communication
may introduce a queue trimming protocol, and sending of the
decision logs in case of non-deterministic operators.

C. Upstream backup

Large run-time overhead is the main drawback of the
process-pair approach (where at least half of the nodes are
designated as backup nodes, thus not actively participating in
computation). Upstream backup [6], [5] is designed for better
use of distributed character of a stream computation. Upstream
nodes (nodes against data flow) serve as backups for their
downstream nodes by logging their output tuples. In case of

93Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 102 / 173

failure, a new node with empty state takes over computation
and reprocesses stored tuples to get the same internal state as
the failed node had.

Output buffers that backup tuples can grow in size equiva-
lent to the size of tuples passing through that can be very space-
demanding. To solve this inefficiency, the queue trimming
protocol is introduced. It is based on the finding a minimal
set of stored tuples that is necessary to restore a crashed node
state. The delivery confirmation protocol is used to inform
upstream nodes about tuples that were delivered. Delivery of
each tuple is confirmed using 0-level confirmation to the sender
of the tuple. After receiving 0-level confirmation, the node
will know that the given tuple and all the proceeding tuples
were delivered by recipient that send the confirmation. Once
a tuple is confirmed by all recipients, the node determines last
input tuple that was used to compute confirmed one, but it is
not used to generate newer tuples anymore. If such tuple is
found, it is confirmed to its sender using 1-level confirmation.
Output buffers can be trimmed at the position of a tuple that
received 1-level confirmation from all its recipients. Higher
confirmation levels (by iteratively repeating confirmations) can
be used to achieve better protection against multiple faults,
however at the cost of less trimming efficiency, thus higher
data space requirements.

Low extra bandwidth that is necessary for small confir-
mations and data transfers only during recovery is the main
advantage of this method. However, this is at the cost of re-
computation of many tuples during recovery. Also fail-free
computation is slowed down when computing higher level
confirmations that can be non-trivial.

D. Cooperative passive standby

Cooperative passive standby [8] is based on the checkpoint
approach and on advantages of distributed computing (i.e.,
expandability, improved performance, etc.). Each computation
is composed of computational units that are connected by
data streams. Computational units are assigned to available
hardware nodes to execute them. Traditional checkpointing of
a more complex, or data intensive units is time demanding. To
achieve better performance, this method splits computational
units on each node into smaller parts called HA units. HA units
are captured independently and then backed up on different
nodes. This splitting divides the backup load of one node
among multiple nodes.

Backing up each HA separately introduces finer granularity
of the backup task; therefore, it can better fit into the spare time
during computation (for example when pending for data) and
increase overall system performance. Backup of each HA unit
is done in two steps - capture and paste. During the capture, the
update of the HA unit state is recorded and sent to the assigned
backup node. During the paste, the node takes a received state
updates for HA units backed up on it and apply delta updates
into its copy of HA unit image. After paste, the initial node is
notified, so it can schedule the HA unit for another checkpoint.

When a failure occurs, the backup nodes take over compu-
tations of the crashed node. During the takeover, the paste
operations of unprocessed update messages take place and
data are redirected to the backup nodes. Also to reflect the
changes that occurred between backup and crash, the tuples

not included in the backups are resend from output buffers,
so they can be reprocessed. Computation of HA units now
continues on backup nodes.

This method has fast recovery time and the expected
increase of workload on backup nodes is sufficiently small
to preserve efficiency. If the crashed node becomes available
again, it is added as a new empty node. HA units or their
backups can be assigned to empty nodes or nodes with low
workload as part of load balancing. HA units can be created
and distributed between nodes automatically, so it can reflect
actual situation and load balance.

IV. D-BOBOX

The Bobox [9], [3] is a parallel framework, which was
designed to support development of data-intensive parallel
computations. The main idea behind Bobox is to create a
system that connects a large number of relatively simple
computational components into a nonlinear pipeline while
preserving transparency of the distribution logic to the authors
of computational components. The pipeline is then executed
in parallel, but the interface used by the computational com-
ponents is designed in such way, that their developers do not
need to be concerned with the parallel execution issues such
as scheduling, synchronization and race conditions.

Figure 1. D-Bobox architecture. There is a single Master node that is
responsible for task preparation and its distribution to slave nodes. The remote
communication at the Master node is done via its Distribution Manager. Slave
nodes contains Daemon parts that is responsible for the remote communication
and tasks. The Distribution Manager and the Deamon are extended to provide
HA. The Backend part on the Master node is optional.

D-Bobox [10] is an extension of the Bobox framework
that adds support for distributed environment. This allows the
framework to be used for tasks where local parallelism is not
enough to achieve effectively fast computation. To preserve
versatility of the framework, it is designed to run not only on
specialized computational clusters, but on a common hardware
too.

Base schema of the D-Bobox is described in Figure 1. The
master node is responsible for creating an execution plan of
the task and communication with the user that enters the task
and monitors its computation. The master node also decides
which other nodes will be participating in computation as
work (slave) nodes and (typically) collects results. D-Bobox
uses Bobox computation logic at each slave node and wraps it
with remote communication and other necessary functionality
needed for distributed environment. A remote communication

94Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 103 / 173

Node 1

Box 1 Split

Box 3

Box 2

Merge

Box 1 Split Border Box

Node 2

Border Box Box 2 Border Box

Node 3

Border Box Box 3 Border Box

Node 4

Border Box Box 4

a)

b)

Figure 2. Sample of an execution extended into distributed environment using boundary boxes. a) Bobox plan for single node execution. b) D-Bobox plan
utilizing four nodes. Original plan is split and extended by adding boundary boxes that manage remote communication (dashed).

is the most important extension during execution. It is imple-
mented in the special boxes - border boxes that are added into
the execution plan before slave nodes are initialized. Adding
and configuring of border boxes is done primarily by the
distribution control logic at the master node, according to
the actual configuration and availability of nodes in cluster.
Border boxes on a slave node are configured on request of
the master node when necessary. Example extended execution
plan is depicted at Figure 2.

V. HA AND D-BOBOX

A. Basic algorithms and D-Bobox

Each of the algorithms mentioned in Section III is applica-
ble to D-Bobox system with different impacts to transparency,
computation boxes requirements and changes to the framework
itself. In the following discussion, we are focusing only on
deterministic operators. Implementation of non-deterministic
boxes breaks transparency requirement for each method, as
they are required to log non-deterministic decisions and pro-
vide backup logic to achieve precise recovery.

Upstream backup represents a least blocking approach with
minimum extra communication during fault-free computation.
However, space requirements for storing output queues, recov-
ery time and computation needed after the failure are typically
quite high. Implementation of queue trimming protocols re-
duces these disadvantages at cost of higher communication and
some computation slowdown during building and searching
mappings between input and output tuples. When users are
creating a new box, they have to implement these sometimes
non-trivial mappings. That negatively impacts the transparency
requirement and reliability of the framework. Reliability of the
framework that depends on correct user implementation of the
mappings is not suitable for our framework.

The active standby approach represents maximum trans-
parency. It can be reflected by the computation plan used
in D-Bobox by duplicating appropriate plan fragments and
redirecting each of their outputs to the special communication
box, located on the downstream node, so it is not affected

by the failure of the primary or the secondary node. This
communication box receives tuples produced by the primary
and secondary node; and forwards only tuples from primary
node and stores tuples from the secondary node not yet
produced by the primary node.

When a node failure occurs, the secondary node then
becomes primary and continues in the computation. Then new
secondary node is chosen and initialized by the new primary
node current state. Computation speed at the primary node
can differ from the secondary node, so after a failure, the
communication box must correctly manage the data stream
to preserve data consistency. When the primary node was
ahead of the secondary, then the communication box must drop
duplicate tuples produced by the secondary to prevent duplicate
data. At the opposite situation, when the primary node was
slower than the secondary node, then the communication box
must send stored tuples to prevent gap in the data stream.

Effective computation power of active standby is halved
since half of the nodes are reserved as backup nodes. There-
fore, this approach is appropriate for problems, where very fast
recovery time is more critical aspect than overall computation
time. Since D-Bobox is oriented to be computation efficient,
this approach is not appropriate to provide base HA function-
ality. However, it can be easily introduced for specific tasks
that require very fast recovery instead of fast processing.

Passive standby approach also suffers from the same cut-
ting of the effective computation performance as the active
standby and is slower in recovery and during regular computa-
tion. Therefore, it is less practical than active standby. Another
transparent approach is Cooperative passive standby that com-
bines checkpointing and splitting backup to multiple smaller
tasks and then distribute it between distinct nodes. Distribution
of the smaller tasks increases backup performance, reduces
recovery time and reduces work increase on backup nodes.
Thanks to its distribution character and potential efficiency, we
decided to use it as the base method for recovery from node
failure to achieve HA in D-Bobox system. In the following
subsection, we describe its integration in more detail.

95Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 104 / 173

B. Integration of the High availability into D-Bobox

High Availability support that will handle node failures in
D-Bobox is based on the cooperative passive standby method
and it is located in new execution units called HA managers.
HA managers are divided according to their specialization and
location in the system to:

• global HA manager located at the primary node,

• local HA managers located at secondary (worker)
nodes.

Each manager type handles different tasks: local HA managers
perform local tasks that include local computation and backups
stored on local node. The global HA manager is a global
coordinator that assigns backup nodes for local HA units and
handles recovery after failure detection.

1) HA manager at the primary node: is also called global
HA manager. Its primary focus is to handle global tasks such
as failure handling, assigning backup nodes to HA units and
cooperation with the load balancing unit. An example of the
distribution of backups of HA units to other nodes, as assigned
by the global HA manager, is depicted in Figure 3.

Handling a node failure at the primary node is described in
the Algorithm 1. Global HA unit notifies backup nodes to take
over crashed node computation, reroute data and choose new
backup nodes for restored HA units. After notifying upstream
HA units, they resend data from output buffers to recreate the
lost state not reflected in the last checkpoint. The increase of
workload at a backup node after takeover is expected to be in
acceptable boundaries because of the distribution of the work
among multiple physically independent nodes.

A crashed node joins the set of nodes after recovery as an
empty node and it can be dynamically assigned to backups
or tasks during load balancing or after crash of another node.
Global HA manager should support load balancing to achieve
better performance of the computation and backups. When the
system is highly unbalanced, then heavily loaded nodes cannot
backup efficiently. They do not have spare time to backup, so
they increase backup intervals that make backup more difficult
and more costly, or they block computation often. On the other
hand, idle nodes produce backups that can further slowdown
loaded nodes. Dynamic load balancing increases the chance
of evenly scheduling backups into idle CPU cycles when the
computation is waiting (i.e., to receive new tuples). Moreover,
processing backups more frequently reduces the amount of
containing tuples in the backup, and less tuples have to be
stored in the output buffers and recomputed during recovery.

2) HA manager at the secondary node: represents local
manager that manage HA tasks of the current node as for
example:

• monitoring neighbors availability (both upstream and
downstream),

• administration of local HA units (for example split-
ting, merging),

• planning and performing of HA units backup (repre-
sented by the operation capture),

Algorithm 1 Processing a node crash on the primary node
for all HAunit in crashedNode do

backupNode← getBackupNode(HAunit)
backupNode.takeOver(HAunit)
for all edge in HAunit.io do

if isRemote and isInput then
set edge target to backup
resend cached tuples

else if isRemote and isOutput then
set edge source to backup

else if isLocal and isInput then
add new remote edge

end if
end for

end for
for all backup in CrashedNodeBackups do

find and set new backup node
end for

• planning and performing of merge of the received
updates from remote HA units into their local backups
(represented by the operation paste).

Availability of neighbors is monitored by each node. Re-
quests sent in regular intervals to test the availability are used
when there is no communication among nodes at the time. If
the node stops to respond, then after a defined amount of time
(according to a preset time limit) is declared as crashed. The
global HA manager is notified that node failure occurs and left
to take care of the situation.

Capture and paste operations are two main operations
providing backup functionality. During capture operation, the
difference in HA unit state is captured and sent to the backup
node. Paste operation on the backup node processes the re-
ceived update messages by applying them to the local copy of
HA unit state. Capture and paste operations of each HA unit
are performed independently of each other, according to the
used scheduling algorithm. Scheduling is performed locally on
each node by the local scheduler that can implement different
strategies to balance backup performance and computation
performance.

Local HA managers support splitting and joining local
HA units to balance granularity. Splitting is possible only
if a HA unit consists of more than one computation box.
Typically splitting a more complex HA unit results in dividing
the backup overhead into a few smaller units that are easier
to backup. Smaller HA units also pose smaller increase of
the workload on the backup node, when it takes over the
computation after recovery. On the other hand, a join operation
is used to group multiple simple operations where an increase
in the backup cost is smaller than the reduction of backup
communication. For example, few HA units, each consisting
of a simple box connected together into a pipeline, are good
candidates to merge. In this case, we can suppose that the
increase of backup complexity of the joined HA unit will be
smaller (simple boxes, locality of the data) than the backup
overhead of multiple HA units alone.

These changes of HA units size granularity have to be
coordinated with the global HA manager. It must assign new

96Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 105 / 173

Node 1

H11 H12 H13

Box Box Box

Backups

H41

Node 2

H21 H22 H23

Box Box Box

Backups

H42

Node 3

H31 H32

Box Box

Backups

H43

Node 4

H41 H42 H43

Box Box Box

Backups

Figure 3. Example of the distribution of HA units demonstrated on the Node 4. Execution plan of the Node 4 is split into three HA units H41,..,H43 that are
backed up to the nodes 1-3 (backups are represented as boxes H41,..,H43 in backup part of nodes 1 to 3).

backup nodes to each new HA unit that was created by the
split operation or revoke backup role from nodes in case of
joining of HA units.

A secondary node also contains a specific local com-
munication manager that is part of special boundary boxes.
Boundary boxes are special system boxes that represent end-
points for the remote communication to hide it from users
developing regular computation boxes. Communication HA
manager extends them by adding message logging and du-
plicity elimination. Outgoing messages are logged until the
confirmation of their backup from HA units arrive. This is
necessary to restore the computation state by computing these
messages again after recovery from the last backup to reflect
lost changes. Input border boxes have to be able to eliminate
duplicity tuples that may be produced during recovery (crashed
node may or may not produce some tuples that are not reflected
in backup).

Extending D-Bobox with proposed managers provides high
availability support to the framework. By using Cooperative
passive standby as a core method that splits the node tasks
into separate HA units distributed to different nodes, we
get efficient recovery after a possible node failure. Another
fine tuning of the HA units granularity according to actual
computation states further improves the overall system per-
formance. Smaller HA unit backups also pose acceptable
increase of workload of the backup nodes after the recovery.
The proposed approach also preserves transparency; the users
creating applications should not be concerned with recovery
methods.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced our distributed framework D-
Bobox that is targeted on processing BigData (i.e., semantic
databases). We presented a node failure problem in distributed
data stream processing systems. Then we defined recovery
types and summarized the main contemporary approaches to
achieve high availability in such systems. We analyzed these
approaches for their applicability in D-Bobox; we proposed
an implementation of HA support in the framework. Using
such HA support, the framework became capable of creating
failure-resistant applications for data intensive computations
in the distributed environment on a commodity hardware.
The framework also preserves high level of transparency;

the users do not have to solve technical details concerning
parallelism, distributed processing or high availability logic.
In our future work, recovery support can be further extended
by adding support of nondeterministic operators or adding new
scheduling or by load balancing strategies.

ACKNOWLEDGMENT

The authors would like to thank the GAUK project
no. 472313 and SVV-2014-260100 and GACR project no.
P103/13/08195S, which supported this paper.

REFERENCES

[1] M. Balazinska et al., “The design of the borealis stream processing
engine,” in Second Biennial Conference on Innovative Data Systems
Research (CIDR 2005). CIDR, 2005, pp. 277–289.

[2] D. Abadi et al., “Aurora: a data stream management system,” in
Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. ACM, 2003, pp. 666–666.

[3] D. Bednarek, J. Dokulil, J. Yaghob, and F. Zavoral, “Bobox: Paral-
lelization Framework for Data Processing,” in Advances in Information
Technology and Applied Computing, 2012, pp. 189–194.

[4] Z. Falt, J. Dokulil, M. Cermak, and F. Zavoral, “Parallel sparql
query processing using bobox,” International Journal On Advances in
Intelligent Systems, vol. 5, no. 3, pp. 302–314, 2012.

[5] J.-H. Hwang et al., “High-availability algorithms for distributed stream
processing,” in Data Engineering, 2005. ICDE 2005. Proceedings. 21st
International Conference on, 2005, pp. 779–790.

[6] J.-H. Hwang, M. Balazinska et al., “A comparison of stream-oriented
high-availability algorithms,” Brown CS, Tech. Rep., 2003.

[7] M. A. Shah, J. M. Hellerstein, and E. Brewer, “Highly available,
fault-tolerant, parallel dataflows,” in Proceedings of the 2004 ACM
SIGMOD international conference on Management of data, ser.
SIGMOD ’04. New York, NY, USA: ACM, 2004, pp. 827–838.
[Online]. Available: http://doi.acm.org/10.1145/1007568.1007662

[8] J.-H. Hwang, Y. Xing, U. Cetintemel, and S. Zdonik, “A cooperative,
self-configuring high-availability solution for stream processing,” in
Data Engineering, 2007. ICDE 2007. IEEE 23rd International Con-
ference on. IEEE, 2007, pp. 176–185.

[9] D. Bednrek, J. Dokulil, J. Yaghob, and F. Zavoral, “Data-flow awareness
in parallel data processing,” in Intelligent Distributed Computing VI,
ser. Studies in Computational Intelligence, G. Fortino, C. Badica,
M. Malgeri, and R. Unland, Eds. Springer Berlin Heidelberg, 2013,
vol. 446, pp. 149–154.

[10] M. Cermak, Z. Falt, and F. Zavoral, “D-bobox: O distribuovatelnosti
boboxu,” in Informacne Technologie - Aplikacie a Teoria. PONT s. r.
o., 2012, pp. 41–46.

97Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 106 / 173

Trustworthy Laboratory Automation

Jan Potthoff, Dominic Lütjohann, Nicole Jung
Karlsruhe Institute of Technology (KIT)

Karlsruhe, Germany
[name.surname]@kit.edu

Abstract—To ensure the quality of scientific data, the integrity
and authenticity of the data has to be guaranteed. Due to the
significance of the primary data, the integrity and authenticity
of research data have to be ensured with their generation.
Special measurement devices offer this possibility by an
automated digital signing process. Unfortunately, these devices
are rare. Therefore, a generic software application which is
shown in this paper has been implemented. Furthermore, the
solution has been adjusted to an existing laboratory
automation system which is depicted as well. The combination
of a new, web-based Laboratory Information and Management
System (LIMS) with a new protocol for an authentication of
electronic data shows that the establishment of an automated
collection of secure data can be realized even without
disturbing the researcher.

Keywords-integrity and authenticity; sustainability; trust-
worthy data generation; data management

I. INTRODUCTION
In the field of natural sciences, data collections and tools

for their valuation are of enormous importance as primary
research data influence directly all experiment-driven
interpretation [1]. Consequently, these primary research data
form the basis of common knowledge. Nonetheless, the
collection of scientific data sets –especially in academic
labs– is very often not an automated process [4]. Up to now,
the single researcher is responsible for the selection of the
most important data, for the storage of these data and the
researcher has to approve the integrity and authenticity of the
information [2]. This traditional procedure of data
acquisition will probably never be replaced by software-
aided processes if the decision of the researcher is necessary.

In contrast, other processes as the acquisition of data
generated by half-automated lab devices seem to be suitable
for an automated collection, certification and management
procedure. Examples of the latter operations are the
analytical instruments that run with their own proprietary
firmware giving standardized datasets that are the basis of
qualitative and quantitative measurements [3]. Data
collection of data produced by such devices means on the
one hand the implementation of an automated procedure for
the permanent actualization of the given research data (for
each project, researcher, or group) and on the other hand the
implementation of a reliable protocol for a doubtless
statement on the integrity and authenticity of the gained
datasets. Both challenges have been addressed and are

described herein via the presentation of selected examples
(Section I to IV).

In Section II, the requirements of analytical devices for
long-term preservation and the motivation for developing
tools for trustworthy data management are depicted. A
detailed example of the data generation process is added via
description of an automated data collection process in
Section III. Finally, the implementation of a ready to use
software tool (Section IV) is exemplarily shown to
demonstrate the applicability to gain trustworthy primary
data in a lab environment.

II. SCIENTIFIC DATA LIFECYCLE
In general, the research process is highly individual and

differs from one scientific branch to another and from one
researcher to another. However, the experimental scientific
process flow may be roughly divided into five phases
(planning, implementation, analysis, publication and
archiving) [5]. In each of these phases, digital data is
produced especially by measurement devices and the usage
of computers.

A. Measurement Devices and Scientific Data
The equipment of an exemplarily chosen chemical lab

consists of three different groups of devices. They are
divided into synthetic devices (as shakers, stirrers, heaters,
microwaves and reactors), purification stations, e.g.,
preparative high-performance liquid chromatography
(HPLC), medium pressure liquid chromatography (MPLC)
and analytical devices as liquid chromatography mass
spectrometry (LCMS), gas chromatography mass
spectrometry (GCMS), nuclear magnetic resonance (NMR),
ultra violet (UV), infra-red (IR), and Raman spectrometers.
Whereas the devices in the first group are often standalone
devices with almost no functionality for electronic data
storage, the devices of group 2 and 3, namely the purification
stations and the analytical devices, contain intern intelligence
for the acquisition and management of electronic
information. Therefore, the investigations on the storage and
authentication of scientific data focus initially on the
analytical devices which process all available information
and which are of highest interest as they deliver the final data
of the research projects.

If possible, the data format is chosen by its creator.
Because of several data sources, e.g., software programs or
measurement devices, as described above, a free choice is
not always possible, proprietary data formats have to be

98Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 107 / 173

accepted and the data migration becomes difficult. Based on
several catalogues of criteria, the data formats can be
evaluated according to their suitability for long-term
preservation. It is important to keep in mind that the choice
of data format should respect the actual situation but also the
archival process [6].

B. Trustworthy Data Management
Data processing systems have to meet several

requirements to ensure the quality and protection of data. For
example, the IT-Grundschutz Catalogue of the Federal
Office for Information Security (BSI) defines four core
requirements namely availability, confidentiality, integrity
and authenticity referring to information security [7]. These
criteria are very important for all processes that are based on
a high level of trustworthiness such as archival systems. In
this case, the availability, confidentiality, integrity and
authenticity have to be ensured for a long time. Therefore,
the reference model Open Archival Information System
(OAIS) defines essential functions and processes to
guarantee these requirements [8].

As most of the available data will not only be generated
and archived but will also be used, the data have to be
managed by specific programs or individual folder
structures. The type of data management depends on the
application, the requirements of the organization and the
individual requirements of the user. For example, in
research, Electronic Laboratory Notebooks (ELN) or
Laboratory and Information Management Systems (LIMS)
are used for the data management [9]. These paperless lab
management alternatives offer many advantages in contrast
to the documentation on paper, but they suffer from one
important disadvantage: changes in digitally stored data are
not detectable.

Within the DFG project “BeLab” (probative electronic
laboratory notebook) an interdisciplinary work group
analyzed how accessibility, completeness, integrity,
authenticity, readability and interpretability of ELNs can be
ensured in the long term [26]. The result of the project is a
service (BeLab system) which ensures the integrity and
authenticity of the submitted data. As different research areas
use individual scientific tools in their processes, the BeLab
system has been designed as a generic data verification
system which uses multiple ingress, verification and egress
modules. By using the service, the provability of scientific
data in digital archives is profoundly enhanced [10]. In [11],
a generic solution for data management according to the
Good Scientific Practice (GSP) is depicted as a further result
of the BeLab project. By this application the scientists are
able to archive their data with respect to the GSP. The data
can be managed by a Graphical User Interface (GUI) which
offers the possibility to collect files to be archived or to
check out archived files and edit them. Additionally,
metadata which refer to the structure of data, e.g., project,
ELN and general container id can be added. These metadata
can be indicated for each added file in the data section as
well. Examples for such additional descriptive information
are document title, author and creation date. This generic
solution prepares the managed data for a trustworthy

archiving. It shows that the integrity can be easily
implemented within the data management environment.
Regarding the long-term preservation, the data can be
submitted to the BeLab system.

C. Related Work
The integrity and authenticity of scientific data must be

ensured in regards to several regulations [12][13]. In
addition, all research fields have to guarantee a sustainable
archiving of this data [14]. To foster and to assess the
trustworthiness of archival systems, further research projects
have addressed the issues of availability, confidentiality,
integrity and authenticity, as described in the previous
section [15][16].

To ensure the integrity and authenticity, the research
process flow has to be considered as well. Current available
systems are tailored for specific device manufacturers
usually commercially available as integrated and monolithic
lab automation solutions [17]. Customization and expansion,
e.g., the integration of new devices or devices from different
vendors, requires drivers and software components
specifically developed for the platform and are usually not
usable in other environments.

Open Source solutions [18] for lab automation allow
flexible implementation of new devices, but are usually not
prepared for data acquisition in a dynamic lab infrastructure
which requires frequent changes in configuration such as
laboratories in academic facilities. Furthermore, installation
and maintenance requires investments in server
infrastructure, as long as data ownership needs to be
considered and commercial cloud services cannot be taken
into consideration.

III. LABORATORY AUTOMATION
The automated data generation process is the key

requirement in data-driven laboratories. Existing devices and
computer systems need to be integrated into unified views of
the overall data structure of a laboratory to allow scheduling
of tasks, remote operation of devices, sample tracking, data
management, and archiving.

A. Practical Requirements
Many laboratory devices are equipped with a command

and control personal computer system, which is connected
via ethernet connection or other serial interfaces to the
device. To operate the device, vendor-specific software
needs to communicate with the device using device drivers
and command sets which often follow proprietary protocols.
To integrate these kiosk-like systems in an automated
laboratory, an overlay software is required, which does not
need deep modifications on operating system and application
level. Furthermore, it should not be necessary to adjust the
data storage routines and locations, to access the created
datasets in a LIMS.

B. Webbased Device Control
Once samples are loaded onto a device, the data

acquisition process takes time, depending on the selected
method. To allow users to operate devices remotely, e.g.,

99Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 108 / 173

from different workplaces and different mobile devices, and
observe the output values and analysis status, the user
interface needs to be shared on a web-based platform. The
experimenter who operates the device also needs control
over the generated datasets from a centralized platform to
integrate the contained results into a research and results
database. Beginning from this step, identification of the user
is possible and therefore the ownership of datasets can be
determined. This allows data policies to be applied at the
time of data collection and enables ubiquitous access.

IV. TRUSTWORTHY DATA COLLECTION
The amount of digital data is constantly increasing. To be

able to manage these data, special software and hardware
solutions have been developed over the last years.
Procedures to ensure the integrity and authenticity of the data
in paper documentations have already been established but
these regulations have to be transferred to the electronic
datasets as well. To ensure the trust in new, automated
technologies, specific requirements have been described. The
obligation to preserve records also applies for these digital
data. This leads to several requirements regarding the digital
long-term preservation as well. One of these requirements is
the integrity of all produced data: "Integrity considers all
possible causes of modification, including software and
hardware failure, environmental events, and human
intervention." [19]. The combination of these tools will end
in a trustworthy archive, which should prevent the quality of
data. In addition to that, the quality of data depends on its
generation, processing and preparation. To ensure the
integrity and quality of all given information, the overall
process of their generation has to be analyzed.

A. Practical and Legal Requirements
The importance of the verification and integrity of data is

always desirable and in many cases absolutely mandatory.
Due to fast proceedings of computing and digital processes
that find their way into almost all areas of life, the legislative
organs worldwide have to be concerned with regulations
upon these new paperless developments. Whereas, in
general, all data can be easily manipulated, digital data are
even more prone to undesired alteration as changes –even in
much larger scale– can be easily made without being visible
to others. In the year 2001, the German law responded to
these developments and special bills have been developed
for digital data. By these bills, the evidence of digital
documentation is regulated based on the digital signature.
This signature can be used to prove the integrity of digital
data and the authenticity can be shown by the corresponding
certificate [20]. A further opportunity to validate the integrity
of digital data is the qualified digital time stamp, which is
required in several organizations and which can be used to
prove the existence of a document. Whereas other
alternatives offer very similar opportunities, the processing
of a qualified digital stamp is the only procedure that has
been accepted by the German law [21].

To ensure a high probative force of digital data, the
integrity and authenticity has to be ensured as early as
possible, which usually means at the same time as the data is

generated [22]. A lot of analytical devices which generate
digital data are used for experimental research, so that the
best possibility would be to ensure the integrity and
authenticity by these devices. This kind of hardware-
triggered solution could be implemented as integrated
software package within the analytical device. A few of these
analytical devices with implemented digital signing
procedure are available today, but adopting this solution will
result in the dependency on the manufacturer. A generic
approach should be addressed giving a solution that should
be independent of the used devices, the research area and the
used hardware. The only restriction to be made is that it will
be assumed that the analytical device is connected to a
computer. Due to the independency of the research area, the
solution has to be adaptable to further requirements of
individual use cases.

Due to the juristic requirements, as previously described,
the solution should use digital signatures to ensure the
integrity of data. The development of such a signature trail is
always the result of a compromise: As the researcher should
not be affected by the signing process, the digital signature
should be added, on the one hand, in an automatically
manner. On the other hand, the automatic signing process
decreases the probative value of the signature. Therefore, the
process has to be associated with the person [23].

Because a generic approach will be separately
implemented from the analytical devices, the time between
data generation and integrity protection is of prime
importance. The period of time should be as short as
possible. In addition, other organizational measures, e.g.,
room entry controls, can be also implemented to ensure the
data integrity. The implemented safety measures should be
transparent as well as the functioning of the solution to reach
the trust in the solution.

To keep the reached probative value, a trustworthy
archive should be used at the end. Because the measurement
data should not be altered, the archival process can be
directly started after the data generation. By doing this, the
data sharing and usage is reached as well.

B. Protected Data Collector
A secure data generation can be reached by digitally

signing analytical devices. These devices have an internal
cryptographically chip that calculates the signature. By doing
this, the data is signed before leaving the device and a data
manipulation can only be reached by a manipulation of the
device. By sealing the devices, the manipulation can be
proven and the integrity and authenticity can be validated by
the signature and the corresponding certificate.

According to the practical and legal requirements, as de-
scribed in Section IV-A, and to become more generic, a
software solution (hereafter called data collector) has been
developed to offer the functions of data integrity and
authenticity for individual analytical devices. In a first step, a
generic interface between device and the data collector, e.g.,
a folder for the data transfer, has to be defined. Using such a
folder, analytical devices store their data via a gateway that
can be monitored by the data collector. If the data collector

100Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 109 / 173

detects new files, it will execute all necessary steps to ensure
the integrity and authenticity of the processed data.

A particular challenge is the definition of the time of
archiving. For this purpose, one folder can be monitored by
several individual modules. For example, a module monitors
the number of files in the corresponding folder. If a defined
number of files are detected, the archival process will be
started. These modules can be further specified in the system
configuration offering the possibility for combinations of
different modules and the integration of individual modules.

If a new file is detected, the corresponding hash value
will be calculated and stored in the main memory. From that
on, the integrity of the detected file is temporarily secured.
After each process, the individual modules check the
archiving condition and the results will be logically
combined to one outcome. All hash values will be calculated
again prior to the archival process and they will be compared
with the values in the main memory. If no changes have been
detected, the data will be digitally signed by the data
collector. Before this, the detected files will be prepared for
the long-term preservation which includes the package of the
analytical data into a data container, called Universal Object
Format (UOF) [24]. This container which includes integrated
metadata has been developed by a German research project
of long-term preservation [14]. The metadata format is based
on the Metadata Encoding and Transmission Standard
(METS) [25] that includes attributes of file, e.g., filename
and hash value. With this information, the integrity can be
proven at any time. Whereas this procedure still allows the
manipulation of files and hash values, the metadata file is
digitally signed so that all changes can be proven. By doing
this, the legal requirements, depicted in Section IV-A, are
addressed.

Figure 1. Working process of data collector

After finishing the process mentioned above, the data
will be submitted to an archive interface. This interface
checks the data according to the requirements for long-term
preservation and its probative value. For example, existing
digital signatures will be validated again. In addition, a
specified module checks the completeness, e.g., filename
dependencies are analyzed.

The data collector can be used in the data management
process, as described in Section III, if it is adjusted according
to the time of archiving. Due to an architecture where an

individual amount of files belongs to one output directory
and several subfolders belong to one measuring, a
corresponding archiving module cannot be implemented for
these data management purposes. As a solution, one root
folder is monitored in which a new subfolder will signal new
experiments that have to be monitored. After this initial
procedure, all files and subfolders, which are stored in this
folder, will be noticed by the data collector and the integrity
is secured as previously described.

The archiving starting point can be signaled by the user
with a small GUI. This GUI contains a button which is
inactive if no new subfolders are noticed. If a new folder is
noticed, the button will become active and the user can start
the archival process at any time. The process of securing the
integrity and archiving by the data collector is depicted in
Figure 1.

By pressing the button, all noticed subfolders of the root
folder will be prepared for an archive object and will be
submitted to an archive interface as previously described.
After that, the button will be disabled again until new
subfolders are founded.

Naturally, the researcher can modify the primary
analytical data after the data has been submitted to the
archival system. For this purpose the archival process has to
be adapted. The data collector will notice the changes of the
corresponding files. If files, which have been already
archived, are changed and the subfolder is noticed again, the
archived data must be updated. For this the archival process
can be restarted again by the user. To handle all versions of
the data, all IDs received from the archival system and the
corresponding folder names are stored. If the folder name
already exists in this list, the update function will be used in
combination with the corresponding ID. This way, the
integrity of measurement data is guaranteed and all research
results are traceable.

With this solution, the measurement device must not
calculate the required digital signature by itself. Thereby the
data integrity assurance can also be used for devices with a
fast data processing. Additionally, the archival process is
separated from the data processing so that the scientist is not
affected.

C. Safety Aspects
The highest probative value is reached by digital

measurement devices which offer the possibility of internal
digital signatures. On the other hand, this function is not
implemented in many devices yet. Therefore, a mechanism,
as described in previous Section, is needed which can be
used in combination with each measurement device.
However, same security gaps have to keep in mind.

The first challenge is the data transfer from the analytical
device to the connected computer. During this procedure,
manipulations are most likely in particular if the device is
connected via network. In this case, a secure data transfer
protocol like https has to be used. If the files are stored, the
data collector will need a short time until it detects the new
files and a security gap results. In consequence, data
manipulation may occur between the finishing of the file and
its detection. This fact can be addressed technically by

101Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 110 / 173

minimizing the time gap. If operating system-based solutions
are used, the time gap will reduce to a few milliseconds. By
doing this, a data manipulation is improbable.

After the detection of new data the hash values will be
calculated by the data collector and stored in the main
memory. Theoretically the values in the memory can be
manipulated on a higher level. This manipulation would
mean a high criminal energy. Generally, the solution is not
developed to prevent any faults but rather to give a solution
to demonstrate the appropriate work of the researcher. In the
final step, a manipulation can be made during the data
transfer to the archival system but the used archive interface
is based on the https protocol so that a secure data transfer is
given.

On the juridical side, the focus is on how probable a
manipulation is. If a network is used, the mistrust will be
high even if the data transfer is encrypted, whereas a
separated room with controlled human access leads to a
higher trust. Data processing is not the critical point if a
secure environment can be established. Generally, digital
data can be manipulated easily. Therefore, particular laws
have been established by the German legislation to rule the
usage of digital signature and to get a probative force.
Therefore, the submitted data will be automatically signed by
the data collector. According to the usage of an automatically
process for digital signatures, it has to be noted that the
procedure has to be connected to a person, which means that
a person has to start and initialize the system with its
corresponding certificate [23]. Only then a digital signature
is comparable with a handwritten signature according to the
German law. The same applies to signing measurement
devices.

V. CONCLUSION AND FUTURE WORK
The implemented software application data collector

aims at providing a generic solution for the guarantee of the
data integrity and authenticity. In comparison with digital
signing measurement devices some safety risks have to be
accepted. However, these risks can be reduced by
administrative measures. The software application has been
adjusted for the depicted workflow. It can be seen that the
adjustment of the archiving condition was difficult because
of individual data structures of the lab devices.

The depicted software solution fulfills the requirements
of the German electronic signature law and the regulations of
the GSP. For general usage, further regulations have to be
considered.

The workflow in chemical labs is only one example for
the need of professional data handling but forms an ideal
model for the implementation of an automated data collector.
Most of the processes in chemical labs underlie standardized
procedures and the main datasets consist of values that have
been acquired from well-defined, standardized instruments.
In order to identify these processes in a chemical lab, the
dataflow in an organic working group has been investigated.
Advanced analytical instruments as NMR-spectrometers,
chromatography-mass spectrometers (liquid and gas
chromatography, HPLC/GC) and electron ionization (EI)-
mass spectrometers were determined as devices with high

priority for the definition of experimental conclusions and
for the confirmation of the results in publications. The
implementation of a data collector covering results that have
been processed by these instruments was starting point of a
new interdisciplinary project.

REFERENCES
[1] J. G. Frey, "Dark Lab or Smart Lab: The Challenges for 21st

Century Laboratory Software," Org. Process Res. Dev. 8,
2004, pp. 1024-1035.

[2] C. L. Bird and J. G. Frey, "Chemical information matters: an
e-Research perspective on information and data sharing in the
chemical sciences," Chem. Soc. Rev. 42, 6754.

