
DEPEND 2012

The Fifth International Conference on Dependability

ISBN: 978-1-61208-212-7

August 19-24, 2012

Rome, Italy

DEPEND 2012 Editors

Syed Naqvi, CETIC, Belgium

Petre Dini, Concordia University, Canada / China Space Agency Center - Beijing,

China

 1 / 49

DEPEND 2012

Foreword

The Fifth International Conference on Dependability [DEPEND 2012], held between
August 19-24, 2012 in Rome, Italy, provided a forum for detailed exchange of ideas, techniques,
and experiences with the goal of understanding the academia and the industry trends related
to the new challenges in dependability on critical and complex information systems.

Most of critical activities in the areas of communications (telephone, Internet), energy &
fluids (electricity, gas, water), transportation (railways, airlines, road), life related (health,
emergency response, and security), manufacturing (chips, computers, cars) or financial (credit
cards, on-line transactions), or refinery& chemical systems rely on networked communication
and information systems. Moreover, there are other dedicated systems for data mining,
recommenders, sensing, conflict detection, intrusion detection, or maintenance that are
complementary to and interact with the former ones.

With large scale and complex systems, their parts expose different static and dynamic
features that interact with each others; some systems are more stable than others, some are
more scalable, while others exhibit accurate feedback loops, or are more reliable or fault-
tolerant.

Inter-system dependability and intra-system feature dependability require more
attention from both theoretical and practical aspects, such as a more formal specification of
operational and non-operational requirements, specification of synchronization mechanisms, or
dependency exception handing. Considering system and feature dependability becomes crucial
for data protection and recoverability when implementing mission critical applications and
services.

Static and dynamic dependability, time-oriented, or timeless dependability,
dependability perimeter, dependability models, stability and convergence on dependable
features and systems, and dependability control and self-management are some of the key
topics requiring special treatment. Platforms and tools supporting the dependability
requirements are needed.

As a particular case, design, development, and validation of tools for incident detection
and decision support became crucial for security and dependability in complex systems. It is
challenging how these tools could span different time scales and provide solutions for
survivability that range from immediate reaction to global and smooth reconfiguration through
policy based management for an improved resilience. Enhancement of the self-healing
properties of critical infrastructures by planning, designing and simulating of optimized
architectures tested against several realistic scenarios is also aimed.

To deal with dependability, sound methodologies, platforms, and tools are needed to
allow system adaptability. The balance dependability/adaptability may determine the life scale
of a complex system and settle the right monitoring and control mechanisms. Particular
challenging issues pertaining to context-aware, security, mobility, and ubiquity require
appropriate mechanisms, methodologies, formalisms, platforms, and tools to support
adaptability.

 2 / 49

We take here the opportunity to warmly thank all the members of the DEPEND 2012
Technical Program Committee, as well as the numerous reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to
DEPEND 2012. We truly believe that, thanks to all these efforts, the final conference program
consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the DEPEND 2012 organizing
committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that DEPEND 2012 was a successful international forum for the exchange of
ideas and results between academia and industry and for the promotion of progress in the field
of dependability.

We are convinced that the participants found the event useful and communications very
open. We also hope the attendees enjoyed the historic charm Rome, Italy.

DEPEND 2012 Chairs:
Marcello Cinque, University of Naples Federico II, Italy
Petre Dini, Concordia University, Canada / China Space Agency Center - Beijing, China
Sergio Pozo Hidalgo, University of Seville, Spain
Syed Naqvi, CETIC, Belgium
Manuel Gil Perez, University of Murcia, Spain
Reijo Savola, VTT Technical Research Centre of Finland, Finland
Michiaki Tatsubori, IBM Research Tokyo, Japan
Peter Tröger, Hasso Plattner Institute / University of Potsdam, Germany
Timothy Tsai, Hitachi Global Storage Technologies, USA
Szu-Chi Wang, National Ilan University, Taiwan
Piyi Yang, Wonders Information Co., Ltd., China

 3 / 49

DEPEND 2012

Committee

DEPEND Advisory Chairs

Reijo Savola, VTT Technical Research Centre of Finland, Finland
Sergio Pozo Hidalgo, University of Seville, Spain
Manuel Gil Perez, University of Murcia, Spain
Petre Dini, Concordia University, Canada / China Space Agency Center - Beijing, China

DEPEND 2012 Industry Liaison Chairs

Piyi Yang, Wonders Information Co., Ltd., China
Timothy Tsai, Hitachi Global Storage Technologies, USA

DEPEND 2012 Research/Industry Chair

Michiaki Tatsubori, IBM Research Tokyo, Japan

DEPEND 2012 Special Area Chairs

Cross-layers dependability
Szu-Chi Wang, National Ilan University, Taiwan

Hardware dependability
Peter Tröger, Hasso Plattner Institute / University of Potsdam, Germany

Empirical assessments
Marcello Cinque, University of Naples Federico II, Italy

Security and Trust
Syed Naqvi, CETIC, Belgium

DEPEND 2012 Technical Program Committee

Murali Annavaram, University of Southern California, USA
Afonso Araújo Neto, University of Coimbra, Portugal
José Enrique Armendáriz-Iñigo, Universidad Pública de Navarra, Spain
Steffen Bartsch, TZI - Universität Bremen, Germany
Jorge Bernal Bernabé, University of Murcia, Spain
Andrey Brito, Universidade Federal de Campina Grande, Brazil
Lasaro Camargos, Federal University of Uberlândia, Brazil
Juan Carlos Ruiz, Universidad Politécnica de Valencia, Spain
Antonio Casimiro Costa, University of Lisbon, Portugal

 4 / 49

Simon Caton, Karlsruhe Institute of Technology (KIT), Germany
Zhe Chen, Nanjing University of Aeronautics and Astronautics, China
Marcello Cinque, University of Naples Federico II, Italy
Domenico Cotroneo, Università di Napoli Federico II, Italy
Rubén de Juan Marín, Universidad Politécnica de Valencia, Spain
Vincenzo De Florio, University of Antwerp, Belgium & IBBT, Belgium
Nicola Dragoni, Technical University of Denmark - Lyngby, Denmark
Diana El Rabih, Université Paris 12, France
Laila El Aimani, Technicolor, Security & Content Protection Labs., Germany
Alexander Felfernig, TU - Graz, Austria
Nuno Ferreira Neves, University of Lisbon, Portugal
Francesco Flammini, Ansaldo STS, Italy
Cristina Gacek, City University London, United Kingdom
Manuel Gil Perez, University of Murcia, Spain
Michael Grottke, University of Erlangen-Nuremberg, Germany
Nils Gruschka, NEC Laboratories Europe - Heidelberg, Germany
Bjarne E. Helvik, The Norwegian University of Science and Technology (NTNU) - Trondheim, Norway
Jiankun Hu, Australian Defence Force Academy - Canberra, Australia
Neminath Hubballi, Infosys Lab Bangalore, India
Arshad Jhumka, University of Warwick - Coventry, UK
Yoshiaki Kakuda, Hiroshima City University, Japan
Hui Kang, Stony Brook University, USA
Aleksandra Karimaa, Turku University/TUCS and Teleste Corporation, Finland
Dong-Seong Kim, University of Canterbury, New Zealand
Ezzat Kirmani, St. Cloud State University, USA
Seah Boon Keong, MIMOS Berhad, Malaysia
Abdelmajid Khelil, TU-Darmstadt, Germany
Kenji Kono, Keio University, Japan
Israel Koren, University of Massachusetts - Amherst, USA
Mani Krishna, University of Massachusetts - Amherst, USA
Patrick Lanigan, FeDex, USA
Mikel Larrea, University of the Basque Country - UPV/EHU, Spain
Inhwan Lee, Hanyang University - Seoul, Korea
Matthew Leeke, University of Warwick, UK
Paolo Lollini, University of Firenze, Italy
Miroslaw Malek, Humboldt-Universitaet zu Berlin, Germany
Rivalino Matias Jr., Federal University of Uberlandia, Brazil
Manuel Mazzara, Newcastle University, UK / UNU-IIST, Macau
Per Håkon Meland, SINTEF ICT, Norway
Francesc D. Muñoz-Escoí, Universitat Politècnica de València, Spain
Jogesh K. Muppala, The Hong Kong University of Science and Technology, Hong Kong
Jun Na, Northeastern University, China
Syed Naqvi, CETIC, Belgium
Sarmistha Neogy, Jadavpur University, India
Mats Neovius, Åbo Akademi University - Turku, Finland
Hong Ong, e-Manual System Sdn Bhd, Malaysia
Anne-Cécile Orgerie, ENS de Lyon, France / University of Melbourne, Australia
Aljosa Pasic, ATOS Origin, Spain