[3] R. Bramley, K. Chiu, T. Devadithya, N. Gupta, C. Hart, J. C.
Huffman, K. Huffman, Y. Ma, and D. F. McMullen,
"Instrument Monitoring, Data Sharing, and Archiving Using
Common Instrument Middleware Architecture (CIMA)," J.
Chem. Inf. Model., 2006, 46 (3), pp 1017–1025.

[4] N. Jung and D. Lütjohann, "Chemie auf der Spitze des
Eisbergs: Zu viele Forschungsdaten gehen bislang unter!,"
Chemie in unserer Zeit, vol. 47, 2013, pp. 334-335,
DOI:10.1002/ciuz.201390062

[5] S. Hackel, P.C. Johannes, M. Madiesh, J. Potthoff, and S.
Rieger, “Scientific Data Lifecycle – Beweiswerterhaltung und
Technologien,” Proc. 12. Deutscher IT-Sicherheitskongress
(BSI-IT-SEC 2011), SecuMedia, 2011, pp. 403-418.

[6] A. Brown, “Digital preservation guidance note: Selecting file
formats for long-term preservation,” 2006.

[7] Federal Office for Information Security (BSI), "IT-
Grundschutz Catalogue," 2005, https://www.bsi.bund.de/EN/
Topics/ITGrundschutz/itgrundschutz.html 11.02.2014.

[8] CCSDS, "Reference Model for an Open Archival Information
System (OAIS)," CCSDS, 2002.

[9] M. Rubacha, A. K. Rattan, and S. C. Hosselet, “A Review of
Electronic Laboratory Notebooks available in the market
today,”, JALA, vol. 16, Feb.2011, pp. 90-98,
doi:10.1016/j.jala.2009.01.002.

[10] J. Potthoff, S. Rieger, and P. C. Johannes, "Enhancing the
Provability in Digital Archives by Using a Verifiable
Metadata Analysis Web Service," Proc. 7th ICIW 2012, 2012,
pp. 112–117.

[11] J. Potthoff, M. Walk, and S. Rieger, "Data Management
According to the Good Scientific Practise," Proc. 5th DBKDA
2013, 2013, pp. 27–32.

[12] Deutsche Forschungsgemeinschaft, "Recommendations of the
Commission on Professional Self Regulation in Science -
Proposals for Safeguarding Good Scientific Practice,"
January, 1998, http://www.dfg.de/en/research_funding/
legal_conditions/good_scientific_practice/ 26.02.2014.

[13] OECD, "OECD Principles on Good Laboratory Practice,"
Paris, 1998, http://search.oecd.org/officialdocuments/
displaydocumentpdf/?doclanguage=en&cote=env/mc/chem%
2898%2917 26.02.2014.

[14] R. Altenhöner, "Data for the future: The German project ‘Co-
operative development of a long-term digital information
archive’ (kopal)," Library Hi Tech, Vol. 24 Iss: 4, 2006, pp.
574–582, doi:10.1108/07378830610715437.

[15] Trustworthy Repositories Audit & Certification (TRAC),
"Criteria and Checklist, Center for Research Libraries,"
OCLC Online Computer Library Center, 2007.

[16] N. Beagrie et al., "Trusted Digital Repositories: Attributes and
Responsibilities," RLG-OCLC Report, 2002.

[17] Agilent OpenLAB, http://www.chem.agilent.com/en-
US/products-services/Software-Informatics/OpenLAB-CDS-
Chemstation-Edition/Pages/default.aspx 26.02.2014.

102Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 111 / 173

[18] Bika LIMS, http://www.bikalabs.com 26.02.2014.
[19] T. Malone, G. Blokdijk, and, M. Wedemeyer, "Itil V3

Foundation Complete Certication Kit-Study Guide Book and
Online Course," Lulu. com, 2008.

[20] S. Mason (Ed.), "International Electronic Evidence," London,
UK: BIICL, 2008.

[21] D. Huhnlein, "How to qualify electronic signatures and time
stamps," Public Key Infrastructure, Proceedings, Lecture
Notes in Computer Science, 2004, pp. 314-321.

[22] J. Potthoff, S. Rieger, P.C. Johannes, and M. Madiesh,
"Elektronisch signierende Endgeräte im Forschungsprozess,"
Proc. D-A-CH Security 2011, syssec, 2011, pp. 44-55.

[23] A. Roßnagel, S. Fischer-Dieskau, "Automatisiert erzeugte
elektronische Signaturen," MMR 2004; S. 133 – 139.

[24] T. Steinke, "The Universal Object Format – An Archiving and
Exchange Format for Digital Objects," in Research and
Advanced Technology for Digital Libraries, Springer Berlin,
2006, pp. 552–554.

[25] Digital Library Federation, "<METS> Metadata Encoding
and Transmission Standard: Primer and Reference Manual,"
Version 1.6 Revised, 2010, http://www.loc.gov/
standards/mets/ 26.02.2014.

[26] BeLab project, http://www.belab-forschung.de 26.02.2014.

103Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 112 / 173

Toward a New Approach of Distributed Databases Design and Implementation

Hassen Fadoua

LIPAH

FST, University of Tunis El Manar

Tunis, Tunisia

hassen.fadoua@gmail.com

Grissa Touzi Amel

LIPAH

FST, University of Tunis El Manar

Tunis, Tunisia

amel.touzi@enit.rnu.tn

Abstract—Nowadays, with the development of data and storage

of large volumes of distributed and heterogeneous data,

Distributed Database Management System (DDBMS) have

become essential to most Information Systems (IS).

Unfortunately, the designer of Distributed Databases (DDB)

has been so far facing several problems, namely, 1) the DDB

design is not a simple task and should take into account several

constraints and choose accordingly best strategy of

fragmentation, allocation and replication of data and 2) DDB

implementation should allow the final user to work within a

centralized DB, which is not provided directly by the existing

DDBMS. To sort out this problem, we suggest in this paper a

new approach to help in the DDB design and implementation,

which focuses on setting up a layer in the existing DDBMS

which will provide 1) Graphical interface to define different

sites geographically distributed and 2) Creation of different

types of fragmentation, allocation and duplication while

validating each step of the process. The system will

automatically generate SQL scripts of each site regarding its

initial configuration. The so implemented approach reduces

the designer's duty by taking in charge the complex

distribution validation and heavy manual scripts writing.

Keywords-distributed databases; fragmentation; fragment

allocation; replication.

I. INTRODUCTION

The end of the last century was marked by a significant
change in information technology. This evolution is mainly
characterized by large volumes of data increasingly
important, distributed and heterogeneous information, and
more exacting users toward system vendors and solutions.
Design and use of distributed database has risen
significantly.

Unfortunately, the existing DDBMS have several
constraints: 1) they do not have an integrated component
which ensures the automatic distribution of the initial
centralized database, and 2) Fragmentation, replication and
allocation are manual operations delegated to administrators.
The designer is required to ensure the compliance of the
distribution with the validation rules.

 Consequently, the implementation of a DDB has never
been an easy task especially when dealing with huge models
and while trying to meet the high user’s expectations. While
looking into the constraint’s causes by these systems, the
most important requirements are to preserve data integrity
and their continuous availability, even though the central site

has been removed, in addition to their transparency for the
final user.

In this context, we can refer to the works of Rim [11] and
Hassen [7] who suggested an expert system to help the DDB
design. These tools are rather restricted to suggesting data
distribution on each site, regardless of the heavy task left to
the designer to implement this DDB on different sites or the
validation process of fragmentation if the user decides to
change its design in response to new needs.

In this paper, we propose a new approach to assist DDB
design and implementation. This approach is validated
through designing and implementing an assistance tool
which provides a graphical interface for different types of
fragmentation, allocation and replication along with
validation at each step of the process. Then, the system will
automatically generate SQL [3] scripts of each site regarding
its initial configuration. We have proved that the proposed
tool can be implemented as a layer to any existing DDBMS.

This paper includes five sections. Section 2 presents an
example of DDB design, illustrating the design problems.
Section 3 presents our motivation for this work. Section 4
presents our new approach to assist the DDB design and
implementation. Section 5 presents the validation of our
approach by providing the platform called DDB-Helper.
Section 6 provides an evaluation of this work against
existing approaches. We finish this paper with a conclusion
and a presentation of some future works.

II. PROBLEM OF DDB DESIGN

We define a distributed database (DDB) as a collection of
multiple, logically interrelated databases distributed over a
computer network [2].

A distributed database management system (distributed
DBMS) is then defined as the software system that permits
the management of the distributed database and makes the
distribution transparent to the users [9]. As examples of
DDBMS, we can mention: Oracle [5], MySQL [12], Ingres
[10], Cassandra [4] and F1 [8].

The design stage of a distributed database must take into
consideration a number of constraints, usually quite difficult
to balance. This approach should be based on the description
of the real world, the needs of the user and his frequent
queries. The purpose of this section is to show through an
example the difficulties that can meet the user in the design
of its DDB.

104Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 113 / 173

A. Distributed Database Design

To set the local conceptual schema for each site, the
designer should follow the steps:

(i) Fragmentation of the different relations: a relation can
be divided into a number of sub-Relations, called fragments,
allocated to one or more sites. There are two types of
fragmentation: horizontal and vertical. The horizontal
fragments are subsets of tuples and vertical fragments are
subsets of attributes of relations

(ii) Correctness Rules of Fragmentation: The designer
must check the three Correctness rules of fragmentation;
Completeness, Reconstruction and Disjointness.

(iii) Definition of the allocation of fragment: This
definition is carried out strategically, to ensure the locality of
references, an enhanced reliability and availability,
acceptable performance, a balance of storage capacity and
costs, and communication costs reduced. Four allocation
strategies exist, depending on the available data: centralized
(single centralized database), fragmented (fragments are
assigned to a site), full replication (a full copy of the
database is maintained at each site) and selective replication
(a combination of the other three).

B. DDB Design Example

In this section, we present an example of a DDB design.
Three institutions of the University of Tunis El Manar:
National Engineering School of Tunis (ENIT), Faculty of
Mathematical, Physical and Biology Sciences of Tunis (FST)
and Faculty of Economics and Management of Tunis
(FSEGT) have decided to pool their libraries and service
loans, to enable all students to borrow books in all the
libraries of the participating institutions. Joint management
of libraries and borrowing is done by a database distributed
over 3 sites (Site1 = ENIT, Site2 = FST and Site3 = FSEGT).
The global schema is described in Table II.

Managing this application is based on the following
assumptions:

i. An employee is assigned to a single site.
ii. A student is enrolled in a single institution, but can

borrow from all libraries.
iii. A book borrowed from a library is returned to the

same library.
iv. The nb_borrow field of STUDENT relation is used to

limit the number of books borrowed by a student
simultaneously in all libraries. It is updated at each
loan and each return, regardless of the lending library.

v. Each institution manages its own students.
vi. Each library manages its staff and works it holds.

TABLE I. CENTRALIZED DATABASE SCHEMA

EMPLOYEE (NSS, FName, LName, Address, Status, Assignment)

STUDENT (NCE, FName, LName, Address, Institution, Class,

nb_borrow)
BOOK (Id_book, Title, Editor, Year, Area, Stock, Website)

AUTHOR (Id_book, Au_lname, Au_fname)

LOAN (Id_book, NCE, date_borrowing, return_date)

An uninitiated designer in the concept of DDB can ask
the following questions:

i. How to determine the relationships that must be
broken and the ones which will be duplicated?

ii. In case of fragmentation, how to choose the attribute
of fragmentation?

iii. How to choose the allocation of fragments of a
relationship and according to which strategy?

In this section, we merely describe design steps of our
initial database. The aim of our approach is to provide a tool
to help in the design of a DDB.

1) First Step: Relations Fragmentation

Relation EMPLOYEE:
EMPLOYEE_ENIT = ΠNSS, ,fname, ,lname, Address, Status(σ Assignment =
‘ENIT’ (EMPLOYE))
EMPLOYEE_FST = Π NSS,fname, lname, Address, Status (σ Assignment =
‘FST’ (EMPLOYE))
EMPLOYEE_FSEGT = Π NSS, fname, lname, Address, Status (σ Assignment =
‘FSEGT’(EMPLOYE))
Relation STUDENT

1) Vertical Fragmentation is applied to the STUDENT table
STUDENT_Biblio = Π NCE, lname, fname,Nb_borrow(STUDENT)
STUDENT_Inst = Π NCE, lname, fname,Adress,Institution,Class(STUDENT)
2) Then we applied a horizontal fragmentation on the table STUDENT
STUDENT_ENIT = Π NCE, lname, fname, Adress, Class (σ Institution =
‘ENIT’(STUDENT))
STUDENT_FST = Π NCE, lname, fname, Adress, Class (σ Institution =
‘FST’(STUDENT))
STUDENT_FSEGT = Π NCE, lname, fname, Adress, Class (σ Institution =
‘FSEGT’(STUDENT))
 Relation BOOK
BOOK_ENIT = Π Id_book, Title, Publisher, Year, Domain, Stock (σSite=
‘ENIT’(BOOK))
BOOK_FST = Π Id_book, Title, Publisher, Year, Domain, Stock (σSite= ‘FST’(BOOK))
BOOK_FSEGT=Π Id_book, Title, Publisher, Year, Domain, Stock(σSite= ‘FSEGT’
(BOOK))
 Relation AUTHORS

 AUTHOR_ENIT = AUTHORS ⋈ BOOKENIT
 AUTHOR_FST = AUTHORS ⋈ BOOKFST
 AUTHOR_FSEGT = AUTHORS ⋈ BOOKFSEGT
 Relation LOAN
LOAN_ENIT = LOANS ⋈ BOOKENIT
LOAN_FST = LOANS ⋈ BOOKFST
LOAN_FSEGT = LOANS ⋈ BOOKFSEGT

2) Second Step: Checking the correctness of the

fragmentation
For each fragmentation, we must check: The

completeness aspect, reconstruction and disjoint. We present
the following reconstruction aspect that seems to be the most
important and most critical.

i. EMPLOYEE relation’s reconstruction
Ti is a relationship with a single attribute, the attribute
assignment. The value of this attribute is i. The
reconstruction of the starting relation EMPLOYEE can be
done by a union (U) of all the EMPLOYEE fragments on
each site and the selection (x) of the assignment attribute of
Ti (column Assignement).
EMPLOYEE = Ui(EMPLOYEEi x Ti)

ii. STUDENT’s relation reconstruction is done in
several steps:

Ri is a relation with a single attribute, the Institution. The

value of this attribute is i.

105Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 114 / 173

 STUDENTInst = U(STUDENTi x Ri)

After STUDENTInst reconstruction, the initial relation can be

obtained by a join (⋈) of STUDENTInst and

STUDENT_BIBLIO duplicate fragment.

 STUDENT = STUDENT_BIBLIO ⋈ STUDENTInst
iii. BOOK’s relation reconstruction

Si is a relation having a single attribute, the attribute site.

The value of this attribute is i.

 BOOK = Ui(BOOKi x Si)
iv. AUTHORS’ relation reconstruction

 AUTHORS = Ui(AUTHORSi)
v. LOAN’s relation reconstruction

 LOAN = Ui(LOANi)
3) Step Three: Defining an allocation scheme for each

site
Considering the hypotheses provided by the user, we

decided to duplicate the STUDENT_BIB table with a
synchronous update. The resulting local schema is as
described in Table III, Table IV, and Table V.

TABLE II. SITE 1 LOCAL SCHEMA: ENIT

EMPLOYE_ENIT (NSS, FName, LName, Address, Status)

STUDENT_ENIT (NCE, FName, LName, Address, Class)

STUDENT_BIB (NCE, FNAME, LNAME, Nb_borrow)
BOOK_ENIT (Id_book, Title, Editor, Year, Field, Stock)

AUTHOR_ENIT (Id_book, FNAME_author, LNAME_author)

LOAN_ENIT (Id_book, NCE, borrow_gdate, return_date)

TABLE III. SITE 2 LOCAL SCHEMA: FST

EMPLOYE_FST (NSS, FName, LName, Address, Status)
STUDENT_FST (NCE, FName, LName, Address, Class)

STUDENT_BIB (NCE, FNAME, LNAME, Nb_borrow)

LOANS _FST (Id_book, Title, Editor, Year, Field, Stock)
AUTHOR_FST (Id_book, FNAME_author, LNAME_author)

LOAN_FST (Id_book, NCE, borrow_gdate, return_date)

TABLE IV. SITE 3 LOCAL SCHEMA: FSEGT

EMPLOYE_FSEGT (NSS, FName, LName, Address, Status)

STUDENT_FSEGT (NCE, FName, LName, Address, Class)
STUDENT_BIB (NCE, FNAME, LNAME, Nb_borrow)

BOOK_FSEGT (Id_book, Title, Editor, Year, Field, Stock)

AUTHOR_FSEGT (Id_book, FNAME_author, LNAME_author)
LOAN _FSEGT (Id_book, NCE, borrow_gdate, return_date)

The local schema of the sites ENIT, FST and FSEGT are

almost the same. Distribution column in horizontal fragment
are removed as in EMPLOYE_ENIT table for example. This
is not considered as data loss because data location replaces
each row qualification (assignment column), but storage
optimization.

C. Distribution performance evaluation

To evaluate distribution strategies, we focus on one DDB
performance parameter: Execution time. We define an
operation as a book subsequent borrowing and back
operation. This procedure takes in charge additional
checking operation as book availability and student ability to
borrow (< N books at a time).

First calculation plan, the reference, considers
execution time on a remote call to centralized database.

Second evaluation scenario is to fragment “STUDENT”
table horizontally and it derived “LOAN” table. “BOOK”
will also be split horizontally based on “UNIVERSITY”
column.

Third scenario is built by splitting “Student” table
vertically to get the “STUDENT_BIB” fragment and then
duplicate this fragment on each site.

Once implemented, we stress-test database on each
scenario with 100 concurrent users for 100 borrow-return
operation. The results are described in Figure 1.

Figure 1. Load test result on each scenario

Native interpretation of the above diagram shows that
first distributed scenario gives a similar or less efficient
performance than centralized database. This may be
explained by rising inter-sites update operations on stretched
horizontal fragments. Trying to fix this issue through a
nested fragmentation on “STUDENT” table made significant
improvement but it is still penalizes write operations (lock
acquisition duration between concurrent processes). It is
worth to remembering that this evaluation omit erroneous
transactions assuming that the application layer handles such
constraints. Moreover, performance criteria are not the only
dimension to consider in DDB evaluation [2]. Data storage
optimization and transaction errors rate in the distributed
context have a major impact on DDB strategy rating.

Even if all distribution scenarios seem to be valid at first
sight, evaluation against worst scenario can favor some
distribution scenario over others.

D. DDB Implementation principle

DDB implementation is carried out manually. DBA must
make a centralized DBMS as distributed one by granting
multiple transparencies as described in [6][9]:

i. Distribution Transparency making users ignore data
replication and fragmentation. As a direct
consequence, the system handles updates of all copies
of a fragment.

106Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 115 / 173

ii. Transaction transparency ensures global database
transparency in user’s concurrent access and on
system breakdown.

iii. Performance transparency grants that the system
manages efficiently queries referencing data related to
multiple sites.

iv. Queries transparency referencing data of more than
one site.

DBMS transparency allows using different DBMS in the
global system, without making the user aware of it.

III. MOTIVATION

As described previously, DDBs are still facing the
following issues:

i. DDB design is not an easy task. Multiple criteria
must be considered in this sensitive operation: Sites
number, user needs and frequent queries.

ii. Designer must establish a compromise between data
duplication and performances cost of update and
select queries. He must find out relationship to
fragment, to replicate and update type to consider on
each synchronous or asynchronous relationship.

iii. Existing DDBMS have several do not have an
integrated component which ensures the automatic
distribution of the initial centralized database as
confirmed Table V.

TABLE V. OVERVIEW OF SOME DDBMS

Prop.
RDBMS

ORACLE

[5]
F1[8]

Cassandra

[4]

Actian

[10]

MySql

[12]

Partioning

API

Oracle

Partitioning

Spanne

r

RP &

OPPa

Ingres
XOpen

DTP

MySql
Cluster

GCE

GUI No No No No No

Auto.

Impl.
No No No No No

a. Random Partitioner & Order Preserving Partitioner

The summarized Table V shows that main market of
DDBMS have partitioning APIs; but, it always in command
line which request a lot of effort from designers to
implement a DDB.

In the following section, we propose a new approach of
DDB design and implementation assistance. This outlined
approach was validated by the design and the
implementation of an assistance providing designer with a
graphical interface for carrying different types of database
fragmentation, allocation and replication, ensuring validation
on each step of the process. Once the schema has been
described graphically, the system generates SQL scripts for
each site of the initial described configuration (site
properties). The proposed tool can be added as a layer for all
existing DDBMS.

IV. NEWAPPROACH PROPOSAL

In the section, we propose our new approach of DDB
design and implementation assistance.

A. New Approach aims

Ideally, the new layer must satisfy the following objectives:
i. Design help for distributed schema: The layer must

provide the designer a friendly and productive
interface that allows him to represent the draft of the
design in to a comprehensive and accessible script to
review and collaboration. Fields, tables, sites
suggestion lists and work tools (fragmentation and
replication) must be provided to designer to ease
schema graphical description and avoid additional
task complication.

ii. Automated implementation of design schema: Once
distribution schema has been established and
validated by the designer along with the wizard
assistance, the component “Script generator” must
afford the ability to translate accurately the described
distribution policy to valid SQL scripts. Generated
scripts can be directly run in sites from the layer if
access has already been prepared, or given deliverable
files to transmit to each site administrator.

B. Suggested layer architecture

Figure 2 illustrates the architecture of the proposed layer.

Figure 2. Layer Architecture

The implemented layer offers:
i. Access to centralized database to distribute

ii. DB link creation
iii. Horizontal, vertical and nested fragmentation
iv. Fragmentation result validation
v. Data replication
At the end of the process, two options are afforded to

carry out scripts, depending on afforded preconditions:
i. Automatically: If the design environment has valid

access to remote sites, the layer carries out scripts in
each remote site.

ii. Manually: User transfer files using an external tool
and handles then implementation in remote sites.

C. Work Results Description

Oracle Database distribution wizard is intended to help
users graphically distribute a centralized database, supports
the creation of DB links, horizontal, vertical and hybrid
derived fragmentation, validation of different types of
fragmentation and replication. The end result is a set of SQL

107Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 116 / 173

scripts to run on each site. The given algorithm in Table VI
summarizes the general functional process.

TABLE VI. SUMMARY ALGORITHM OF THE ASSISTANT

BEGIN
 accessible := FALSE; sites_count := 0;sites_list := NULL;
 start_tables_list :=NULL; fragments_list := NULL;
 scripts_set := NULL;
 WHILE (accessible = FALSE){
 read (ip, username, password);
 accessible:=check_access_to_site(ip,username,password);}
 WHILE (sites_count <= 0) { read(sites_count); }
 FOR (i:=0; i < sites_count; i++){
 valid_site := FALSE; a_site := NULL;
 WHILE(valid_site = FALSE){
 a_site := create_site(read(site_info));
 IF(a_site != NULL) {valid_site := TRUE;}
 add_site(sites_list,a_site);}
 start_tables_list := load_start_tables_list(ip, username, password);
 IF(start_tables_list != NULL){
 finished_fragmentation := FALSE;
 WHILE(finished_fragmentation = FALSE){
 read(table_to_process); read(fragmentation_type);
 temp_fragments_list =fragment(table_to_process, fragmentation_type)
 valid_fragmentation := validate(temp_fragments_list, table_to_process,
 fragmentation_type);
 IF(valid_fragmentation.result = TRUE){
 merge_list(temp_fragments_list, fragments_list); }
 show_validation_report(valid_fragmentation.report);
 read(finished_fragmentation);} }
 FOR EACH(FRAGMENT f in fragments_list)
 { write("Duplicate fragment "+ f.fragment_name);
 read(duplicate);
 IF(duplicate = TRUE){
 FOR EACH (Site s in sites_list){
 write(s.ip + " holds a copy of "+f.fragment_name+"?");
 read(hold_copy)
 IF(hold_copy){
 temp_frag = copy_fragment(f);
 temp_frag.site = s.ip;
 temp_frag.duplicat = TRUE;
 fragment_list.add(temp_frag);
 }}} }
 read(save_repository);
 IF(fragments_list != NULL){
 FOR EACH (Site s IN sites_list){
 script_file_name = save_repository +
 SEPARATOR + "script_" + site+".sql";
 exists := find_file(script_file_name, scripts_set);
 if(exists = FALSE){
 creer_fichier(script_file_name);
 ecrire_lien(script_file_name,s);
 add_script(scripts_set, script_file_name);
 } FOR EACH(Fragment f IN fragments_list){
 IF(f.site = s OU f.replicat){
 transcript(f,script_file_name);
 }} }}
 IF(scripts_set != NULL){
 FOR EACH(FILE fc IN scripts_set){
 add_synonyms(fc);
 add_stored_proc(fc);
 add_materialized_views(fc); }
 read(auto_execute);
 IF(auto_execute){
 FOR EACH(FILE fc IN scripts_set){
 can_run:=check_access_to_site(fc);
 if(can_run){run(fc);} }}}
 END

V. DDB HELPER

Distribution wizard "DDB Helper" is intended to help
users graphically distribute a centralized DB, supports the
creation of DB links, horizontal, vertical, hybrid and derived
fragmentation and replication. The final result is a set of
SQL scripts to run on each site.

 To implement our tool, we used Microsoft Windows
Seven software environment. Simulation nodes in network,
was made by installing two virtual machines (Oracle Virtual
Box) on the chosen host. The development environment is
apprehended DotNet framework 4.5 [1].

DDB Helper provides designers with multiple screens.
After welcome screen and tool introduction and interactive
help access, user access the connection panel to identify
target centralised database.

On successful connection test, next screen is just a popup
asking for the number of sites on the distribution. Then, a
visual map is displayed with raw nodes. Designer must
identify each site with network adress (either a name or an
ip), a logical name and the DB link name.

Figure 3. DDB Visual Sites Map

Next step after sites definition is the fragmentation

screen. The list of accessible tables for the previously
defined user is added as an auto complete on the first
combobox. The second combobox suggests fragmentation
types (horizontal, vertical and nested). Derived
fragmentation is transparent to user. As example, vertical
fragmentation interface provides user with the list of
columns of chosen table. User enters fragment name and
chooses hosting site and then checks columns related to this
fragment. By default, the tool keeps the last selection of
columns so that the designer can affect the same fragment to
multiple sites without redefining then fragment columns. If
the designer needs to flush selection, a shortcut on F5 key is
linked and functional.

Once finished the fragmentation for a table, the wizard
starts an automated validation for the described
configuration. Adding a fragment without a primary key is
already controlled while creating the fragment (on “Add
Fragment” button click). Validation screen is displayed then:
The left canvas holds a fragment tree with first level nodes as

108Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 117 / 173

sites, second level nodes as fragment names and leaves are
the columns. Primary key is highlighted (orange color). In
the right container, the validation report is displayed for the
three validation criteria: Reconstruction, completeness then
disjointness.

Those criteria are examined respectively with details of
failure or invalid result. In the current trace we did in
purpose correct fragmentation on ENIT site, then a
completeness non-compliant fragmentation for site FST, and
finally we forgot-in purpose- the NB_BORROW column in
two fragments to make fragmentation disjointness non-
compliant. A validation trace sample is described in Table
VII.

TABLE VII. SAMPLE EXECUTION TRACE OF VALIDATION

PROCESS

Fragmentation result validation for table STUDENT:
Reconstruction aspect test:

-Fragment STUD_BIB_ENIT on ENIT has primary key.

-Fragment STUD_BIB_FST on FST has primary key.
-Fragment STUD_BIB_FSEG on FSEG has primary key.

-Fragment STUD_ADMIN_ENIT on ENIT has primary key.

-Fragment STUD_ADMIN_FST on FST has primary key.
-Fragment STUD_ADMIN_FSEG on FSEG has primary key.

->Reconstruction aspect is valid on all sites.

Completeness check for vertical split FST:
-Completeness aspect test for site FST:

->There is no relation that can reconstruct the original table on the active

distribution in site FST;
Not all columns of the original table are distributed over vertical

fragments.
Original columns count: 8

Distinct columns count after distribution: 7

Skipping disjointness aspect test...

Completeness check for vertical split ENIT:

-Completeness aspect test for site ENIT:

->Completeness aspect is valid on site ENIT
-Disjointness Aspect test for site ENIT

->Disjointness aspect is valid on site ENIT

Completeness check for vertical split FSEG:
-Completeness aspect test for site FSEG:

->Completeness aspect is valid on site FSEG

-Disjointness Aspect test for site FSEG
-> Detected duplicate columns(different from PK) in fragments of site

FSEG:

This configuration does not fill disjointness requirement.
Duplicate Columns are: NB_BORROW

The trace shows the validation process result.

Reconstruction aspect is checked first. Then, completeness
aspect is checked out. In this sample, the completeness
aspect is altered in site FST. When the validation wizard
component tries to rebuild the parent table from its child
fragments, it fails because one column is missing from all
vertical fragments. Finally, disjointness check reports a
broken distribution against this correctness rule because of a
duplicate column different from primary key between two
fragments in site FSEG. The detailed report is very helpful
while steeping back to correct distribution strategy.

By the end of the whole process, if the policy is validated
by the wizard and designer, the tool takes in charge the
transcription of visual design into SQL scripts to run on
remote sites. The only necessary parameter for this operation

is scripts location. Script files naming convention is as
follows: [SITE_NAME]_DDB_SCRIPT.sql.

The generation process goes through all sites and
generates the script to create symbolic links, then transforms
into a standard fragments and commented SQL script. The
field names and types are consistent with the starting table
(same name and same type). Procedures, views, triggers, and
the various components are then written accordingly.

VI. COMPARISON WITH EXISTING APPROACHES

In parallel with the work of DDBMS vendors and
developers, the design of distributed Database has been
investigated in many research papers. In this section, we
focus on the works of Rim [11] and Hassen [7]. The first,
DDB Expert: A Recommender for Distributed Databases
Design proposes an open source expert system for database
partitioning. The author has implemented a recommender for
DB fragmentation, which infers solutions for table
fragmentation using a knowledge base populated with DB
schema, DB workload facts, and DB statistics.

The second is “A New Data Re-Allocation Model for
Distributed Database Systems” [7]. Abdalla presents a new
data re-allocation model for replicated and non-replicated
constrained DDBSs by bringing about a change to data
access pattern. This approach assumes that the distribution of
fragments over network sites was initially performed
according to a properly forecasted set of query frequency
values that could be employed over sites

In our work, we help the designer to validate its
fragmentation; User who chooses attribute frag. Our layer
enables:

i. Checking whether the described fragmentation is
valid or not against reconstruction and completeness
criteria. Disjointness is checked twice while creating
fragments and on global validation. But this is a non-
blocking condition because of design issues
sometimes where we opt for non-empty intersection
to keep inter-site relational integrity.

ii. Automatically generate SQL scripts Materialized
views definition is based on reconstitution rules of
pre-established relations.

iii. As the previous works in this field published by Rim
are focused on design assistance, this work can lead
to a complete distribution layer if associated with the
open source work of Rim [11].

VII. CONCLUSION AND FUTURE WORK

In this work, we have highlighted the constraints and
challenges faced by designers for carrying out a DDB
scheme. We have explained some concepts of DDBs and
methods of design and implementation of such a database.
Lack of a smart assistant that allows the automatic
implementation of a database distribution policy was our
starting point for the design and implementation of an
assistance layer to design and implement a DDB.

The result of current work is a friendly visual wizard,
which allows the translation of schemes of distributed
directly on all the nodes of the topology.

109Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 118 / 173

Further work to improve the DDB-helper layer: 1) Full
support of hard and software heterogeneity (Different
DBMS, Different OS, and Network topology) and 2)
integrate performance simulator (Enable designers to
anticipate bottlenecks even before implementing distribution
policy, predict performance interpolation graphs based on
user predefined queries).

REFERENCES

[1] A.P. Rajshekhar, .Net Framework 4.5 Expert Programming

Cookbook, Packt Publishing, 2013, pp. 45-101, ISBN: 978-1-84968-
742-3.

[2] A. Silberschatz, Distributed databases. In Database System Concepts,
fifth edition, Connecticut: McGraw-Hill, pp. 705-749, 2006.

[3] B. Pribyl and S. Feuerstein, Learning Oracle PL/SQL, O'Reilly
Media, 2001, pp. 21-269, ISBN: 978-0-596-00180-3.

[4] E. Hewitt, Cassandra: The definitive guide. O’Reilly Media, Inc.,
November 2010.

[5] F. Bouzaiene, Oracle Golden Gate. In: Conférence "Oracle
Technologie Day Tunis", Oradist, 27 Mars 2013, Hotêl Sheraton,
Tunis.

[6] G. QIAN, B. LIU, and J. CHEN, “Design and Implementation of
Distributed Database System,” Modern Surveying and Mapping, June
2010, ISSN: 1672-4097.

[7] H.I. Abdalla, A New Data Re-Allocation Model for Distributed
Database. Systems International Journal of Database Theory and
Application, vol. 5, June 2012.

[8] J. Shute and M. Oancea , S. Ellner, B. Handy, E. Rollins, S. Bart, R
Vingralek, C. Whipkey, , B. Jegerlehner, K. Littlefield, T. Phoenix,
F1 -The Fault-Tolerant Distributed RDBMS Supporting Google’s Ad
Business, 16 Mai 2012, Arizona..

[9] M.T. Özsu and P. Valduriez, Principles of distributed database
systems.New York, Springer, 2011.

[10] M. Stonebraker, The INGRES Papers,.Addison-Wesley Publishing
Compay,1986.

[11] R. Moussa, DDB Expert: A Recommender for Distributed Databases
Design.Database and Expert Systems Applications (DEXA), pp. 534-
538, 2011.

[12] Y. Bassil, A Comparative Study on the Performance of the Top
DBMS Systems. Journal of Computer Science & Research, vol. 1,
No. 1, pp. 20-31, February 2012.

110Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 119 / 173

1

An Object-oriented Approach for Extending MySQL into NoSQL with Enhanced
Performance and Scalability

H. Shim, Y. Sohn, Y. Sung, Y. Kang, I. Kim, and O. Kwon
Samsung Electronics Co., Ltd

{hyunju67.shim, ycsohn, yw.sung, ygace.kang, ij00.kim, ohoon.kwon}@samsung.com

Abstract—This paper introduces an object-oriented approach for
extending MySQL into Not-only SQL (NoSQL) for enhanced
performance and scalability. Main goal of our system is to provide
a database management system that handles a huge amount of
data in a fast and reliable way. In designing database management
Application Programming Interface (API), we adopted an Object-
Relational Mapping (ORM) approach that provides a mapping
between objects in user code with tables in database. This
mapping allows developers to handle data in database tables
by manipulating the objects that are mapped to. To provide a
flexible and efficient distribution of large amount of data among
multiple database nodes, we designed a unique ID scheme which
is optimized for the primary key lookup operations by encoding
the shard key information into its data ID. In this way, queries
predicated with data ID can always go directly to the target node
no matter which key the data is distributed on. With our ORM
approach, query predicates are composed as a combination of
Java method calls and no query parsing is necessary at database
layer. Having no query to be parsed, we leveraged HandlerSocket,
a MySQL plugin, which bypasses the upper layer of MySQL
hence improving overall performance. To evaluate our system,
we performed a set of tests and proved that our system provides
improved performance and linear scalability compared to the
traditional MySQL approach.

Keywords-performance, robustness, scalability, object-relational
mapping, distributed query processing

I. INTRODUCTION

Recently, due to the huge success in social networking
services such as Facebook and Twitter, the amount of user
data to be handled by a single service has exponentially grown.
To support a service where a huge number of users generate
tons of data at every second, its database management system
must not only be fast and robust but also be highly scalable
and available. In database system, scalability is defined as an
ability to increase the total throughputs linearly as database
storages are added. With highly scalable database system,
simply adding more database nodes to the system will handle
ever increasing user data without performance degradation. For
highly available system, its database solution must eliminate
any single-point-of-failure in system and guarantee its service
level agreement.

Traditional database management systems (DBMS) de-
signed to serve complex queries with Atomicity, Consistency,
Isolation, and Durability (ACID) properties have demonstrated
its architectural limitations in handling the large amount of data
that recent social services generate. To remedy this situation,

researchers investigated in alternative database management
systems that can handle large amount of data with high
performance and scalability. As a result of those efforts, a
new type of database management systems called NoSQL (Not
only SQL) were introduced including Amazon’s Dynamo [1]
and Google’s Bigtable [2]. Unlike data in traditional database
systems were modeled and handled as relational tables, data
models in NoSQL are characterized into several categories
such as document-based [3], column-oriented [4], key-value
pairs [5], graph-based [6], and etcetera.

Although NoSQL provides a fast access to vast amount of
data with variety of data models, being recent technology,
they are not robust enough compared to the traditional DBMS
such as Oracle [7] and MySQL [8]. Also, being distributed
database system, NoSQL has an innate trade-off between high-
availability and data consistency [9] and recent trend is
that developers choose NoSQL or RDBMS for specific needs
depending upon the nature of their data and services [10]. In
this paper, we introduce a data access framework we developed
on top of MySQL to provide a fast and robust data access with
high scalability and availability.

Section II describes about the overall architecture of our sys-
tem. Section III and Section introduce our approach to database
sharding and programming model. Section V describes our
experimental results and, finally, Section VI concludes this
paper and explains about our future works.

II. OVERALL ARCHITECTURE

Main goal of our system is to provide a fast and robust
data access framework with high scalability and availability as
followings:
• For high scalability, we horizontally partitioned tables

into multiple database nodes.
• For high availability, we automated the procedures for

master failover and provided an online tool for shard
rebalancing that redistributes data from one shard to
another.

• For robust data management, we leveraged the MySQL
storage engine, which has been used for many commer-
cial services for a long time.

• For fast data access among multiple data nodes, we
designed a unique ID scheme which is optimized for
the ID lookup operation no matter which key the data
is distributed on. This is done by encoding the shard
key information into the data ID.

111Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 120 / 173

2

Figure 1: Overall Architecture of Our System.

• For fast data access in a single data node, we adopted
HandlerSocket plug-in [11] and made read requests be
routed to replica nodes.

As shown in Figure 1, our system is mainly composed of
four parts: Data Access Framework in client side, which builds
query conditions from user code and distributes queries among
multiple MySQL nodes, Zookeeper which coordinates shard
maps that resides in client nodes, MySQL database nodes
with Active-Standby replications, and Administration Tools
which provide command line interfaces for shard creation and
online rebalancing. Among many features of our system, data
distribution, programming API, performance, and scalability
aspects of our system are discussed in the following sections.

III. HORIZONTAL PARTITIONING OF DATA

A. Basic Concept of Database Sharding
In our system, we achieved database scalability by hori-

zontally partitioning a single table into multiple data nodes
where rows of a table are held separately based on the values
of a certain key. This vertical partitioning of tables is called
sharding and the key used to divide value range of data is called
shard key. Two famous approaches for sharding are hash-based
sharding and range-based sharding. In the hash-based sharding,
data is simply distributed based on the hash values of its
shard key hence data are evenly distributed among multiple
data nodes. However, since data are scattered among multiple
shards - data nodes, it is inefficient to perform queries with
range conditions e.g., smaller than, larger than, and etcetera.
For those range queries, every shard needs to be accessed to
check if the node has the data that meet the range conditions.
Also, with a simple hash, when a new data node is added into
the system to increase the total capacity of storage, data from
every node must be relocated based on the new hash function.

To remedy this data migration of every shard in a simple
hash-sharding, consistent hashing was introduced [12]. In

Figure 2: Concepts of Hash Sharding (left) and Rule
Sharding(right).

consistent hashing, hash key space is mapped to the points
on a ring representation and each point is mapped to a data
node. Thus, each data node covers a certain range of hash key
space represented on the ring. When the number of data nodes
changes due to crashing of any node or addition of a new node,
only K/N keys need to be reallocated on average where K is
the number of keys and N is the number of points or data
node on the ring. To reduce data migration in case of node
crash, data in the nodes are replicated in such a way that each
node in the ring keeps the master copy of its own key ranges
and replicas of adjacent nodes. In the left image of Figure 2,
data being replicated to its adjacent nodes, when the node A
crashes, requests made to A are then routed to node B hence
node B became the master for the data whose hash key space
is mapped to A and B. When a new node is added, a hash
key range owned by D is divided into two and half of them
are migrated to the newly added node letting the newly added
node become a new master node of the migrated half.

Unlike hash-based sharding, rule-based sharding groups
shard key ranges and maps the groups to a set of data nodes.
The file that keeps this mapping information is normally
referred to as a forwarding table. Advantages of rule-based
sharding are flexible data distribution and efficient support for
ranged-queries. With range-based sharding, database adminis-
trators can make sharding rules specific to their applications
and data with similar shard key values are stored in the
same data node hence supporting range queries efficiently.
One of main disadvantages of range-based sharding is uneven
distribution of data. If the sharding rule does not reflect the
actual distribution of data then some of data nodes might get
congested while others are sparse. To make data nodes evenly
distributed, frequent data migrations and shard rule updates
might be required. Right image of Figure 2 illustrates the main
concept of rule-based sharding. In our system, we designed a
modified rule-based sharding with doubly mapped forwarding
table and fixed length of ID. Following section explains details
about the sharding in our system.

112Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 121 / 173

3

Figure 3: How Sharding Works in Our System.

B. Doubly Mapped Range-based Sharding

When distributing data among multiple nodes, they must be
grouped based on the values of a certain key, which is called
a shard key. For efficient distribution of data, it is important
to select a shard key that is common for most of queries in
the system. Because, once data is distributed among multiple
shards based on their shard key values, queries predicated with
a shard key can be directly sent to the target shard by referring
to the forwarding tables while others must be sent to every
shards to see if the data to be queried reside in there.

For an efficient sharding of data where most of their queries
are ID lookup operations, we designed a 64 bits ID scheme
in such a way that the shard key values are encoded within
it. With this approach, data is distributed based on any key
while the ID lookup operations can always go directly to its
destination shard by referring to the shard rule files. In the ID
scheme we designed, the first 16 bits represent the virtual shard
ID (VSID), which is mapped to a physical database node, the
middle 16 bits represent a database table and the remaining 32
bits represent a local ID which is unique within the table.

For data read and write operations, our system maintains
two mapping files: ShardKey2VSID and VSID2Shard the
ShardKey2VSID file maps the shard key value ranges to 216

VSIDs and the VSID2Shard file maps the 216 VSIDs to the
physical database nodes in system. For data writing, a VSID
is first assigned based on its shard key value by referring to
the ShardKey2VSID rule file. Once a VSID is assigned, a
target database is determined by referring to the VSID2Shard
rule file. Once the physical shard determined, data is stored
in the data types table with the local ID provided by the
MySQLs auto-increment functionality. Figure 3 shows how ID
is generated for data and stored in our system. For data reading
with ID, our system looks at the first 16 bits of the ID, which
is the VSID part, and finds the target shard by referring to
the VSID2Shard file. For data queries including shard keys
values can also be directly sent to the destination shards by
comparing the shard key values with the ShardKey2VSID

and VSID2Shard files. Like other sharding systems, queries
without shardkeys must be sent to every shard.

One of the main design goals of our VSID is to support
flexible sharding of data with multiple shard keys while
encoding the shard key values into the fixed length of ID.
Using our system, a database administrator can set rules for
each 16 bits to distribute data according to the characteristics of
their applications. For example, sharding a user data according
to the birthday and zip code in such a way that the upper
8 bits of VSID are set based on the birthday and the lower
8 bits are set based on the zip code of users will result
that user data with similar birthday and zip code will be
stored in the same database. If related data are gathered in
a single shard, operations such as transactions and joins can
be performed locally using SQL in user code hence providing
better performance. Note that transaction and join operations
among distributed data are very complex and time consuming
tasks. Also note that, being Java API, users can use our API
and standard SQL statements together in their code for simple
data look up operations and transaction and join operations,
respectively.

IV. PROGRAMMING MODEL

In relational database systems, the Structured Query Lan-
guage (SQL) provides a standard way to access and manipulate
data in database tables. To access data in RDBM tables from
an application, developers normally compose SQL statements
in a string representation and request/execute the query using
the database client API. Figure 4 shows the example code for
creating a database table and inserting/querying data into/from
the table using SQL in Java.

Although SQL provides a standard and structured way to
store and retrieve data in tables, when used in Object-Oriented
(OO) programming languages where data to be manipulated is
represented as properties of object, there exists a gap between
the representations of data in the programming code side
and in the database side. That is, data in database tables
are represented as a set of columns with scalar values while
the data in OO programs are represented as properties with
associated get/set methods. While developers can manually
map the objects in their code into the rows of tables, some
Object-Relation Mapping (ORM) frameworks have been intro-
duced to free developers from this manual mapping [13][14].
Using ORM API developers can save and retrieve objects
into and from the relational database tables as if they are
manipulating their objects using standard OO methods. In our
system, we designed and developed a set of ORM API which is
highly optimized for building and requesting complex queries
to database tables which are physically distributed in a fast
way. Following sections describe details about accessing and
manipulating data in tables from Java code using our ORM
API set.

A. Data Definition
While relational database tables are normally created using

the Data Definition Language (DDL) statements of SQL as
shown in Figure 4, with the ORM approaches, tables can also

113Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 122 / 173

4

Figure 4: Example Code of SQL Statement in Java Code.

Figure 5: Data Definition and Query Condition in Our
System.

be created from the annotations in the source code or from
XML documents that specify mapping between the objects and
database tables [13][14]. In our system, for the definition of the
structure and schema of database tables across the distributed
database tables, we first designed a set of Java annotations and
then developed a tool that reads the annotations in a Java code
and creates the tables in the sharded databases according to

Figure 6: Composing a Query and Fetching Data.

the pre-defined sharding rules.
Using our system, developers can create tables with a

primary key, a foreign key, an auto-increment column using our
annotations such as @Entity, @ID, @RefTo, and @Counter
annotations, respectively. For every class with @Entity an-
notation, a corresponding table is created in database nodes.
Class variables with no annotations will be created as a simple
column with its data type defined in the code. For the class
variables with @Transient annotation, no matching column
will be created in the table. Figure 5 shows the example code
for the creation of a table in our system and basic concepts
about how the tables are created in multiple shards by the DDL
tool of our system. In Figure 5, the User table is created in
three shards according to the rules in VSID2Shard file.

We also provide a predicate annotation for methods where
developers can specify query predicates to be made for the
correspondent table. Middle part of the Figure 5 shows the
example @Predicate methods which compare the method
parameters with the values of the name and age of the entity
object and return the comparison results. This @Predicate
annotated method is a building block for complex queries to
the database table that corresponds to the current entity object.
In the application code, developers can compose a complex
query to a database table by calling the @Predicate annotated
methods of the corresponding entity object. Following section
explains how to build a complex query by leveraging this
@Predicate annotated methods in detail.

B. Data Manipulation
With our ORM approach, developers can manage data in

a table as they manage them with object. To insert data into
a table, developers simply create an object with values to its
member variables and provide the object as a parameter of
our save() API. To update data in a table, developers first
fetch the row of the table to be updated using our fetch() API

114Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 123 / 173

5

note that our fetch() API fetches data from database tables and
maps them to the object upon which the data request is made.
Once the row is fetched as an object, update can be made to
the object using the set() method and save the object into the
database table again using our save() API.

In our system, complex queries can be built by combining
the @Predicate annotated methods that were pre-defined in
the @Entity class. For example, using the predicate methods
in Figure 5, the named and olderThan methods, we can build
a query for selecting users whose name is John and whose
age is older than 19 as in the last example in Figure 6. Note
that composition of a query is achieved by sequentially calling
the @Predicate methods of the Entity class. Once the query
condition is built, developers can fetch data that meet the query
conditions by calling the fetch() or fetchlist() API at the end of
the query conditions built. For the fetch or fetchlist() methods,
our query engine takes the user-built query and fetches the
data that meet the conditions from the multiple shards.

Advantages of our ORM approach can be summarized in
two points. First one is that since class variables and methods
are mapped to a database tables and query predicates, appli-
cation developers can manage data in database transparently -
that is the application developers even do not need to aware the
database behind the application and manage data as if they are
managing objects in their application. This satisfies the goal
of ORM, which is eliminating the conceptual gap between
the objects in OO programs and the relational tables. Also,
since there is no string manipulation for composition SQL
statements, many typo errors can also be eliminated.

Second advantage of our approach is that since the query
conditions are defined as class methods, developers can specify
query conditions using the operators allowed in SQL WHERE
clause such as LIKE, IN, MAX, etc., along with the language
operators, such as bitwise operators and variety of string
operators. With SQL approach, developers apply additional
language operators to the SQL query results to meet the certain
requirements of the application. In our system, the query
condition defined using language operator is called a client
query and the query condition that can be mapped to the SQL
WHERE clause is called a DB query. Next section describes
details about the query engine of our system.

C. Query Engine Internals
Query engine in our system is responsible for constructing

a database query from the query predicates in application code
and making request to database tables in multiple shards and,
finally, returning the query results to the application as an
object. Figure 7 illustrates the internals of our query engine.
Once the build() API is called, our query engine starts building
an empty query object that correspondent to the query class
specified in its argument. In Figure 6, this correspondence
to s.build(UserQuery.class). Once an empty query object is
ready, the query engine adds the query conditions to the query
object as it is specified in the application. In Figure 6, this
correspondence to olderThan(19) and named(John).

Once the query object is built with the given query condi-
tions, our query engine separates the database query conditions

Figure 7: Internals of Query Engine.

from the client query conditions. Previously, it was mentioned
that, the query condition defined using language operator is
called a client query and the query condition that can be
mapped to the SQL WHERE clause is called a DB query. As
the database queries are filtered out, our query engine converts
the database queries into a format of HandlerSocket protocol.
Finally, the query engine refers to the sharding rule files to
identify the target shards where the query must be sent and
makes database request to them.

As the database query results are sent back from the target
shards, the query engine aggregates the results and applies the
previously filtered-out client query conditions to the results
and, finally, returns the result to the application as an object.
Note that, at the bottom of Figure 6, the result of fetchlist() is
directly assigned to the list of User objects.

V. PERFORMANCE AND SCALABILITY

A. Performance Enhancement

To process SQL statements in the server-side, MySQL upper
layer includes a parser and optimizer that builds a parse tree
and makes a plan for an optimized execution path for the
given query, respectively. Although this parser and optimizer
handles complex SQL queries in an efficient way, they can
also be a burden when the query is very simple so that there
is not much thing to do for parsing and optimizing. For fast
data access with simple query conditions such as ID lookups
and index searches, HandlerSocket [11] was introduced which
bypasses the upper layer of MySQL hence improving read
and write performances. In our system, we implemented our
ORM API using HandlerSocket protocols that communicate

115Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 124 / 173

6

with HandlerSocket plug-in in server-side and directly access
data in MySQL’s storage engine, InnoDB.

One more performance enhancement we made to our system
is leveraging replica nodes to serve for read requests. MySQL
provides a built-in master-slave replication where read/write
operations go to the master node while the data updates are
copied to the replica nodes asynchronously [15]. Although the
main purpose of this replication is keeping extra copies of
data for high availability, we can also achieve an improved
performance by routing read requests to one of replicas and
reducing bottleneck in the master node. In our system, we
designed our query engine to read data from replica nodes in a
round-robin fashion. If a certain replica node is not responding
then one of the other replica nodes in the same shard is read
and the failed replica node is tried after some time.

B. Scalability Enhancement
Earlier in this paper it was mentioned that, linear scalability

of database is defined as an ability to increase the total
throughput linearly as database nodes are added. Being a
range-based sharding solution, adding a new data node and
redistributing data in our system is achieved in following steps
by our shard rebalancing tool:

1) Data migration - migrate the data of a shard whose
volume reaches its threshold. This involves copying
data from a congested node to the newly added node
and deleting the copied data from the congested node.
This way, the congested node and the newly added
node shares data load.

2) Sharding rule update - Update the sharding rule files
accordingly and synchronize the updated rule files in
every WAS node so that the requests for the migrated
data go to the newly added node.

Figure 8 illustrates the concept of the shard rebalancing in
our system. In our system, Apache Zookeeper [16] is used for
the automatic synchronization of the mapping rule files reside
in every WAS nodes.

C. Evaluation Results
To measure the performance and scalability of our system,

we performed a set of tests. Firstly, to compare the perfor-
mance of our approach with the traditional MySQL approach,
we wrote two sets of test codes that access tables in database
- one using JDBC API and one using our ORM API. Then
we set up 1 database node and increased the total number
of application nodes to measure the saturated throughput per
second (TPS) and average latency for two different approaches.
Note that we made each application node spawn 100 threads
that run our test codes and to get the saturated throughput
for 1 database node we should increase the total number of
application nodes up to 28. The test results demonstrated that
our system outperforms the MySQL approach for 34 and 13
times in terms of throughput and saves 68% and 74% in terms
of latency for read and write operations, respectively. Detailed
test results are summarized in Table I and Figure 9.

To measure the scalability of our system, we increased the
total number of database nodes from 1 to 8 and measured

Figure 8: Shard Rebalancing.

TABLE I: Result of Performance Test

Throughput Latency (ms)
SQL-JDBC ORM-HS SQL-JDBC ORM-HS

Data Read 5365 179922 2.0 0.64
Data Write 3902 49627 2.9 0.74

Figure 9: Result Graphs for Throughput Test(Left) and
Latency Test(Right).

the aggregated TPS of all 28 application nodes. As a result
of this test, we proved that our system linearly scales out as
the number of database nodes gets increased. Table II and
Figure 10 show our test results in detail.

116Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 125 / 173

7

TABLE II: Result of Scalability Test

1 DB node 4 DB nodes 8 DB nodes
Data Read 179922 579368 843768
Data Write 49627 169031 303800

Figure 10: Result Graph for Scalability Test.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced our database sharding frame-
work with enhanced performance and scalability. For a flexible
and efficient distribution of data among multiple database
nodes, we designed a unique ID scheme which is optimized
for the primary key lookup operations by encoding the target
database node information as a part of ID. We also designed
a set of ORM API that maps the conditioned objects in
application codes to the database table and queries. For fast
data access, we implemented our API using MySQL Handler-
Socket plug-in which bypasses the upper layer of MySQL.
We also leveraged replica nodes to serve for read requests for
an enhanced performance by distributing requests to a master
node.

To evaluate performance and scalability of our system, we
performed a set of tests and proved that our system provides
improved performance and linear scalability compared to the
traditional MySQL solutions. As our future work, we firstly
plan to provide zero-downtime availability in case of a master
node failure by implementing an active-active replication with
the quorum based algorithm [17]. We also plan to support
transactions and map-reduce style queries such as order-by
and join in the distributed environment.

REFERENCES

[1] G. DeCandia et al., Dynamo: Amazons Highly Available Key-value
Store,” In Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, ACM New York, NY, USA, Oct. 2007,
pp. 205-220

[2] F. Chang et al., ”Bigtable: A distributed storage system for structured
data,” ACM Transactions on Computer Systems (TOCS), ACM New
York, NY, Jun. 2008, pp. 1-26.

[3] K. Banker, 2011, MongoDB in Action, Manning Publications
[4] E. Hewitt , Cassandra: The Definitive Guide, OReily Media Inc.
[5] T. Macedo and F. Oliveira, Redis Cookbook: Practical Techniques for

Fast Data Manipulation, O’Reilly Media, 2011.
[6] Neo4j, the Graph Database - Learn, Develop, Participate. [Online].

Available: http://www.neo4j.org/ [retrieved: 02, 2014]

[7] K. Loney, Oracle Database 11g The Complete Reference, Oracle Press,
2009.

[8] B. Schwartz, P. Zaitsev, and V. Tkachenko, High Performance MySQL:
Optimization, Backups, and Replication, O’Reilly Media, November
2011.

[9] W. Vogels, All Things Distributed: Eventually Consistent, [Online].
Available: http://www.allthingsdistributed.com/2007/12/eventually con
sistent.html/ [retrieved: 02, 2014]

[10] N. Leavitt, ”Will NoSQL Databases Live Up to Their Promise?,”
Computer, volume 43, number 2, Feb. 2010, pp. 12-14.

[11] HandlerSocket. [Online]. Available: http://yoshinorimatsunobu.blogspot
.kr/search/label/handlersocket/ [retrieved: 02 2014]

[12] D. Karger et al., ”Consistent Hashing and Random Trees: Distributed
Caching Protocols for Relieving Hot Spots on the World Wide Web,” In
ACM Symposium on Theory of Computing, Philadelphia, Pennsylvania,
USA, May. 1997. pp. 654-663.

[13] Hibernate JBoss Community. [Online]. Available: http://www.hibernat
e.org/ [retrieved: 02, 2014]

[14] Java Persistent API. [Online]. Available: http://www.oracle.com/technet
work/java/javaee/tech/persistence-jsp-140049.html/ [retrieved: 02,
2014]

[15] S. Pachev, Understanding MySQL Internals, O’Reilly Media, 2007.
[16] Apache Zookeeper. [Online]. Available: http://zookeeper.apache.org/

[retrieved: 02, 2014]
[17] D. Agrawal and A. E. Abbadi, The tree quorum protocol: an efficient

approach for managing replicated data, in Proceedings of the sixteenth
international conference on Very large databases, Brisbane, Australia,
Sep. 1990, pp.243-254.

117Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 126 / 173

Efficient Data Integrity Checking for Untrusted Database Systems

Anderson Luiz Silvério
and Ricardo Felipe Custódio

Laboratório de Segurança em Computação
Universidade Federal de Santa Catarina

Florianópolis, Brazil
Email: anderson.luiz@inf.ufsc.br

custodio@inf.ufsc.br

Marcelo Carlomagno Carlos

Information Security Group
Royal Holloway University of London

Egham, Surrey, TW20 0EX, UK
Email: marcelo.carlos.2009

@rhul.ac.uk

Ronaldo dos Santos Mello

Grupo de Banco de Dados
Universidade Federal de Santa Catarina

Florianópolis, Brazil
Email: ronaldo@inf.ufsc.br

Abstract—Unauthorized changes on database contents can
result in significant losses for organizations and individuals. This
brings the need for mechanisms capable of assuring the integrity
of stored data. Existing solutions either make use of costly
cryptographic functions, with great impact on performance, or
require the modification of the database engine. Modifying the
database engine may be infeasible in real world environments,
especially for systems already deployed. In this paper, we propose
a technique that uses low cost cryptographic functions and is
independent of the database engine. Our approach allows for
the detection of malicious data update, insertion and deletion
operations. This is achieved by the insertion of a small amount of
protection data in the database. The protection data is calculated
by the data owner using Message Authentication Codes. In
addition, our experiments have shown that the overhead of
calculating and storing the protection data is lower than previous
work.

Keywords–Data Integrity; Outsourced Data; Untrusted Database;
Data Security.

I. INTRODUCTION

Database security has been studied extensively by both
the database and cryptographic communities. In recent years,
some schemes have been proposed to check the integrity of
the data, that is, to check if the data has not been modified,
inserted or deleted by an unauthorised user or process. These
schemas often try to solve one of the following aspects of the
data [1], [2]:

• Correctness: From the viewpoint of data integrity, cor-
rectness means that the data has not been tampered with.

• Completeness: When a client poses a query to the
database server it is returned a set of tuples that satisfies
the query. The completeness aspect of the integrity means
that all tuples that satisfy the posed query are returned
by the server.

Trying to assure data integrity, many techniques have been
proposed [3], [4], [5], [6]. However, most of them rely on
techniques that require modification of the database kernel
or the development of new database management systems.
Such requirements make the utilization of the integrity assur-
ance mechanisms in real-world scenarios difficult. This effort
becomes more evident when we consider adding integrity
protection to already deployed database systems.

Most of the remaining work uses authenticated structures
[7], [8], [9], based on Merkle Hash Trees (MHT) [10] or Skip-
Lists [11]. These works are most simpler to put in practice,
since they don’t require modifications to the kernel of the
Database Management System (DBMS). However, the use
of authenticated structures limits its use to static databases.
Authenticated structures are not efficient in dynamic databases
because for each update the structure must be recalculated.

In this paper, we address the problem of ensuring data
integrity and authenticity in outsourced database scenarios.
Moreover, we provide efficient and secure means of ensur-
ing data integrity and authenticity while incurring minimal
computational overhead. We provide techniques based on
Message Authentication Codes (MACs) to detect malicious
and/or unauthorized insertions, updates and deletions of data.
Is this paper, we extend the work of [12], by enhancing
the experimental evaluation, providing the algorithms for the
proposed techniques and presenting a technique to provide
completeness assurance of queries.

The remainder of this paper is divided into five sections.
In Section II , we discuss related work. In Section III, we
present techniques for providing data integrity and authenticity
assurance. In Section IV, we analyse the performance impact
of our proposed method and Section V presents our final
considerations and future works.

II. RELATED WORK

The major part of integrity verification found in literature is
based on authenticated structures. Namely, Merkle Hash Trees
MHT [10] and Skip-Lists [11].

Li et al. [4] present the Merkle B-Tree (MB-Tree), where
the B+-tree of a relational table is extended with digest
information as in an MHT. The MB-Tree is then used to
provide proofs of correctness and completeness for posed
queries to the server. Despite presenting an interesting idea
and showing good results in their experiments, their approach
suffers from a major drawback. To deploy this approach, the
database server needs to be adapted as the B+-tree needs to
be extended to support an MHT. Such modifications may not

118Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 127 / 173

be feasible in real world environments, especially those that
are already in use.

Di Battista and Palazzi [7] propose to implement an au-
thenticated skip list into a relational table. They create a new
table, called security table, which stores an authenticated skip
list. The new table is then used to provide assurance of the
authenticity and completeness of posed queries. This approach
overcomes the requirement of a new DBMS, present in the
previous approach. While only a new table is necessary within
this approach, its implementation can be done as a plug-in to
the DBMS. However, the experimental results are superficial.
It is not clear what is the actual overhead in terms of each SQL
operation. Moreover, their experiments show that the overhead
increase as the database increases, while in our approach the
overhead is constant in terms of the database size.

Miklau and Suciu [9] implement a hash tree into a relational
table, providing integrity checks for the data owner. The
data owner needs to securely store the root node of the
tree. To verify the integrity, the clients need to rebuild the
tree and compare the root node calculated and stored. If
they match, the data was not tampered with. Despite using
simple cryptographic functions, such as hash, the use of trees
compromises the efficiency of their method. A tuple insert
using their method is 10 times slower than a normal insert,
while a query is executed 6 times slower. In our experiments,
presented in section IV, we show that the naive implementation
of our method is as good as their method.

E. Mykletun et al. [13] study the problem of providing
correctness assurance of the data. Their work is most closely
related to what we present in this paper. They present an ap-
proach for verifying data integrity, based on digital signatures.
The client has a key pair and uses its private key to sign each
tuple he/she sends to the server. When retrieving a tuple, the
client uses the correspondent public key to verify the integrity
of the retrieved tuple. This work was extended by Narasimha
and Tsudik [14] to also provide proof of completeness.

The motivation of the authors to use digital signature is
to allow integrity checking in multi-querier and multi-owner
models. Therefore, for multi-querier and multi-owner models,
their work is preferable. On the other hand, if the querier
and the data owner are the same, our work can provide
integrity assurance more efficiently. Moreover, our method can
provide the same security level while consuming less of the
servers resources. This is possible because to achieve the same
security level, asymmetric keys are larger than symmetric keys.
For example, for achieving the security level of a 2048 bit
long asymmetric key, we need a 112 bit long symmetric key
[15]. This reduces the amount of data required to control the
integrity by a factor of 18, meaning that the data owner will
be able to outsource more data.

Additionally, following a different approach, Xie et al. [16]
proposes a probabilistic method to audit queries of outsourced
databases. They insert a small quantity of fake tuples along
with the real tuples of the database to control and audit the
integrity of the system. Their method shows to be efficient,
since it doesn’t require any complex functions. However, their

focus is on query integrity while in our work we are focused
on the integrity of the data itself.

III. PROVIDING INTEGRITY ASSURANCE FOR DATABASE
CONTENT

To achieve a low cost method to provide integrity and
authenticity, we propose to perform the cryptographic op-
erations on the client side (application), using of Message
Authentication Codes (MAC) [17], [18]. The implementation
consists of adding a new column to each table. This new
column stores the output of the MAC function applied to the
concatenation (||) of the attributes (all columns, or a subset
of them) of a row n, as shown in (1). The function also
utilises a key k, which is only known by the application. The
value of the MAC column is later used to verify integrity and
authenticity.

MACn =MAC(k,Column1||...||Columni) (1)

The use of a MAC function ensures the integrity of the
INSERT and UPDATE operations. However, the table is still
vulnerable to the unauthorized deletion of rows. To overcome
this issue, we propose a new algorithm for linking sequential
rows, called “Chained-MAC (CMAC)”. The result of the
CMAC is then stored into a new column. The value of this
column, given a row n, a key k, and MACn as the MAC
value of the row n, is calculated as shown in (2), where ⊕
denotes the exclusive OR operation (XOR).

CMACn =MAC(k, (MACn−1 ⊕MACn)) (2)

The use of CMAC provides an interesting property to the
data stored in the table where it is used. When used, the
CMAC links the rows in a way that an attacker cannot delete
a row without being detected, since he does not have access to
the secret key to produce a valid value to update the CMAC
column of adjacent rows. Moreover, calculating the CMAC is
very efficient, since we calculate only two MACs and a ⊕.
Updating rows is also efficient. The CMAC is not a cascading
operation, that is, it only needs to be updated when the MAC
of a given row is updated. Figure 1 shown an example of a
table with the MAC and CMAC columns. The circles represent
the value of the MAC/CMAC and the arrows shows the MACs
used to calculate a specific CMAC.

Despite linking adjacent rows, any subset of the first and last
rows can be deleted without being detected. This is possible
because the first row has no previous row and the last row does
not have a subsequent row to be linked with. To overcome this
issue, we propose changing the CMAC to a circular method.
That is, for the first row, the n−1-th row to be considered will
be the n-th row (i.e. the last row). With this change, if the last
row is deleted, the integrity check will fail for the first row.
Similarly, since the first row now has a predecessor, integrity
checks can start at the first row (in the regular mode it would
always start in the second row).

It is important to notice that the introduction of the CMAC
brings a new requirement: the table must be ordered by some

119Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 128 / 173

MAC CMAC...Id

0

1

...

n-1

n

...

...

...

...

...

Fig. 1. Graphical representation of a table with the CMAC column

attribute. However, in real world scenarios, all tables have a
primary key, and all the main DBMS orders the tables in
terms of the primary key. Therefore, the requirement for a
ordered table of the CMAC does not have a big impact to the
deployment of our technique in real world scenarios.

A. Adding rows

The insertion of a new row into the database is straight-
forward. The client must calculate the MAC as shown in (1).
The value of the CMAC column must be calculated using the
MAC value of the previous row and the MAC value of the row
being added, as shown in (2). Figure 2 shows the algorithm
for the insertion of both MAC and CMAC values.

Input: A set T of values t0, . . . , ti, following the schema of
a table R and a key k, used to calculate the MAC.
Step 1: Calculate MACn+1 =MAC(k, t0|| . . . ||ti)
Step 2: Calculate the CMAC
Step 2.1: Retrieve the MAC of the last row of R, denoted by
MACn

Step 2.2: Calculate CMACn+1 = MAC(k, (MACn ⊕
MACn+1))
Step 3: Recalculate the CMAC of the first row (for the circular
CMAC)
Step 3.1: Retrieve the MAC of the first row of R, denoted by
MAC1

Step 3.2: Calculate CMAC1 = MAC(k, (MACn+1 ⊕
MAC1))
Step 4: Insert the set T along with the calculated MACn+1

, CMACn+1 and CMAC1

Fig. 2. Algorithm for inserting a new row with the MAC and CMAC values

B. Updating rows

Updating rows is similar to the INSERT operation. The
MAC and CMAC columns must be recalculated with the
updated values. However, an extra step is necessary, which
is to update the CMAC value of the next row, since the MAC
of its previous row has been updated. Figure 3 shows the
algorithm for updating a row.

Input: A set T of values t0, . . . , ti, following the schema of
a table R and a key k, used to calculate the MAC.
Step 1: Calculate MACn =MAC(k, t0|| . . . ||ti)
Step 2: Calculate the CMAC
Step 2.1: Retrieve the MAC of the previous row of R, denoted
by MACn−1

Step 2.2: Calculate CMACn = MAC(k, (MACn−1 ⊕
MACn))
Step 3: Update the set T along with the calculated MACn

and CMACn

Step 4: Calculate the CMAC of the n + 1th-row. If the nth-
row is the last row in the table, then the n + 1th-row to be
considered will be the first row of the table.
Step 4.1: Retrieve the MAC of the n + 1th-row row of R,
denoted by MACn+1

Step 4.2: Calculate CMACn+1 = MAC(k, (MACn ⊕
MACn+1))
Step 4.3: Update the calculated CMACn+1

Fig. 3. Algorithm for updating a row with the MAC and CMAC values

C. Deleting rows

To delete a row of a table that uses only the MAC column,
no additional actions are needed. The reason for this is that, by
using only MAC, it is not possible to check the integrity of a
table against unauthorised row deletion. When using a CMAC
column, the application needs to recalculate the value of the
next row by referencing the previous row. Figure 4 shows the
algorithm for deleting a row.

Input: A set T of values t0, . . . , ti, following the schema of
a table R and a key k, used to calculate the MAC.
Step 1: Delete T
Step 2: Calculate the CMAC of the n+ 1-th row. If the n-th
row is the last row, then the n+ 1-th row to be considered is
the first row of R.
Step 2.1: Retrieve the MAC of the n + 1-rh row of R,
MACn+1 and the MAC of the previous row, MACn−1

Step 2.2: Calculate CMACn+1 = MAC(k, (MACn−1 ⊕
MACn+1))
Step 2.3: Update the calculated MAC, CMACn+1

Fig. 4. Algorithm for deleting a row with the MAC and CMAC values

D. Verifying the integrity of a table

Data integrity can be provided in different levels of gran-
ularity. We can perform integrity checks of a table (entire

120Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 129 / 173

relation), a row (a record or a tuple of the table) or a column
(an attribute of the relation). Providing integrity checks at the
table level, implies that every row of the table must have the
MAC column filled and its value must be calculated based
on every attribute of the row. Providing integrity checks of a
single row implies that that specific row must have the MAC
column filled with the result of the MAC function applied on
the concatenation of all attributes. Finally, providing integrity
checks at the attribute level implies that the MAC function
must be applied to a specific set of attributes only.

To verify the integrity of a row with the MAC column,
the application must calculate the MAC of that row and
compare it with the value of the MAC column. The row can be
considered as not modified if the calculated MAC is equal to
the stored MAC. Applying this comparison to each row of a
table will ensure the integrity of this table against insertion
and modification attacks. As stated earlier, the use of the
MAC does not provide a means to verify the integrity of a
table against unauthorized deletions. In this case, the CMAC
column should be used. To verify the integrity of a table with
the CMAC column, the application must check the integrity of
each pair of sequential registries of the table. That is, a Table
T has not been (unauthorized) modified if:

∀tn−1, tn ∈ T : tn.CMAC = CMAC(k, tn−1, tn) (3)

E. Verifying the completeness of queries

The CMAC mechanism can also be used for verifying the
completeness of simple range queries. This is possible due to
the catenation of adjacent rows. If the data owner does not
trust the DMBS software on the server and therefore needs a
guarantee that the server is not omitting valid results for posed
queries, the client should proceed as shown in Figure 5.

Input: A query Q
Step 1: Pose Q to the server, which will return a set T of
values ti, . . . , tj , where i <= j
Step 2: Retrieve the rows ti−1 and tj+1

Step 3: Verify the integrity of the values ti−1, ti, . . . , tj , tj+1,
as described in section III-D

Fig. 5. Algorithm for verifying the completeness of a query

If the result of the integrity check is positive, then we know
that no intermediate result has been omitted by the server.
However, just verifying the integrity does not guarantee that a
value has not been omitted at all. If the server omits the values
in the edge, the integrity check will still pass. To guarantee
that the values in the edge have not been omitted, the client
needs to check whether the edge tuples are the same tuples
retrieved in step 2 or not. If these tuples are the same and
the integrity check passed, then all values satisfying the query
have been returned by the server.

IV. PERFORMANCE ANALYSIS

To assess the efficiency of our techniques we implemented
a tool to evaluate the performance of using a Keyed-Hash

Message Authentication Code (HMAC), as the MAC function,
and CMAC. The prototype was implemented using the C pro-
gramming language and the OpenSSL library. The DBMS used
was MySQL database and the experiments were performed in
a machine running both MySQL server and client application.
The machine had Intel Core 2 Quad CPU Q8400 with 4Mb
cache, at 2.66GHz, 4GB RAM 800Mz, and 320Gb disk,
SATAII, 16Mb cache, 7200RPM, running an Ubuntu 11.04 32-
bit operating system with OpenSSL 0.9.8d and MySQL 5.1.
Additionally, we used the SHA-1 hash function to calculate
the HMAC with a 256-bit long key and disabled the cache of
the MySQL.

We considered different scenarios to evaluate the perfor-
mance of the proposed techniques. For each scenario, we
executed the workload a thousand times over a table with 10
thousand tuples of random values. All the results shown below
are the average of these executions. In all scenarios, we focus
on evaluating the amount of time spent on the operations of
INSERT, UPDATE, DELETE and SELECT, performed under
four distinct conditions:

1) Without security mechanisms;
2) Using HMAC only;
3) Using both HMAC and CMAC;
4) Using both HMAC and CMAC in the circular mode.

Insert

In the first scenario, we focused on measuring and compar-
ing the execution times for the INSERT operation under each
specified condition. The results (as we can see in Figure 6)
show that the baseline took 42,3µs, while the HMAC took
47µs, 90% of which is spent on the server side and 10% on
the client side. The scenario with the use of CMAC executed
in 118,3µs, with 91% of the time spent on the server and 9%
on the client. The CMAC in the circular mode executed in
331,7µs, where 72% is executed by the server and 28% by
the client.

0

50

100

150

200

250

300

350

Baseline HMAC CMAC Circular CMAC Circular CMAC
Optimized

R
u

n
ti

m
e

 (
u

s)

Database Client

Fig. 6. Comparison of execution time of the INSERT operation

The CMAC in the circular mode can be optimized if the
client store a small amount of data. The major reason for the
difference between the the regular mode and the circular mode
of the CMAC is that in the circular mode we need to retrieve
and update additional rows. If the client stores the first row

121Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 130 / 173

locally, we eliminate one query, reducing the execution time
from 331,7µs to 236,5µs.