 5 / 49

Wolfgang Pree, University of Salzburg, Austria
Felix Salfner, SAP Innovation Center - Potsdam, Germany
Reijo Savola, VTT Technical Research Centre of Finland, Finland
Dimitrios Serpanos, University of Patras & ISI, Greece
Navjot Singh, Avaya Labs Research, USA
Komminist Sisai, Fondazione Bruno Kessler, Italy
Kuo-Feng Ssu, National Cheng Kung University, Taiwan
Vladimir Stantchev, Berlin Institute of Technology, Germany
Neeraj Suri, TU-Darmstadt, Germany
Oliver Theel, University Oldenburg, Germany Sergio Pozo Hidalgo, University of Seville, Spain
Kishor Trivedi, Duke University - Durham, USA
Peter Tröger, Hasso Plattner Institute / University of Potsdam, Germany
Elena Troubitsyna, Aabo Akademi -Turku, Finland
Timothy Tsai, Hitachi Global Storage Technologies, USA
Marco Vallini, Politecnico di Torino, Italy
Ángel Jesús Varela Vaca, University of Sevilla, Spain
Bruno Vavala, Carnegie Mellon University, USA | University of Lisbon, Portugal
Hironori Washizaki, Waseda University, Japan
Hiroshi Yamada, Keio University, Japan
Piyi Yang, University of Shanghai for Science and Technology, China
Hee Yong Youn, Sungkyunkwan University, Korea

 6 / 49

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 49

Table of Contents

CGFAIL: A New Approach for Simulating Computer Systems Faults
Martin Groessl

1

Design of Dependable Systems: An Overview of Analysis and Verification Approaches
Jose Ignacio Aizpurua Unanue and Enaut Muxika Olasagasti

4

Dependable Design: Trade-Off Between the Homogeneity and Heterogeneity of Functions and Resources
Jose Ignacio Aizpurua Unanue and Enaut Muxika Olasagasti

13

Security Control Variations Between In-house and Cloud-based Virtualized Infrastructures
Ramaswamy Chandramouli

18

Towards a State driven Workload Generation Framework for Dependability Assessment
Domenico Cotroneo, Francesco Fucci, and Roberto Natella

25

Improving Consumer Satisfaction Through Building an Allocation Cloud
Kuo Chen Wu, Hewijin Christine Jiau, and Kuo-Feng Ssu

31

Design and Implementation of Cloud-based Application for Cloud Provider System with SSL Accelerator and
Content Redirection
Boon Keong Seah

38

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 49

CGFAIL: A New Approach for Simulating Computer Systems Faults

Martin Groessl
Heidelberg Institute for

Theoretical Studies (HITS)
Heidelberg, GERMANY

Email: Martin.Groessl@h-its.org

Abstract—An established method for emulation of faults
in computer systems is fault injection. The application of
such methods, typically, requires an extension of the operation
system by special drivers. Here, a new approach for simulating
a special kind of failure models, so called resource faults,
is presented. The approach is currently directly supported
from LINUX operation system and was tested with different
distributions and architectures (X86/X64). The objective is to
simulate fault models without affecting the normal operation of
the computer system. Additionally, the method enables system
developers to test their software under different resources
conditions.

Keywords-Software Dependability; Failure stimulation

I. I NTRODUCTION

New computer systems composed of multiple proces-
sors, an amount of memory and shared resources build
the backbone of modern information infrastructure. Testing
of applications which run on such systems under realistic
conditions is a quiet difficult job. Especially hardening, such
software for fault tolerance [1], requires simulation of faults
during testing. This is achieved by using fault injection
techniques.
Depending on fault level different approaches have to be
applied to stimulate the software under test. Some injection
techniques modify the software under test (SuT) others
necessitate an extension of the operation system by special
customized drivers. A modification of the SuT leads to a
deviating operation behavior, e.g., the timing behavior is
changed. Especially by certified software which has to be
tested under real conditions that should fulfill the operation
specification it’s impossible to use such approaches.
The goal in this paper is to present a technique for fault
tolerance evaluation without modifying the SuT or the oper-
ating system. Here, standard drivers and libraries provided
by the operating system are used to simulate faulty behavior.
The structure of this paper is as follows: Section 2 describes
related research in the field of fault injection. Section 3
discusses the CGFAIL approach. An analysis of CGFAIL
is presented in Section 4 which includes the supported fault
classes and implementation details from a prototype. Finally,
Section 7 concludes the paper.

II. RELATED WORK

Fault generation is currently realized depending on the
chosen fault model in simulation or fault injection in hard-
ware / software. An overview of several software-based
approaches is published in [2]. Fault injection on physical
level which covers hardware faults with different constraints
is presented in [3]. An approach for firmware level fault
injection is pointed out in [4]. The point of action is based on
a BIOS extension the Extensible Firmware Interface (EFI).
Embedded in the EFI driver fault injection routines are
located.
Software implemented fault injection (SWIFI) is an es-
tablished method to emulate several hardware faults by
programmatic changes in computer systems. A restriction
for this technique is that only fault locations accessible by
software are manipulatable. On the other hand SWIFI avoids
permanent damage of hardware or usage of special stimu-
lation hardware devices. A software-oriented fault injection
framework which uses software traps to control the injection
process is FERRARI [5]. Software traps are triggered by
program counter when it points to the desired program
locations or by a timer. When traps are triggered, the trap
handling routines inject faults at the specific fault locations,
like CPU, memory and bus.
FTAPE (Fault Tolerance And Performance Evaluator) [6]
is a software tool that generates synthetic workloads that
produce a high level of CPU, memory, and I/O activity
and injects corresponding faults according to an injection
strategy. Faults are injected based on this workload activity
in order to ensure a high level of fault propagation. Xception
[7] uses the advanced debugging and performance moni-
toring features existing in most of the modern processors
to inject faults by software. Additionally the activation of
the faults and their impact on the target system behavior
is monitored. Faults injected by Xception can affect any
process running on the target system (including the kernel),
and it is possible to inject faults in applications for which
the source code is not available.
Most SWIFT approaches require an extension of system
software by special drivers. Alternatively, the application
under test has to run in a special trace mode and depth

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 9 / 49

knowledge of the applications structure is necessary.
The new concept supports simulation of resource faults
based on standard OS drivers and libraries. Additionally, the
behavior of the operation system and simultaneously running
applications is not affected.

III. A PPROACH

A feature of modern LINUX operation systems is inte-
grated support for resource management. An example for
such a mechanism is CGOUPS (Control Groups) [8]. A
direct supported by the kernel is provided see Figure 1. An
advantage of CGROUPS is that support for resource limit-
ing, prioritization, isolation, accounting control of resources
is provided. Resource limitation on group level is motivated
by not exceeding a predefined amount of provided resources.
Such a restriction can be interpreted form a different point
of view as a kind of sandboxing resources for applications.
The isolation of CGROUPS provides a restrictive way to seal
off provided resources for each individual group among each
other and form global available. Additionally, the accounting
which measure consume of resources from certain systems
is a feature which offers an individual control of resources.
An advantage of resource accounting compared to system
measurement tools (top, htop) for the Linux kernel is the
more precise resolution. In general, Linux kernel measure-
ment tools update is one second.
CGROUPS was established in many LINUX distributions
in 2007 and is usable without any kernel modifications.
Neither the installation of special drivers is required. Some
enhancements for additional hardware and resource support
were done in 2010. Henceforward, this enables memory
management and individual I/O device control without in-
stalling special drivers or modifying the kernel.

Figure 1. Overview CGROUPS in Linux kernel

A goal which is achievable by limitation of resources in
combination with load generators is the emulation of real
operational scenarios beyond that due to a dynamic reduction
of provided resources a simulation of special fault models
is feasible. A dynamic modification of CGROUP parameters
during system runtime which is supported by an API-library
(Libcg) enables a resizing of the sandbox. This leads to
coverage of scenarios like a decreasing of parameter values
beyond used amount and enables application developers to
test their software under different environmental conditions
including some borderline cases without modification of the
operating system or the target application itself. The goalis

Figure 2. Sandbox regulator (CGROUPS) with load generator

reached by adjusting the amount of available resources as a
resource sandboxing combined with load generation which
run in the sandbox (see Figure 2). In such a way, simulations
of borderline situation are practicable without stressingthe
computer system or even driving it into an abnormal state.
A degrading of resources, like available memory, during
runtime leads not only to realistic operational scenarios
furthermore it’s possible to drive an application to limiting
cases. An example for such a behavior is a decreasing
memory consume as brought about by memory leaks. In
respect of mentioned failure scenarios the name CGFAIL
was derived from CGROUPS. Typically abnormal memory
consume drives the whole computer system into swap or
even into crash. The application of resource sandboxes
enables such simulation without affecting operation systems
behavior. Borderline cases like Out-Of-Memory (OOM) are
enforceable.

IV. A NALYSIS

In this section, an overview of up to date supported CG-
FAIL capabilities is presented. Depending on the controlled
resources a derivation to identify several failure scenarios
which are emulateable is done. Additionally the properties
of SWIFI are set in relation with CGFAIL. CGROUPS
support currently resource management for CPU, memory
and devices. Thus only erroneous states based on this
hardware parts are generateable. Driving these resources to
limiting cases results in emulation of following presented
fault classes:

• Low CPU resource availability
• Low memory availability
• Out of memory
• Unavailable devices
• Dynamic unavailability of distinct devices

An additional usage of load generators in CGROUPS
sandbox in combination with dynamic adjustment of pa-
rameters for each individual resource extends the scope.
A graphical illustration of such a composition is shown
in Figure 2. Further fault classes, as listed below, are
introduced:

• CPU over load

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 10 / 49

• Memory leaks

The review of related work identified most SWIFI ap-
proaches focus on processor faults some additional solutions
support memory or I/O driver fault injection. Most of these
techniques require an installation of special drivers others
affect run time behavior of the operation system. Some
methods depend on low-level changes in the operating
system or modify the SuT during run time. Additionally, a
few are based on low-level operating system functions which
necessitate running an application in a special operational
mode like trace-mode. The presented approach is portable to
any LINUX system in more detail most distributions directly
contain the required components. Thus, the architecture
of an underlying computer system does not derogate the
application of this approach.

A. Implementation

For evaluation purpose the above presented method was
implemented in a LINUX environment. In respect of API
library LIBCG which works close to the kernel it was done
in C/C++ language. Additionally a dynamic load generation
and sandbox setup is supported by predefined profiles. These
profiles are parsed by using BISON parser generator. The
parsing results in an action list which triggers each individual
resource object. The profile also includes all necessary
information for automatically generating a CGROUP during
application runtime. This group builds the sandbox for all
execute actions.

B. Action trigger

The initiating of all actions in the implementation is time
triggered. This includes the dynamic adaption of CGROUP
parameters as well as the activation, setup and adjustment
of load generators. An exceptional case form consumed
resources by load generators. These resources are predefined
but the generated load depends on environmental conditions,
such that the consumed amount does not exceed the available
resources. The adjustment of sandbox parameters during
runtime is not restricted or controlled in any way. Thus a
generation of limiting cases is feasible

C. Initial experiments

A set of initial experiments was done on a laptop and two
servers with different hardware configurations. The spectrum
from a dual-core processor up to a server with four HEXA-
core processors was covered. Memory on these machines
spanned range from 3GB to 16GB RAMS. The experiments
were based on Ubuntu and Debian LINUX distributions.

V. CONCLUSION

The paper presents an ongoing research for a new way to
emulate resource faults in computer systems. A comparison
of the concept with existing techniques in the area of SWIFI
was done. To the best of our knowledge, such a kind of

failure scenario was not presented before. The method runs
without affecting operational behavior of the host operating
system and does not necessitate the installation of special
customized drivers. Furthermore, no low-level changes in
the operating system or running an application in a spe-
cial operational mode like trace-mode are required. The
sandboxing of resources leads to an isolation of consumed
and available resources. This enables testing under realistic
conditions without interrupting normal operational behavior
of the host system.

ACKNOWLEDGMENT

I want to thank The Klaus Tschira Foundation gGmbH
and Prof. Dr.-Ing. Dr. h.c. Andreas Reuter for funding and
supporting this work.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
University of Maryland / Institute for Systems Research, Tech.
Rep., 2004.

[2] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection
techniques and tools,”Computer, vol. 4, pp. 75–82, 1997.

[3] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C.
Fabre, J.-C. Laprie, E. Martins, and D. Powell, “Fault
injection for dependability validation: A methodology
and some applications,” IEEE Trans. Softw. Eng.,
vol. 16, pp. 166–182, February 1990. [Online]. Available:
http://dx.doi.org/10.1109/32.44380

[4] P. Tröger, F. Salfner, and S. Tschirpke, “Software-implemented
fault injection at firmware level,” inProceedings of the
2010 Third International Conference on Dependability,
ser. DEPEND ’10. Washington, DC, USA: IEEE
Computer Society, 2010, pp. 13–16. [Online]. Available:
http://dx.doi.org/10.1109/DEPEND.2010.10

[5] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “Ferrari:
A flexible software-based fault and error injection system,”
IEEE Transactions on Computers, vol. 44, no. 2, pp. 248 –
260, 1995.

[6] T. K. Tsai and R. K. Iyer, “Measuring fault tolerance
with the ftape fault injection tool,” inProceedings of the
8th International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation: Quantitative
Evaluation of Computing and Communication Systems.
London, UK: Springer-Verlag, 1995, pp. 26–40. [Online].
Available: http://dl.acm.org/citation.cfm?id=648080.746851

[7] J. a. Carreira, H. Madeira, and J. a. G. Silva,
“Xception: A technique for the experimental evaluation
of dependability in modern computers,”IEEE Trans. Softw.
Eng., vol. 24, pp. 125–136, February 1998. [Online].
Available: http://dx.doi.org/10.1109/32.666826

[8] B. Singh and V. Srinivasan, “Containers: Challenges with
the memory resource controller and its performance,”Ottawa
Linux Symposium, vol. 2, pp. 209–222, 2007.

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 11 / 49

Design of Dependable Systems: An Overview of Analysis and Verification
Approaches

Jose Ignacio Aizpurua, Eñaut Muxika
Department of Signal Theory and Communications

University of Mondragon
Spain

{jiaizpurua,emuxika}@mondragon.edu

Abstract—Designing a dependable system successfully is a
challenging issue that is an ongoing research subject in the
literature. Different approaches have been adopted in order
to identify, analyse and verify the dependability of a system
design. This process is far from obvious and often hampered
due to the limitations of the classical dependability analysis
techniques and verification approaches. This paper provides
an overview of analysis approaches grouped by limitations.
The principal points for the characterization of the considered
approaches are the capability to handle notions of time,
component-wise failure propagations and the use of architec-
tural languages with the aim to extract analysis models from
design models. Finally, verification approaches are partially
reviewed.

Keywords-Dependability design; Dependability Analysis; De-
pendability Verification; Model-Based Analysis.

I. INTRODUCTION

The goal of this paper is to provide a list of sources to
those readers who are not familiar to the field of model-
based design of dependable systems. Our goal is not to ex-
haustively evaluate the specific features of these approaches,
but to aggregate a comprehensive list of works grouped by
their main characteristics.

In computing systems, dependability is defined as “ability
of a system to deliver a service that can be justifiably trusted”
[1]. Such trustworthiness is based on the assurance of
dependability requirements. These requirements are defined
through dependability attributes: Reliability, Availability,
Maintainability, Safety (RAMS), confidentiality and integrity.
The scope of this overview focuses on RAMS attributes.
Consequently, security aspects (confidentiality and integrity)
are not addressed.