Update
In the second scenario, we focused on measuring and

comparing the execution times for the UPDATE operation
under each specified condition. The results (shown in Figure
7) show that the baseline took 127,6µs, while the HMAC took
134µs, 95% of which is spent on the server side and 5% on
the client side. The CMAC (both in regular and circular mode)
executed in 381,9µs, with 80% of the time spent on the server
and 20% on the client. The reason that the execution time for
the CMAC in the regular and circular mode are the same is
because they execute the exact same operations.

0

50

100

150

200

250

300

350

400

450

Baseline HMAC CMAC Circular CMAC Circular CMAC
Optimized

R
u

n
ti

m
e

 (
u

s)

Database Client

Fig. 7. Comparison of execution time of the UPDATE operation

We can also optimize the CMAC for the UPDATE operation
if we consider that some values are available on the client side
in the moment of the operation. In this case, when updating
a row n, we need the MAC and CMAC of the n + 1-th and
the n− 1-th rows (for example, these values could have been
retrieved when the client retrieved the n-th row). If these rows
are available on the client side in the moment of the update,
the execution time is 204,5µs.

Delete
In the third scenario, we focused on measuring and compar-

ing the execution times for the DELETE operation under each
specified condition. The baseline executed in 51µs and when
using the HMAC to delete a row, there is no additional cost
since there is no extra operations to be performed (as shown in
Tables I and II). On the other hand, the CMAC (both in regular
and circular mode) executed in 186,5µs, with 96% of the time
spent on the server and 4% on the client, as we can see in
Figure 8. As we have shown for the UPDATE operation, the
CMAC in the regular and circular mode have the exact same
operations and therefore the overhead is the same.

We can use the same idea presented for the UPDATE
operation to improve the efficiency of the CMAC. In the naive
implementation, before deleting a row n, we execute a select
query to retrieve the n+1-th and the n−1-th rows. Considering
that these rows are available on the client side in the moment
of the delete, the execution time is reduced from 186,5µs to
105,2µs.

0

20

40

60

80

100

120

140

160

180

200

Baseline HMAC CMAC Circular CMAC Circular CMAC
Optimized

R
u

n
ti

m
e

 (
u

s)

Database Client

Fig. 8. Comparison of execution time of the DELETE operation

Select

Finally, in the last scenario, we focused on measuring and
comparing the execution times to check the integrity during
the SELECT operation under each specified condition. A
SELECT query, without verifying the integrity (the baseline)
took 18,4µs. To verify the integrity of the HMAC the client
needs to recalculate the HMAC and compare it to the one
retrieved from the server. This operation executed in 22,5µs,
due to the calculation of the HMAC. When using the CMAC,
the client needs to retrieve the HMAC of the previous row
and recalculate both the HMAC and CMAC. These extra
operations increase the execution time to 54µs, as we can see
in Figure 9. However, if we consider that the previous row is
available on the client side, the execution time is reduced to
27,6µs (for example, the client retrieved the n-th and n− 1th
rows in a single query).

0

10

20

30

40

50

60

Baseline HMAC CMAC Circular CMAC Circular CMAC
Optimized

R
u

n
ti

m
e

 (
u

s)

Database Client

Fig. 9. Comparison of execution time of the SELECT operation

Summarizing

As we could see in the results, the impact of using each
method is affected by two main factors: i) the number of
sql operations; ii) the number of cryptographic functions
performed. The number of sql operations performed by every
type of action (ex: an update when using CHMAC requires
two SQL operations) clearly has a bigger impact on the
performance. The cryptographic-only operation have shown
very low impacts. The table I shows the number of SQL

122Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 131 / 173

operations each method requires. The table II shows the
number of cryptographic functions each method requires.

Although the cost of the SQL operations are 2-7 times
greater with our method, it is more efficient than previous
work. E. Mykletun et al. [13] and Narasimha and Tsudik [14]
uses asymmetric cryptography, which is 1,000-10,000 times
slower than simple MAC functions. In terms of the storage,
our method generates less data to be stored in the database.
For example, considering an RSA 2048-bit long key and the
SHA-1 function, which are the values recommended by NIST
[15] for 2014, our method generates approximately 13 times
less data to control the integrity of the database.

Additionally, when comparing to the approaches based on
authenticated structures [7], [8], [9], [4], our method has a
lower complexity. That is, the cost of our method is constant
to the database size (O(1)) while the approaches based on
authenticated structures are usually logarithmic (O(log n)).
Therefore, for larger databases our method is more efficient.

Is is important to notice that the DBMS cache was disabled
while running the tests. In a real environment, with the cache
enabled, the retrieval of previous row necessary to calculate
the CMAC will be cached with a high probability, reducing
the total cost of each SQL operation.

V. FINAL REMARKS

This paper proposes secure and efficient methods for provid-
ing integrity and authenticity for relational database systems.
Our methods focus on strategies for detecting unauthorised
actions (insertions, deletions and updates) from a vulnerable
database server.

Prior work either requires modifications in the database
implementation or uses inefficient cryptographic techniques
(for example, public key cryptographic). The requirement of
modifying the core of a database system makes the deployment
of these methods difficult in real world scenarios. Thus, one
significant advantage of our method is that it is DBMS-
independent and can be easily deployed in existing environ-
ments. Another advantage of our method is that we focused
on using a more simple and efficient cryptographic algorithm
to provide the integrity checks.

The performance requirements for each of our methods
were presented and alternatives to minimise their costs and
its consequences were discussed. Finally, we believe that the
transparency and independency of our method makes it easily
deployable and compatible with real world demands.

As a future work, we would like to address the roll-back
attack. A roll-back attack is characterized when the attacker
restores the database to a previous valid state. With this
attack, the attacker can delete rows without being noticed,
for example. Prior work, as well as this paper, are vulnerable
to such attacks. Another interesting matter of research is to
address the actions to be taken in case of a detected attack.
We consider that the ideal solution is to restore the database
to a valid state before the attack.

REFERENCES

[1] P. Samarati and S. D. C. di Vimercati, “Data protection in outsourcing
scenarios: Issues and directions,” in Proceedings of the 5th ACM
Symposium on Information, Computer and Communications Security,
ser. ASIACCS ’10. New York, NY, USA: ACM, 2010, pp. 1–14.
[Online]. Available: http://doi.acm.org/10.1145/1755688.1755690

[2] T. K. Dang, “Ensuring correctness, completeness, and freshness for
outsourced tree-indexed data,” Inf. Resour. Manage. J., vol. 21, no. 1,
Jan. 2008, pp. 59–76. [Online]. Available: http://dx.doi.org/10.4018/
irmj.2008010104

[3] I. Kamel, “A schema for protecting the integrity of databases,” Comput-
ers & Security, vol. 28, no. 7, 2009, pp. 698–709.

[4] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin, “Dynamic
authenticated index structures for outsourced databases,” in Proceedings
of the 2006 ACM SIGMOD international conference on Management of
data, ser. SIGMOD ’06. New York, NY, USA: ACM, 2006, pp. 121–
132. [Online]. Available: http://doi.acm.org/10.1145/1142473.1142488

[5] T. Aditya, P. Baruah, and R. Mukkamala, “Employing bloom
filters for enforcing integrity of outsourced databases in cloud
environments,” in Advances in Computing and Communications, ser.
Communications in Computer and Information Science, A. Abraham,
J. Lloret Mauri, J. Buford, J. Suzuki, and S. Thampi, Eds. Springer
Berlin Heidelberg, 2011, vol. 190, pp. 446–460. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-22709-7 44

[6] T. Aditya, P. K. Baruah, and R. Mukkamala, “Space-efficient bloom
filters for enforcing integrity of outsourced data in cloud environments,”
in Proceedings of the 2011 IEEE 4th International Conference
on Cloud Computing, ser. CLOUD ’11. Washington, DC, USA:
IEEE Computer Society, 2011, pp. 292–299. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2011.40

[7] G. Di Battista and B. Palazzi, “Authenticated relational tables and
authenticated skip lists,” in Proceedings of the 21st annual IFIP WG
11.3 working conference on Data and applications security. Berlin,
Heidelberg: Springer-Verlag, 2007, pp. 31–46. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1770560.1770564

[8] A. Heitzmann, B. Palazzi, C. Papamanthou, and R. Tamassia, “Efficient
integrity checking of untrusted network storage,” in Proceedings of the
4th ACM international workshop on Storage security and survivability,
ser. StorageSS ’08. New York, NY, USA: ACM, 2008, pp. 43–54.
[Online]. Available: http://doi.acm.org/10.1145/1456469.1456479

[9] G. Miklau and D. Suciu, “Implementing a tamper-evident database
system,” in Proceedings of the 10th Asian Computing Science
conference on Advances in computer science: data management on the
web, ser. ASIAN’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp.
28–48. [Online]. Available: http://dl.acm.org/citation.cfm?id=2074944.
2074951

[10] R. C. Merkle, “A certified digital signature,” in CRYPTO, ser. Lecture
Notes in Computer Science, G. Brassard, Ed., vol. 435. Springer, 1989,
pp. 218–238.

[11] W. Pugh, “Skip lists: a probabilistic alternative to balanced trees,”
Commun. ACM, vol. 33, no. 6, Jun. 1990, pp. 668–676. [Online].
Available: http://doi.acm.org/10.1145/78973.78977

[12] R. d. S. M. Anderson Luiz Silvério and R. F. Custódio, “Efficient
integrity checking for untrusted database systems,” in Proceedings of the
28th Brazilian Symposium on Databases, ser. WTDBD’13. Sociedade
Brasileira de Computação, 2013, pp. 36–42.

[13] E. Mykletun, M. Narasimha, and G. Tsudik, “Authentication and
integrity in outsourced databases,” ACM Transactions on Storage,
vol. 2, no. 2, May 2006, pp. 107–138. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1149976.1149977

[14] M. Narasimha and G. Tsudik, “Dsac: integrity for outsourced databases
with signature aggregation and chaining,” in Proceedings of the
14th ACM international conference on Information and knowledge
management, ser. CIKM ’05. New York, NY, USA: ACM, 2005,
pp. 235–236. [Online]. Available: http://doi.acm.org/10.1145/1099554.
1099604

[15] E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, “Recommendation
for key management - pat1: General (revision 3),” National Institute
of Standards and Technology, NIST Special Publication 800-57,
Jul 2012. [Online]. Available: http://csrc.nist.gov/publications/nistpubs/
800-57/sp800-57 part1 rev3 general.pdf

123Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 132 / 173

TABLE I
NUMBER OF SQL OPERATIONS PERFORMED IN EACH METHOD

No protection MAC CMAC Circular CMAC CMAC Optimized
Insert 1 1 2 3 2

Update 2 2 4 5 2
Delete 1 1 3 3 2
Select 1 1 2 2 1

TABLE II
NUMBER OF CRYPTOGRAPHIC OPERATIONS PERFORMED IN EACH METHOD

No protection MAC CMAC Circular CMAC CMAC Optimized
Insert 0 1 2 3 3

Update 0 1 3 3 3
Delete 0 1 1 1 1
Select 0 1 2 2 2

[16] M. Xie, H. Wang, and J. Yin, “Integrity auditing of outsourced
data,” Very large data bases, 2007, pp. 782–793. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1325940

[17] M. Bellare, R. Canetti, and H. Krawczyk, “Keying hash functions
for message authentication,” in Proceedings of the 16th Annual
International Cryptology Conference on Advances in Cryptology, ser.
CRYPTO ’96. London, UK, UK: Springer-Verlag, 1996, pp. 1–15.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646761.706031

[18] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-Hashing
for Message Authentication,” RFC 2104 (Informational), Internet
Engineering Task Force, Feb. 1997, updated by RFC 6151. [Online].
Available: http://www.ietf.org/rfc/rfc2104.txt

124Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 133 / 173

Quantifying the Elasticity of a Database Management System

Christian Tinnefeld, Daniel Taschik, Hasso Plattner

Hasso Plattner Institute

University of Potsdam, Germany

{firstname.lastname}@hpi.uni-potsdam.de

Abstract—There exist different and well-established ap-
proaches for quantifying the performance of a database
management system. With the advent of provisioning in-
formation technology infrastructure over the Internet, the
aspect of elasticity became more important as it defines
how well a system adapts to a changing workload. For a
database management system there is no commonly agreed
approach or model how to quantify its elasticity. In contrast,
the cloud storage system (NoSQL) community developed
several approaches how to measure elasticity. In this paper we
contribute by I) presenting an extensive review of the existing
approaches for measuring the elasticity of NoSQL systems,
II) compare their parameters and used metrics, III) transfer
the lessons learned and introduce a model for quantifying
the elasticity of a database management system.

Keywords-Elasticity, Database Management System, NoSQL

I. Introduction

Minhas et al. say that elasticity is the “ability to grow
and shrink processing capacity on demand, with varying
load” [1]. Another definition is given by Agrawal et al.
which state that elasticity is “the ability to deal with
load variations by adding more resources during high
load or consolidating the tenants to fewer nodes when
the load decreases, all in a live system without service
disruption” [2]. A more general definition has been given
by the National Institute of Standards and Technology:
“Capabilities can be rapidly and elastically provisioned,
in some cases automatically, to quickly scale out, and
rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any
time” [3]. Figure 1 illustrates frequently used terminol-
ogy in conjunction with elasticity. After this introduction
follows Section 2 which reviews state-of-the-art elasticity
benchmark for NoSQL systems and compares the used

metrics, how a scale-out is triggered, how data migration
is done, how the operational costs are quantified, which
query and workload characteristics are applied and how
the scale-out is managed. Section 3 then continues with a
model that allows to quantify the elasticity of a relational
database management system. The model is based on
measuring the query processing latency in combination
with a breakdown of the utilized hardware resources.
Section 4 close with the conclusions and presents the
future work.

D
B
M

S
U

til
iza

tio
n

Time

1

2

3

4

5

6

7

8

Regular
Load

Workload Change
Increasing Load

Adding new
Resources

Move Data to
new Resources

Load
Decrease

Workload Change
Decreasing Load

Regular
Load

Move Data
and Free
Resources

Figure 1: Terminology used in conjunction with elasticity

II. Elasticity Benchmarks for NoSQL Systems

A catalogue of metrics for evaluating cloud services
is presented in the work of Li et al. [4]. The metrics
presented for elasticity are split up in three groups. (1)
Resource acquisition time, (2) resource release time and
(3) cost and time effectiveness. The first group describes
the time a resource takes to be available for the system
from the moment it has been requested until the moment
of availability to the system. The second group describes
the time to release an unnecessary cloud resource. It can
be split into the time to remove the existing deployment

125Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 134 / 173

and the time to stop the cloud resource and finally re-
lease it. The third group of metrics describes the relation
between the costs and the runtime of provisioned cloud
resources. Especially the third group has been recognized
in our framework considerations by measuring the run-
time costs from the moment of provisioning a resource
to the moment of de-provisioning.

Weinman [5] suggests a model for calculating elasticity.
He states that almost every business tries to match de-
mand and supply. By defining a function D(t) represent-
ing a mapping from demand to a resource in time and
a second function R(t) representing allocated resources
over time, he proposes that a perfect capacity strategy
is given, when D(t) = R(t). In this case, the resources
for matching an existing demand are available in the
right amount. Too little resources do not create loss in
revenue neither excess resources create needless costs.
He introduces a function describing the financial loss
an unmet demand can cause. That costs unnecessarily
accrue in situation of excess resources. He also evaluates
how monitoring interval and provisioning time for a
resource influences the negative impact.

Weinman’s paper had a great influence on the work
of Islam et al. [6]. After the definition of elasticity in
the context of cloud platforms, the authors propose a
concept on how a consumer can quantify the elasticity
of these platforms. The concept is build on the idea
of Weinman and extends its calculation model with
a penalty for over- and under-provisioning. Hereby, a
differentiation between allocated and charged resources
takes place. By normalizing the calculated value, the
authors propose a single metric of elasticity for a cloud-
based platform. They showcase their approach for an
elasticity measurement environment and make use of it
for different consumer specific workloads scenarios. The
work presented in the above mentioned paper, served as
inspiration for the elasticity benchmark framework for
relational database management systems in this thesis.
The provisioning based calculation model is taken from
Islam et al. and has been slightly modified to fit the needs
for a relational database management system (DBMS).

One of the most known and famous NoSQL benchmark
is the Yahoo! Cloud Serving Benchmark (YCSB) [7]. It has
been developed at Yahoo to help developers to choose
which cloud based data storage might be the best for
their workload. It provides a two-tier structure. The first
one concentrates on performance whereas the second
and more interesting one looks at scalability. Elastic

speed-up is measured by monitoring the performance of
a system as the number of machines is increased while
running a constant workload. A good elastic system
must show an improvement in performance. A short
disruption in service is accepted while the system is
reconfiguring itself. Elasticity itself is not quantified and
only the impact of read latency is considered.

Konstantinou et al. [8] conducted a study on the costs
and efficiency of adaptive expansion and contraction of
NoSQL databases over a cloud platform. The authors
took three popular NoSQL representatives (HBase, Cas-
sandra and Riak) and performed experiments with four
YCSB workloads. They analyzed how the cloud data stor-
ages performed by measuring query throughput, mean
query latency as well as CPU and memory consumption
during a stress test. Costs for the initialization and recon-
figuration of nodes as well as rebalancing of data within
the cluster are ascertained in terms of time and data
volume. Finally, Konstantinou et al. present a framework
for monitoring and automating cluster resize operations.
The authors benchmarked only NoSQL systems and did
not consider analytical workloads. They did not track
financial aspects for operating the platform. Thibault
Dory et al. [9] introduce a dimensionless measure for
elasticity for cloud databases. In their methodology, Dory
defines elasticity as a characterization of how a cluster
reacts on node provisioning. Regarding to Dory, elasticity
is defined by two properties. The first one is the time
a cluster takes to stabilize itself after nodes have been
added. The second property is the influence on the
cluster’s performance. In regard to the first property,
they define a cluster as stable when the variations of
time needed to fulfill a certain number of requests is
equivalent to the variations of a cluster known as being
stable. In this case, it is a cluster where no data is being
moved from one node to another. The authors suppose
that the response time for requests increases after new
nodes have been added, and then decrease after a certain
amount of time. Dory et al. define the elasticity as a
ratio of elastic overhead to the absolute performance
of a cluster. This approach of quantifying elasticity is
validated against a NoSQL architecture with an OLTP
workload using the behavior of a Wikipedia user.

Another cloud-based quality measurement and analysis
framework is introduced in the work of Klems et al. [10].
By contributing with an infrastructure, configuration and
cluster configuration manager, Klems et al. propose a
framework to evaluate the performance, latency and

126Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 135 / 173

consistency of the cloud-based data stores Amazon S3,
Amazon SimpleDB, DynamoDB and Cassandra using the
Yahoo! Cloud Serving Benchmark and YCSB++ bench-
mark. The authors analyze different scaling strategies
and conflicts between contradictory objectives, such as
consistency versus high-availability and scalability. In
addition, they examine the impact of system changes
on performance and availability. Unfortunately, further
investigations of elastic scalability in regard to data
migration and performance impacts of such, is not pre-
sented, though can be expected in future work.

The Cloud Service Measurement Index Consortium pro-
posed a framework [11] to define and measure certain
quality of service aspects of cloud providers. Its service
measurement index is intended to help customers to
rank and compare cloud service providers based on
customers requirements like accountability, agility, costs,
performance, assurance, security and usability. Elasticity,
defined as how much a cloud service is able to scale
during peak time, is seen as a subcomponent of agility.
As part of a case study, Garg et al. present a relative
service-ranking vector for elasticity. This approach takes
the time a system needs to expand or contract into ac-
count. An impact on how data migration might influence
the performance is not considered. The remainder of
this section gives a detailed breakdown of the different
parameters. Table I on the next page summarizes which
parameters are considered in the previously mentioned
related work.

A. Metrics

Each of the three benchmarks uses different metrics
to express elasticity. Islam’s [6] approach is based on
a financial penalty model. When a system runs in an
undesired state, being either under- or over-provisioned
a fine will be charged. Undesired in this context means
that either there are not enough resources to handle the
load or that there are too many, unnecessary resources
present which could be de-provisioned for the cause of
cost savings. The penalty amount is calculated from the
time the system is in an undesired state, representing
the responsiveness of the system to scale and change the
state into a desired one. The smaller the penalty the more
elastic is the system.

The Yahoo! Cloud Serving Benchmark [7] uses quite a
basic metric for elasticity. It takes response latency to
requests as a measure to express elastic speedup. The
authors conducted a benchmark examining the elastic

speedup of three cloud-based data stores. For each data
store they started with a small cluster offering a load
feasible for a three-times bigger system. Then, they
added nodes to the cluster until it was stabilized and
able to serve the load. The implications on latency have
been recorded and taken as a degree of elastic speedup.
Dory et al. [9] use a dimensionless metric for elasticity
whereas Konstantinous et al. [8] use throughput, latency
as well as CPU utilization as their elasticity measure.
In our opinion, taking just the latency is not sufficient
enough to measure elasticity. I argue that there are more
metrics influencing the elasticity of a DBMS than just
the responsiveness to queries. Taking fixed budgets for
a cloud system or energy consumption of the hardware
into account, it is conceivable that there are more di-
mensions expressing elasticity. I am in favor of Islam’s
approach, taking the costs per time as a measurement.
Because pay-as-you-go is one of the advantages of cloud
computing over established server based systems, taking
the runtime costs of a system into account creates a more
meaningful metric for elasticity.

B. Scaling Trigger

The various benchmarks and frameworks trigger a scal-
ing operation differently. Whereas YCSB and Dory et al.
use static scaling, meaning it is triggered either manually
or at a fixed moment during the benchmark, Konstanti-
nous and Islam take CPU utilization of the system as
scaling trigger. Konstantinous et al. perform a scale-out
as soon as one node has more than 40% CPU utilization.
A scale-in, on the other hand, is done as soon as the
average of all nodes are less than 15% utilized. Islam
triggers scaling operations in the event of an undesired
provisioning state (under- or over-provisioning).

I emphasize the fact that a framework should be able
to trigger scaling operations automatically. In real-world
scenarios, DBMS operators use automated tools for scal-
ing instead of issuing manual scaling instructions.

C. Data Migration

Migrating data from an existing cluster to an added node
has an impact on elasticity, because transferring data
between nodes or throughout an entire cluster takes time
and slows down regular operations. Except for Islam
et al., all other frameworks consider the time needed
for the migration operation. Konstantinous et al. also
observe the amount of the moved data. This enables
a better differentiation between different architectural

127Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 136 / 173

TABLE I: Overview of Elasticity Benchmarks and Frameworks for NoSQL Systems

Properties Islam et al. YCSB Dory et al. Konstantinous et al.
Metrics Throughput - - - x

Latency - x - x
CPU Usage - - - x
Monetary x - - -
Dimensionless - - x -

Scaling
Trigger Static - x x -

Latency-based x - - -
CPU Utilization x - - x

Consideration of
Data Migration Time - x x x

Amount - - - x
Operating Costs Taken into Account x - x -
Query
Characteristic OLTP x x x x

OLAP - - - -
Workload
Characteristics Sinus Shaped x x - -

Plateau Shaped x x - -
Exponential Shaped x x - -
Linear x x x x
Random x x - -
Zipfian - x - x

Scale Management
(Monitoring, Cloud/
Cluster Management,
Rebalancing)

Provide Toolset - - - x
External Tools
(e.g. Amazon Autoscale) x - - -

Manual - x x -
Applicability
Difficulty

Simple x x - x
Difficult - - x

characteristics of databases. I comply that the time for
adding a new node and getting it ready to serve should
be reflected in an elasticity benchmark. In addition, it
is of interest to track the time for data migration and
the time for provisioning computing resources, booting
a node, starting the DBMS instance and registering it
with the existing cluster.

D. Operational Costs

Elasticity is a time-critical property. The faster a system
is able to adapt, the more it is considered elastic and this
has consequences on operational costs for the system, e.g.
if computing resources are provisioned and not used, the
landscape generates more costs than necessary to serve
the load. Islam et al. and Dory et al. pay attention to
the operational costs in their elasticity determination. As
already mentioned in the metrics part of this section,
pay-as-you-go is the reason why operational costs have
to be regarded and must be considered in an elasticity
benchmark.

E. Query & Workload Characteristics

All four presented frameworks execute only transactional
queries in their benchmarks. The applied workload pat-
terns are different. Islam et al. as well as YCSB have
a huge variety of different workload patterns available.
Dory et al. and Konstantinous et al. use a linear workload
and Konstantinous makes use of an additional zipfian
workload. Nevertheless, all frameworks lack a real-world
workload scenario. YCSB allows customizing and imple-
menting industry-related scenarios. The benchmark must
reflect a workload pattern, which simulates the intended
area of deployment of the DBMS. This can be a simple
sinus-like workload, but in an enterprise environment it
is conceivable to run complex analytical workloads.

F. Scale Management

To measure elasticity properly, it is necessary for the
framework to provide tools for monitoring load, to
add and remove nodes, to redistribution of data and
to manage the cluster. The work of Konstantinous et
al. is the only framework that provides a conventional

128Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 137 / 173

toolset. Islam et al. are using tools from a third-party
provider, in this case, Amazon CloudWatch and Auto
Scaling. It can only be assumed that monitoring and
provisioning is handled manually in the work of Dory
et al. and YCSB, because scaling is not automated at all.
In our opinion, a proper framework must provide these
tools to supplement missing features in the DBMS. Only
without manual intervention, realistic measurements can
be conducted.

III. Quantifying the Elasticity of a Database

Management System

After extensively reviewing approaches for quantifying
the elasticity of a NoSQL system, we present an elasticity
calculation model for relational DBMS which is inspired
by the work of Islam et al. [6]. To determine elasticity,
Islam et al. offer a way for consumers to measure elas-
ticity for cloud platforms by defining financial penalties
for over- and under-provisioning. Under-provisioning
means that the system has less computing resources
available than actually necessary to fulfill all requests
(demand) against the system in a desired time. Over-
provisioning, on the other hand, describes the state of a
system in which there are excess resources available than
really needed to fulfill the demand against the system.
These excess resources lead to higher runtime costs that
are avoidable. The financial reflection model of Islam et
al. is taken and got adapted to fit the needs for an elastic-
ity benchmark for relational DBMS. To build a calculation
model for elasticity, a few assumptions need to be stated.
Elasticity enables very cost-efficient operation. Therefore,
costs play a key role in defining a metric for elasticity. The
costs for a utilized node to run for one hour are defined
as 100 cents. The price is derived from the Amazon AWS
EC2 pricing list [12] for an Amazon M3 Double Extra Large
Instance. The hardware sizing of this instance type is
powerful enough to run a relational DBMS and therefore
the price can be valued as reasonable. At Amazons AWS
EC2, a resource is allocated for a minimum time period
of one hour. To avoid complexity in situations where
a resource is allocated and therefore charged but not
available, because it is already de-provisioned or not
yet booted, the chargeable time period is reduced to
one second. Consequently, the calculation of chargeable
supply as used by Islam et al. is discarded. The moment
the resource is requested, it is charged until the second
it is de-provisioned.

To calculate the elasticity for an elastic RDBMS, it is nec-

essary to sum up the number of used nodes. A resource
can be charged from the moment of provisioning of a
node to the moment a service on that node is serving, be-
cause booting time of a prepared image with all required
services pre-installed can be done in a constant time.
Hence, for easier consideration it is assumed that the
chargeable time begins at the moment the framework de-
tects an under-provisioned state and ends at the moment
the framework de-provisions the node. The already men-
tioned penalties for over- and under-provisioning need
to be specified as well. An under-provisioning penalty
of 10 cents for every second in an under-provisioned
state is specified. This reflects six times the costs of an
additional node. As Weinman et al. [5] emphasize, the
benefit of using resources should clearly outweigh the
costs of it. The state of over-provisioning is not penalized
because too many provisioned resources create avoidable
costs, which are thereby treated as a penalty. So only the
pure costs of the provisioned resources are taken into
account. In summary, the following numbers need to
be ascertained to calculate elasticity: maximum allowed
latency, number of used DBMS nodes, runtime of utilized
RDBMS nodes, time while being under-provisioned.

The maximum allowed latency is configured by the
benchmark executor and describes in this case the
longest acceptable response time for a benchmark suite
run. A benchmark suite run is defined as a set of
queries, which get executed by a benchmark client. The
benchmark client repeats a benchmark suite run over and
over until the framework controller is stopping the client.
The amount and runtime of server nodes can be retrieved
from the cluster management controller that is respon-
sible for provisioning of RDBMS server nodes. The time
while the RDBMS is under-provisioned can be gathered
by taking the latency until a benchmarking suite run has
finished and subtract the maximum allowed latency for
a benchmark suite run as demonstrated in Formula 1.

f (t) = Benchmark runtimet − upper thresholdt (1)

To get the time when the benchmark suite runtime was
above the upper limit, the function fcutoff(t) needs to
be ascertained. Therefore, only values above the limit as
represented in Formula 2 are taken into account.

fcutoff(t) =

{
f (t) if f (t) > 0

0
(2)

129Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 138 / 173

Now, that only the amount of time, when the runtime
of the benchmark suite has taken longer than the upper
bound per node has been determined, the accumulation
over all recorded instances can be done as seen in For-
mula 3

P(t0, tend) =
#instances

∑
0

∫ tend

t0

fcutoff(t)dt (3)

The next step is to ascertain the penalty sum for all
instances. The sum will be multiplied with the defined
penalty amount. This results in an overall penalty as seen
in Formula 4.

P = P(t0, tend)× punder−provisioned (4)

Finally, the penalty and the runtime costs will be ag-
gregated. To calculate the runtime costs, the number
of running nodes for a certain time frame needs to
be multiplied by the costs of it. Formula 5 shows the
calculation of it.

Cnodes = (
#nodes

∑
n=1

runtime(n))× cnode (5)

Formula 6 shows the calculation of the final elasticity
by adding up the penalty and the runtime costs for
the provisioned resources Cnodes and dividing it by the
runtime of the experiment. This results in a comparable
value in cents per seconds.

E =
P + #nodescharged × cnodes

tend − t0
(6)

The apparent significance of time-to-serve for an elastic
relational DBMS does not need to be measured explicitly.
It is implicitly provided by the runtime of the bench-
marking suite. The longer it takes for a node to be
ready to serve, the longer the cluster stays in an under-
provisioned state. This results in a much higher penalty
than for systems with a very low time-to-serve value.

IV. Conclusions and Future Work

In this paper, known quantification models and meth-
ods from NoSQL systems are evaluated and taken into
account to propose a model for quantifying the elas-
ticity of a database management system. Features and
characteristics as well as pre-conditions for elasticity

measurements are identified, presented and defined. The
proposed elasticity calculation model is a provisioning
based quantification model. The corner stones of the
model are the aspects of maximum allowed latency, num-
ber of used DBMS nodes, runtime of utilized RDBMS
nodes and the time while the DBMS is being under-
provisioned.

The presented elasticity model enables relevant elasticity
determination experiments yielding unique comparable
values for a relational DBMS under a specific workload.
This has to be demonstrated in future work by con-
ducting a case study. Here, different workloads will be
executed on different relational DBMSs and the resulting
elasticity will me calculated and compared.

References

[1] U. F. Minhas, R. Liu, A. Aboulnaga, K. Salem, J. Ng,
and S. Robertson, “Elastic Scale-Out for Partition-Based
Database Systems,” 2012 IEEE 28th International Conference
on Data Engineering Workshops, 2012, pp. 281–288.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6313694

[2] D. Agrawal, A. Abbadi, S. Das, and A. Elmore, “Database
scalability, elasticity, and autonomy in the cloud,” in Database
Systems for Advanced Applications, ser. Lecture Notes in
Computer Science, J. Yu, M. Kim, and R. Unland, Eds., vol. 6587.
Springer Berlin Heidelberg, 2011, pp. 2–15. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-20149-3 2

[3] P. Mell and T. Grance, “The NIST Definition of Cloud Computing
Recommendations of the National Institute of Standards and
Technology,” National Institute of Standards and Technology
NIST, Gaithersburg, MD, vol. 145, 2011.

[4] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a Catalogue
of Metrics for Evaluating Commercial Cloud Services,” 2012
ACM/IEEE 13th International Conference on Grid Computing,
2012, pp. 164–173. [Online]. Available: http://ieeexplore.ieee.
org/lpdocs/epic03/wrapper.htm?arnumber=6319167

[5] J. Winman, “Time is Money : The Value of On-Demand,”
http://www.joeweinman.com, pp. 1–29, 2011.

[6] S. Islam, K. Lee, A. Fekete, and A. Liu, “How a consumer can
measure elasticity for cloud platforms,” Proceedings of the third
joint WOSP/SIPEW international conference on Performance
Engineering - ICPE ’12, 2012, p. 85. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2188286.2188301

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears, “Benchmarking cloud serving systems with
YCSB,” Proceedings of the 1st ACM symposium on Cloud
computing - SoCC ’10, 2010, p. 143. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1807128.1807152

130Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 139 / 173

[8] I. Konstantinou, E. Angelou, C. Boumpouka, D. Tsoumakos,
and N. Koziris, “On the elasticity of nosql databases over
cloud management platforms,” in Proceedings of the 20th
ACM International Conference on Information and Knowledge
Management, ser. CIKM ’11. New York, NY, USA: ACM, 2011,
pp. 2385–2388. [Online]. Available: http://doi.acm.org/10.1145/
2063576.2063973

[9] T. Dory, B. Mejias, P. V. Roy, and N. L. Tran, “Measuring elas-
ticity for cloud databases,” in CLOUD COMPUTING 2011: Pro-
ceedings of the The Second International Conference on Cloud
Computing, GRIDs, and Virtualization, I. 978-1-61208-153-3, Ed.,
2011, pp. 154–160.

[10] M. Klems, D. Bermbach, and R. Weinert, “A Runtime Quality
Measurement Framework for Cloud Database Service Systems,”
2012 Eighth International Conference on the Quality of
Information and Communications Technology, 2012, pp. 38–46.
[Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=6511780

[11] S. K. Garg, S. Versteeg, and R. Buyya, “A framework for ranking
of cloud computing services,” Future Generation Computer
Systems, vol. 29, no. 4, 2013, pp. 1012–1023. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0167739X12001422

[12] Amazon, “Amazon EC2 Prizing List,” 2013. [Online]. Available:
http://aws.amazon.com/de/ec2/pricing/

131Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 140 / 173

Hierarchical Piecewise Linear Approximation

A Novel Representation of Time Series Data

Vineetha Bettaiah, Heggere S Ranganath

Computer Science Department
The University of Alabama in Huntsville

Huntsville, USA

vineetha.bettaiah@gmail.com

Abstract— This paper presents a Hierarchical Piecewise Linear

Approximation (HPLA) for the representation of time series

data in which the time series is treated as a curve in the time-

amplitude image space. The curve is partitioned into segments

by choosing perceptually important points as break points.

Each segment between adjacent break points is recursively

partitioned into two segments at the best point or midpoint

until the error between the approximating line and the original

curve becomes less than a pre-specified threshold. The HPLA

achieves dimensionality reduction while preserving prominent

local features and general shape of the time series. The HPLA

permits coarse-fine processing, allows flexible definition of

similarity between two time series based on mathematical

measures or general time series shape, and supports query by

content, clustering and classification based on whole or
subsequence similarity.

Keywords-Data Mining; Dimensionality Reduction;

Piecewise Linear Representation; Time Series Representation.

I. INTRODUCTION

Many areas of science, engineering, and business are
generating, archiving and processing vast amounts of data.
Because of the sheer volume, the data science community is
challenged to develop new methodologies for the modeling,
representation, retrieval, processing, understanding, and
visualization of “Big Data”. Big data is a collection of larger
and complex data sets, difficult to manage and process using
traditional data management and processing techniques. One
type of data that has received a lot of attention in recent years
in diverse areas including medicine, astronomy, geology,
atmospheric and space science, engineering, and financial
markets is time series data. Mathematically, a time series T =
{x1, x2, … , xn} is a sequence of n real numbers in the
increasing order of time, where each value has a time stamp.
The time spacing between adjacent samples xi and xi+1 may
remain constant or vary over the duration of the time series.

The main processing tasks or operations associated with
time series data are query by content, clustering,
classification, prediction, anomaly detection, motif
discovery, and rule discovery [1]. These are well known
problems in pattern recognition and data mining areas for
many years. However, the proven pattern recognition and
data mining methods are not suitable for processing time
series data, mainly because of three reasons. First, the

dimensionality of time series is very high, could be as high
as tens of thousands. Secondly, the corresponding elements
of two time series may not align due to difference in length,
scale, translation, shift or non-uniform spacing between
adjacent elements. Finally, the notion of similarity in the
context of time series is very different from the one used in
pattern recognition. Unlike in pattern recognition, where all
elements of pattern vectors are used to determine similarity
between two patterns, only subsets of elements of the two
time series may be used to determine their similarity. Two
time series may be considered similar if they contain similar
subsequences of sufficient length or several similar patterns
in the same time order.

An obvious solution to the above problem is to use
compact representations of time series that are capable of
achieving a significant reduction in dimensionality without
losing important features present in the original data. During
the past two decades several piecewise linear, symbolic,
transform and model based representations have been
developed [2]-[5]. Each representation has its own
advantages and disadvantages. For example, transform based
representations being global representations do not provide
local information about subsequences [6]. The symbolic
representations, such as SAX loose most of the shape
information due to two levels of approximation [4]. The
Singular Value Decomposition (SVD) [3] and Hidden
Markov Model (HMM) [5] representations are
computationally very expensive. To the best of our
knowledge, as of now, characteristics of an ideal (good) time
series representation based on the needs of time series data
mining applications are not explicitly identified.