Reliability is the ability of an item to perform a required
function under given conditions for a stated period of time
[2]. Maintainability is the ability to undergo repairs and
modifications to restore to a state in which the system can
perform its required actions. Availability is the readiness
for correct service and safety is the absence of catastrophic
consequences on the user(s) and the environment.

This survey concentrates on three main phases: depend-
ability analysis, system design and verification. Despite
being aware of the relevance of software code for system

dependability in each of these phases, we will consider soft-
ware code as a black box component to limit the extension
of this paper (interested readers refer to [3] [4]).

Dependability analysis techniques can be organised by
looking at how different system failures are characterized
with its corresponding underlying formalisms. On one hand,
event-based approaches reflect the system functionality and
failure behaviour through combination of events. This anal-
ysis results in either Fault Tree (FT) like [5] or Failure
Mode and Effect Analysis (FMEA) like [6] structures, which
emphasizes the reliability and safety attributes. On the other
hand, state-based approaches map the analysis models into
a state-based formalism (e.g., Stochastic Petri Nets (SPN)).
Those approaches analyse system changes with respect to
time and centre on reliability and availability attributes.

Fault injection and model-checking [7] approaches are
mainly adopted for model-based analysis and verification
of design decisions. Principally, they are aimed at checking
and evaluating dependability requirements using nominal
and failure behaviour models. This overview addresses the
analysis and verification of system properties using these
approaches. There is also another class of verification ap-
proaches, which try to ensure the validity of the system by
design [8] (i.e., formal verification).

The remainder of this paper is organized as follows:
Section II classifies dependability analysis techniques based
on the limitations of classical techniques. Section III studies
how to adopt these approaches when designing a dependable
system. Section IV discusses the characteristics of veri-
fication approaches when designing a dependable system.
Section V outlines an abstract hybrid design process based
on the reviewed analysis, design and verification approaches.
Finally, Section VI draws conclusions remarking different
challenges for designing dependable systems. Due to space
limitations, acronyms are used throughout the work. Inter-
ested readers can refer to listed references.

II. REVIEW AND CLASSIFICATION OF DEPENDABILITY
ANALYSIS TECHNIQUES

Event-based approaches analyse the failure behaviour of
the system by investigating the logic succession of faults.

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 12 / 49

They identify an event sequence leading to equipment or
function failure. Differences are mainly based on represen-
tation and analysis structures. Two of the most widely used
techniques are: FT Analysis (FTA) [5] and FMEA [6].

Both techniques focus on the identification of events
that jeopardize the objectives of the design. However,
their logical deductive/inductive orientation (from known ef-
fects/causes towards unknown causes/effects respectively for
FTA/FMEA) and initial assumptions are different. They are
not orthogonal techniques, indeed they are complementary
and in some cases they overlap. The extended usage of these
approaches for dependability related tasks have lead to the
identification of the main limitations. Subsequently, there
has been a long list of works aimed at overcoming them:

• L1: FMEA and FTA are static representations of the
system, neither time information nor sequence depen-
dencies are taken into account [9].

• L2: Orientation of FTA and FMEA concentrate on
the analysis of failure chain information. Consequently,
their hierarchy reflects failure influences without con-
sidering system functional architecture information
[10].

• L3: FMEA and FTA depend on the analyst’s skill
to reflect the aspects of interest. Failure modes (FM)
and undesired events must be foreseen, resulting in a
process highly dependent on analyst’s knowledge of the
system [11].

• L4: Manageability and legibility of FTA and FMEA
models is hampered when analysing complex systems.
Model size, lack of resources to handle interrelated
failures and repeated events, in conjunction with few
reusability means, are its main impediments [10] [12].

L1 refers to the capability of the technique to handle
temporal notions. This is of paramount importance when
analysing fault tolerant systems. L2 emphasizes the interdis-
ciplinary work between dependability analysis and architec-
tural design. Joining both procedures helps obtaining a de-
sign, which meets dependability requirements consistently.
L3 entails a trade-off solution between the time consuming
analysis resulted from understanding the failure behaviour
of the system and the acquired experience. A substantial
body of works have been oriented towards the automatic
generation of analysis models from design models (refer
to groups 3, 5 in Table I) addressing limitations L2 and
L3. These approaches promote the reuse of design models
showing the effects of design changes in the analysis results.
However, note that the correctness of the analysis lies in the
accuracy of the failure annotations. Finally, L4 underlines
the capability of the model to handle the component-wise
nature of embedded systems. This permits obtaining a model
that better adheres to the real problem and avoids confusing
results.

Many authors have developed new alternatives or ex-

tended existing ones. Three groups are identified in order to
gather the approaches and limitations strategically. Firstly,
L1 is addressed in the subsection dynamic solutions for
static-logic approaches. Secondly, L2 and L4 are covered in
compositional failure analysis approaches. Finally, specifi-
cally focusing on L3 and generally addressing the remainder
of limitations model-based transformational approaches are
studied. Note that some approaches cannot be limited to a
specific group, hence they are classified accordingly to its
main contribution.

A. Dynamic Solutions for Static-Logic Approaches

The limitation concerning the lack of time information
has been addressed by several authors to deal with system
dynamics such as redundancy or repair strategies.

Dugan et al. [9] paved the way to cope with configuration
changing analysis using FTs by defining Dynamic Fault Tree
(DFT) methodology. New gates were introduced accounting
for event ordered situations like common cause failures
and redundancy strategies. In [13], temporal notions and
FT models were integrated in order to handle the timed
behaviour of the system. The model reflects how modular FT
models are switched through discrete points in time taking
into account time dependant basic events.

Other alternatives to analyse DFT models are based on
Monte Carlo simulations (MCS) by specifying temporal fail-
ure and repair behaviours of components through state-time
diagrams [14]. In [15], an approach based on Simulink [16]
for DFT modelling and reliability analysis is presented. The
technique integrates MCS and FT methodologies resulting
in a intuitive model-based simulating environment.

Following the way of DFTs, an approach emerged based
on Reliability Block Diagrams (RBD) [2]. RBD is focused
on the analysis of the success of the system, instead of the
failure analysis orientation of FTs. Dynamic RBDs (DRBDs)
[17] models failures and repairs of components based on
their dependencies and state machines.

Lopatkin et al. [18] utilise FMEA models for system
formal specifications. The approach defines generic pat-
terns establishing direct correspondence between FMEA and
state-based Event-B [19] formalism. Consideration of error
detection and recovery patterns lead to analysing and verify-
ing whether safety properties are preserved in the presence
of faults. Utilization of these patterns, allows tracing from
static FMEA considerations towards system dynamics.

Progression in the conjoint use of event and state for-
malisms is reflected with Boolean logic Driven Markov
Processes (BDMP) [20]. BDMP employs static FT as a
structure function of the system and associates Markov
processes to each leaf of the tree. Similarly, State-Event
Fault Tree (SEFT) [21] formalism combines elements from
FT with both Statecharts and Markov chains, increasing the
expressiveness of the model. SEFT deals with functional and
failure behaviour, accounts for repeated states and events and

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 13 / 49

allows straightforward transformations of SEFT models into
Deterministic and Stochastic Petri Net (DSPN) models for
state-based analysis.

The compositional and transformational features of the
SEFT approach, provide an adequate abstraction of the sys-
tem structure and behaviour. As far as our knowledge, there
is no available tool for the evaluation and transformation
of SEFT models. Developing a model-based tool which
extracts DSPN models from SEFT models, would create an
adequate environment for constituting a sound approach for
manageable and consistent dependability analyses.

B. Compositional Failure Propagation Analysis Approaches

The common factors for Compositional Failure Propaga-
tion (CFP) approaches are: the characterization of the system
architectures by design components; the annotation of the
failure behaviour of each of them; and the system failure
analysis based on inter-components influences. Conceptu-
ally they all are very similar: the main objective of CFP
approaches is to avoid unexpected consequences resulting
from the failure generation, propagation and transformation
of components.