This paper makes three contributions. First, in Section II,
requirements an ideal time series representation should
satisfy are identified. Secondly, in Section III, widely used
piecewise linear representations are analyzed to determine
their strengths and weaknesses by using the requirements
identified in Section II as metrics. Thirdly, in Section IV, a
new representation called Hierarchical Piecewise Linear
Approximation (HPLA), which is closer to the ideal
representation than existing representations, is described.
The advantages of the HPLA representation are described in
Section V. By using the compression ratio and representation
accuracy as metrics, a comparison of the HPLA with
Piecewise Aggregation Approximation (PAA) and Piecewise
Linear Approximation (PLA) is given in Section VI.

132Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 141 / 173

Conclusions and recommendation for future research are
given in Section VII.

II. CHARACTERISTICS OF AN IDEAL TIME SERIES DATA

REPRESENTATION

In this section, characteristics for an ideal time series data
representation are identified based on the needs of the
important time series data mining applications.

In query by content, the objective is to retrieve time
series from the database that are similar in information
content to the given query time series Q [1]. The similarity
between Q and time series T in the database may be
determined by matching Q and T, or sub-sequences of Q and
T. Though the content is almost always specified by a query
sequence, it is desirable to have flexibility on how the
content is specified. For example, general shape of time
series, sequence of events, and similar subsequences are
valid specifications of content in many applications.
Therefore, to support query by content, the representation
should support broad specification of content, and should
have a distance measure satisfying lower bound criterion.

In clustering, given a set of N unlabeled time series T1,
T2, T3, …., TN, the goal is to partition the set into K groups
based on a meaningful similarity measure, such that
members belonging to a group are similar to one another,
and members belonging to different groups differ
significantly from one another [1]. The feature-based
methods compute a small number of features to represent
each time series, and then use clustering algorithms, such as
k-means algorithms to cluster feature vectors. The model-
based methods extract a set of parameters for each time
series, and then find clusters by clustering parameters. The
raw-data-based methods are rarely used due to high
dimensionality. Today, clustering algorithms are set in a
mathematical framework, which use feature vectors or model
parameters. A syntactic clustering approach using broad
similarity as perceived by humans is needed for clustering
time series data. Therefore, the representation should
preserve salient attributes of the time series to support the
development of mathematical and syntactic clustering
algorithms.

Classification is the process of assigning an input time
series to one of the several known classes or categories [1].
Bayesian classifiers are not practical for use with raw time
series as the computation of probability density functions for
such high dimensionality time series is not feasible. The
linear classifiers (perceptron, least mean square methods,
support vector machines, etc.), and non-linear artificial
neural networks require large number of samples, at least
two times the dimensionality of time series. Even if the
required training samples are available, training classifiers
with large number of high dimensional vectors is not
practical. Thus, classification based on features appears to be
the only practical solution. Therefore, the representation
should preserve salient attributes of the time series, and
allow the computation of geometric and mathematical
features needed for training classifiers.

Given a time series T = {x1, x2, , , , , xn}, prediction is the
task of determining likely values of xi for i > n. The future

values are predicted based on the current evolution trend
observed or mathematical models such as Hidden Markov
Model developed from historic data similar to the current
time series [1]. Usually, the model is based on prominent
features of time series. Therefore, the representation should
preserve local features and evolution trends of time series as
accurately as possible.

Motif detection is the process of identifying an
approximately repeating subsequence representing
meaningful pattern in a time series or a group of time series
[1]. Motifs have been widely used for rule-discovery,
clustering and classification of time series data. Therefore,
the time series representation must facilitate the
identification of motifs of varying lengths by preserving
perceptually important points and local trends.

Rule discovery learns temporal rules that are hidden or
not obvious in time series data [1]. One approach is to
transform time series to a sequence of symbols and use
association rule mining algorithms to discover rules.
Another approach is to transform time series to a sequence of
events, and use classification trees to discover temporal
rules. Therefore, it should be possible to obtain from the
representation a meaningful sequence of symbols and events
as defined by the user.

In addition to the application specific requirements
identified above, a few general requirements are also listed
below.

1) The representation should be as compact as possible
to achieve maximum dimensionality reduction, and at the
same time should allow the reconstruction of the original
time series with little error.

2) The representation should allow matching two time
series using full sequences or subsequences even if the two
time series differ in length, scale, amplitude, and translation.

3) The representation should retain salient attributes and
local evolution trends.

4) The representation should allow the computation of
geometric and mathematical features, and model parameters
to support feature and model based processing.

5) To support query by content, the representation
should support broad and flexible specification of content.

6) The computation for building the representation itself
should be reasonable, should not require prior knowledge of
the type of motifs or general shape of the time series.

7) The representation should have a distance measure
satisfying lower bound criterion.

III. RELATED WORK

The time series representations can be broadly classified
into four categories, namely, piecewise linear
representations, transform based representations, symbolic
representations, and model based representations. As the
HPLA representation proposed in this paper is a piecewise
linear approximation, only the piecewise linear
representations are briefly described and analyzed.

A. Piecewise Aggregation Approximation (PAA)

Let X = {x1,x2,…,xn} be a time series of length n. The
PAA representation of X is obtained by partitioning X into N

133Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 142 / 173

segments of equal length n/N, where N << n, and then
representing each segment by the mean of elements
belonging to the segment [2].

B. Piecewise Linear Approximation (PLA)

The PLA is the most frequently used representation in
which a time series X of length n is partitioned into N << n
sections and each section is represented by a straight line.
Keogh and Pazzani refer to the process of generating PLA
representation as segmentation of the time series [7].
Uniform segmentation produces segments of equal length l =
n/N. Non-uniform segmentation partitions the time series
into segments of unequal length to best fit the shape of the
time series. Linear interpolation approximates the segment
X[a:b] by the line joining xa and xb. Linear regression fits the
best possible line to X[a:b] in the least square sense. As
linear interpolation requires constant time, it is the most
widely used method.

Several variations of PLA representations have been
developed in recent years. Yan et al. and Pratt et al. segment
the time series at important maxima and minima, and
represent the time series by a polyline joining adjacent local
maximum and minimum [8][9]. Park et al. partition the time
series into monotonically increasing or decreasing segments,
and characterize each segment by a six dimensional feature
vector [10]. Zhou et al. suggest building a PLA
representation (Slope Threshold Change) by using points at
which slope changes significantly as break points [11]. In
Piecewise Linear Aggregate Approximation (PLAA),
Nguyen Quoc et al. divide the time series into N segments of
equal length, and represent each segment by the mean and
slope of the best fitting straight line [3].

C. Adaptive Piecewise Constant Approximation (APCA)

The APCA representation of a time series is obtained by
segmenting the time series into N segments of unequal length
based on data. Long segments are used to represent data
regions of low activity, and short segments are used to
represent regions of high activity. Each segment is
represented by its mean value and the index of the right end
point. Therefore, the time series X = {x1,x2,…,xn} is
represented as {〈xv1, xr1〉, . . . ,〈xvN, xrN〉}, where xvi is the
mean of all values in the ith segment, and xri is the index of
the right most element of the i

th segment.
An evaluation of PLR representations based on

requirements identified in Section II is given below.
1) The compression ratio, reconstruction accuracy and

shape complexity of time series are related. The only way of
achieving high reconstruction accuracy is by partitioning the
time series into a large number of segments, which limits
the extent to which the dimensionality is reduced. The
APCA and the PLA representations achieve higher
compression than PAA as they limit the number of
segments by placing long segments in regions, where values
are fairly constant or linear, respectively. For a given
compression ratio PLA achieves higher reconstruction
accuracy than PAA and APCA [14].

2) The orders of computation for PAA, PLA and APCA
representations are O(n), O(nL), and O(nlog2n), respectively
[2][7][14].

3) The PAA and APCA representations do not provide
any information regarding the shape of the time series
within segments. Therefore, there may not be sufficient
information to detect shapes and trends spanning one or
more segments, and the computation of many features
needed for feature based data mining applications may not
be possible. The PLA is better than PAA and APCA in
approximating the shape of the time series, especially if
perceptually important points are used as break points
during segmentation.

4) The PAA and APCA representations do not use
perceptually important points like local maxima and minima
as break points. As a result, matching two time series which
differ in length, scale, or translation is not easy or even
possible. These representations are not suitable for
establishing similarity between two time series based on
their subsequences. It may be possible to deal with
differences in length, scale, amplitude, translation, and
subsequence matching using PLA representation if time
series are segmented at perceptually important points.

5) For query by content application, the PAA and
APCA have distance measures that satisfy minimum
bounding criterion. However, specification of content based
on shape and subsequences is not possible. In general, PLA
does not have distance measure that satisfies minimum
bounding criterion. Broad specification for content is
possible only if time series are segmented appropriately.

The findings are summarized in Table I. “Yes”, “No”,
and “May be” are used to indicate that the requirement is
well satisfied, not satisfied, or partially satisfied,
respectively. The PLA representation, if break points include

TABLE I. EVALUATION OF REPRESENTATION BASED ON

REQUIREMENTS OF AN IDEAL REPRESENTATION

Requirement PAA PLA APCA
1 No Yes No
2 No Yes No
3 No Yes No
4 No Yes No
5 No Yes No
6 O(n) O(n) O(nlog2n)
7 Yes Yes Yes

perceptually important maxima and minima, is expected to
achieve higher reconstruction accuracy than other
representations. This is supported by experimental results
given in Section VI, and simulation study reported by other
researchers [2]. Because of high reconstruction accuracy, the
PLA retains local patterns and evolution trends better than
other representations. In summary, a properly obtained PLA
representation along with segment features has the potential
to satisfy 6 out of 7 requirements identified in Section II.

134Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 143 / 173

IV. THE HIERARCHICALPIECEWISE LINEAR

REPRESENTATION

The HPLA is a multi-level representation of time series
data which facilitates the development of effective and
efficient algorithms for coarse-fine processing and mining of
time series data. The representation is developed to permit
the determination of similarity between two time series when
they share similar subsequences, patterns, or time ordered
sequence of patterns. It is effective in handling differences in
length, translation, time and amplitude scales, minor warp,
and even some missing data. It is also possible to determine
similarity between two time series using mathematical
distance measures (quantitative) or general shape
(subjective). The approach, by treating time series as a curve
in the time-amplitude binary image, takes advantage of the
well-established chaincode based curve smoothing and
segmentation methods in the area of image processing [12],
[13]. A step-by-step description of obtaining the HPLA
representation of a time series is given below.

Step 1: Normalize the time series.
The time series X = {x1,x2,…,xn} is normalized by

replacing amplitude xi by (xi – m)/σ, , for 1 ≤ i ≤ n, where m
and σ are the mean and standard deviation of all amplitude
values of the time series.

Step 2: Digitize the normalized time series and obtain
the chaincode representation of the resulting curve.

In digital image processing, a curve is often represented
compactly by its chaincode [12]. The chaincode of a curve is
simply a sequence of directional codes, where the ith element
of the chaincode specifies the direction of the ith pixel (point)
relative to the (i-1) th pixel along the curve. A 3-bit binary
code is used to encode the 8 possible directions.

The time series X may be considered as an open curve in
the time-amplitude image space. As time increases
monotonically, if X is represented as a digital curve by
digitizing its values, from any pixel on the curve the next
pixel can be reached by moving one unit in one of the five
possible directions shown in Fig. 2. The algorithm for
obtaining the chaincode of the time series X without actually
transforming X to a digital image is given below.

The above algorithm digitizes the time series, and the
generates the chaincode in one pass in linear time (O(n)).
The digital curve shown in Fig. 1 is obtained by digitizing
the normalized amplitude values of a time series of length 77
with a bin size of 0.1. The chaincode of the curve is
{243322334334334334223222011011111321210010100110
1343434443444344434344334334433433231133100010010
00100100010010001011221011212}. Note, the length of the
chaincode is greater than the length of the time series due to
filling. As the chaincode is computed using sliding window
approach and discarded after the computation of feature
vector, space is not a major issue.

Figure 1. Digitized time series with break points.

Figure 2. Directional codes.

Step 3: Determine perceptually important maxima and
minima of the curve.

Nabors has defined four types of curves - type 1, type 2,
type 3, and type 4 [12]. The slope along a type 1 curve is
between negative infinity and -1, and is represented by a
sequence of direction codes 0 and 1. The slope along a type
2 curve is between -1 and 0, and is represented by a sequence
of direction codes 1 and 2. The slope along a type 3 curve is
between 0 and 1, and is represented by a sequence of
direction codes 2 and 3. Finally, the slope along a type 4
curve is between 1 and infinity, and is represented by a
sequence of direction codes 3 and 4.

The chaincode of the curve is partitioned into non-
overlapping subsequences, where each subsequence
represents one of the four curve types. Points at which type 1
or type 2 curves meet type 3 or type 4 curves are local
maxima or minima. For a local minimum (maximum), a type
1 or type 2 (type 3 or type 4) curve is followed by a type 3 or
type 4 (type 1 or type 2) curve. Instead of selecting all, only
the prominent local maxima and minima are selected as
break points. A local maximum is taken as a prominent
maximum if its raise from the immediately preceding

Generate_Chaincode (X, n, b)
 // X: input time series of length n
 // b: amplitude resolution for quantizing elements of X
 Chaincode � empty list
 p = int(x1/b + 0.5); i = 2;
 while (i ≤ n)

 q = int(xi/b + 0.5);
 if (q = p)
 Append 2 to Chaincode;
 else if (q > p)
 Append 3 followed by (q-p-1) 4s to Chaincode
 else
 Append 1 followed by (q-p-1) 0s to Chaincode
 p = q; i++;

return Chaincode

135Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 144 / 173

minimum is greater than the average of raises of all maxima.
The algorithm is given below.

The function FindMaxMin finds all local maxima and

minima, and stores their values and indices in MaxMin and
MaxMinIndex, respectively. The average raise and fall in
value between adjacent maximum and minimum are
computed by FindAverageRaise&Fall. Each local maximum
with a raise from its immediately preceding minimum
greater than average raise becomes an initial prominent
maximum. The initial prominent minima are selected,
similarly. The initial list of prominent maxima and minima
is refined such that maxima and minima appear alternately in
the final list. The algorithm identifies two local maxima and
three minima (including two end points) as break points for
the curve in Fig. 1. These break points are labeled A, B, C,
D, and E.

Step 4: Smooth the curve segments between adjacent
break points.

The curve segment connecting adjacent break points is
smoothed by directly modifying the chaincode. A smoothing
algorithm similar to the algorithm given by Kim is used for
this purpose [13]. Unlike Kim’s algorithm which first
requires the identification of distorted sections of the curve,
the new algorithm operates on the entire chaincode and
selectively modifies elements likely responsible for
distortion. It has been shown that the chaincode based
algorithm keeps most of the points in their original positions
as it smoothes the curve. The smoothing suppresses minor
fluctuation due to noise, and is usually reduces the number of
partitions into which the segment is partitioned in Step 5.

Step 5: Recursively partition each curve segment.
Each smoothed curve segment between adjacent break

points is partitioned into two sub-segments, and each sub-

segment is represented by the line joining its endpoints. If
the mean square error or representation error (average of the
square of the vertical distances between the approximating
line and points on the curve) between a sub-segment and its
approximating line is greater than a pre-specified tolerance ε
then the sub-segment is partitioned again into two parts.
Otherwise, it is not partitioned further. This recursive process
continues until representation error becomes less than ε for
all sub-segments. A curve segment may be partitioned at its
midpoint or best point. The best point is defined as the point
that minimizes the sum of the representation errors of the
two sub-segments. The resulting HPLA of each segment is
represented by a binary tree. The HPLA partitioning of the
time series in Fig. 1 is shown in Fig. 3. It is obtained by
recursively partitioning curve segments at midpoint until the
mean square error between the curve and the approximating
line becomes less than 0.5.

Step 6: Compute feature vectors.
In the HPLA representation, curve segment between

adjacent break points is represented by a binary tree. Each
non-leaf node of the binary tree represents a part of the curve
segment, and its child nodes represent its two partitions. Let,
length-l and slope-l denote the length and slope of the line
approximating the left partition, and error-l denote the root
mean square error of the left partition. Similarly, length,
slope and error of right partition are length-r, slope-r, and
error-r. In this paper, the features used are length-l/length-r,
slope-l/slope-r and error-l/error-r. Other features describing
relative shape of the two curve segments and proximity of
each curve segment to its approximating line may be used.
The feature vector of a leaf-node specifies the segment’s
endpoints.

Figure 3. Segmentation of time series in figure 1.

Figure 4. The HPLA representation of segment BC of the time series.

For the purpose of illustrating the computation of feature
vectors, consider the binary tree of the segment BC in Fig. 4.
The root node represents BC, and its child nodes represent

DetermineProminent_MaxMin(ChainCode)
(MaxMin, MaxMinIndex) = FindMax&Min(ChainCode);
(avgRaise, avgFall) =
FindAverageRaise&Fall(MaxMin);

for i=0 to length(MaxMin)-1
 if MaxMin(i) > avgRaise OR MaxMin(i) < avgFall
 Prominent_MaxMin_I.add(MaxMin(i));

Prominent_MaxMin_Index_I.add(MaxMinIndex(i));
i=0 ;
while i < length(Prominent_MaxMin _I - 1)
 if Prominent_MaxMin_I(i) > 0
 Add index of the global maximum between

Prominent_MaxMin_Index_I(i) and
Prominent_MaxMin_Index_I(i+1)

 (both inclusive) to Prominent_MaxMin_Index_F;

 if Prominent_MaxMin_I(i) < 0
 Add index of the global minimum between

Prominent_MaxMin_Index_I(i) and
Prominent_MaxMin_Index_I(i+1)

 (both inclusive) to Prominent_MaxMin_Index_F;
 i++;

136Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 145 / 173

BX and XC, where X is the mid-point of the chaincode of
BC. The length and slope of line BX are 14.21 and -0.82,
respectively. The root mean square error between curve BX
and line BX is 0.56. Similarly, the length and slope of line
XC are 13.41 and -2.0, respectively. The root mean square
error between curve XC and line XC is 0.47. Therefore, the
3X1 feature vector of the root node is [1.07 0.41 1.91]. It is
also possible to compute features invariant to amplitude
scale, amplitude shift, and time scale. The 4X1 feature vector
of the leaf-node representing curve XC is [31 12 38 1].

V. ADVANTAGES OF HPLA REPRESENTATION

Many benefits of the HPLA representation are explained
with the help of an example. Consider the task of
determining the similarity between two time series T and Q.
In the simplest case, T and Q are of same length, and there is
one-to-one correspondence between their elements. Then
almost all representations are able to compute a meaningful
measure of similarity between T and Q in the representation
space. This is not true if T and Q are unequal in length and
their elements do not align. Now, assume that T and Q differ
in length and their elements do not align due to translation or
difference in temporal scale. The goal is to find T[a: b] and
Q[c: d], the largest subsequences of T and Q that are similar
to each other. Larger the length of the subsequences greater
is the similarity between the two time series. When the non-
alignment is only due to translation, Ta+i aligns with Qc+i. If
the temporal scales of T and Q are different then T[a: b] and
Q[c: d] are similar in shape. However, establishing one-to-
one correspondence between elements of T and Q is not
possible.

The HPLA representation preserves prominent local
maxima and minima as break-points, and represents the
subsequence between adjacent break-points by a binary tree.
The feature vectors of the non-leaf nodes of the binary tree
can be invariant to time/amplitude translation and scale.
Therefore, it is possible to determine possible
correspondence between break-points in T and Q. Then a
binary tree matching algorithm may be used for the
identification of the longest sequence of binary trees in the
HPLA representation of T that matches a sequence of binary
trees in the HPLA representation of Q.

The HPLA representation permits the user to choose
coarse or fine approximation depending on the level of
accuracy needed, and is natural for coarse-fine processing of
time series data. The ability to determine similarity by
matching individual sections allows flexibility in defining
similarity, and supports the development of section based
clustering, classification and indexing methods.

VI. EXPERIMANTAL RESULTS

Eleven different data sets (7 data sets from UCR archive
[15], one from UC Irvine KDD archive, and 3 stock market
data sets) are used in the comparative study. From each data
set, 10 time series are selected randomly, and the
reconstruction error for the HPLA representation is
computed for each of them as described below.

1) The time series is normalized to have zero mean and
unit standard deviation.

2) The normalized time series is transformed into a
digital curve by digitizing the amplitude values with a bin-
size of 0.01.

3) The curve is partitioned into segments by choosing
perceptually prominent maxima and minima as break points.

4) The HPLA representation is obtained by recursively
partitioning each segment at the best point (ε = 5 in pixels or
0.05 in original values).

5) Using the information in root nodes of segments, an
approximation of the time series is reconstructed. The
compression ratio (percent) and the mean square error
between the original time series and the approximation are
calculated.

6) An approximation better than the one in 5 is
constructed by using the information in root nodes and their
non-leaf child nodes. The compression ratio and
reconstruction error for this case are also calculated.

TABLE II. EXPERIMENTAL RESULTS

Data Set
Compression

Ratio

Reconstruction Error

HPLA PAA PLA

Mallat

95.4

92.6

0.01557

0.01331

0.13176

0.06130

0.06825

0.02255

Pseudo

Periodic

Synthetic

97.2

94.6

0.02205

0.00051

0.08922

0.03560

0.04603

0.00962

OliveOil
93.8

90.2

0.01401

0.00251

0.11397

0.05550

0.08470

0.03365

Adiac
88.5

84.7

0.00359

0.00339

0.03193

0.00894

0.01131

0.00465

Yoga
91.3

87.7

0.00451

0.00132

0.01836

0.00748

0.00646

0.00184

Fish
93.9

90.1

0.00413

0.00235

0.09535

0.08044

0.05453

0.00402

Swedish

Leaf

86.8

80.3

0.02613

0.02235

0.13432

0.03474

0.06100

0.02465

OSU Leaf
92.5

88.3

0.02119

0.00893

0.07163

0.04130

0.03406

0.01648

Amazon
90.7

86.4

0.01898

0.00321

0.08219

0.03154

0.02832

0.00552

IBM
87.4

80.8

0.03515

0.02199

0.12166

0.09529

0.05139

0.03357

Microsoft
83.5

79.6

0.03185

0.01811

0.10156

0.06188

0.03763

0.02157

The average compression ratio and reconstruction

accuracy for each set given in Table II. For each set there
are two entries. The first entry is coarse (step 5), and the
second entry is relatively finer than the first entry (step 6).
The PAA and PLA representations of each time series are
obtained by partitioning time series into equal length
segments. Each PLA segment is fitted with the best line
using linear regression. The number of segments is adjusted
for each representation to achieve the same level of
compression as the corresponding HPLA representation. As

137Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 146 / 173

expected, the HPLA representation achieved significantly
higher reconstruction accuracy for all data sets.

VII. CONCLUSION AND FUTURE WORK

This paper has made two primary contributions. First,
seven requirements, a good time series representation
should satisfy are explicitly identified by analyzing the
needs of time series data mining applications. Secondly, a
new time series representation (HPLA), which satisfies six
of the seven requirements better than PAA, APCA and PLA
representations, is proposed. The distance measure that
satisfies the lower bound criterion is not known for the
HPLA representation.

The experimental results illustrate, for a given
compression ratio, the HPLA represents the time series
more accurately than the PAA and uniformly segmented
PLA representations. A time series can have many PLA
representations based on how it is segmented. The
representation accuracy, usefulness, and effectiveness for
mining time series is determined by the number of break
points, and how well the break points are selected during
segmentation. The strength of the HPLA representation
comes from the novel two-stage segmentation approach,
which identifies the perceptually important local maxima
and minima as primary break points. These break points
provide a broad perception of the shape. They also identify
trend changes. Additional break points are placed between
primary breakpoints to achieve the desired degree of
accuracy.

The HPLA being a multi-level representation, permits
coarse-fine processing of time series. Most time series
representations do not (effectively) support the finding the
longest subsequence of one time series that has a matching
(similar) subsequence in the other time series. The problem
becomes even more challenging if the two time series do not
have the same time and amplitude scale. The HPLA
facilitates aligning corresponding segments of the two time
series by using perceptually important primary break points
as anchor points. The feature vector, which specifies the
relative values of slope, length and error of the two
partitions of each segment, is invariant to time and
amplitude scale. These two features make the HPLA more
suitable than other piecewise linear or constant
representations for time series matching.

The clustering, classification, and query by content
require a representation that facilitates the development of
efficient and effective algorithms to determine the similarity
between time series. The preliminary research and limited
simulation results suggest that the HPLA representation is
highly suitable for almost all time series data mining
applications including clustering, classification and query by
content. Therefore, future research should focus on the
development of the HPLA based algorithms for aligning
two time series, matching time series, and clustering and
classification of time series based on piecewise matching.

REFERENCES

[1] P. Esling and C. Agon, “Time-series data mining,” ACM
Computing Surveys, vol. 45, Dec. 2012, 34 pages.

[2] E. Keogh, K. Chakrabarti, M. Pazzani and S. Mehrotra,
“Dimensionality reduction for fast similarity search in large
time series databases,” Knowledge and information Systems,
vol. 3, pp. 263--286, 2001.

[3] N. Q. Hung and D. T. Anh, “An improvement of PAA for
dimensionality reduction in large time series databases,”
Proceedings of the 10th Pacific Rim International Conference
on Artificial Intelligence: Trends in Artificial Intelligence
(PRICAI '08), Jan. 2008, pp. 698-707.

[4] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing
SAX: a novel symbolic representation of time series,” Data
Mining and Knowledge Discovery, Oct. 2007, pp. 107-144.

[5] M. Azzouzi and I. T. Nabney, "Analysing time series
structure with hidden Markov models," Neural Networks for
Signal Processing VIII, Proceedings of the 1998 IEEE Signal
Processing Society Workshop , 1998, pp. 402-408.

[6] F. Korn, H. V. Jagadish, and C. Faloutsos, “Efficiently
supporting ad hoc queries in large datasets of time
sequences,” Proc. ACM SIGMOD international conference on
Management of data, 1997, pp. 289-300.

[7] E. Keogh and M. Pazzani, “An enhanced representation of
time series which allows fast and accurate classification,
clustering and relevance feedback,” Fourth International
Conference on Knowledge Discovery and Data Mining
(KDD'98), 1998, pp. 239-241.

[8] C. Yan, J. Fang, L. Wu, and S. Ma, “An approach of time
series piecewise linear representation based on local
maximum, minimum and extremum”, Journal of Information
& Computational Science, June 2013, pp. 2747-2756.

[9] K. B. Prat and E. Fink, “Search for patterns in compressed
time series [J],” International Journal of Image and Graphics,
vol. 2, Issue. 1, 2002, pp. 89-106.

[10] S. Park, S. W. Kim, and W. W. Chu, “Segment-based
approach for subsequence searches in sequence databases,” In
Proceedings ACM symposium on Applied computing (SAC
'01), 2001, pp. 248-252.

[11] J. Zhou, G. Ye, D. Yu, “A new method for piecewise linear
representation of time series data,” Physics Procedia, vol. 25,
2012, pp. 1097-1103.

[12] D. H. Nabors, A boundary based image segmentation and
representation method for binary images, Doctoral
Dissertation, The University of Alabama in Huntsville, 2000.

[13] S. K. Kim, Hierarchical representation of edge images for
geometric feature based image interpretation, Doctoral
Dissertation, The University of Alabama in Huntsville, 2007.

[14] K. Chakrabarti, E. Keogh, S. Mehrotra, and M. Pazzani,
"Locally adaptive dimensionality reduction for indexing large
time series databases", ACM Transaction on Database
Systems. vol. 27, Jun. 2002, pp. 188-228.

[15] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei and C. A.
Ratanamahatana (2011). The UCR Time Series
Classification/Clustering. [retrieved: August, 2013]
Homepage: www.cs.ucr.edu/~eamonn/time_series_data/

138Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 147 / 173

Cache Management for Aggregates in Columnar In-Memory Databases

Stephan Müller, Ralf Diestelkämper, Hasso Plattner
Hasso Plattner Institute
University of Potsdam

Potsdam, Germany
Email: {stephan.mueller, ralf.diestelkaemper, hasso.plattner}@hpi.uni-potsdam.de

Abstract—Modern enterprise applications generate workloads
of short-running transactional queries as well as long-running
analytical queries. In order to improve the execution time of
computationally intensive analytical queries we have introduced
an aggregate cache that makes use of the typical main-delta
architecture of columnar in-memory databases (IMDBs) to cope
with data modifications. In this work, we contribute a cache
management system for that aggregate cache, which bases the
cache admission and replacement decisions on novel profit met-
rics. These metrics are tailored to the main-delta architecture
of IMDBs. They ensure that expensive aggregates are stored in
the cache while light weight query results are rejected. For the
profit estimation of a cached aggregate the system also takes
into account transactional data modifications triggered by the
enterprise application. Along with the profit metrics we introduce
an asynchronous cache management algorithm designed for
the main-delta architecture as well as the transactional data
modifications. We evaluate the cache management system on
mixed, transactional and analytical workloads and real customer
data.

Keywords-Aggregates, Materialized Views, Cache Management,
In-Memory Database, Column Store

I. INTRODUCTION
In the past, transactional and analytical queries have been

associated with two separate applications for transactional pro-
cessing (OLTP) or analytical processing (OLAP). This distinc-
tion is no longer applicable for modern enterprise applications
[1], [2] because they make use of both, online transactional and
analytical queries. In a contemporary financials and controlling
application typical OLTP-style queries insert new bookings,
whereas OLAP-style queries aggregate the records for profit
and loss statements.

The OLAP-style queries may take a significant time to be
processed [1]. That is why we have developed an aggregate
cache which leverages the main-delta architecture of columnar
in-memory databases in order to speed up recurring analytical
queries in a consolidated environment [3], [4]. In a columnar
IMDB, a table is stored by column vectors instead of row
tuples and resides in memory. Since inserts of new tuples are
usually more expensive in a column store than in a row store
database, each table has a highly-compressed, read-optimized
main storage and a write-optimized delta storage. The delta
storage persists the transactional manipulations made to the
database table. It contains orders of magnitude less tuples then
the main storage. However, when the delta storage reaches a
certain threshold, a merge process is triggered [5] that merges
the tuples of the delta storage into the main storage.

Our aggregate cache stores the aggregation result returned

from the main storage when an analytical query is executed
for the first time. In the following, we call the result aggregate.
If the same query is executed again, the cached aggregate is
combined with the on-the-fly calculated result on the delta
storage and returned to the application. With this approach
the aggregate cache can provide an up-to-date result and save
significant computation and execution time overhead, because
the delta storage is much smaller than the main storage and
on-the-fly aggregations on it are relatively fast.

In this work, we present a cache management system
for the aggregate cache. It ensures that the aggregate cache
does not grow arbitrarily large. Additionally, it prevents the
aggregate cache from keeping unused or computationally
lightweight aggregates in the cache. For the identification of
such aggregates, the cache management system makes use of a
profit metric. The metric assesses the performance benefit ob-
tainable from each aggregate if it remains in the cache. Existing
profit metrics are calculated from multiple runtime metrics
such as the access rate of a cached aggregate, the execution
time to calculate the aggregate, and the aggregate’s size. These
metrics are not optimal for the aggregate cache because they
do not distinguish between the calculation time on the main
storage and calculation time on the delta storage. However, that
is important for the aggregate cache since it cannot accelerate
recurring queries whose calculation time mostly originates in
the on-the-fly aggregation on the delta storage. Thus, novel
profit metrics are required for the aggregate cache that consider
the main-delta architecture and the mixed workload.

The aggregate cache is designed to concurrently handle the
database requests from multiple users and applications. That is
why the management system should avoid blocking behavior
during query processing. Previous cache management systems
performed synchronous cache management [6]–[8]. The syn-
chronous management has caused blocking behavior for every
processed query. That is why we introduce an asynchronous
cache management algorithm, which evicts cached aggregates
decoupled from the query processing.

During the merge phase of a base table, the current im-
plementation of the aggregate cache removes those aggregates
from the cache whose base table is merged. The consequence is
that the aggregate cache has to recalculate the aggregates from
scratch the next time they are required. Instead of evicting the
aggregates, a sophisticated cache management system can in-
crementally revalidate the affected aggregates while the merge
process is in progress. The incremental revalidation process is
basically the same process that the cache manager performs

139Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 148 / 173

on a cache hit, except that the aggregate cache updates the
cache entry after it has been combined with the result from the
on-the-fly aggregation on the delta storage. For many cached
aggregates, the on-the-fly aggregation is lightweight compared
to the complete recalculation. Thus, the cache performance can
be significantly improved if cached aggregates are revalidated
instead of evicted. That is why we describe an aggregate
revalidation algorithm for the merge process.

Instead of using a mixed workload benchmark like the CH-
Benchmark [9], we evaluate our cache management system
on a financials and controlling scenario that is based on real
world data and query templates from an operational enterprise
system. For the evaluation purpose, we have implemented the
cache management system in SanssouciDB, a columnar IMDB
with main-delta architecture.

In the following section, we describe how our cache man-
agement system differs from other existing cache management
systems. In Section 3, we give an architectural overview of
the aggregate cache with our cache management extensions.
We introduce the novel profit metrics in Section 4 and the
asynchronous cache management algorithm in Section 5. In
Section 6 we describe the revalidation algorithm for the merge
process. We evaluate the profit metrics and the algorithms on
the financials and controlling scenario in Section 7. In Section
8, we summarize our results and give an outlook on future
work.

II. RELATED WORK
Caches are not only applied in database systems but also in

systems for disk buffering or client-server applications. Each of
these systems requires a cache management system to maintain
the cache.

In disk buffering systems, the cache is used to provide fast
access to data on disk. Disk buffering systems have to manage
a limited size of cache space. Hence, they favor frequently
and recently accessed data blocks over rarely touched blocks in
order to maximize the system’s performance. In the past, many
algorithms have been proposed to most profitably manage
the cache. Least-frequently-used (LFU) [10], least-recently-
used (LRU) [11], k-least-recently-used (LRU-K) [12], 2Q [13],
MultiQueue [14] and least-recently-frequently-used (LRFU)
[15] are just a few to be mentioned. It takes only minimal
effort to adjust these algorithms to work with the aggregate
cache. However, they do not consider the cached aggregate’s
size, the execution time for a cache hit and the execution
time for a cache miss. These parameters are assumed to be
equal or at least almost equal in a disk buffering system,
but can significantly differ in a cache system for database
aggregates. For example, we have two analytical queries which
have been executed similarly frequently in the recent past. The
first analytical query has a processing time of several seconds
when it is not cached, but runs only a couple milliseconds
when it is cached. The second aggregate query may take only
several hundred milliseconds overall execution time when it is
not cached and about the same time when it is cached. The
above mentioned algorithms would not prefer one query over
the other. Our cache management system should prefer the
first query over the second in order to maximize the saved
processing time.

Another popular application for caches and, hence, cache
management systems lies in client-server systems. A client
retains information received from the server via a network in

order to avoid redundant data transfer and network contention.
Client-side caches have also been introduced for database
systems [16]. Opposite to these caches our aggregate cache
resides on the server. The server side cache can serve multiple
tenants working on a single consolidated database system.
In this way, multiple clients can profit from a single cached
aggregate on the server.

A couple of cache management systems for materialized
views and query results have already been introduced and
implemented in the past. In the following, we first provide a
non-comprehensive overview over previous cache management
systems and then distinguish them from our aggregate cache.

Scheuermann et al. introduce WATCHMAN [6] system as
one of the first approaches to manage database query results.
It makes cache admission and replacement decisions based
on the execution frequency, the execution time, and the result
set size of a query. The authors show that WATCHMAN
significantly improves the cache performance over an at that
time sophisticated disk buffer management algorithm LRU-K.
In a follow-up project the group around Scheuermann extended
the original WATCHMAN system described in [6] to support
subqueries and to consider update costs for the result sets [17].

Kotidis et al. implement a view management system called
DynaMat for data warehouses. It dynamically manages ma-
terialized aggregates [7]. The authors evaluate four metrics
for cache admission and replacement, the frequency metric,
the execution time metric, the result set size metric and a
combination of the three of the previous metrics. They show
that the combined metric, which is similar to the WATCHMAN
metric, performs best.

Park et al. design a caching mechanism for OLAP systems,
which is able to reuse partial results for related queries in
drill-down and roll-up sequences [8]. The cache admission and
replacement algorithm is extended in order to take into account
the profit of a query result for multiple related queries. Related
queries are part of the same drill-down or roll-up sequences
and were either executed in the recent past or will very likely
be executed in the near future. The reuse of partial results saves
their system expensive random accesses to the disk. Therefore,
the system performance can significantly profit from reusing
partial and overlapping query results residing in memory. In
our setup, however, the data is already stored in memory
and random accesses to disk are no limiting factor any more.
Additionally, Park et al. are limited to matching canonical drill-
down and roll-up sequences. Real world enterprise workloads
contain more complex analytical queries with subqueries and
joins. That is why, in the recent years, more sophisticated
research has been done on reusing partial views mitigating
a canonical query schema [18]. However, this is out of scope
of this work.

Opposite to all the above cache management systems our
management system administers an aggregate cache on an
IMDB with main-delta architecture. It considers the costs to do
an on-the-fly aggregation on the delta storage for every query
answered from the cache. That was unnecessary in the above
system setups, because the cached aggregate was delivered as
is.