Generally, CFP approaches characterise the system as
component-wise developed FT-like models linked with a
causality chain. System architectural specifications and sub-
sequent dependability analyses of CFP approaches rely on
a hierarchical system model. This model comprises com-
ponents composed from subcomponents specifying system
structure and/or behaviour. CFP approaches analyse the
system failure behaviour through characterizations of indi-
vidual components, which lead to achieving a manageable
failure analysis procedure. Failure Propagation and Trans-
formation Notation (FPTN) [22], Hierarchically Performed
Hazard Origin and Propagation Studies (HiP-HOPS) [23]
and Component Fault Tree (CFT) [10] are the principal
CFP approaches. Their main difference is in the failure
annotations of components, which specify incoming, out-
going and internal failures to each component. In order to
annotate the logical combinations of these failures, FPTN
uses logical equations, HiP-HOPS makes annotations using
Interface Focused FMEA (IF-FMEA) tables and CFT as-
sociates to each component individual FTs. Subsequently,
the connections between system components determines the
failure flow of the system, linking related failure annotations
of each component.

Concerning the different contributions of CFP approaches,
FPTN first addressed the integration of system-level deduc-
tive FTA (from known effects to unknown causes) with
component-level inductive FMEA (from known causes to
unknown effects). HiP-HOPS integrates design and de-
pendability analysis concepts within a hierarchical system
model. However, instead of exclusively linking functional
components with their failure propagations like in FPTN,
first the hierarchical system model is specified and then

compositional failure annotations are added to each compo-
nent by means of IF-FMEA annotations. These annotations
describe the failure propagation behaviour of the component
in terms of outgoing failures specified as logical combi-
nations of incoming and internal failures. Subsequently, a
FT synthesis algorithm analyses the propagation of failures
between connected components. Traversing the hierarchical
system model, while parsing systematically the IF-FMEA
annotations of its constituent components, allows the ex-
traction of the system FT and FMEA models. CFT works
in a slightly different way, it aims at linking FTs of the
components with the architecture design. The component
FTs can be combined and reused to systematically obtain
the FT for any failure without having to create and annotate
a FT for each failure.

They all have been extended to cope with occurrences
of temporal events. Temporal extensions for FPTN [24]
and HiP-HOPS [25] have been influenced by the DFT
methodology. Focusing on non-repairable systems, the order
of events is examined in order to identify specific sequence
of events leading to failures. Integration of CFT concepts
with state-based techniques resulted in SEFT formalism,
which is able to handle availability and maintainability
properties of repairable systems.

Transformation of CFP approaches into dependability
analysis formalisms is an ongoing research subject (see Sub-
section II-C). HiP-HOPS extracts FTA and FMEA models
thanks to its underlying logic and SEFT applies a translation
algorithm to generate DSPN models.

Other interesting extensions include mechanisms to auto-
mate and reuse analysis concepts. Failure Propagation and
Transformation Calculus (FPTC) [26] approach introduces
notations to indicate nominal behaviour within FPTN models
and concepts to generalise and manage FPTN equations.
Moreover, an algorithm is implemented handling the general
inability of CFP approaches to cope with cyclic dependen-
cies of feedback structures. In [27], general failure logic
annotation patterns were defined for HiP-HOPS. Similarly,
the CFP approach presented in [28], emphasizes the reuse
of failure propagation properties specified at the port level
of components. These specifications centre on the physical
properties of different types of flows, which allow reusing
failure behaviour patterns for functional architectures.

The evolution of CFP approaches focus on reusability,
automation and transformation properties. Since the anno-
tations of components failure behaviour depend upon de-
signers subjective considerations, reusing failure annotations
leads to reducing the error proneness. Based on the fact
that different dependability analyses have to be performed
when designing a dependable system, definition of a unique
consistent model covering all analyses would benefit these
approaches. This is why recent publications in this field
centre on integrating existing approaches (cf. Subsection
II-C and Section IV).

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 14 / 49

C. Model-Based Transformational Approaches

The main aim of the transformational models is to con-
struct dependability analysis models (semi-)automatically.
The process starts from a compositional design description
using computer science modelling techniques. The failure
behaviour is specified either by extending explicitly the
design model or developing a separate model, which is
allocated to the design model. Transformation rules and
algorithms extract dependability analysis models from it.

These approaches lead to adopting a trade-off decision
between dependability design and analysis processes. On
one hand, the automation and reuse of analysis techniques
in a manageable way makes it a worthwhile approach
for design purposes. The impact of design changes on
dependability attributes are straightforwardly analysed. On
the other hand, from purist’s point of view of classical
analysis techniques, the automation process removes the
ability of these techniques to identify and analyse hazards
or malfunctions in a comprehensive and structured way.

Architectural description languages (ADLs) provide an
adequate abstraction to overcome the limitations. Simulink
[16], AADL [29] and UML [30] have been used for both
architectural specification and failure behaviour specifica-
tion. UML is a widely used modelling language, which has
been extended for dependability analyses following model
driven architecture (MDA) concepts. Namely, profiles [31]
allow extending and customizing modelling mechanisms to
the dependability domain.

Lately, a wide variety of independently developed exten-
sions and profiles have come up for dependability analysis
[32]. However, some generally applicable metamodel is
lacking. In an effort to provide a consistent profile CHESS
ML [33] emerged. Its high-level specifications are trans-
formed into Intermediate Dependability Model (IDM) in
order to facilitate transformations. CHESS ML development
is currently ongoing and seems to provide all necessary
mechanisms to model dependable systems and extract either
event-based (FMECA, FPTC) or state-based (SPN) analysis
models.

CFP approaches have been shifted towards the transforma-
tional paradigm. The toolset for FPTC approach [26] relies
on a generic metamodel in order to support transformations
from SysML and AADL models. In [34], a metamodel is
developed so as to extract CFT models from functional
architecture models specified in UML. This process permits
the generation of reusable CFT models consistent with
the design model. In the same line, integration of HiP-
HOPS model with EAST-ADL2 automotive UML profile
is presented in [35]. Translations from high-level ADLs to
well established CFP analysis techniques, enable an early
dependability analysis and allow undertaking timely design
decisions.

Architecture Analysis and Design Language (AADL) cap-

tures the system architectural model in terms of components
and their interactions describing functional, mapping and
timing properties among others. The core language can be
extended to meet specific requirements with annex libraries.
Behaviour and error model annexes are provided with the
tool. The error annex links system architecture components
to their failure behaviour specification making possible the
analysis of the dependability attributes of the system. It has
been used for both state-based [36] and event-based [37]
analysis.

AltaRica [38] is a dependability language, which enables
describing the behaviour of systems when faults occur. The
model is composed of several components linked together
representing an automaton of all possible behaviour scenar-
ios, including those cases when reconfigurations occur due
to the occurrence of a failure [39]. It is possible to process
such models by other tools for MC or generation of FTs [40].
Transformations from AADL to AltaRica are presented in
[41], based on MDA concepts so as to perform dependabil-
ity analyses and avoid inconsistencies while working with
different formalisms.

In [42], a method for RAMS analysis is defined centred
on SysML [43] modelling language from where a FMEA
model is deduced. SysML diagrams define a functional
model connected to a dysfunctional database enabling the
identification of FMs. This database contains the link be-
tween system architecture and failure behaviour giving the
key for FMEA extraction. Further, the methodology for
dependability assessment is extended using AltaRica, AADL
and Simulink models. They address reliability and timing
analysis and simulation of the effects of faults respectively.

Definition of a model for the extraction of all necessary
formalisms for dependability analysis is the common goal
for the aforementioned works. Interconnections between dif-
ferent formalisms in order to take advantage of the strengths
of each ADL, allow analysing dependability properties ac-
curately. AltaRica and AADL cover adequately the analysis
of reliability, availability and maintainability attributes. Ex-
traction of the main CFP approaches from ADLs should
help to analyse comprehensively system safety properties.
Moreover, Simulink model simulations allow evaluating the
effects of failure and repair events in the system. Thereby,
integrations between language specific models like in [42]
helps evaluating accurately all dependability aspects of a
system.

D. Classification of Techniques

In order to classify the covered approaches, Table I groups
them taking into account limitations specified in Section II.

Approaches gathered within the group 5 contain all
necessary features in order to analyse dynamic systems
consistently and in a manageable way. Compositional failure
annotation, dynamic behaviour and automatic extraction of
analysis models are the key features addressed by these

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 15 / 49

Table I
SUMMARY OF LIMITATIONS OVERCOME BY APPROACHES

Group Approach Limitations
1 [9] [13] [14] [20] L1

2 [10] [22] [26] L2, L4

3 [23] [28] [37] L2, L3, L4

4 [17] [24] [39] L1, L2, L4

5 [21] [18] [25] [33] [36] [42] L1, L2, L3, L4

approaches. Utilization of failure annotation patterns pro-
mote flexibility and reuse and consequently, reduce the error
proneness. Nevertheless, as noted in [44], characterization of
the failure behaviour of components depends on the com-
ponent context, which conditions compositional and reuse
properties. Moreover, automatic generation of the analysis
model does not completely alleviate the dependency on the
knowledge of the analyst. However, it lets managing and
specifying the failure behaviour in a clear and consistent
way.

III. DEPENDABLE DESIGN: TRADE-OFF BETWEEN
DEPENDABILITY AND COST

Generally, dependability design decisions and objectives
are related to trade-off decisions between system depend-
ability attributes and cost. Dependability requirements often
conflict with one another e.g., safety-availability compro-
mise when a faults leads the system to a safe shutdown
in order to prevent it from propagating. The time at which
design decisions are taken, determines the cost that the
design process can incur.

Designing a dependable system within considered require-
ments requires a process to match and tune combination of
architectural components so as to find an optimal solution
satisfying design constraints. For the sake of analysing
the applicability of the aforementioned analysis techniques,
three demonstrative works are chosen. Their underlying
structure is illustrated in Figure 1.

Dependable design methodologies are proposed by Be-
nard et al. [45] and Clarhaut et al. [46]. The former focuses
on quantification and comparison of RAMS properties of
alternative components. The latter overcomes static-logic
limitations by integrating temporal functions. Their design
methodology is based on the operational model, which aims
at mapping the functional model onto a compatible physical
model (cf. Figure 1).

The functional model is developed in a top-down hier-
archical manner tracing from system level functions up to
lower level functions. At the lowest level, physical compo-
nents are linked with corresponding functions. Dependability
considerations lead to characterizing hardware components
through failure modes (FM) and redundancy structures. The
way in which dependability analysis is performed differ
both approaches. While the former uses MCS to analyse the

Functional
Model

Physical Model

Compatibility
Analysis

Operational
Model

Failure Model

Fault Tolerance
Strategies

Recovery
Strategies

Dependability
Analysis

Reconsideration

C
om

pr
is

es

Functional
Requirements

Cost FM Redundancy
Structures

Performance
Requirements

Dependability
Requirements

Counteracts

Means

V & V

Architecture
Evolution
Algorithm

Candidate
Architectures

Figure 1. Abstract Design Process (Adapted from [45])

impact of allocations of functions into physical components;
the latter focuses on identifying component-wise temporal
failure contributions to the system-level undesired event.

In [47], HiP-HOPS approach is extended with recovery
strategies. These capabilities are formally represented using
patterns. They characterize the potential to detect, mitigate
and block affecting component failures identified in the
failure model. Dependability analysis is performed by means
of FTA and FMEA.

Trade-off analysis between dependability and cost deter-
mines optimal architectures. In [47], fault tolerant configu-
rations are introduced without violating user constraints and
an evolutionary optimization algorithm is used to converge
through dependability and cost requirements. Similarly [46]
identifies set of optimal candidate architectures by minimiz-
ing failure contributions and cost of necessary components
to accomplish system functions.

IV. DEPENDABLE DESIGN VERIFICATION: FAULT
INJECTION APPROACHES

Fault Injection (FI) techniques focus on evaluating system
behaviour in the presence of faults according to target de-
pendability properties. The outcome of this process may lead
to considering design changes. However, changes adopted
late in the design process are costly. This is why we focus
on FI approaches adopted at the preliminary design phase.
This process is based on the analyst’s knowledge to reason
about the functional and failure behaviour of the system.
As a result, the effectiveness of fault detection, isolation,
recovery and reconfiguration strategies are evaluated. Timely
evaluation of these properties provides a valuable feedback
for design purposes. However, difficulties arise from the
accuracy of the system behaviour, which requires an accurate
knowledge of the system.

Instead of focusing on purely verification oriented FI
approaches, we address integrative verification approaches.
These works result from the integration of design, analysis
and verification tasks. Covered approaches aim at combining
dependability analysis techniques examined within the group
5 (cf. Table I) with FI approaches. They express system

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 16 / 49

behaviour using a compositional model, which gathers nomi-
nal, failure and recovery behaviours. Integrating approaches
using model transformations, allows using a single design
model for dependability and verification analyses.

The system design model takes into account functional
and failure behaviour of components. Temporal logic lan-
guages are used to define system requirements. They de-
scribe how the truth values of assertions change over time,
either qualitatively (Computation Tree Logic (CTL), Linear
Time Logic (LTL)) or quantitatively (Continuous Stochastic
Logic (CSL), probabilistic CTL (PCTL)). Model-checking
(MC) engine assesses whether such requirements are met
or not by the design model, using a analysis model. To
do so, it is necessary to transform the design model into
the analysis model. When the analysis model fails to meet
these requirements, its effects are deduced automatically
identifying the paths that violate the conditions (counter-
examples (CEs)) [7]. The logical orientation of this analysis
process results in FMEA-like cause-effect analysis.

There are some limitations hampering the analysis and
interpretation of these approaches. Representation structures
of the results, state-explosion problems, technical specifica-
tion difficulties, qualitative nature of MC analysis and model
inconsistencies are some challenges to be addressed.

The COMPASS project [48] addresses these limitations
based on SLIM (System-Level Integrated Modeling) lan-
guage [49]. The semantics of SLIM cover the nominal
and error behaviour of AADL. The complete specification
of SLIM consists of a nominal model, a failure model
and a description of the effects of failures in the nominal
model (extended model). Due to its underlying formal se-
mantics, various types of analyses are possible: validation
of functional, failure, and extended models via simulation
and MC; dependability analysis and performance evaluation;
diagnosability analysis; and evaluation of the effectiveness
of fault detection, isolation and recovery strategies.

Similarly, Güdemann and Ortmeier [50] proposed an inter-
mediate (IM) tool-independent model called Safety Analysis
Modelling Language (SAML). SAML describes a finite
state automata, which is used to characterise the extended
system model. This model specifies the nominal behaviour,
failure occurrences, its effects and the physical behaviour
of the surrounding environment. From this single model,
quantitative and qualitative MC analyses are performed. The
former identifies minimal critical sets using CEs to indicate
time-ordered combinations of failures causing the system
hazard. The latter calculates per-demand and per-time failure
probabilities.

TOPCASED project [51] aims at developing criti-
cal embedded systems including hardware and software.
TOPCASED integrates ADLs and formal methods. The
approach transforms high-level ADL models (SysML, UML
and AADL) into an IM model specified in Fiacre language
[52]. Fiacre specifies behavioural and timing aspects of high-

level models making use of timed Petri nets primitives.
Subsequent transformations of the IM model into MC tools
(TINA and CADP), make possible the formal verification
and simulation of the specified requirements. TINA [53]
analyse requirements specified in the state variant of LTL
proposition logic (State/Event LTL (SELTL)) focusing on
timeliness properties. CADP [54] transforms Fiacre models
into LOTOS programs, which are handled by its underlying
tools for validation via MC and simulation.

Albeit these approaches provide a means to extract clas-
sical dependability models from high-level models, none of
them focus on integrating existing CFP approaches. There
are some incipient works linking CFP and verification ap-
proaches. They are influenced by HiP-HOPS [55] and FPTC
[56]. Both approaches address the integration of qualitative
design models with quantitative analysis via probabilistic
MC. These approaches in particular and CFPs in general,
provide useful resources when characterizing the failure
behaviour of systems. The pros and cons of the covered
works are summarized in the Table II.

The addressed works integrate well known tools and
formalisms. However, integration of analysis and verification
approaches when designing a dependable system is an
ongoing research subject. There is an increasing interest in
reusing and generalizing CFP approaches (e.g., transforma-
tion of CFP approaches into metamodels [26] [34] [35] and
integration of CFP and verification approaches [55] [56]).

V. HYBRID DESIGN PROCESS

The goal of this section is not to provide a new design
approach. Our aim is to make use of the reviewed analysis,
design and verification approaches so as to outline a consis-
tent and reusable model-based design process. This process
emerges from the structure of the integrative verification
approaches (cf. Section IV).