Additionally, none of the above systems are designed for
mixed workloads in which data modifications can occur at
any time. Some of them consider bulk data modifications
during dedicated maintenance intervals but they cannot process
combined online and analytical workloads. In contrast, our

140Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 149 / 173

SanssouciDB

Query Processor

Aggregate Cache Manager

Aggregate Cache Manager Core Profit
Estimator

K1 M1

K2 M2

Kn Mn

Metrics Map

K1 A2

K4 A4

Km Am

Aggregates Map

Transaction
Manager

Main

Delta

Storage

SQL

Figure 1. The Aggregate Cache Manager inside SanssouciDB

cache management system is designed to deal with mixed
workloads.

III. AGGREGATE CACHE ARCHITECTURE
The aggregate cache and the cache management system are

fully integrated into SanssouciDB. Figure 1 gives an architec-
tural overview over the cache management system. The white
components are already existing components, while the gray
parts are cache management extensions that are implemented
for this work. The textured gray component is extended in this
work in order to support cache management. Figure 1 shows
that the aggregate cache consists of three major components,
the aggregate cache manager, the aggregates map, and the
metrics map.

The aggregate cache manager consists of the cache man-
ager core and the profit estimator. The cache manager core
stores the cached aggregates in the aggregate map and up-
dates the runtime information in the metrics map. It receives
cacheable aggregates from the query processor and delivers
cached aggregates back to the query processor if a query
can be answered from the cache. Before a cached aggregate
is delivered to the query processor, the cache manager core
checks whether the cached aggregate is still up to date. It asks
the transaction manager if rows were invalidated in the main
storage since the point in time the aggregate was created. In
case rows were invalidated, the aggregate cache updates the
cached aggregate before it delivers the aggregate to the query
processor.

The profit estimator is an extension to the existing aggre-
gate cache. It calculates the profit for every cached aggregate
by applying a profit metric on the runtime information residing
in the metrics map.

IV. PROFIT METRICS
The better the profit metric assesses the benefit of a cached

aggregate, the better the aggregate cache can perform. A
higher cache performance, in turn, leads to a better system
performance. Before we introduce the novel metrics, we assess
existing profit metrics in buffer management systems and
previous query result caches in the context of the aggregate
cache.

A. Existing Buffer Profit Metrics
We start with the metrics originating in disk buffering

systems. The symbols used to describe the following metrics

are explained in Table I:
1) LRU: The LRU metric defines the profit of cached

aggregates by their last access [11].

profitLRU (q) =
1

t− last_accessq
(1)

2) LRU-K: An extension of the LRU metric is the
k-recently used metric which considers the k most
recent accesses of a cached result [12].

profitLRU−K(q) =

{
1

t−kth_accessq
, if ≥k accesses

0, else
(2)

3) LFU: The least frequently used metric (LFU) rates
the cached aggregates by their recurrence. The recur-
rence increases constantly with every access [10].

profitLFU (q) = recurrenceq (3)

4) LRFU: The least frequently recently used metric
(LRFU) rates aggregates by their recurrence and
recency of access. It actually is not a single metric,
but a spectrum of metrics covering the range between
the LRU and the LFU metric [15].

profitLRFU (q) =

(
1

2

)λ·(t−last_accessq)

with 0 ≤ λ ≤ 1

(4)

For λ = 0 profitLRFU (q) = profitLFU (q) and
for λ = 1 profitLRFU (q) = profitLRU (q). This
is proven in [15]. If λ lies in between 0 and 1 the
LRFU metric returns a profit between the LFU profit
and the LRU profit. Such a profit is desirable, because
the recurrence and the recency with which a cached
aggregate is accessed are two important indicators for
the benefit of a cached aggregate.

The above metrics only consider access rates and fre-
quencies of cached aggregates. This is sufficient for disk
buffering systems, because they manage disk blocks of equal
size and similar disk fetch times. In database result caches or
aggregate caches like ours, these metrics do not perform well,
because the aggregate sizes can differ significantly. Some may
contain only a couple groups and only a few columns while
others have hundreds or even thousands of groups and several
dozens to hundreds columns. Additionally, the time needed to
calculate the query result or the cached aggregate can differ
substantially. Some calculations finish after a few milliseconds
while others process for several seconds or even longer.

B. Existing Query Cache Profit Metrics
The profit metrics of previous query result caches reflect

the above thoughts, since they consider the result set size as
well as the execution time of the cached query.

1) WATCHMAN: The WATCHMAN metric considers
the k last references as well as the aggregate size and
the execution time of a query [6].

profitWATCHMAN(q) = profitLRU−K(q)

· tq
result_sizeq

(5)

2) DynaMat: Similarly to the WATCHMAN metric,
the DynaMat metric takes the result size and the

141Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 150 / 173

TABLE I. DEFINITION OF SYMBOLS

Symbol Definition
t current time

last_accessq time of the last access to aggregate q
kth_accessq time of the kth last access to aggregate q
recurrenceq number of times aggregate q has been referenced

tq calculation time for an aggregate q on the main and delta storage without cache
tmain calculation time for an aggregate q only on the main storage

tcache+∆ calculation time for an aggregate q on the cache and the delta storage
result_sizeq memory space required to store an aggregate q that is calculated on the main storage

deltaq number of aggregated tuples in the delta storage relevant for aggregate q
mainq number of aggregated tuples in the main storage relevant for aggregate q
invalq number of invalidated tuples in the main storage affecting aggregate q

∆q number of tuples involved in the delta compensation

calculation time of an aggregate into account. They
are combined with the recurrence of the query [17].

profitDynaMat(q) = profitLFU (q)

· tq
result_sizeq

(6)

These metrics worked well in previous query result caching
systems [6], [7]. However, the aggregate cache differs in at
least two substantial characteristics from the previous caches,
which should be reflected in the profit metric. First, the cache
is tailored to the main-delta architecture of columnar IMDBs.
Second, the cache has to deal with invalidated tuples on the
main storage.

C. Novel Profit Metrics for the Aggregate Cache
The above metrics only consider the overall query exe-

cution time. They do not distinguish between processing an
aggregation on the main storage and on the delta storage. The
differentiation is important for the performance of the cache
as the following example demonstrates. The aggregate cache
keeps only the aggregation result from the main storage and
performs an on-the-fly aggregation on the delta storage for
every incoming query. If a query only touches tuples in the
delta storage and the overall execution time of the query is
considerably long, the cache does not speed up this query.
However, the above metrics assign the associated aggregate a
high profit, because the overall execution time is long and the
cached (empty) aggregate has a small size.

The following four metric extensions are tailored to the
aggregate cache architecture. They distinguish between the
aggregation on the main storage and the delta storage.

1) TAR: The tuples aggregated ratio (TAR) metric rep-
resents the ratio of the tuples aggregated on the
main storage and the tuples aggregated on the delta
storage for a query q. The ratio yields more profitable
results, if the number of aggregated delta tuples is
low or the count of processed main tuples is high.
That is desirable, because the tuples on the delta
are aggregated whenever q is processed, whereas the
tuples on the main are aggregated only when the
aggregate is cached.

profitTAR(q) =
mainq
∆q + 1

(7)

Note that a "+1" is added to the tuples touched in
the delta storage in order to avoid a zero division. For
the simple case of just having a single table, ∆q =
deltaq .

2) ETR: The execution time ratio (ETR) metric is the
proportion the main storage processing time and the
delta storage processing time of a query q. It favors
queries that have a short processing time on the
delta storage and a long processing time on the main
storage. We want to cache the aggregates of these
queries, because they are answered quickly from the
cache, but they need a significant amount of time if
they are calculated from the main storage.

profitETR(q) =
tmain

tcache+∆
(8)

3) TAD: The tuples aggregated difference (TAD) metric
considers the number of tuples that do not have to be
aggregated when a query q is answered with the help
of the aggregate cache. The tuples on the delta storage
are aggregated on a cache hit and miss to answer q.
The tuples on the main storage are not aggregated on
a cache hit, because the aggregation result is cached
by the aggregate cache. Their count is the number
of tuples saved on a cache hit. The higher it is, the
higher is the profit of q’s aggregate.

profitTAD(q) = (mainq + ∆q)−∆q

= mainq
(9)

4) ETD: The execution time difference (ETD) metric
reflects the time saved when a query q is executed
with the aggregate cache. The processing time on the
delta storage is needed to answer q in both cases,
when the q’s aggregate is cached and when it is not
cached. Therefore, the time saved when q’s aggregate
is cached is the main processing time. The higher this
main processing time is, the higher is the profit of q’s
aggregate.

profitETD(q) = (tmain + tcache+∆)− tcache+∆

= tmain
(10)

Manipulative database transactions like deletes and updates
can invalidate rows in the main storage [19]. Thus, the deletes
and updates potentially have an impact on the cached aggre-
gates. In case the deleted rows are part of a cached sum the
rows are added up and then subtracted from the cached sum.
This on-the-fly process occurs whenever a query is answered
from the aggregate cache.

To address the invalidation of rows in the main storage and
the resulting compensation process in the cache, we define the
following compensation factor that is based on the number

142Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 151 / 173

of invalidated tuples relevant for aggregate q, invalq , and the
number of aggregated tuples mainq in the main storage:

icomp(q) =
1

2
− invalq
mainq

(11)

If more than 50% of the aggregated tuples are being
invalidated, the profit becomes negative; which indicates that
an on-the-fly aggregation on the main storage is more cheaper
than using the cached aggregate.

The novel profit metrics combine one of the four main-
delta metric extensions with the invalidation compensation
extension, the LRFU metric, and the size of the cached
aggregate. That allows them to assess the profit of each cached
aggregate more precisely than the existing profit metrics.

1) AC-TAR: The aggregate cache tuples aggregated
ratio metric (AC-TAR) is a combination of the LRFU
metric (cf. Equation 4), the tuples aggregated ratio
metric (cf. Equation 7), the invalidation compensation
(cf. Equation 11), and the size of the aggregate
associated with query q.

profitAC−TAR(q) = profitLRFU (q) · icomp(q)

·profitTAR(q)

result_sizeq
(12)

2) AC-ETR: The aggregate cache execution time ratio
metric (AC-ETR) combines the LRFU metric (cf.
Equation 4), the execution time ratio metric (cf.
Equation 8), the invalidation compensation (cf. Equa-
tion 11), and the size of the aggregate associated with
query q.

profitAC−ETR(q) = profitLRFU (q) · icomp(q)

·profitETR(q)

result_sizeq
(13)

3) AC-TAD: The aggregate cache tuples aggregated
difference metric (AC-TAD) is a combination of the
LRFU metric (cf. Equation 4), the tuples aggregated
difference metric (cf. Equation 9), the invalidation
compensation (cf. Equation 11), and the size of the
aggregate associated with query q.

profitAC−TAD(q) = profitLRFU (q) · icomp(q)

·profitTAD(q)

result_sizeq
(14)

4) AC-ETD: The aggregate cache execution time dif-
ference metric (AC-ETD) is assembled from the
LRFU metric (cf. Equation 4), the execution time
difference metric (cf. Equation 10), the invalidation
compensation (cf. Equation 11), and the size of the
aggregate associated with query q.

profitAC−ETD(q) = profitLRFU (q) · icomp(q)

·profitETD(q)

result_sizeq
(15)

V. CACHE MANAGEMENT ALGORITHM
The algorithm evicts aggregates from the cache that do

not improve the overall system performance. Such aggregates
may be empty aggregates or aggregates based on meanwhile
invalidated rows. On-the-fly recalculation of these aggregates
is cheaper than retaining the aggregates in the cache. The
algorithm also has to remove the least profitable aggregates
from the cache in case the system is running out of memory.
Many analytical queries may be processed in parallel along
with even more transactional operations. That is why, the
algorithm should not block the system’s progress with every
incoming analytical query.

For the given reasons, we propose a cache management
algorithm which maintains the aggregate cache asynchronously
to the query processing. In previous systems the aggregate
cache was maintained with every incoming analytical query
[6]–[8]. We simply add the queries to the aggregate cache
and trigger a maintenance routine to evict the least profitable
queries in time intervals and when memory space is running
low.

The regular cache maintenance and the aggregates revali-
dation task during the merge phase requires the algorithm to be
split into three parts: The first part updates the cache metrics,
the second part evicts queries from the cache, and the third
part removes entries from the metrics map.

1) Cache Metrics Update: This first part of the algorithm
updates the information stored in the metrics map. If the
aggregate matching the executed query already exists as an
entry in the metrics map, the entry is updated. This process
requires a read lock on the metrics map, because another
process in the system may concurrently remove entries from
the map. If there is no matching entry in the map, the
procedure creates a new entry and fills it with the information
obtained from the system. That requires a write lock on the
metrics map, since other procedures handling other analytical
queries concurrently may add new entries to the metrics map.
However, the algorithm inserts the entry to a hash map so that
the procedure has an average complexity of O(1) [20]. So in
comparison to the other parts of our algorithm, the update is
processed very quickly and does not cause noticeable blocking
behavior.

2) Cache Trimming: Trimming the cache is more complex
than updating the metrics for a single aggregate. The procedure
is described in Algorithm 1. It is executed periodically and
when the system’s memory space is low.

First, the procedure iterates over the cache metrics map M
and appends each entry whose associated aggregate is cached
in a separate list ca. For this task it acquires a read lock on
M . This process has a complexity of O(n), where n is the
number of entries in the cache metrics map. Therefore, the
lock time scales linearly with the number of records in M . The
collection process does not block the update of information
in existing entries, because that only requires a read lock on
M . However, it blocks the insertion of new entries into the
metrics map, because the insertion of new entries requires
an exclusive write lock. The insertion of new entries is only
necessary, when a unknown query gets cached. In that case,
the query has to be processed on both, the main and the delta
storage. That processing time exceeds the time to collect all
cached aggregates in most cases so that the blocking behavior
is hardly noticeable.

As the next step, the procedure sorts the entries in the list ca

143Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 152 / 173

by profit in ascending order. Since most of the profit metrics
introduced in Section IV require a timestamp, the a current
timestamp is handed to the profit estimator that encapsulates
the profit metric. The sorting is the most costly part in the
cache trimming procedure. It has a complexity of O(n log(n)),
where n is the number of cached entries. However, it does not
require any lock, because it works on a temporary list. Thus,
it cannot cause any blocking behavior.

Given this sorted list of cached entries the procedure starts
removing entries from the aggregate map A. It fetches entries
from the front of the list ca until the new cache size is reached
or the profit of an entry is bigger than zero. Recapture that the
profit becomes negative if more than 50% of the rows that the
cached aggregate is based on are deleted. The removing of
cache entries requires locks on both the aggregate map A and
the metrics map M . The cache trimming procedure obtains
and releases them for the eviction of each entry in order to
avoid blocking behavior.

If new aggregates are added to the cache, while the
procedure is sorting or removing entries from the list ca. They
are ignored for the current trimming process.

Algorithm 1 Cache Trimming Procedure
Require: aggregate_map A, metrics_map M,

current_cache_size cs, target_cache_size ts
1: procedure TRIM_CACHE(A, M, cs, ts)
2: cached_aggregates ca ← []
3: M.acquire_read_lock()
4: for all metrics_map_entry 〈k, v〉 in M do
5: if v.is_cached then
6: ca.append(〈k, v〉)
7: end if
8: end for
9: M.release_read_lock()

10: timestamp t ← current_time()
11: profit_estimator.sort(ca, t)
12: for all metrics_map_entry 〈k, v〉 in ca do
13: if profit_estimator.profit(v) > 0 then
14: if cs < ts then
15: break
16: end if
17: end if
18: A.acquire_write_lock()
19: M.acquire_read_lock()
20: cs ← cs − v.result_size
21: M.invalidate(k)
22: A.evict(k)
23: M.release_read_lock()
24: A.release_write_lock()
25: end for
26: end procedure

3) Metrics Trimming: Similarly to the cache entries, the
metric entries are trimmed in periodic intervals. For the metrics
trimming task, all metric map entries for uncached aggregates
are obtained and stored in a list. A read lock on the metrics
map is required for this operation. It has a complexity of O(n),
where n is the number of entries in the cache metrics map. The
read lock may block the insertion of unknown aggregates to
the cache, but as described previously, query processing should
not noticeably be blocked.

The list of uncached aggregates is sorted by LRU in order
to find the metric map entries that have not been used for
the longest period of time. They are evicted from the metrics
map one after another until the defined threshold is reached.
For every entry eviction, a write lock on the metrics map
is acquired and released after the entry is removed from the
metrics map. This fine grained lock handling avoids blocking
behavior.

VI. INCREMENTAL REVALIDATION ALGORITHM FOR THE
MERGE PROCESS

The incremental revalidation algorithm for the merge pro-
cess updates those cached entries whose underlying base table
is merged. It is integrated with the merge process described in
[21]. During the merge prepare phase, the algorithm identifies
and collects all cached aggregates that are based on the table
being merged. It marks the aggregates to indicate that they
need revalidation.

When the merge process is in progress, the algorithm orders
the cached aggregates by their profit in descending order, so
that the most profitable aggregates are at the beginning of the
list. It incrementally revalidates the aggregates beginning from
the head of the list until the merge process is finished. Directly
after the revalidation the aggregates are marked as revalidated.

When the merge process is committed, the algorithm
removes all aggregates which have not been updated from the
cache, because they do not represent the aggregation result on
the new main storage any more.

VII. EVALUATION
For the evaluation, we implemented the algorithms and

profit metrics in SanssouciDB [21], an IMDB with main-delta
architecture. However, we are confident that our algorithm
and metrics yield similar results when implemented in other
IMDBs such as SAP HANA [22] or Hyrise [23]. We evaluate
our algorithms and metrics with a financial accounting appli-
cation. Other than mixed workload benchmarks such as the
CH-benchmark [9] the application works on a database with
real customer data. It also generates a mixed workload with
OLTP-style inserts for the creation of accounting documents
and OLAP-style queries for the calculation of reports like
profit and loss statements. Therefore, the financial accounting
application suits our evaluation purposes.

The application’s database contains 22 million records in a
single, denormalized table. We generated inserts based on these
records for our workload. We also extracted 100 OLAP-style
aggregate queries from the application and validated these with
domain experts. They contain at least one aggregation function.
From these 100 distinct OLAP-style queries, we create an
analytical workload with 1000 queries, which we use for the
following experiments. The server for the benchmarks has 4
Intel Xeon processors with a total of 40 physical cores and 1
TB of main memory.

A. Delta Storage Tuples
In the first experiment, we vary the number of tuples in the

delta storage and compare the four aggregate cache metrics
AC-ETD, AC-TAD, AC-ETR, and AC-TAR with the exist-
ing profit metrics LRU, WATCHMAN (WM), and DynaMat
(DYN). The results are displayed in Figure 2. As performance
measure we use the workload execution time. The lower it is,
the better a metric performs. We set the eviction threshold to
80%. As a consequence the cache is trimmed to 80% of its

144Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 153 / 173

8

12

16

20

24

0 100 200 300

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Delta Tuple Count (x1000 Tuples)

AC-ETD AC-ETR AC-TAD AC-TAR DYN LRU WM

Figure 2. Comparison of Profit Metrics with Varying Delta Sizes.
(Cache Size 200kB, Eviction Threshold 80%)

maximum size when the maximum size of 200kB is reached.
200kB are sufficient to cache about 40 to 50 aggregates. The
LRFU decay factor λ is set to 0.0001. This value has proven
to perform best in our experiments.

The results show that the execution times of all profit met-
rics increase with a growing delta storage. The reason is that
the aggregations on the delta storage become more expensive
with an increasing delta size. When the delta storage is empty,
all metrics, except the LRU metric, show similar performance
results. That is the case, because the delta access time is very
low and almost equal for all queries. With increasing delta size,
the AC-ETD and AC-TAD metrics more and more outperform
the other metrics. When the delta contains 200,000 tuples or
more, the two metrics perform at least two seconds better than
the existing WATCHMAN and DynaMat metrics. That is a
performance gain of at least 11%. The AC-ETD and AC-TAD
metrics constantly yield workload execution times that are five
to six seconds faster than the LRU metric, independent from
the delta size.

The ratio metrics AC-ETR and AC-TAR perform one and a
half to six seconds worse than AC-ETD and AC-TAD metrics.
The reason is that the ratio metrics assign high profit to all
aggregates that consider only few tuples on the main and
the delta storage. For example, an aggregate a is computed
over 2 tuples in the delta storage and 100 tuples in the main
storage. An aggregate b is calculated over 2,000 tuples in the
delta storage and 50,000 tuples in the main storage. When
the size and access history is equal for a and b, the AC-
TAR metric assigns a profit to a that is twice as high as b’s
profit. Consequently, the AC-TAR metric favors lightweight
aggregates like a. However, caching b is better for the cache
performance, because the time to calculate b on the main
storage is higher than the time to compute a. The AC-ETR
metric also assigns a higher profit to a, but the profit is less
than twice as high, since the aggregation time does not scale
linearly with the number of tuples aggregated. That is why the
AC-ETR metric performs up to three seconds faster than the
AC-TAR metric.

Since the AC-TAR metric favors lightweight aggregates the
performance of the metric decreases to the performance of the

10

14

18

22

26

30

100 200 300 400 500

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Cache Size (kB)

AC-ETD AC-ETR AC-TAD AC-TAR DYN LRU WM

Figure 3. Comparison of Profit Metrics on Different Cache Sizes.
(Delta Tuple Count 200,000, Eviction Threshold 80%)

LRU metric when the delta storage contains 300,000 tuples.
The LRU metric shows the worst results because assessing an
aggregate’s profit on the last access only is not sufficient. The
AC-TAD and AC-ETD metric constantly have results that are
five to six seconds faster. That is a performance benefit of
more than 35%.

B. Cache Size
In a second experiment, we evaluate the influence of the

cache size on the performance of the profit metrics. The results
are shown in Figure 3. The execution time is the same for all
metrics when the cache size is 500kB. Since the aggregates
have a total size of 450kB, they all fit into the cache of 500kB
size. Therefore, results from the runs with 500kB cache size
show the optimal aggregate cache performance because no
aggregate is evicted in any of the runs. In operational systems,
the cache can grow several hundred gigabytes large because
the systems process more than a hundred distinct queries. At
a cache size of 400kB, the results of all metrics are similar
because most of the aggregates fit into the cache. The cache
metric has hardly any influence on the cache performance.

When the cache size is smaller than 400kB, the per-
formance of all metrics decreases. However, the decrease
significantly differs between the metrics. The LRU metric
shows a performance decrease of 11 seconds or 100% in case
the cache size decreases from 500kB to 200kB. In comparison,
the performance decrease of the AC-ETD and the AC-TAD
metrics is only five seconds or 45%. That is less than half the
performance decrease. The WATCHMAN, DynaMat, and AC-
ETR metric have a decrease of seven seconds or 63%. The
AC-TAR metric has a decrease of 81%.

C. Eviction Threshold
The results in Figure 4 show the impact of the eviction

threshold on the profit metrics. When the eviction threshold
is 0%, all aggregates are evicted from the cache once the
maximum cache size of 200kB is reached. Then, the profit
metrics have no influence on the cache performance so that
all of them show the same performance. In general, the bigger
the threshold gets, the better all of the profit metrics perform,
except from the AC-TAR metric.

145Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 154 / 173

14

16

18

20

22

24

26

0 10 20 30 40 50 60 70 80 90 100

Ex
e

cu
ti

o
n

 T
im

e
 (

se
c)

Eviction Threshold (%)

AC-ETD AC-ETR AC-TAD AC-TAR DYN LRU WM

Figure 4. Comparison of Profit Metrics for Different Eviction Thresholds.
(Delta Tuple Count 200,000, Cache Size 200kB)

The AC-TAR metric does not improve the cache perfor-
mance, when the threshold gets bigger than 50%. That has
two reasons. On the one hand, the metric tends to favor
lightweight aggregates. On the other hand, costly aggregates
can run multiple times between two consecutive runs of the
cache trimming procedure. The bigger the intervals, the more
likely is it, that the queries reoccur. Their aggregates get cached
on the first occurrence. On the following occurrences, the
queries are answered from the cache.

The AC-ETD and the AC-TAD metrics show the best
results for an eviction threshold between 10% and 100%. They
are up two seconds faster than any of the other metrics. The
AC-ETR, WATCHMAN, and DynaMat metrics show similar
results when the threshold is bigger than 50%. In case the
threshold is smaller, the AC-ETR metric is up to one second
faster than the WATCHMAN and DynaMat metrics. The LRU
metric shows the lowest performance. The time difference to
the AC-ETD and the AC-TAD metrics grows from at least
one second at an eviction threshold of 10% to more than five
seconds at an eviction threshold of 100%.

D. Invalidation Compensation
The fourth experiment describes the impact of the invalida-

tion compensation for deleted tuples in the main storage. The
results are presented in Figure 5. We cache all queries, before
we invalidate one million tuples in the main storage. After the
invalidation, we reduce the cache size to 200kB and execute
the analytical workload with the novel aggregate cache profit
metrics. Once the metrics have the invalidation compensation
factor icomp(q); once they do not have it. The results in Figure
5 show that the system’s performance increases by up to almost
17% when the metrics with the invalidation compensation
factor are applied. The percentage increase is higher for the
AC-TAR metric and the AC-ETR metric compared to the
AC-ETD metric and the AC-TAD metric because the overall
performance of the AC-TAR and the AC-ETR metrics is not
as good as the one of the AC-ETD and AC-TAD metrics.

E. Cache Revalidation During Merge Process
In the last experiment, we analyze the performance impact

of the incremental aggregate revalidation during the merge

6.5

11.01

6.32

16.8

0

5

10

15

20

AC-ETD AC-ETR AC-TAD AC-TAR

Ex
e

cu
ti

o
n

 T
im

e
 B

e
n

ef
it

 (
%

)

Profit Metric

Figure 5. Impact of the Invalidation Compensation on the Profit Metrics.
(Delta Tuple Count 200,000, Cache Size 200kB, Eviction Threshold 80%)

0

5

10

15

20

0 10 20 30 40 50 60 70 80 90 100

Ex
e

cu
ti

o
n

 T
im

e
 B

e
n

ef
it

 (
%

)

Revalidated Aggregates (%)

AC-ETD AC-ETR AC-TAD AC-TAR

Figure 6. Impact of the Incremental Aggregate Revalidation during the Merge
Process dependent from the Profit Metrics.
(Delta Tuple Count 200,000, Cache Size 200kB, Eviction Threshold 80%)

process. In an operational system, where more than 100 distinct
queries are executed, the revalidation of all affected aggregates
can take more time than the merge process. Since, in our sce-
nario, the merge process takes more time than the revalidation
of the 100 queries, we manually limit the revalidation of the
aggregates to a certain percentage of all cached aggregates.
When half of the workload is processed, we trigger the merge
process.

The results in Figure 6 show that the incremental reval-
idation yields a performance benefit of up to 15% when all
aggregates are revalidated. The benefit increases with the per-
centage of incrementally revalidated aggregates. When the AC-
TAR metric is applied, the benefit stagnates at around 5%, once
more than 50% of the cached aggregates are revalidated. That
has the following reason: In case no aggregates are revalidated,
the cache is empty after the merge. Then, many expensive
aggregates are cached and repeatedly accessed before the first
cache trimming after the merge is executed. That reduces

146Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 155 / 173

the execution time. In case all aggregates are revalidated, the
lightweight aggregates that the AC-TAR metric assigns a high
profit permanently content the cache.

VIII. CONCLUSION
We have introduced novel profit metrics and cache manage-

ment algorithms tailored to the special main-delta architecture
of modern IMDBs. In the evaluation section, we showed that
the novel profit metrics yield up to 10% better results than ex-
isting metrics. The experiments on SanssoucciDB indicate that
especially the AC-ETD and the AC-TAD metrics outperform
all existing profit metrics.

We also showed that it is important to consider the in-
validated tuples in the main storage for the profit metrics. In
our experiments, the metrics with invalidation compensation
factor perform 6% to 16% better than the same metrics without
invalidation compensation factor.

The evaluation also indicates that the system’s performance
increase when the profitable aggregates are incrementally
revalidated instead of invalidated during the merge process.
The performance increases up to 15% when all cached aggre-
gates are incrementally updated.

So far our evaluation was based on a single table. In
the future, we want extend the evaluation to scenarios with
multiple tables and even more complex queries including joins.
We also want to evaluate the impact of different incremental
update strategies with our cache. The cache management
system can update the cached aggregates not only during merge
phase, but whenever the aggregate is touched and an on-the-fly
aggregation on the delta is performed.

REFERENCES
[1] H. Plattner, “A Common Database Approach for OLTP and OLAP

Using an In-Memory Column Database,” in Proceedings of the ACM
SIGMOD International Conference on Management of Data (SIG-
MOD), 2009, pp. 1–2.

[2] ——, “SanssouciDB: An In-Memory Database for Processing Enter-
prise Workloads Architecture of SanssouciDB,” in Datenbanksysteme
für Business, Technologie und Web (BTW), 2011, pp. 2–21.

[3] S. Müller and H. Plattner, “Aggregates Caching in Columnar In-
Memory Databases,” in Proceedings of the International Workshop on
In-Memory Data Management and Analytics (IMDM), 2013, pp. 58–69.

[4] S. Müller, L. Butzmann, K. Howelmeyer, S. Klauck, and H. Plattner,
“Efficient View Maintenance for Enterprise Applications in Columnar
In-Memory Databases,” in Proceedings of the IEEE International En-
terprise Distributed Object Computing Conference (EDOC), 2013, pp.
249–258.

[5] F. Hübner, J.-H. Böse, J. Krüger, C. Tosun, A. Zeier, and H. Plattner, “A
cost-aware strategy for merging differential stores in column-oriented
in-memory DBMS,” in Proceedings of the Workshop on Business
Intelligence for the Real Time Enterprise (BIRTE), 2011, pp. 38–52.

[6] P. Scheuermann, J. Shim, and R. Vingralek, “WATCHMAN: A Data
Warehouse Manager Intelligent Cache,” in Proceedings of the Interna-
tional Conference on Very Large Data Bases (VLDB), 1996, pp. 51–62.

[7] Y. Kotidis and N. Roussopoulos, “DynaMat: A Dynamic View Manage-
ment System for Data Warehouses,” ACM SIGMOD Record, vol. 28,
no. 2, 1999, pp. 371–382.

[8] C.-S. Park, M. H. Kim, and Y.-J. Lee, “Usability-based caching of query
results in OLAP systems,” Journal of Systems and Software, vol. 68,
no. 2, 2003, pp. 103–119.

[9] R. Cole, F. Funke, L. Giakoumakis, W. Guy, A. Kemper, K.-U. Sattler,
and F. Waas, “The Mixed Workload CH-benCHmark,” in Proceedings
of the International Workshop on Testing Database Systems (DBTest),
2011, pp. 8:1–8:6.

[10] S. Maffeis, “Cache management algorithms for flexible filesystems,”
ACM SIGMETRICS Performance Evaluation Review, vol. 21, no. 2255,
1993, pp. 16–25.

[11] H.-T. Chou and D. J. DeWitt, “An evaluation of buffer management
strategies for relational database systems,” in Proceedings of the In-
ternational Conference on Very Large Data Bases (VLDB), 1985, pp.
127–141.

[12] E. J. O’neil, P. E. O’neil, and G. Weikum, “The LRU-K Page Replace-
ment Algorithm for Database Disk Buffering,” ACM SIGMOD Record,
vol. 22, no. 2, 1993, pp. 297–306.

[13] T. Johnson and D. Shasha, “2Q: A Low Overhead High Performance
Buffer Management Replacement Algorithm,” in Proceedings of the
International Conference on Very Large Databases (VLDB), 1994, pp.
439–450.

[14] Y. Zhou and J. F. Philbin, “The Multi-Queue Replacement Algorithm for
Second Level Buffer Caches,” in Proceedings of the USENIX Annual
Technical Conference (USENIX ATC), 2001, pp. 91–104.

[15] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S.
Kim, “LRFU (Least Recently / Frequently Used) Replacement Policy
: A Spectrum of Block Replacement Policies,” IEEE Transactions on
Computers, vol. 50, no. Technical Report, 2001, pp. 1352–1361.

[16] S. Dar, M. J. Franklin, B. Jonsson, D. Srivastava, and M. Tan, “Semantic
data caching and replacement,” in Proceedings of the International
Conference on Very Large Data Bases (VLDB), 1996, pp. 330–341.

[17] J. Shim, P. Scheuermann, and R. Vingralek, “Dynamic Caching of
Query Results for Decision Support Systems,” in Proceedings of the
International Conference on Scientific and Statistical Database Man-
agement (SSDBM), 1999, pp. 254–263.

[18] J. Goldstein and P.-A. k. Larson, “Optimizing queries using materialized
views: a practical, scalable solution,” ACM SIGMOD Record, vol. 30,
no. 2, 2001, pp. 331–342.

[19] H. Plattner, A Course in In-Memory Data Management: The Inner
Mechanics of In-Memory Databases. Springer, 2013.

[20] K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The Basic
Toolbox. Springer, 2008.

[21] H. Plattner and A. Zeier, In-Memory Data Management: An Inflection
Point for Enterprise Applications. Springer, 2011.

[22] F. Färber, S. K. Cha, J. Primsch, C. Bornhövd, S. Sigg, and W. Lehner,
“SAP HANA database: data management for modern business applica-
tions,” ACM SIGMOD Record, vol. 40, no. 4, 2011, pp. 45–51.

[23] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and
S. Madden, “HYRISE: a main memory hybrid storage engine,” Pro-
ceedings of the VLDB Endowment, vol. 4, no. 2, 2010, pp. 105–116.

147Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 156 / 173

Survey of RDF Storage Managers

Kiyoshi Nitta
Yahoo JAPAN Research

Tokyo, Japan
knitta@yahoo-corp.jp

Iztok Savnik
University of Primorska &

Institute Jozef Stefan, Slovenia
iztok.savnik@upr.si

Abstract—This paper surveys RDF storage manager imple-
mentations that belong to a kind of database system treating
locally stored RDF triples. They are systematically classified in
accordance with the properties of single and multiple process
technologies that include the following types: triple table, index
structure, query, string translation method, join optimization
method, cache, data distribution method, query process distribu-
tion method, stream process, and resource sharing architecture.
This classification is applied to 3store, 4store, Virtuoso, RDF-
3X, Hexastore, Apache Jena, SW-Store, BitMat, AllegroGraph, and
Hadoop/HBase. While the classification structure is presented for
each of them, detecting differences between them has become
easy. The classification revealed that there will be room for further
improvement of the efficient query process by developing multi-
process technologies.

Keywords— databases; RDF databases; distributed database
systems; query processing system; database system implementa-
tion.

I. INTRODUCTION

Resource description framework (RDF) data are widely
used in the Internet and their volume is growing steadily.
The linked open data (LOD) project promotes the acceleration
of the accumulation of RDF data to provide freely accessi-
ble on-line resources [1]. The LOD project leverages RDF’s
advantages by providing a data publishing principle. Each
data element can be distributed to any site of the Internet.
Distributed data are connected by RDF links that are also RDF
data and can be located on arbitrary sites. This strategy lowers
the barrier for publishers to distribute their data freely and
contributes to the accumulation of a huge amount of RDF data.
There are two major approaches to access those RDF data [2],
[3]:

(A-1) Local Cache
(A-2) Federated Search

Systems based on (A-1) gather a subset of RDF data on local
computational resources to accelerate the processing of queries
on frequently referenced data. After accepting user queries,
systems based on (A-2) distribute sub-queries to several search
services distributed over the Internet and integrate replies from
them to obtain updated data that is as fresh as possible.
While most practical access methods may be constructed by
combining these two approaches, technologies used in (A-1)
will play an important role for query process efficiency. This
paper surveys the challenges and solutions for developing RDF
storage managers based on (A-1).

There are three notable survey papers related to RDF
storage managers. The RW’11 tutorial [2] gives the most com-
prehensive survey about scalable RDF processing technologies

including centralized RDF repositories, distributed query pro-
cessing, and scalable reasoning. This tutorial precisely explains
distributed query processing system architectures that include
semantic web search engines, federated systems, and P2P
systems. The SIGMOD’12 tutorial [3] classified approaches
for query processing over linked data into a centralized storage
approach and distributed storage approach [2]. The centralized
storage approach contains triple-stores based on relational
database management systems, matrix, XML, and graph. Sakr
and Al-Naymat [4] classified triple-stores based on relational
database management systems into three categories: a) vertical
(triple) table stores, b) property (n-ary) table stores, and c)
horizontal (binary) table stores. This classification scheme
is also explained in the above tutorials [2], [3]. The core
classification structure introduced in these papers is almost the
same.

Each survey paper provides a classification structure that
classifies research efforts so far by focusing on the distinguish-
ing aspects of researches. These survey papers provide useful
insights and perspectives about component technologies of
RDF storage managers. However, most researches implement
prototype or practical systems that are equipped with combi-
nations of useful technologies. It will be useful for researchers
interested in RDF storage manager implementations to provide
another type of classifications that gives several attributes to
each research system. The contributions of this paper can be
summarized as follows:

• Provides systematic classification of RDF storage
manager implementations.

• Easily detects differences between given RDF storage
manager implementations.

• Pick up attributes concerning effective processes by
multi-process environments.