The separation of dependability analysis and verification
tasks may lead to hampering the system design since results
identified from either task need to be reconsidered during the
design process (cf. Section III). On one hand, dependability
analyses characterized by transformational approaches (cf.
Section II-C), allow tracing from design considerations
towards dependability analysis models. These approaches
evaluate the dynamic system behaviour, as well as the effect
of particular component failure occurrences at system level.
On the other hand, purely verification oriented approaches
mainly focus on the verification of the adequacy of the de-
sign model with respect to RAMS requirements. This is why
we centre on covering integrative verification approaches.

When matching and tuning design components so as to
find optimal design solutions satisfying design constraints,
possible inconsistencies may arise due to the independent
considerations of these approaches. This is why we should
focus on outlining a model-based hybrid design process,
which unifies design, analysis and verification tasks. This

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 17 / 49

Table II
SUMMARY OF FAULT INJECTION APPROACHES

Works Design
Model

Analysis
Model
(*Auto)

Reqs.
(*Auto) Results Specific Features Future works

[49] SLIM NuSMV*,
MRMC*

CTL*,
LTL*,
CSL*

DFT,
FMEA,

Prob. Calc.

Req. patterns; Integrated verification
and dependability and performance

analyses of extended models.

Manual extension of the nominal model;
Redundant FTA-FMEA results;

State-explosion.

[50] SAML
NuSMV*,
PRISM*,
MRMC*

CTL,
PCTL

Time-Ord.
CE,

Prob. Calc.

Combination of qualitative and
quantitative analyses on the same

model.

Manual extension of the nominal model;
Transf. ADLs (Simulink, Scade) into

SAML; Req. patterns.

[52] Fiacre TINA,
CADP

LTL,
SELTL

Timing,
Prob. Calc.

Req. patterns; Integrated design,
analysis and verification approaches.

State Explosion;
Back annotation of results.

[55] Simulink PRISM* CSL Prob. Calc. Systematic generation of analysis
models from CFP design models.

No CE; State-explosion;
Dynamic behaviour.

[56] FPTC PRISM CSL CE Integration of CFP approach and prob.
model checking.

Fail Prone Manual transformation;
Translate CE to design model.

process relies on initial system requirements, models, trans-
formations and reuse of designer’s considerations and results
extracted from analysis and verification tasks (cf. Figure 2).

Functional
Model

Physical Model

Design
Model

Extend. Design
Model

Functional Requirements
Functional Patterns

Failure Modes

Redundancy Structures

2

Failure
 Model

Non-Functional
Data Repository

1
3

4

Functional
Data Repository

Failure

Results: Failure Effects/Sources
RAMS Reqs. & Faults to Inject

Results: Failure Effects/Sources

Failure

1) Functional Verification
2) Model Extension

3) Dependability Analysis

4) Dependability Verification

T2

T1

T3

T1) Transf. ExtendedDesign2Analysis
T2) Transf. ExtendedDesign2Verification

T3) Transf. Results2ExtendedDesign

Patterns

Effects
Redundancy

Structures

Formal
Verification

Model

Dep.
Analyisis

Model

T4

T4) Transf. Analysis2Verification

Figure 2. Hybrid Design Process

This design process starts from initial functional and phys-
ical considerations. Functional verification analysis evalu-
ates the adequacy of the allocation of the functional model
into the physical model according to functional require-
ments. The outcome of this process allows considering the
verified design model (operational model, cf. Figure 1).
Subsequently, this model is extended with the failure model
accounting for failure occurrences of the considered model.
Failure patterns aid in the construction of the failure model
allowing the reuse non-functional considerations. Further,
the effects of the considered failures and recovery strategies
are annotated in the extended design model in order to
counteract failure occurrences and its effects. With the aim
to carry out dependability analysis and formal verification
evaluations of the extended design model, twofold transfor-
mations need to be performed. The means to perform these
transformations have been presented in Subsection II-C and
Section IV respectively. Transformations of these models
make the evaluation of the adequacy of the extended design
model respect to RAMS requirements possible. Depend-
ability analysis and verification tasks enable finding further

failure effects and failure sources (apart from occurrence
probabilities) either by CEs or dependability specific models.
These results need to be transformed in order to reconsider
for design and analysis purposes. For the sake of reusing
and refining the design process, data repositories have been
considered consisting of annotation patterns for require-
ments and models (both functional and non-functional) and
reusable recovery strategies.

On one hand, the outlined design approach enables bene-
fiting from consistent design considerations. Moreover, data
repositories allow the reuse of designer’s considerations as
well as analysis results. Furthermore, user-friendly means
make the annotation processes more evident. On the other
hand, the automation of the extraction of dependability
models hides information about the failure behaviour. Ad-
ditionally, the flexibility of the approach depends on the
system context, which would determine the reusability of
functional and non-functional considerations.

VI. CONCLUSION AND FUTURE WORK

Designing a dependable system, poses a wide variety of
challenges on all its phases. This paper groups different
approaches in order to identify and classify them.

The listed limitations guided the evolution of the anal-
ysis techniques towards Compositional Failure Propagation
(CFP) and transformational approaches. Automatic extrac-
tion of analysis models from design models is an ongoing
research field, which leads to achieving consistency between
design and analysis models.

However, this is not the cure-all remedy, which alleviates
analysts from identifying and analysing failure behaviours,
but helps obtaining a manageable analysis compared to
the difficult and laborious traditional process. User friendly
resources, such as design components or failure annotation
libraries, enable the reuse of nominal and failure models.

When designing a new system, special care should be
taken, since reuse properties depend on the system context.

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 18 / 49

The reuse of failure annotations in the design process, eases
the architectural iterative refinement process. This makes
possible the analysis of different implementations using the
same component failure models.

For verification purposes, fault injection (FI) approaches
have been studied. Since the adoption of FI approaches is
made late in the traditional design process, we have consid-
ered integrative works. Their main objective is to address
consistently dependability analysis, design and verification
tasks at the preliminary design phase. An early integration
of these tasks would add value to the dependable design
process. There are many challenging tasks to address when
constructing an end-to-end dependable design methodology.
Integration of the CFP approaches within this methodology
or validation of the correctness of the faults to be injected
are some of the subjects to be addressed.

Therefore, we hypothesize that instead of developing in-
dependent approaches to identify, analyse and verify depend-
ability requirements, future directions will focus on integrat-
ing different approaches. This process requires tracing verifi-
cation results to the initial dependable design model and vice
versa. Consequently, accounting for these considerations,
we have sketched an abstract integrative design process.
The integration of the approaches should allow undertak-
ing timely design decisions by reducing costs and manual
failure-prone annotations. Additionally, it will alleviate the
need to clutter a model with redundant information. In this
field, challenging work remains to do sharing information
between existing approaches so as to take advantage of
complementary strengths of different approaches.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Trans. Dependable Secur. Comput., vol. 1,
pp. 11–33, January 2004.

[2] M. Rausand and A. Høyland, System Reliability Theory: Mod-
els, Statistical Methods and Applications Second Edition.
Wiley-Interscience, 2003.

[3] A. Arora and S. Kulkarni, “Component based design of
multitolerant systems,” IEEE Trans. on Sw. Eng., vol. 24,
no. 1, pp. 63–78, 1998.

[4] M. Hiller, A. Jhumka, and N. Suri, “An approach for
analysing the propagation of data errors in software,” in Proc.
of DSN’01, 2001, pp. 161–170.

[5] W. Vesely, J. Dugan, J. Fragola, Minarick, and J. Railsback,
“Fault Tree Handbook with Aerospace Applications,” NASA,
Handbook, 2002.

[6] US Department of Defense, Procedures for Performing, a
Failure Mode, Effects, and Criticality Analysis (MIL-STD-
1629A). Whasington, DC, 1980.

[7] C. Baier and J.-P. Katoen, Principles of model checking. MIT
Press, 2008.

[8] Y. Prokhorova, L. Laibinis, E. Troubitsyna, K. Varpaaniemi,
and T. Latvala, “Derivation and formal verification of a mode
logic for layered control systems,” in Proc. of APSEC’11,
2011, pp. 49–56.