There are Internet pages that classify RDF storage man-
agers. A Wikipedia page [5] provides the most comprehensive
list of RDF storage managers (triplestores) with license and
API function information. The W3C page [6] provides bench-
mark results of RDF storage managers for storing large-scale
RDF data sets. While this paper provides internal functional
information, those Internet pages may provide a useful per-
spective of RDF storage managers by combining information.

The rest of this paper is organized as follows. The Clas-
sification of RDF Storage Managers Based on Local Cache
Approach section introduces a classification framework of
RDF storage managers. The RDF storage managers section
reports each characteristic of existing RDF storage managers
using the classification framework. The Challenges section

148Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 157 / 173

discusses a few challenges inspired by comparing RDF storage
managers. This paper is concluded in the Conclusion section.

II. CLASSIFICATION OF RDF STORAGE MANAGERS
BASED ON LOCAL CACHE APPROACH

RDF storage managers in the local cache approach
can be classified in accordance with several aspects. RDF
storage managers are represented by RSM(S,M), where
S and M show attributes of single and multiple pro-
cess issues, respectively. Attribute set S has structure
S(Ts, Is, Qs, Ss, Js, Cs, Ds, Fs). Attribute Ts is the triple ta-
ble type. It has one of the values of vertical (v), property (p),
and horizontal (h). These classes of triple tables are introduced
and defined by Sakr et al. [4]. Attribute Is is the index
structure type of triple table. It has one of the values of 6-
independent (6), GSPO-OGPS (G), and matrix (m). Attribute
Qs is the query type. It has one of the values of SPARQL
(S) and original (o). Attribute Ss is the translation method
type of URI and literal strings. It has one or combonation
of the values of URI (U), literal (l), long (o) and none (n).
Values URI and literal mean ID translations of URI and
literal strings, respectively. Value long means that only long
URIs and literals are translated to identifiers. Attribute Js is
the join optimization method type. It has one of the values
of RDBMS-based (R), column-store-based (c), conventional-
ordering (o), pruning (p), and none (n). Attribute Cs is the
cache type. It has one of the values of materialized-path-index
(m), reified-statement (r), and none (n). Attribute Ds is the
dabase engine type. It has one of the values of RDB (R) and
custom (c). Attribute Fs is the inference feature type. It has one
or combination of the values of TBox (T), ABox (A), and no (n).
While value TBox means inference features on the ontology
level, value ABox means ones on the assertion level.

Attribute set M has structure M(Dm, Qm, Sm, Am). At-
tribute Dm is the data distribution method type. It has one of
the values of hash (h), data-source (d), and none (n). Attribute
Qm is the query process distribution method type. It has one of
the values of data-parallel (p), data-replication (r), and none
(n). Attribute Sm is the stream process type. It has one of
the values of pipeline (p) and none (n). Attribute Am is the
resource sharing architecture type. It has one of the values of
memory (m), disk (d), and nothing (n).

Because some implementations do not disclose internal
mechanisms, all attributes can have value unknown (). TABLE
I shows the summary of the classification. The details are de-
scribed in the next section. The values in the table correspond
to the characters in parenthesis of the above description of
possible values.

III. RDF STORAGE MANAGERS

This section provides a detailed description of each RDF
storage manager system. As there are many such systems, we
omitted some systems due to space limitations.

A. 3store

The attributes of this implementation are as follows:
Ts = vertical, Qs = SPARQL, Ss = string id, Js =
RDBMS based, Ds = RDB, Fs = TBox, Dm = none,
Qm = none, Sm = none. 3store [7] was originally used

for semantic web applications in particular for storing the
hyphen.info RDF data set, which describes computer science
research in the UK. The final version of the database consisted
of 5,000 classes and about 20 million triples. 3store was imple-
mented on top of the MySQL database management system.
It included simple inferential capabilities e.g., class, sub-class,
and sub-property queries, that are mainly implemented by
means of MySQL queries. Hashing is used to translate URIs
into an internal form of representation.

The 3store query engine used RDQL query language
originally defined in the framework of the Jena project. RDQL
triple expressions are first translated into relational calculus.
Constraints are added to relational calculus expressions and
translated into SQL. The inference is implemented by a
combination of forward and backward chaining that computes
the consequences of the asserted data.

B. 4store

The attributes of this implementation are as follows:
Ts = vertical, Qs = SPARQL, Ss = string id, Js =
conventional ordering, Ds = RDB, Dm = hash, Qm =
data parallel, Am = nothing. 4store [8] was designed
and implemented to support a range of novel applications
that have emerged from the semantic web. RDF databases
were constructed from web pages including people-centric
information resulting from ontology with billions of RDF
triples. The requirements were to store and manage 15x109

triples. The design of 4store is based on 3store especially in
the way RDF triples are represented.

4store is designed to operate on clusters of low-cost servers,
and is implemented in ANSI C. It was estimated that the
complete index for accessing quads would require around 100
GB of RAM, which was the reason for distributing data to
a cluster of 64-bit multi-core x86 Linux servers with each
cluster storing an RDF data partition. The cluster architecture
is ”shared nothing” architecture. Cluster nodes are divided
into processing and storage nodes. Data segments stored on
different nodes are determined by a simple formula. The
formula uses resource identifiers (RID) that are indexes of
URIs, literals and blank nodes. When triples are distributed
to segments, RID of the triple subject is divided by number of
segments. The remaining part of this calculation determines
segment number of triple. One of the benefits of such a
design is parallel access to RDF triples distributed to nodes
holding segments of RDF data. Furthermore, segments can be
replicated to distribute the total workload to the nodes holding
replicated RDF data. The communication between nodes is
directed by processing the nodes via TCP/IP. There is no
communication between data nodes.

URIs are represented using resource identifiers that are
similarly to those of 3store that were obtained by means of
hashing. Triples are represented as quads. Each quad in a
particular segment is stored in three indexes. Two of them
are implemented using radix tries because of O(k) time com-
plexity. The third index is used to access graphs by using a
hash table.

The 4store query engine is based on relational algebra.
A Rasqal SPARQL parser is used for parsing SPARQL
queries. Queries are processed by SPARQL blocks. First, the

149Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 158 / 173

TABLE I. PROPERTIES OF RDF STORAGE MANAGERS

S M
Ts Is Qs Ss Js Cs Ds Fs Dm Qm Sm Am

3store v S U R R T n n n
4store v S U o R h p n

Virtuoso v G S Ulo R R TA n n n
RDF-3X v 6 S Ul o R n n n

Hexastore v 6 o Ul n n n n
Apache Jena p S Ulo R r R n n n

SW-Store h Uo c m c n n n
BitMat v m S Ul p c p

AllegroGraph S c h p m
Hadoop/HBase h c p m

UNION expressions are collapsed. Next, FILTER expressions
are evaluated. Joins are then performed on the remaining
blocks. Finally, any remaining FILTERs, ORDER BYs, and
DISTINCTs are applied. The primary source of optimization
is the conventional join ordering. However, they also use
common subject optimization and cardinality reduction. In
spite of considerable work on query optimization, 4store lacks
complete query optimization as it is provided by relational
query optimizers.

C. Virtuoso

The attributes of this implementation are as follows:
Ts = vertical, Is = GSPO OGPS, Qs = SPARQL,
Ss = string id, Js = RDBMS based, Ds = RDB,
Fs = TBox,ABox, Dm = none, Qm = none, Sm = none.
Virtuoso [9]–[11] is a multi-model database management
system based on relational database technology. Besides the
functionality of the relational database management system, it
also provides RDF data management, XML data management,
content management, and a Web application server.

The approach of Virtuoso is to treat triple-store as a table
composed of four columns. The main idea of the approach
to RDF data management is to exploit existing relational
techniques and add functionality to the RDBMS to deal with
features specific to RDF data. The most important aspects that
were considered by Virtuoso designers are: extending SQL
types with the RDF data type, dealing with unpredictable sizes
of objects, providing efficient indexing and extending relational
statistics to cope with the RDF store based on a single table
as well as efficient storage of RDF data.

The initial solution for storing RDF triples is the use of a
quad table storing attributes: subject (S), predicate (P), object
(O), and graph (G). Columns S, P, and G are represented as
IRI ID. Column O is represented by ID only if it is longer
than 12 characters. The mapping between IRIs and local IDs
is stored in a table, and the mapping between the long values
of O and IDs is stored in a separate table.The quad table is
represented using two covering indexes based on the GSPO
and OGPS attributes. Since S is the last part of OGPS we
can represent it using bitmaps. We have one bitmap for one
distinctive value of OGP. Compression is used on page level,
which still allow random page access.

Virtuoso includes SPARQL into SQL. SPARQL queries
are translated into SQL during parsing. In this way, SPARQL
has all aggregation functions. SPARQL UNION is translated
directly into SQL, and SPARQL OPTIONAL is translated into
left outer join. Since RDF triples are stored in one quad table,
relational statistics is not useful. Virtuoso uses sampling during
query translations to estimate the cost of alternative plans.
Basic RDF inference on TBox is done using query rewriting.
For ABox reasoning Virtuoso expands semantics of owl:same-
as by transitive closure.

D. RDF-3X

The attributes of this implementation are as follows:
Ts = vertical, Is = 6 independent, Qs = SPARQL,
Ss = string id, Js = conventional ordering, Ds = RDB,
Dm = none, Qm = none, Sm = none. The triple-store RDF-
3X reported by Neumann and Weikum [12], [13] built six
independent indexes of SPO, SOP, OSP, OPS, PSO and POS
(S, P, and O represent the subject, predicate, and object of the
RDF triple element, respectively.) from one large triple table.
The indexes are compressed using a byte-wise method that was
carefully chosen to improve query process performance. They
also constructed aggregated indexes for SP, PS, SO, OS, PO,
and OP. They focused on join ordering to optimize the query
process. The optimization uses selectivity statistics calculated
for given queries using selectivity histograms and statistics of
frequently accessed paths. Although it is equipped with a table
to treat long URI strings as simple IDs, it has been pointed
out that its translation performance was very bad [14].

They compared the RDF-3X system with PostgreSQL and
MonetDB. They tried Jena2, Yars2, and Sesame 2.0, but those
systems could not finish storing benchmark data in 24 hours in
their experimental environment. The benchmark data contained
the Barton data set (5.1× 107 triples, 1.9× 107 IDs, and 285
types of properties), YAGO data set (4.0 × 107 triples, 3.3 ×
107 IDs, and 93 types of properties), and LibraryThing data
set (3.6 × 107 triples, 9.3 × 106 IDs, and 3.3 × 105 types of
properties). RDF-3X exceeded other systems by large margins.
The source code is available for non-commercial purposes.

150Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 159 / 173

E. Hexastore

The attributes of this implementation are as fol-
lows: Ts = vertical, Is = 6 independent, Qs =
original(customwrapped), Ss = strings id, Js =
unknown(itseemsnone), Cs = none, Dm = none, Qm =
none, Sm = none. The Hexastore [15] approach to the
RDF storage system uses triples as the basis for storing RDF
data. The problems of existent triple-stores investigated are
the scalability of RDF databases in a distributed environment,
complete implementation of the query processor including
query optimization, persistent indexes, and other topics pro-
vided by database technology.

Six indexes are defined at the top of the table with three
columns, one for each combination of three columns. The
index used for the implementation has three levels ordered
by the particular combination of SPO attributes. Each level
is sorted, giving in this way the means to use ordering for
optimization during query evaluation. The proposed index
provides natural representation of multi-valued properties and
allows fast implementation of merge-join, intersection, and
union.

F. Apache Jena

The attributes of this implementation are as follows:
Ts = property, Qs = SPARQL, Ss = string id, Js =
RDBMS based, Cs = reified statement, Ds = RDB,
Dm = none, Qm = none, Sm = none. In terms of the
body of knowledge grown from the database community, Jena
is a database programming language environment based on
RDF for Java [16], [17], [18], [19]. It provides a simple
abstraction and interface for manipulation of RDF graphs
represented in main memory and backed by the database
engine. The persistence of RDF graphs is achieved using a
SQL database through a JDBC connection. Jena supports a
number of database systems such as MySQL, Postgres, Oracle,
and BerkeleyDB. At the core interface for manipulation of
RDF graphs, Jena includes a range of RDF parsers, query
language, and I/O modules for N3, N-Triple, and XML/RDF.

RDF statements are in a database-back-end of Jena repre-
sented using three tables. The URIs of resources are converted
to indexes represented in one table. Larger literals are repre-
sented in another table while small literals are stored directly
in a statement table. Finally, triples are stored in statement
tables using indexes for resources and larger objects. Jena uses
additional optimizations for fast access to common statements
of a graph and reified statements. Furthermore, graphs can be
stored in different sets of tables to improve the speed of query
processing.

In Jena, persistence is achieved through persistent logical
graphs composed of specialized graphs optimized for storing
particular types of graphs. The database driver realizes access
to databases abstracted away from particular database systems,
each of which has their particular driver.

On a database level Jena includes three types of operations:
operation ‘add’ that inserts new triples in a database, operation
‘delete’ that removes RDF statements from a database, and
operation ‘find’ that retrieves RDF statements from a database.
Query language RDQL converts SPARQL statements into a

set of find patterns including variables that can be executed as
joins. While Jena1 includes a query processing engine that
does not include query optimization in a database system
sense, Jena2 passes on queries to the database engine. Query
optimization thus takes place in a database engine. Finally,
Jena2 includes mechanisms for efficient retrieval of reified
statements.

G. SW-Store

The attributes of this implementation are as follows: Ts =
horizontal, Ss = string id, Js = column store based,
Cs = materialized path index, Ds = custom, Dm =
none, Qm = none, Sm = none. Abadi proposes the use of
vertical partitioning for the representation of RDF databases
[20]. The advantages of using column-stores for storing RDF
are: efficient representation of NULL values; efficient imple-
mentation of multi-valued attributes; support for heterogeneous
records; efficient merge-joins of sorted columns; and reduced
number of unions in queries. To achieve fast access to selected
access paths, they are materialized.

Database management system SW-Store [21] is based on
vertical partitioning of RDF data. It has been shown that
storage system based on columns can significantly improve
some types of queries on RDF databases. Column-oriented
storage system in SW-Store is improved by using column-
oriented compression; optimization for fixed length tuples;
optimization of merge-join code; using column oriented query
optimization; and by materialized path expressions. Empirical
results support the proposed use of column-oriented store in
comparison to triple-store representation and property table
representation of RDF database.

While above presented novel features of column-oriented
data stores are important, it seems that the most important
contribution of SW-Store is to show the possibility to use
simple tools like sorting and map-based indexes on large-scale
distributed clusters of servers. The simplicity of tools, on one
hand, and the possibility of using database technologies like
query optimization on column-stores, on the other, can result
in very efficient query execution.

H. BitMat

The attributes of this implementation are as follows: Ts =
vertical, Is = matrix, Qs = SPARQL, Ss = string id,
Js = pruning, Ds = custom, Sm = pipeline. The triple-
store reported by Atre et al. [14] used a three dimensional
compressed matrix index named BitMat. It avoids maintaining
materialized triples as much as possible. Its query processing
algorithm of SPARQL joins consists of two phases. The first
phase performs efficient pruning of the triples. The second
phase performs variable binding matching across the triple pat-
terns to obtain the final results. Both two steps use compressed
BitMats without any join table construction.

The BitMat index triple-store performed better than RDF-
3X [12] for some queries that require managing large number
of triples during join processes. They classified triple-pattern
join queries to three types: a) highly selective triple patterns,
b) triple patterns with low-selectivity but which generate few
results, and c) low-selectivity triple patterns and low-selectivity
join results. The BitMat system performed well processing
type b) queries.

151Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 160 / 173

I. AllegroGraph

The attributes of this implementation are as follows:
Qs = SPARQL, Ds = custom, Dm = hash, Qm =
data parallel, Am = memory. AllegroGraph [22] is a
triple store built on an object store AllegroCache. They are
proprietary products of Franz Inc. The precise architecture
of AllegroGraph has not been fully disclosed. The strongest
point is its capacity limit and processing speed. A clustered
version of AllegroGraph stored 1 trillion triples in about 14
days [23]. In the scalability ranking of triple stores edited by
W3C [6], AllegroGraph is ranked first as of August 2011. Its
benchmark experiments were performed using PC servers that
have huge memories (from 48GB to 1TB). AllegroGraph does
not necessarily perform materialization to process queries. We
could not find enough information about how the clustered
version distributes data and optimizes query processes.

J. Hadoop/HBase

The attributes of this implementation are as follows: Ts =
horizontal, Ds = custom, Qm = data parallel, Am =
memory. Hadoop [24] offers software environment for the
implementation of large-scale distributed systems processing
data on clusters of servers. It was initially designed to support
fast distributed processing of very large HTML graphs. Hadoop
allows for the implementation of data centers comprised of up
to many 1000 servers.

The basis of Hadoop includes a set of interfaces to dis-
tributed file system, general I/O operations, RPC, serialization,
and persistent data structures. A distributed file system HDFS
runs on large clusters of commodity machines. MapReduce
model allows for efficient manipulation of sequential data files
(SequenceFile) in distributed cluster of servers. Dictionary data
structure for indexing records based on keys (MapFile) is used
to support efficient implementation of operation map.

Sorted sequence files and map indexes provide program-
ming environment for the implementation database operations
such as selection, projection and joins. Hadoop includes data-
flow programming language Pig, which can realize some forms
of classical database operations. However, sorted files and
map-based index (dictionary) provide limited basis for the
implementation of database structures and operations. For
instance, merge joins can be implemented efficiently while
index-based joins and range queries can not be implemented
without extending the functionality of Hadoop.

HBase [25] is column-oriented database system imple-
mented on top of Hadoop. It was initially based on ideas
of Google’s Bigtable [26]: database comprises a large set of
columns describing HTML files that represent rows of the
table. HBase is designed for horizontal distribution of tables
into regions that are managed by one server. Map-reduce
techniques can be employed to process table rows. Abadi has
shown in [20] that RDF can be efficiently stored by means of
column-oriented stores.

IV. CHALLENGES

While an accompany paper provides a comprehensive list
of challenges on RDF storage managers, this section discusses
a few challenges inspired by viewing TABLE I.

Listed RDF repositories recorded more varied values with
S attributes than with M attributes in TABLE I. Most M
attributes have none or unknown values. This means that re-
searches so far have succeeded in achieving good performances
by developing single process technologies. While practical
semantic web applications tend to process large-scale data sets,
solutions based on data distribution parallelism have become
more popular. There will be room for further improvement
of efficient query processes by developing multi process tech-
nologies considering the situation.

Caching techniques have not been researched that much.
Only Apache Jena and SW-Store reported confirming the
efficiency of caching techniques. Those performances depend
upon types of queries and the number of different queries.
Technologies for automatic investigation and classification of
processing queries might become important to utilize caching
technologies.

Many researches have been carried out for developing
efficient join algorithms with index structures. This area has a
long history in the research of database management systems
[27]. While the accumulated RDF data-set is rapidly growing
and SPARQL queries are basically constructed from joins of
triple patterns, join operations will be applied more strongly
in semantic web applications. The multi-process technologies
mentioned above might produce breakthroughs of efficient join
operations.

Because the standard data access method for the RDF
data-set is W3C’s recommendation SPARQL, most RDF stor-
age managers can accept SPARQL queries. The semantics
of SPARQL is clearly described using RDF algebra [28],
[29], [30]. SPARQL-based RDF storage managers rarely cause
semantic mismatch due to the existence of proposed RDF
algebras. These papers also reveal that some kinds of SPARQL
expressions require huge computational cost. Most of these
expressions are constructed by using the OPTIONAL operator.
While this operator was introduced to make the query language
convenient enough, efficient processing of such queries will be
one of the most crucial challenges of RDF storage managers.

V. CONCLUSION

This paper surveyed the RDF storage manager implemen-
tations based on the local cache approach by introducing the
systematic classification structure RSM(S,M). This clas-
sification was applied to 3store, 4store, Virtuoso, RDF-3X,
Hexastore, Apache Jena, SW-Store, BitMat, AllegroGraph, and
Hadoop/HBase. The RSM structure was presented for each of
them, so detecting the differences between them became easy.
By having the M part in RSM structure, the classification
revealed that there will be room for further improvement
of the efficient query process by developing multi process
technologies.

VI. ACKOWLEDGEMENT

This work was supported by the Slovenian Research
Agency and the ICT Programme of the EC under PlanetData
(ICT-NoE-257641).

152Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 161 / 173

REFERENCES

[1] C. Bizer, T. Heath, and T. Berners-Lee, “Linked data - the story so far,”
Int. J. Semantic Web Inf. Syst., vol. 5, no. 3, pp. 1–22, 2009.

[2] K. Hose, R. Schenkel, M. Theobald, and G. Weikum, “Database
foundations for scalable rdf processing,” in Proceedings of
the 7th international conference on Reasoning web: semantic
technologies for the web of data, ser. RW’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 202–249. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2033313.2033317

[3] A. Harth, K. Hose, and R. Schenkel, “Database techniques for
linked data management,” in Proceedings of the 2012 ACM SIGMOD
International Conference on Management of Data, ser. SIGMOD ’12.
New York, NY, USA: ACM, 2012, pp. 597–600. [Online]. Available:
http://doi.acm.org/10.1145/2213836.2213909

[4] S. Sakr and G. Al-Naymat, “Relational processing of rdf queries: a
survey,” SIGMOD Rec., vol. 38, no. 4, pp. 23–28, Jun. 2010. [Online].
Available: http://doi.acm.org/10.1145/1815948.1815953

[5] “Triplestore,” http://en.wikipedia.org/wiki/Triplestore, 2013, [retrieved
Dec. 2013].

[6] “Largetriplestores,” http://www.w3.org/wiki/LargeTripleStores, 2011,
[retrieved Dec. 2013].

[7] S. Harris and N. Gibbins, “3store: Efficient bulk rdf storage,” in 1st
International Workshop on Practical and Scalable Semantic Systems
(PSSS’03), 2003, pp. 1–15, event Dates: 2003-10-20. [Online].
Available: http://eprints.soton.ac.uk/258231/

[8] S. Harris, N. Lamb, and N. Shadbolt, “4store: The design and im-
plementation of a clustered rdf store,” in Proceedings of the The 5th
International Workshop on Scalable Semantic Web Knowledge Base
Systems, 2009.

[9] O. Erling and I. Mikhailov, “Rdf support in the virtuoso dbms,” in
CSSW, 2007, pp. 59–68.

[10] ——, “Rdf support in the virtuoso dbms,” in Networked Knowledge -
Networked Media, ser. Studies in Computational Intelligence, vol. 221,
2009, pp. 7–24.

[11] OpenLink Virtuoso Universal Server: Documentation, OpenLink Soft-
ware Documentation Team, 2009.

[12] T. Neumann and G. Weikum, “Rdf-3x: a risc-style engine for rdf,”
Proc. VLDB Endow., vol. 1, no. 1, pp. 647–659, Aug. 2008. [Online].
Available: http://dl.acm.org/citation.cfm?id=1453856.1453927

[13] ——, “The rdf-3x engine for scalable management of rdf data,” The
VLDB Journal, vol. 19, no. 1, pp. 91–113, Feb. 2010. [Online].
Available: http://dx.doi.org/10.1007/s00778-009-0165-y

[14] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler, “Matrix ”bit”
loaded: a scalable lightweight join query processor for rdf data,” in
Proceedings of the 19th international conference on World wide web,
ser. WWW ’10. New York, NY, USA: ACM, 2010, pp. 41–50.
[Online]. Available: http://doi.acm.org/10.1145/1772690.1772696

[15] C. Weiss, P. Karras, and A. Bernstein, “Hexastore: sextuple
indexing for semantic web data management,” Proc. VLDB Endow.,
vol. 1, no. 1, pp. 1008–1019, Aug. 2008. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1453856.1453965

[16] K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds, “Efficient rdf
storage and retrieval in jena2,” Enterprise Systems and Data Manage-
ment Laboratory, HP Laboratories Palo Alto, Tech. Rep. HPL-2003-266,
2003.

[17] B. McBride, “Jena: A semantic web toolkit,” IEEE Internet
Computing, vol. 6, no. 6, pp. 55–59, Nov. 2002. [Online]. Available:
http://dx.doi.org/10.1109/MIC.2002.1067737

[18] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne,
and K. Wilkinson, “Jena: implementing the semantic web
recommendations,” in Proceedings of the 13th international World
Wide Web conference on Alternate track papers & posters, ser.
WWW Alt. ’04. New York, NY, USA: ACM, 2004, pp. 74–83.
[Online]. Available: http://doi.acm.org/10.1145/1013367.1013381

[19] A. Owens, A. Seaborne, N. Gibbins, and mc schraefel, “Clustered tdb:
A clustered triple store for jena,” in WWW2009, November 2009.
[Online]. Available: http://eprints.soton.ac.uk/266974/

[20] D. J. Abadi, A. Marcus, S. R. Madden, and K. Hollenbach,
“Scalable semantic web data management using vertical partitioning,”
in Proceedings of the 33rd international conference on Very large
data bases, ser. VLDB ’07. VLDB Endowment, 2007, pp. 411–422.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1325851.1325900

[21] ——, “Sw-store: a vertically partitioned dbms for semantic web data
management,” The VLDB Journal, vol. 18, no. 2, pp. 385–406, Apr.
2009. [Online]. Available: http://dx.doi.org/10.1007/s00778-008-0125-y

[22] AllegroGraph 4.11 Introduction, Franz Inc., 2013.
[23] “Franz’ s allegrograph(r) sets new record on intel(r) xeon(r)

e7 platform,” http://www.franz.com/about/press room/Franz-Intel 6-7-
11.lhtml, 2011, [retrieved Dec. 2013].

[24] T. White, Hadoop: The Definitive Guide. O’Reilly Media, Inc., 2009.
[25] L. George, HBase: The Definitive Guide. O’Reilly Media, Inc., 2011.
[26] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,

M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
a distributed storage system for structured data,” in Proceedings
of the 7th USENIX Symposium on Operating Systems Design
and Implementation - Volume 7, ser. OSDI ’06. Berkeley, CA,
USA: USENIX Association, 2006, pp. 15–15. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267308.1267323

[27] R. Ramakrishnan and J. Gehrke, Database Management Systems,
3rd ed. New York, NY, USA: McGraw-Hill, Inc., 2003.

[28] R. Angles and C. Gutierrez, “The expressive power of sparql,” in
Proceedings of the 7th International Conference on The Semantic
Web, ser. ISWC ’08. Berlin, Heidelberg: Springer-Verlag, 2008,
pp. 114–129. [Online]. Available: http://dx.doi.org/10.1007/978-3-540-
88564-1 8

[29] J. Pérez, M. Arenas, and C. Gutierrez, “Semantics and complexity of
sparql,” ACM Trans. Database Syst., vol. 34, no. 3, pp. 16:1–16:45, Sep.
2009. [Online]. Available: http://doi.acm.org/10.1145/1567274.1567278

[30] M. Schmidt, M. Meier, and G. Lausen, “Foundations of sparql query
optimization,” in Proceedings of the 13th International Conference on
Database Theory, ser. ICDT ’10. New York, NY, USA: ACM, 2010, pp.
4–33. [Online]. Available: http://doi.acm.org/10.1145/1804669.1804675

153Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 162 / 173

Design of Distributed Storage Manager for Large-Scale RDF Graphs

Iztok Savnik
University of Primorska &

Institute Jǒzef Stefan, Slovenia
iztok.savnik@upr.si

Kiyoshi Nitta
Yahoo Japan Research

Tokyo, Japan
knitta@yahoo-corp.jp

Abstract—Storage and management of large-scale RDF repos-
itories is a challange that may be compared to storage and
management of large-scale HTML repositories. The main dif-
ference is in the modelling power of RDF data model comparing
it to HTML hyper-graph model. RDF is much closer to the
database data model and requires the capabilities of database
management system rather than those offered by informational
retrieval query engine. Triple-based storage systems seem to
provide the functionality needed for storing RDF graphs. Triples
are very natural means for the representation of graphs at
various levels of abstraction. To cope with growing demand for
querying large-scale triple-stores including up to several Tera
triples we propose the use of massively parallel system that can
be dynamically configured for particular queries into a set of
parallel data-flow machines. The paper presents the design of
large-scale triple-store database systembig3store.

Keywords-databases; RDF databases; distributed database systems;
query processing system; database system implementation.

I. I NTRODUCTION

There exists a growing interest to gather, store and query
data from various aspects of human knowledge including
geographical data; data about various aspects of human ac-
tivities (like music, literature, and sport); scientific data (from
biology, chemistry, astronomy and other scientific fields);as
well as data presenting the activities of governments and other
important institutions.

There is consensus that data should be presented in some
form of graph data model, where simple and natural abstrac-
tions are used to represent data assubjectsand theirproperties
described byobjects, that is, by means of nodes and edges of
a graph. Seeing this from the point of view of knowledge
developed in the fields of data modeling and knowledge
representation, all existing data models and languages forthe
representation of knowledge can be transformed, many times
very naturally, to some form of agraph.

There exist a number of practical projects that allow for
gathering and storing graph data. One of the most famous
examples is Linked Open Data (LOD) project that gathered
more than 32 giga triples from the areas such as media,
geography, government, life sciences and others. The language
employed for the representation of data is Resource Descrip-
tion Framework (RDF), which is a form of graph data model.

Storing and querying such huge amounts of structured data
represent a problem that could be compared to the problem of

querying huge amounts of text that appeared after the advent
of Internet. The differences are in the degree of structure and
semantics that data formats such as RDF and Web Ontology
Language (OWL) encompass comparing them to HyperText
Markup Language (HTML). HTML data published on Internet
represents a huge hypergraph of documents interconnected
with links. Links between documents do not carry any specific
semantics except representing URIs.

Differently to HTML, RDF is a data modelwhere all
data are represented by means of triples (subject, predicate,
object). In this format, one can represent entities and their
properties in a similar way as provided in object-oriented
models or AI frames. One can represent objects at different
levels of abstraction: RDF can serve to model ordinary data,
data modeling schemata as well as meta-data.

Primary modeling principle of RDF is assignment of spe-
cial meaning to properties with selected names. In this way,we
can define the exact meaning of properties that are commonly
used to describe documents, persons, relationships and others.
Vocabularies are employed to standardize the meaning of
properties. For example, Dublin Core [5] project defined a
set of common properties of things. Next, XML-schema [24]
vocabulary defines the properties that can specify types of
objects. Furthermore, vocabularies of properties and things are
used to define higher-level data models realized on top of RDF.
Such examples include, RDF Schema [17] as well as OWL
[16] that provide object-oriented data modeling facilities and
constructs for the representation of logic.

A. Challenges in storing and querying RDF

The amount of data in the form of triples gathered world-
wide is expected to grow further towards peta (i.e.,10

15)
triples so that existing techniques for storing and accessing
data will have to be adapted. Something similar appeared
after the development of Internet, where search engines had
to cope with huge hypergraph of documents including many
giga documents. It seems a natural choice to tend to use similar
methods to deal with the problem.

The leading idea of our approach is the use of massively
parallel systems where data and query processing are dis-
tributed to many data servers. The challenges and problems
that will be addressed are the following.

1) Definition of namespace of RDF triple-store,
2) Automatic distribution and replication of RDF data,

154Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 163 / 173

3) Intelligent distribution of query processing,
4) Dynamic updates in RDF storage manager,
5) Multi-threaded architecture of query executor, and
6) Distributed cache for query executor.

The first problem deals with definition of methods for
naming entities and triples of database that will allow efficient
way of managing huge amounts of structured data distributed
and replicated to thousands of servers as one uniform name
space. Naming schema must include ways to dynamically
allocate data server for the execution of query optimally with
regards to distance of data server in the network and the
execution load of replicas.

The second challenge is about the design of schemas
for distribution and replication of data to distributed servers
so that optimal computation load is achieved. While manual
distribution may seem possible, the storage of peta tripleswith
data from all areas of human interest may require automatic
distribution of data, which must be placed on distributed data
server in such manner that query execution will be balanced
among the servers.

Large number of servers that store distributed database
require intelligent distribution of query processing to achieve
appropriate response time to queries. This is covered by
challenge 3. The uniform distribution schemas like hashing
do not take into account semantics and structural properties
of data resulting in the distribution where data on particular
subject is scattered to too many data servers. The distribution
of data based on semantics of data may result more efficient
configuration of data servers for fast execution of queries.

In light of recent proposals for architecture of super-
computers presented in [8] and by using the knowledge from
the area of distributed query processing, we propose the use
of global distributed query optimization, which results in
optimal distributed query tree and a configuration of data
servers forming a fastdataflow machine. Similar to super-
computer systems the execution is comprised of two phases:
in first phase the program or query, in our case, is optimized
resulting specific dataflow machine configuration, and, in the
second phase, the program executes on the specific hardware
configuration, or in our case, on selected configuration of data
servers.

Challenge 4 deals with updates of RDF databases. While
most RDF data published through Linked Data community
are stable, some portions of data are dynamically updated
or found. Examples of such data would represent stock data,
scientific data, or data presenting the state of institutions. With
the growth of RDF databases the problem of updating RDF
databases will become more important. Triple-store including
very large quantities of data must be designed to provide
capabilities for keeping track of changes in existing datasets
as well as adding new RDF datasets.

Large-scale parallel computer systems can be recently
constructed using commodity hardware that includes multi-
processor systems and multi-threaded CPUs. It becomes more
demanding to design triple-store architecture that maximizes
query execution performance by utilizing concurrency of
processes or threads running on large clusters of servers
equiped with multiple processors. This problem is the topic

of challange 5. We will provide the design of big3store,
which exploits process and thread parallelism, by constructing
custom parallel architecture of big3store using programming
constructs of Erlang.

Finally, large-scale distribution of data and query process-
ing in big3store calls for efficient architecture ofmemory
hierarchythat will exploit locality of data. The design of local
cache of data servers is presented as challange 6. The leading
idea of architecture of local cache will be its tight interrelation
with query processor system, which will tend to tie data servers
to particular users, and for processing particular portionof
data. Data gathered in a cache of data server will contain
“local” data most probably needed for processing subsequent
queries assigned to a given data server.

B. Outline

The rest of the paper is organized as follows. Section II
presents architecture of RDF storage manager big3store. Stor-
age manager is distributed to an array of servers including
front servers and data servers, as described in Section II-
A. Distribution of RDF database is discussed in Section II-
B. Functions of front servers and data servers are described
in Sections II-C and II-D. Some implementation aspects of
big3store are presented in Section III. In particular, we describe
distributed cache in Section III-A, distributed query execution
in Section III-B, distributed query optimization in Section
III-C, and architecture of dynamic updates in Section III-
D. Related work is presented in Section IV and concluding
remarks are given in Section V.

II. A RCHITECTURE OFRDF STORAGE MANAGER

To provide fast access to big RDF databases and to allow
heavy workload storage manager has to provide facilities for
flexible distribution and replication of RDF data. Storage man-
ager has to be re-configurable to allow many servers to work
together in a cluster and to allow for different configurations
of clusters to be used when executing different queries.

Storage manager for big RDF databases should be based
on SPARQL and on algebra of RDF graphs [20]. To provide
more general and durable storage manager its design should
be based on ideas of graph databases [2]. Such a design would
allow adding interfaces for popular graph data models, besides
RDF, to be added later.

A. Storage manager as cluster of data servers

Possible distribution and replication is crucial for the
design of storage manager to be available globally and to
provide heavy workload that is to be expected if LOD data
is going to be used by masses.

Heavy distribution and replication is currently possible
because of the availability of inexpensive commodity hardware
for servers with huge RAM (1-100GB) and relatively large
disks. The same idea was used by Google while bootstrapping
and remains to be the main design direction for Google data
centers [9].

As further detailed in the sequel, cluster of data servers
can be easily configured into very fast data-flow machine
answering a particular SPARQL query. Similar idea appears

155Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 164 / 173

c

c

c

c

c

c

c

s

c

c

c

c

c

c

c

c

c

s

c

c

s

c

c

s

c scc c¦
¦
¦
XXX

,
,

,
,

,
,

, ¡
¡

¡
¡

¡
¡

2.

5.

1.

4.
3.

(a) (b)B

A

(c) (d) (e) (f)

Figure 1. Configuration of servers for particular query.

recently in the area of super-computers [8], where advancesin
hardware technologies allow preprocessor of compiler to con-
figure hardware facilities for a specific program. Program then
runs on specially configured hardware that gains considerable
speed.

The leading idea for distribution of SPARQL query pro-
cessing is splitting SPARQL query into parts that are executed
on different data servers in such way that the processing time
of query is minimal. Data servers executing parts of SPARQL
query are connected by streams of data to form cluster con-
figuration defined for a particular SPARQL query. As with
super-computers based on configuring intelligent hardwarewe
also have strict separation between two phases: compiling
the program into hardware configuration, and executing the
program on selected hardware configuration.

Figure 1 presents a cluster composed of two types of
servers:front serversrepresented as nodes of plane A, and
data serversrepresented as nodes of plane B. Data servers
are configured incolumnslabeled from (a) to (f). Complete
database is distributed to columns where each column stores
a portion of the complete database. The methods for the dis-
tribution of RDF data are discussed in the following sections.

Portion of database stored in a column is replicated into
rows labeled from 1 to 5. The number of rows for a particular
column is determined dynamically based on the query work-
load for each particular column. More heavy load we have
on a given column more row data servers will be chosen for
replication. The particular row used for execution of a query
is selected dynamically based on current load of servers in a
column.

A particular cluster configuration for answering a particular
SPARQL query is programmed by front servers where also
the optimization of SPARQL query takes place. Front server,
receives SPARQL query, parses it to query tree and performs
optimization based on algebraic properties of SPARQL set
algebra operations. Parts of query tree are sent to internaldata
servers to define cluster configuration used for particular query
execution.

B. Data distribution

The schema for distribution of RDF data to a cluster of
data servers has to be designed very carefully. The distribution
of RDF data in local data clusters has to be transparent
from outside world. Ideally, RDF data would be distributed
automatically aiming to distribute transaction load optimally
to data servers forming cluster on the basis of the transaction
load in a given time period.

RDF data stored in a data center is distributed tocolumns
of data servers that form the cluster. Each data server includes

a triple-store accessible through TCP/IP. Each column is com-
posed of an array of data servers referred to asrows that are
the replicas storing the same portion of big3store database.

Distribution of RDF data to columns can be defined in
more ways. Firstly, data can be split manually by assigning
larger datasets (databases) to columns. An example of such
dataset may be dbpedia. This may be practical solution used in
the initial phase of big3store implementation. Secondly, RDF
data can be split to columns automatically by using SPARQL
queries as the means to determine groups of RDF triples that
are likely to be accessed by one query. In this context, RDFS
classes are employed as the main subject of distribution as
suggested in [19]. Groups of classes that are usually accessed
together are assigned tocolumnswhere class instances are
stored.

The benefits of splitting a triple store in more separate data
stores (tables) has been shown ba Yan et al. in [25]: queries can
be executed few times faster. The reason for this can only be
the size and height of indexes defined for tables representing
triples. This means that few-times less blocks have to be read
from database if RDF data is distributed to different tables.

There are two points where automatic reconfiguration of
RDF database can be implemented. Firstly, complete database
may be automatically distributed into columns as described
above. Secondly, the degree of replication of portion of
database stored in a column has to be determined. In other
words, we have to determine how many rows (replicas) do we
need to process queries targeting particular column.

C. Front servers

Front servers are servers where SPARQL queries initiated
by remote user are accepted, parsed, optimized and then
distributed to data servers.

SPARQL parser checks the syntax of query and returns
diagnosis to the user as well as prepare the query tree for the
optimization phase. The most convenient approach to optimize
SPARQL query is to transform queries into algebra and use
algebraic properties for optimization. Algebra of RDF graphs
[20] designed for big3store is based on work of Angles and
Gutierrez [1] and the work of Schmidt et al. [22].

Algebra of RDF graphsreflects the nature of RDF graph
data model. While it is defined on sets, the arguments of
algebraic operation and its result are RDF graphs. Furthermore,
expressions of RDF graph algebra are graphs themselves.
Triple patterns represent the leafs of expressions. Graph pat-
terns are expressions that stand for graphs with variables in
place of some nodes and edges.

To be able to ship partial results of distributed query tree
among data servers algebra of RDF graphs use operationcopy
introduced by Daniels et al. in [4]. Operationcopy can be well
integrated with operations defined on graphs due to simple set
of algebraic rules that can be used forcopy.

Global query optimizerwill be based on rules and a
form of dynamic programming algorithm for optimization
of algebraic expressions [19]. Most of rules that apply to
relational query optimization can be used for graph patterns.
The operationcopy also has a well defined set of rules that

156Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 165 / 173

can be integrated with rules for relational operations. Thequery
optimization algorithm performs beam search guided by query
cost estimation. The statistics of big3store distributed database
stored with metadata server.

The result of query optimization for a given SPARQL query
is a query tree where operationscopy are placed optimally
representing the points where triples are shipped from one
data server to another one. The global query is therefore split
into parts that are executed on different data servers. Initially,
front server sends a query to a data server from a column that
includes data needed to process top level of query tree. Note
that all query parts are already in optimized form.

D. Data servers with local triple-store

In this section, we present the main features of distributed
query evaluation. Firstly, we give a general view of the evalu-
ation of distributed query. Next, we present some properties of
local triple-store and the evaluation of queries in local triple-
store.

Evaluation of distributed query

The primary job of data server is to evaluate query tree
received from front server or some other data server. Query tree
includes detailed information about access paths and methods
for implementation of joins used for processing the query.
We refer to such query tree asannotated query tree. Data
server evaluates annotated query tree as it is without further
optimization.

Triple store of data server accepts queries via TCP/IP and
returns results to the return address of calling server. The
communication between calling server and a given data server
is realized by means of streams of triples representing results
of query tree evaluation. When needed, the materialization of
stream results is handled by calling server.

Query tree can include parts that have to be executed on
some other data servers since data needed for a particular query
part is located at some other columns. Such query parts are
represented by query sub-trees with root nodes that denote
operationcopy. Again, query sub-trees can include more
instances of operationcopy, so the resulting structure of data
servers constructed for a particular SPARQL query can form
a tree.

Since operationcopy is implemented by using stream
of triples the query parts that form complete query tree can
execute in parallel. While data server processing query sub-tree
is computing the next triple to be consumed by a given data
server, this data server can process previously read tripleor
perform some other task like accessing local triples. Moreover
big3store can process many query parts in parallel functioning
as a parallel dataflow machine.

Local evaluation of queries

Let us now present the evaluation of query on local data
server. Let say that data server receives an annotated querytree
qt. Recall thatqt includes information about access paths to
tables of triples and algorithms to be used for implementation
of algebra operations.

Local triple-store includes the implementation of algebra
operations and implementation of access paths, i.e., methods
for accessing possibly indexed tables of triples. Algebraic
operations are: selection with or without the use of index;
projection; set operations union, intersection and difference;
and variants of nested-loop join with or without index where
the index is either index supporting equality joins or range
queries.

Non-distributed storage manager for storing triples and
indexes for accessing triples has to deal with very similar
problems that appear in relational and object-relational storage
managers. Since triple-stores are designed mainly around a
table with three or four columns we propose to use existent
implementation of local storage manager that implements
solutions from existent relational and object-relationaldatabase
technology.

We use local database management system of Erlang called
Mnesia to store tables of triples. Mnesia includes high-level
functions for accessing data stored in possibly distributed
tables. Although Mnesia does not support SQL, it provides
many practically useful features for distributed environment.
Any table can be configured as RAM table or disk table. It
supports horizontal partitioning for large tables and transac-
tion control for distributed table operations. Tables can be
reconfigured dynamically. Any Erlang object (complicated data
structure) can be stored in Mnesia. If a local triple table is
small enough, we might construct a fast in-memory storage
using Mnesia’s direct access functions. If a local table have to
store large amount of triples, we might construct distributed
and partitioned triple table using safe and robust transactions
supporting parallel operations for distributed repositories.

Let us now present also the implementation of operation
copy in more detail. Operationcopy implements a stream
between two data servers. The stream is realized by first
initiating the execution of sub-tree ofcopy (i.e., query part)
and requesting that the results are sent back to calling data
server by means of a stream. On caller side access to the
stream, i.e., the results of operationcopy, is realized as access
method that reads triples from the stream. that

III. O N IMPLEMENTATION OF BIG3STORE

The initial prototype of big3store is currently under de-
velopment in a high-level programming language Erlang. Er-
lang provides rich set of constructs convenient for distributed
programming and offers abstract programming environment to
allow rapid-prototyping. Successful implementation of initial
prototype will allow gradual improvement of big3store effi-
ciency that can result in a production version of the system.

A. Distributed cache

One of the most important principles used in database
management systems is to implement some form of memory
hierarchy where data read from the slow media is cached by
faster media. In this way, the access to slow media may speed-
up significantly. Implementation of distributed query execution
on cluster of data servers with huge quantities of RAM calls for
the use of memory hierarchy, i.e., exploitation of data fetched
or pre-fetched from the disk and then stored in main memory.

157Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 166 / 173

Local cache of data servers can be in Erlang environment
implemented by means of in-memory tables that store triples
read from disk tables. Access to tables storing triples can be
implemented by using additional database layer hiding the
access to in-memory tables before reading data from disk. Such
database layer would also allow seamless integration of other
database management systems besides Mnesia to be plugged
to query executor.

The problem of using local caches on data servers is
somehow similar to the problem of scheduling on multi-
processor systems that have access to RAM via bus. After
a process is executed on a particular processor the cache is
loaded with data used in execution of process. Similarly, after
a query tree is executed on a particular data server, cache is
loaded with data used in the execution of given query.

In the case of multiprocessor scheduling, the next invo-
cation of the same process should be executed on the same
processor that includes data used in previous invocations.In
the case of distributed query processing, if we select the same
data server for processing the next query in the session of
particular user we will most likely find some of data needed
for this query already in the cache. The algorithm that selects
the most appropriate row data server in a given column must
therefore takes into account the affinity of user sessions to
particular data servers.

The solution proposed in the area of process and thread
scheduling is to use two level scheduling. On the first level
process is, after creation, associated with particular processor.
On the second level of scheduling the processes associated
with particular processor are scheduled as in the case of uni-
processor system.

While the task of particular query can be compared to
process, we can also compare the access to database system
(albeit local to each data server) to the access to common RAM
in the case of multiprocessor scheduling. Seeing this from the
point of view of distributed query processing, user sessions
are associated to data servers while we have to take care of
balanced distribution of workload. This may mean that we can
expand the set of data servers in a column to be employed for
particular user session.

B. Distributed query execution

Whether or not a column local repository has indexes, the
whole storage management system should perform distributed
query executions considering load regulations. While thereare
many possible solutions for the load regulation problems, Er-
lang/OTP programming environment may provide a convenient
solution that is suitable for developing initial prototyperapidly.

In order to regulate task loads of clustered column lo-
cal repositories, fixed number ofgen_server (general
server library of Erlang/OTP) processes are invoked on each
physical server. Agen_server can update server activity
codes dynamically through inter-process messages. The stor-
age management system’s bootstrap process initializes some
gen_servers as front server processes and others as data
server processes. The bootstrap process distribute data-to-data
server processes according to the column configuration. When
a front server process accept a query, it divides the query into

sub queries and sends them to idling data server processes
according to query optimization algorithms considering effi-
ciency and load regularity.

If a data server process should have indexes, it is a good
solution to implement the process as agen_server that
calls Mnesia (distributed DBMS for Erlang) library functions
internally for processing queries. When a data server process
has to replicate to another physical server (copy operation),
following steps are executed.

1) Find a remote physical server that has enough available
CPU and memory resources (low load), and runs at least
one idling data server process.

2) Replicate the Mnesia database instance used by the data
server process to the remote physical server.

3) Serialize thegen_server implementation codes of the
data server process, and install it on an idling data server
process on the remote physical server.

The results of queries produced by data server processes are
translated as streams. Becausegen_server model includes
message waiting loop as default functionality, it is easy tocode
synchronous translation of bunch of result elements. Additional
codes for implementing FIFO buffer may be enough to make
front and data server processes to communicate via triple
streams.

C. Distributed query optimization

Query optimization takes place on front server. SPARQL
query is parsed and converted into algebra of RDF graphs.
Algebra expression is converted into query tree representation,
which serves as the basic data structure used in the process of
optimization, cost estimation and query evaluation. The design
of query processing is rooted in the design of query processor
Qios [18], [19], [21].

Algebra of RDF graphs is based on relational algebra
extended with operations specific for graphs. The operations
areselection, projection, a form of join, set operationsunion,
differenceand intersection, and operationoptional. Finally,
algebra of triples includes operationcopy, which allows for
shipping sets of triples among data servers.

Query optimization is based on rules including pushing
projection and selection towards the leafs of query tree,
associativity and comutativity ofjoin, rules for operations
optionalandcopy, which integrate well with rules for relational
operations. Rules are represented as patterns of query trees that
stand for input and output of rule transformation.

General form of query optimization is rooted in an instance
of dynamic programming technique calledmemoization. Query
tree is optimized by first optimizing the children of query tree
root and then by using rules to transform root of query tree.
Optimized query sub-trees are inserted into the appropriate
equivalence classesand their cost is stored for further use.
Since the space of all hypotheses (query trees) is too big to
explore completely, sub-optimal additions to the basic form of
dynamic programming can be employed. For instancebeam
search selects at each point of optimization only the most
promising alternatives for query transformation.

158Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 167 / 173

D. Architecture for managing dynamic updates

Although most amount of RDF data are stable, some data
are dynamically updated. It makes difficult for data manager
to build index on the set including updated data. If data
managers are distributed on cluster of several PC servers,
data statistics and query patterns strongly influence means
for distributing and caching data over the cluster. The data
might change or grow dynamically. The system load may also
influence distribution configuration and cache lifetime. These
make the problem more complicated. Occasionally, new RDF
links might be discovered through unrelated search processes.

RDF repositories should include efficient means for access-
ing dynamically updated data. If elements in a data-set are
updated frequently, computational cost of indexing the data-
set may exceed speed-up benefit of accessing operations. We
will have the threshold updating frequency by investigations
with practical experiments. Because columns exceeding the
threshold should not have indexes, they should be stored in a
special type of repository for efficient retrieval.

One possible solution is to implement triple-store local
to column by a set of tiny proactive on-memory processes.
Such repositories can be easily coded using Erlang program-
ming language. Adding, deleting, and modifying operations
only require accesses to the target triple-store processes. The
manager of column triple-store can broadcast query messages
to local triple-store processes. Each process may respond
asynchronously to the caller, if the query matches its contents.
For the manager receives answers asynchronously, it can
provide query results as a stream to its caller process. Copy
operations can be easily implemented using the process dictio-
nary serialization function of Erlang programming language.
Triple-store processes execute copy or modification reflection
operations independently. If the process is coded to execute
those operations only under low load situations, the repository
may have a method for high load tolerance.

IV. RELATED WORK

This section presents some of more important systems for
querying RDF data including: 3store, 4store, Virtuoso, RDF-
3X, and Hexastore; see survey presented in [14] for a more
complete overview of RDF storage managers.

a) 3store: 3store [10] was originally used for semantic
web applications in particular for storing hyphen.info RDF
dataset describing computer science research in UK. Final
version of database consisted of 5000 classes and about 20
million triples. 3store was implemented on top of MySQL
database management system. It included simple inferential
capabilities, e.g. class, sub-class, and sub-property queries
mainly implemented by means of MySQL queries. Hashing
is used to translate URIs into internal form of representation.

Query engine of 3store used RDQL query language origi-
nally defined in frame of Jena project. RDQL triple expressions
are first translated into relational calculus. Constraintsare
added to relational calculus expressions and they are translated
into SQL. Inference is implemented by a combination of
forward and backward chaining computing the consequences
of asserted data.

b) 4store:4store [11] was designed and implemented to
support a range of novel applications emerged from semantic
web. RDF databases were constructed from web pages includ-
ing people-centric information resulting ontology with billions
of RDF triples. The requirements were to store and manage
15x10

9 triples.

4store is designed to operate on clusters of low-cost servers.
It is implemented in ANSI C. It was estimated that the
complete index for accessing quads would require around
100 GB of RAM, which was the reason to distribute data
to a cluster of 64-bit multicore x86 Linux servers each
storing a partition of RDF data. The architecture of cluster
uses ”Shared Nothing” architecture. Cluster nodes are divided
into processing and storage nodes. Data segments stored on
different nodes are determined by a simple formula calculating
RID of subject modulo number of segments. The benefits of
such design is parallel access to RDF triples distributed to
nodes holding segments of RDF data. Furthermore, segments
can be replicated to distribute total workload to the nodes
holding replicated RDF data. The communication between
nodes is directed by processing nodes via TCP/IP. There is
no communication between data nodes.

The 4store query engine is based on relational algebra.
Primary source of optimization is the conventional ordering on
the joins. However, they also use common subject optimization
and cardinality reduction. In spite of considerable work on
query optimization, 4store lacks complete query optimization
as it is provided by relational query optimizers.

c) Virtuoso: Virtuoso [6], [7], [15] is a multi-model
database management system based on relational database
technology. The approach of Virtuoso is to treat triple-store
as a table composed of four columns. The main idea of the
approach to management of RDF data is to exploit existing
relational techniques and to add functionality to RDBMS in
order to deal with features specific to RDF data. The most
important aspects that were considered by Virtuoso designers
are: extending SQL types with RDF data type, dealing with
unpredictable sizes of objects, providing efficient indexing and
extending relational statistics to cope with RDF store based on
single table, as well as efficient storage of RDF data.

Virtuoso integrates SPARQL into SQL. SPARQL queries
are translated into SQL during parsing. SPARQL has in this
way all aggregation functions. SPARQL union is translated
directly into SQL and SPARQL optional is translated into left
outer join. Since RDF triples are stored in one quad table,
relational statistics is not useful. Virtuoso uses sampling during
query translations to estimate the cost of alternative plans.
Basic RDF inference on TBox is done using query rewriting.
For ABox reasoning Virtuoso expands semantics of owl:same-
as by transitive closure.

d) RDF-3X: Triple-store RDF-3X presented by Neu-
mann and Weikum [12], [13] builts 6 independent indexes of
SPO, SOP, OSP, OPS, PSO and POS (for subject, property
and object columns) from one large triple table. The indexes
are compressed using a byte-wise method that was carefully
chosen to improve query process performance. Join re-ordering
is used to optimize query process. The optimization uses se-
lectivity statistics calculated for given queries using selectivity
histograms and frequent path statistics. Although it equips a

159Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 168 / 173

table to treat long URI strings as simple ids, Atre et al. in
[3] points that its search performance was very bad. RDF-
3X system was compared with PostgreSQL and MonetDB.
The benchmark data contained Barton data. RDF-3X exceeded
other systems with large margins. The source code is available
for non-commercial purposes.

e) Hexastore:Hexastore [23] approach to RDF storage
system uses triples as the basis for storing RDF data. The
problems of existent triple-stores pursued are the scalability
of RDF databases in distributed environment, and complete
implementation of query processor including query optimiza-
tion, persistent indexes, and other topics provided by database
technology.

Six indexes are defined on top of table with three columns,
one for each combination of three columns. Index used for the
implementation has three levels ordered by particular combi-
nation of SPO attributes. Each level is sorted giving in this
way the means to use ordering for optimizations during query
evaluation. Proposed index provides natural representation of
multi-valued properties, and it allows fast implementation of
merge-join, intersection and union.

V. CONCLUSION

The design of large-scale storage manager for RDF is
presented in the paper. The presented work is focused to the
definition of most important design directions and implementa-
tion decisions of big3store. Hardware architecture of big3store
is based on massive parallel array of data servers arranged into
columns. Rows of columns are replicas, i.e., data servers that
store a portions of big3store database. Distribution of complete
big3store database is guided by semantic information used to
group RDF triples.

The initial prototype in Erlang programming environment
is currently under development. Erlang provides efficient pro-
gramming constructs for implementation of massively parallel
systems. Distributed query evaluation system of big3store, for
instance, will use processes to represent query nodes that stand
for operations of algebra of RDF graphs. SPARQL queries,
optimized by means of programming technology provided by
relational database systems, are translated to data-flow machine
composed of Erlang processes. Therefore, array of distributed
data servers becomes resource for optimized allocation of data-
flow machines executing individual queries.

ACKNOWLEDGMENT

This work was supported by the Slovenian Research
Agency and the ICT Programme of the EC under PlanetData
(ICT-NoE-257641).

REFERENCES

[1] R. Angles and C. Gutierrez. The expressive power of sparql. In
Proceedings of the 7th International Conference on The Semantic Web,
ISWC ’08, pages 114–129, Berlin, Heidelberg, 2008. Springer-Verlag.

[2] R. Angles and C. Gutierrez. Survey of graph database models. ACM
Comput. Surv., 40(1):1:1–1:39, Feb. 2008.

[3] M. Atre, V. Chaoji, M. J. Zaki, and J. A. Hendler. Matrix ”bit” loaded:
a scalable lightweight join query processor for rdf data. InProceedings
of the 19th international conference on World wide web, WWW ’10,
pages 41–50, New York, NY, USA, 2010. ACM.

[4] D. Daniels, P. G. Selinger, L. M. Haas, B. G. Lindsay, C. Mohan,
A. Walker, and P. F. Wilms. Introduction to distributed querycompila-
tion in r*. IBM Research Report RJ3497 (41354), IBM, June 1982.

[5] Dublin core metadata inatiative. http://dublincore.org/, 2013.

[6] O. Erling and I. Mikhailov. Rdf support in the virtuoso dbms. InCSSW,
pages 59–68, 2007.

[7] O. Erling and I. Mikhailov. Rdf support in the virtuoso dbms. In
Networked Knowledge - Networked Media, volume 221 ofStudies in
Computational Intelligence, pages 7–24, 2009.

[8] M. J. Flynn, O. Mencer, V. Milutinovic, G. Rakocevic, P. Stenstrom,
R. Trobec, and M. Valero. Moving from petaflops to petadata.Commun.
ACM, 56(5):39–42, May 2013.

[9] S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system. In
Proceedings of the nineteenth ACM symposium on Operating systems
principles, SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM.

[10] S. Harris and N. Gibbins. 3store: Efficient bulk rdf storage. In 1st
International Workshop on Practical and Scalable SemanticSystems
(PSSS’03), pages 1–15, 2003. Event Dates: 2003-10-20.

[11] S. Harris, N. Lamb, and N. Shadbolt. 4store: The design and im-
plementation of a clustered rdf store. InProceedings of the The 5th
International Workshop on Scalable Semantic Web KnowledgeBase
Systems, 2009.

[12] T. Neumann and G. Weikum. Rdf-3x: a risc-style engine for rdf. Proc.
VLDB Endow., 1(1):647–659, Aug. 2008.

[13] T. Neumann and G. Weikum. The rdf-3x engine for scalable manage-
ment of rdf data.The VLDB Journal, 19(1):91–113, Feb. 2010.

[14] K. Nitta and I. Savnik. Survey of rdf storage managers. Technical
Report (In preparation), Yahoo Japan Research & FAMNIT, University
of Primorska, 2013.

[15] OpenLink Software Documentation Team.OpenLink Virtuoso Universal
Server: Documentation, 2009.

[16] Owl 2 web ontology language. http://www.w3.org/TR/owl2-overview/,
2012.

[17] Rdf schema. http://www.w3.org/TR/rdf-schema/, 2004.

[18] I. Savnik. Qios: Querying and integration of internet data.
http://osebje.famnit.upr.si/ savnik/qios/, 2009.

[19] I. Savnik. On using object-relational technology for querying lod
repositories. InThe Fifth International Conference on Advances in
Databases, Knowledge, and Data Applications, DBKDA 2013, pages
39–44, Jan. 2013. Dates: from January 27, 2013 to February 1,2013.

[20] I. Savnik and K. Nitta. Algebra of rdf graphs. TechnicalReport (In
preparation), FAMNIT, University of Primorska, 2013.

[21] I. Savnik, Z. Tari, and T. Mohoric. Qal: A query algebra of complex
objects.Data & Knowledge Engineering, 30(1):57 – 94, 1999.

[22] M. Schmidt, M. Meier, and G. Lausen. Foundations of sparql query
optimization. InProceedings of the 13th International Conference on
Database Theory, ICDT ’10, pages 4–33, New York, NY, USA, 2010.
ACM.

[23] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple indexing for
semantic web data management.Proc. VLDB Endow., 1(1):1008–1019,
Aug. 2008.

[24] Xml schema. http://www.w3.org/XML/Schema, 2012.

[25] Y. Yan, C. Wang, A. Zhou, W. Qian, L. Ma, and Y. Pan. Efficient
indices using graph partitioning in rdf triple stores. InProceedings of
the 2009 IEEE International Conference on Data Engineering, ICDE
’09, pages 1263–1266, Washington, DC, USA, 2009. IEEE Computer
Society.

160Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 169 / 173

Learning Links in MeSH Co-occurrence Network:
Preliminary Results

Andrej Kastrin
Faculty of Information Studies

Novo mesto, Slovenia
Email: andrej.kastrin@guest.arnes.si

Dimitar Hristovski
Institute of Biostatistics and Medical Informatics

Faculty of Medicine, University of Ljubljana
Ljubljana, Slovenia

Email: dimitar.hristovski@gmail.com

Abstract—Literature-based discovery (LBD) is focusing on
automatically generating scientific hypotheses by uncovering hid-
den, previously unknown relations between existing knowledge.
Co-occurrences between biomedical concepts can be represented
by a network that consists of a set of nodes representing concepts
and a set of edges representing their relationships. In this work
we propose a method for link prediction of implicit connections
between Medical Subject Headings (MeSH R©) descriptors. Our
approach is complementary to standard LBD. Link prediction
was performed using Jaccard and Adamic-Adar similarity mea-
sures. Preliminary results showed high prediction performance
with area under the ROC curve of 0.78 and 0.82 for Jaccard and
Adamic-Adar coefficient, respectively.

Index Terms—network analysis, link prediction, literature-
based discovery

I. INTRODUCTION

Retrieval and linking different chunks of scientific informa-
tion into understandable and interpretable knowledge becomes
a challenging task. Text mining technologies complement
manual information retrieval from biomedical sources [1].
Common text mining tasks in biomedicine include the recogni-
tion of explicit facts from the literature, document summariza-
tion, question answering and literature-based discovery (LBD).

LBD is a methodology for automatically generating hy-
potheses for scientific research by uncovering hidden, pre-
viously unknown relationships between existing knowledge
[2]. The LBD methodology was pioneered by Swanson [3],
who proposed that dietary fish oils might be used to treat
Raynauds disease because they lower blood viscosity, reduce
platelet aggregation and inhibit vascular reactivity. The basic
assumption of Swansons approach is that there exists two
scientific domains that do not communicate. A segment of
knowledge in one domain may be related to knowledge in
the other domain, but this relationship is unknown. The
methodology of LBD relies on the idea of concepts relevant
to three literature domains: X, Y, and Z. For example, suppose
a researcher has found relationship between disease X and a
gene Y. Further suppose that a separate researcher has studied
the effects of substance Z on gene Y. The use of LBD may
suggest an XZ relationship, indicating that substance Z may
potentially treat disease X.

Associations between literature entities based on co-
occurrence of biomedical terms, such as diseases or genes con-
stitute an important part of knowledge representation. A co-

occurrence approach is built on the assumption that biomedical
concepts occurring together in the same title or abstract are in
some way biologically related [4], [5]. Biomedical knowledge
can be thus viewed as a set of concepts along with the relations
between them. Interactions between concepts can be described
in terms of a graph, consisting of nodes and edges, where
the former represent concepts and the latter represent their
relationships. Knowledge network is not static. It is a dynamic
structure that evolves over time either by addition of new nodes
or by new links that form between nodes.

Link prediction is a newly emerging research field that is at
the intersection of the network analysis and machine learning.
Understanding the mechanisms of link formation in complex
networks is a long standing challenge for network analysis.
Link prediction refers to the discovery of future links between
nodes that are not directly connected in the current snapshot
of a given network [6]. Seen in this way, the link prediction
problem is similar to LBD. In the literature several link
prediction techniques have been proposed. These techniques
can be used to predict new link formation by estimating the
likelihood of link formation between two nodes on the basis
of the observed network topology.

In this work we propose a method for link prediction in
biomedical domain, i.e. for prediction and evaluation of im-
plicit or previously unknown connections between biomedical
concepts. Our approach is complementary to the traditional
LBD. To evaluate the link prediction techniques for LBD,
here we investigate the performance of link prediction tech-
niques for networks obtained from Medical Subject Headings
(MeSH R©) [7] co-occurrence data.

II. METHODS

A. Basic Terminology

A network is represented by a graph G(V,E) that consists
of a set of nodes V representing concepts and a set of edges E
representing relationships between the nodes [8]. The number
of edges of a node i is denoted by its degree ki.

The link prediction problem can be formally represented as
follows. Suppose we have a network G[t1, t2] which contains
all interactions among nodes that take place in the time interval
[t1, t2]. Further suppose that [t3, t4] is a time interval occurring
after [t1, t2]. The task of link prediction is to provide a list of
edges that are present in G[t3, t4] but absent in G[t1, t2]. We

161Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 170 / 173

refer to G[t1, t2] as the train network and G[t3, t4] as the test
network (Figure 1). In this work the prediction was performed
on a core subnetwork which consists of nodes which have at
least k = 3 neighbors.

B. Data Collection and Network Construction

The train and test networks were constructed from the Uni-
fied Medical Language System (UMLS R©) [9] co-occurrence
table (MRCOC). MRCOC table includes statistical aggrega-
tions of co-occurrences of biomedical concepts in different
data sources. Two overall frequencies of MEDLINE R© co-
occurrence are provided: one for recent MEDLINE data
(MED) and one for MEDLINE data from a preceding block
of years (MBD). MRCOC provides the frequency of co-
occurrence of two concepts in the same indexed articles
from MEDLINE (i.e., the number of articles discussing both
concepts during a given time period). We select only those
co-occurrence pairs that refer to MeSH descriptors.

The constructed networks were post-processed to remove
all non-useful edges. We applied the Pearsons chi-square (χ2)
test for independence for each co-occurrence pair to obtain a
statistic, which indicates whether a particular pair of MeSH
descriptors occurs together more often than by chance [10].
If χ2 is greater than the critical value of 3.84 (p ≤ 0.05), we
can be 95% confident that a particular MeSH relation occurs
more often than by chance.

C. Experimental Setup

The link prediction framework we use follows the procedure
first introduced by Liben-Nowell and Kleinberg [11]. We
perform link prediction using proximity measures. Proximity
measures are used to find similarity between a pair of nodes.
For each node pair (u, v), a link prediction method gives
score s(u, v), an estimate of the likelihood of link formation
between nodes u and v. Among various proximity measures
proposed in the literature we use Jaccard and Adamic-Adar
coefficients. Jaccard coefficient measures the probability that
a neighbor of u or v is a neighbor of both u and v [12].
Jaccard coefficient simply divides the number of common
neighbors by the number of total neighbors. Adamic-Adar
coefficient measures neighborhood overlap between nodes u
and v, weighting the overlap of smaller neighborhoods more
heavily [13].

We examine how accurately we can predict which node
pairs will connect between times t3 and t4 despite not having
any co-occurrences before time t3. The major challenge in
prediction evaluation is the huge number of possible node
pairs which can greatly increase computational time. To cope
with this issue we use bootstrap resampling approach [14].
We use 100 bootstrap samples. In each bootstrap step we
draw a random sample of 1000 nodes and create appropriate
train and test subgraphs. Next, we compute the link prediction
score s(u, v) for each node pair (u, v) that is not associated
with any interaction before time t3 by using one of the link
prediction techniques introduced in the previous paragraph.
We assign class label ‘positive’ to this node pair if the

TABLE I
BASIC TOPOLOGICAL CHARACTERISTICS OF THE MESH NETWORKS.

Parameter MBD network MED network

Density 0.01 0.01
Mean degree 274.78 298.05
Average path length 2.23 2.20
Clustering coefficient 0.27 0.26
Small-worldness index 21.57 20.70

connection occurs in test network and ‘negative otherwise.
The prediction performance was evaluated using the receiver
operating characteristic (ROC) curves. A ROC graph depicts
relative tradeoffs between true positives and false positives. As
a measure of prediction performance we use the area under
the ROC curve (AUC). The AUC is a widely used performance
measure which can be interpreted as the probability that a
randomly selected link is given a higher link prediction score
than a randomly selected non-existent link. Final AUC value
was averaged over 100 bootstrap samples.

III. RESULTS

Before evaluating the effectiveness of link prediction tech-
niques, we describe the characteristics of the used datasets.
The MBD network consists of 24,225 nodes and 4,897,380
edges. We filter out all non-useful edges using χ2 test. After
reduction the MBD network contains 3,328,288 edges. The
MED network contains 25,570 nodes and 5,615,965 edges.
After the filtering step, the number of edges decreased to
3,810,535. The topological properties of both networks are
summarized in Table I. Both networks are very similar re-
garding topological properties. The networks exhibit relatively
short average path length between all pairs of nodes. On
average there are only about two hops from the selected
node to any other node. Both networks exhibit small world
property because of small average path length and relatively
high clustering.

The classification performance is summarized in Figure 2.
Mean AUC for Jaccard coefficient was AUC = 0.78 with
SD = 0.02. Mean AUC for Adamic-Adar coefficient was
AUC = 0.82 with SD = 0.01. Adamic-Adar coefficient
exhibited slightly better performance than Jaccard coefficient.

IV. CONCLUSION AND FUTURE WORK

In this paper, we apply and evaluate link prediction meth-
ods on a network based on co-occurrence patterns between
MeSH descriptors. We have exploited two methods for link
prediction task, namely Jaccard and Adamic-Adar coefficients
and demonstrated that link prediction is plausible with high
prediction performance. To the best of our knowledge, this
is the first work that investigates unsupervised learning for
link prediction of literature-derived network in the biomedical
domain.

There are many possible directions for future work. One is
to consider addition similarity measures, including preferential
attachment, Katz measure, SimRank, or cosinus similarity, to

162Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 171 / 173

A

B

C

D

E

F

G

H

A

B

C

D

E

F

G

H

Fig. 1. Train (left) and test (right) network. New link formation is predicted from the topology of a network obtained from co-occurrences in the training
period. We investigate the performance of link prediction techniques by comparing the predicted links with actual new links within the testing period. Prediction
and evaluation was performed on a core subnetwork which consists of nodes which have at least k = 3 neighbors.

Jaccard

False positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●●●●●●●

●●●
●

●

●
●●

●
●

●

●●●●

●

●

●

●

●
●
●●

● ●●
● ●●

● ●●●
●●●

●●●

●

●

●

●

●
●

●
●

●
●

●

AUC = 0.78

Adamic−Adar

False positive rate

A
ve

ra
ge

 tr
ue

 p
os

iti
ve

 r
at

e

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

●●●●●●●●●

●●

●●●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

AUC = 0.82

Fig. 2. ROC curves.

name just a few. Second, we should investigate prediction per-
formance of link prediction algorithm on different networks.
Biomedical science is full of interesting complex networks; for
example we should consider NCBI gene or protein network,
KEGG collection, or UniProt database.

Further we should investigate the connection between net-
work attributes and prediction performance. It is well known
that nodes which share similar properties tend to create links
to each other. For example, persons in a social network who
share similar interests are very likely to be friends [15]. In our
case we could use attributes such as number of occurrences
of particular MeSH descriptor, semantic type from UMLS
Semantic Network, etc. We should also systematically analyze
the influence of network topology on prediction performance.
The process of link creation may be a result of the joint
influence of several mechanisms such as small world effect
and preferential attachment.

ACKNOWLEDGMENT

This work was supported by Slovenian Research Agency.

REFERENCES

[1] D. Rebholz-Schuhmann, A. Oellrich, and R. Hoehndorf, “Text-mining
solutions for biomedical research: Enabling integrative biology,” Nature
Reviews. Genetics, vol. 13, no. 12, pp. 829–839, 2012.

[2] D. Hristovski, T. Rindflesch, and B. Peterlin, “Using literature-based
discovery to identify novel therapeutic approaches,” Cardiovascular &
Hematological Agents in Medicinal Chemistry, vol. 11, no. 1, pp. 14–24,
2013.

[3] D. R. Swanson, “Fish oil, Raynaud’s syndrome, and undiscovered public
knowledge,” Perspectives in Biology and Medicine, vol. 30, no. 1, pp.
7–18, 1986.

[4] B. Stapley and G. Benoit, “Biobibliometrics: Information retrieval and
visualization from co-occurrences of gene names in Medline abstracts,”
Pacific Symposium on Biocomputing, vol. 5, pp. 526–537, 2000.

[5] R. Frijters, M. van Vugt, R. Smeets, R. van Schaik, J. de Vlieg, and
W. Alkema, “Literature mining for the discovery of hidden connections
between drugs, genes and diseases,” PLoS Computational Biology,
vol. 6, no. 9, p. e1000943, 2010.

[6] L. Lü and T. Zhou, “Link prediction in complex networks: A survey,”
Physica A: Statistical Mechanics and its Applications, vol. 390, no. 6,
pp. 1150–1170, 2011.

163Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

 172 / 173

[7] M. H. Coletti and H. L. Bleich, “Medical subject headings used to search
the biomedical literature.” Journal of the American Medical Informatics
Association : JAMIA, vol. 8, no. 4, pp. 317–323, 2001.

[8] M. E. J. Newman, “The structure and function of complex networks,”
SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.

[9] D. A. Lindberg, B. L. Humphreys, and A. T. McCray, “The Unified Med-
ical Language System.” Methods of information in medicine, vol. 32,
no. 4, pp. 281–91, 1993.

[10] C. D. Manning and H. Schuetze, Foundations of statistical natural
language processing. Cambridge, MA: MIT Press, 1999.

[11] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American Society for Information
Science and Technology, vol. 58, no. 7, pp. 1019–1031, 2007.

[12] A. Rajaraman and J. D. Ullman, Mining of massive datasets. New
York, NY: Cambridge University Press, 2011.

[13] L. A. Adamic and E. Adar, “Friends and neighbors on the Web,” Social
Networks, vol. 25, no. 3, pp. 211–230, Jul. 2003.

[14] T. Hastie, R. Tibshirani, and J. Friedman, The elements of statistical
learning: Data mining, inference, and prediction. New York, NY:
Springer, 2011.

[15] Z. Liu, J.-L. He, K. Kapoor, and J. Srivastava, “Correlations between
community structure and link formation in complex networks,” PloS
ONE, vol. 8, no. 9, p. e72908, 2013.

164Copyright (c) IARIA, 2014. ISBN: 978-1-61208-334-6

DBKDA 2014 : The Sixth International Conference on Advances in Databases, Knowledge, and Data Applications

Powered by TCPDF (www.tcpdf.org)

 173 / 173

http://www.tcpdf.org