[9] J. Dugan, S. Bavuso, and M. Boyd, “Dynamic fault-tree
models for fault-tolerant computer systems,” IEEE Trans. on
Reliability, vol. 41, no. 3, pp. 363–377, 1992.

[10] B. Kaiser, P. Liggesmeyer, and O. Mäckel, “A new component
concept for fault trees,” in Proc. of SCS’03, 2003, pp. 37–46.

[11] A. Galloway, J. McDermid, J. Murdoch, and D. Pumfrey, “Au-
tomation of system safety analysis: Possibilities and pitfalls,”
in Proc. of ISSC’02, 2002.

[12] C. Price and N. Taylor, “Automated multiple failure FMEA,”
Reliability Eng. & System Safety, vol. 76, pp. 1–10, 2002.

[13] M. Ĉepin and B. Mavko, “A dynamic fault tree,” Reliability
Eng. & System Safety, vol. 75, no. 1, pp. 83–91, 2002.

[14] Rao, K. Durga, V. Gopika, V. V. S. Sanyasi Rao, H. S.
Kushwaha, A. K. Verma, and A. Srividya, “Dynamic fault tree
analysis using Monte Carlo simulation in probabilistic safety
assessment,” Reliability Eng. and System Safety, vol. 94,
no. 4, pp. 872–883, 2009.

[15] G. Manno, F. Chiacchio, L. Compagno, D. D’Urso, and
N. Trapani, “MatCarloRe: An integrated FT and Monte Carlo
Simulink tool for the reliability assessment of dynamic fault
tree,” Expert Systems with Applications, vol. 39, no. 12, pp.
10 334–10 342, 2012.

[16] “MathWorks,” http://www.mathworks.com; Last access:
2012/06/13.

[17] S. Distefano and A. Puliafito, “Dynamic reliability block
diagrams vs dynamic fault trees,” In Proc. of RAMS’07, vol. 8,
pp. 71–76, 2007.

[18] I. Lopatkin, A. Iliasov, A. Romanovsky, Y. Prokhorova, and
E. Troubitsyna, “Patterns for representing FMEA in formal
specification of control systems,” in Proc. HASE’11, 2011,
pp. 146–151.

[19] “Event-B and the Rodin platform,” http://www.event-b.org;
Last access: 2012/06/13.

[20] M. Bouissou, “A generalization of Dynamic Fault Trees
through Boolean logic Driven Markov Processes (BDMP),”
in Proc. of ESREL’07, vol. 2, 2007, pp. 1051–1058.

[21] B. Kaiser, C. Gramlich, and M. Forster, “State/event fault
trees a safety analysis model for software-controlled sys-
tems,” Reliability Eng. System Safety, vol. 92, no. 11, pp.
1521–1537, 2007.

[22] P. Fenelon and J. A. McDermid, “An integrated tool set for
software safety analysis,” J. Syst. Softw., vol. 21, pp. 279–290,
1993.

[23] Y. Papadopoulos, M. Walker, D. Parker, E. Rüde, R. Hamann,
A. Uhlig, U. Grätz, and R. Lien, “Engineering failure anal-
ysis and design optimisation with HiP-HOPS,” Engineering
Failure Analysis, vol. 18, no. 2, pp. 590–608, 2011.

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 19 / 49

[24] R. Niu, T. Tang, O. Lisagor, and J. McDermid, “Automatic
safety analysis of networked control system based on failure
propagation model,” in Proc. of ICVES’11, 2011, pp. 53–58.

[25] M. Walker and Y. Papadopoulos, “Qualitative temporal analy-
sis: Towards a full implementation of the fault tree handbook,”
Control Eng. Practice, vol. 17, no. 10, pp. 1115–1125, 2009.

[26] R. Paige, L. Rose, X. Ge, D. Kolovos, and P. Brooke, “FPTC:
Automated safety analysis for Domain-Specific languages,” in
MoDELS Workshops ’08, vol. 5421, 2008, pp. 229–242.

[27] I. Wolforth, M. Walker, L. Grunske, and Y. Papadopoulos,
“Generalizable safety annotations for specification of failure
patterns,” Softw. Pract. Exper., vol. 40, pp. 453–483, 2010.

[28] C. Priesterjahn, C. Sondermann-Wölke, M. Tichy, and
C. Hölscher, “Component-based hazard analysis for mecha-
tronic systems,” in Proc. of ISORCW’11, 2011, pp. 80–87.

[29] P. Feiler and A. Rugina, “Dependability Modeling with the
Architecture Analysis & Design Language (AADL),” Techni-
cal Note CMU/SEI-2007-TN-043, CMU Software Engineer-
ing Institute, 2007.

[30] “The Unified Modeling Language,” http://www.uml.org/; Last
access: 2012/06/13.

[31] L. Fuentes-Fernández and A. Vallecillo-Moreno, “An Intro-
duction to UML Profiles,” UPGRADE, vol. 5, no. 2, pp. 5–13,
2004.

[32] S. Bernardi, J. Merseguer, and D. Petriu, “Dependability
modeling and analysis of software systems specified with
UML,” ACM Computing Survey, In Press.

[33] L. Montecchi, P. Lollini, and A. Bondavalli, “An intermediate
dependability model for state-based dependability analysis,”
University of Florence, Dip. Sistemi Informatica, RCL group,
Tech. Rep., 2011.

[34] R. Adler, D. Domis, K. Höfig, S. Kemmann, T. Kuhn,
J. Schwinn, and M. Trapp, “Integration of component fault
trees into the UML,” in MoDELS’10, 2010, pp. 312–327.

[35] M. Biehl, C. DeJiu, and M. Törngren, “Integrating safety
analysis into the model-based development toolchain of auto-
motive embedded systems,” in Proc. of LCTES ’10. ACM,
2010, pp. 125–132.

[36] A. Rugina, K. Kanoun, and M. Kaâniche, “A system de-
pendability modeling framework using AADL and GSPNs,”
in Architecting dependable systems IV, LNCS, vol. 4615.
Springer, 2007, pp. 14–38.

[37] A. Joshi, S. Vestal, and P. Binns, “Automatic Generation of
Static Fault Trees from AADL models,” in DNS Workshop on
Architecting Dependable Systems. Springer, 2007.

[38] A. Arnold, G. Point, A. Griffault, and A. Rauzy, “The
AltaRica formalism for describing concurrent systems,” Fun-
damenta Informaticae, vol. 40, no. 2-3, pp. 109–124, 1999.

[39] B. Romain, J.-J. Aubert, P. Bieber, C. Merlini, and S. Metge,
“Experiments in model based safety analysis: Flight controls,”
in DCDS’07, 2007, pp. 43–48.

[40] P. Bieber, C. Castel, and C. Seguin, “Combination of fault
tree analysis and model checking for safety assessment of
complex system,” in Proc. of EDCC’02, vol. 2485. Springer,
2002, pp. 624–628.

[41] K. Mokos, P. Katsaros, N. Bassiliades, V. Vassiliadis, and
M. Perrotin, “Towards compositional safety analysis via se-
mantic representation of component failure behaviour,” in
Proc. of JCKBSE’08. IOS Press, 2008, pp. 405–414.

[42] R. Cressent, V. Idasiak, F. Kratz, and P. David, “Mastering
safety and reliability in a Model Based process,” in Proc. of
RAMS’11, 2011.

[43] “OMG Systems Modelling Language,” http://www.omgsysml.
org/; Last access: 2012/06/13.

[44] O. Lisagor, “Failure logic modelling: A pragmatic approach,”
Ph.D. dissertation, Department of Computer Science, The
University of York, 2010.

[45] V. Benard, L. Cauffriez, and D. Renaux, “The Safe-SADT
method for aiding designers to choose and improve depend-
able architectures for complex automated systems,” Reliability
Eng. & System Safety, vol. 93, no. 2, pp. 179–196, 2008.

[46] J. Clarhaut, S. Hayat, B. Conrard, and V. Cocquempot,
“Optimal design of dependable control system architectures
using temporal sequences of failures,” Ieee Transactions On
Reliability, vol. 58, no. 3, pp. 511–522, 2009.

[47] M. Adachi, Y. Papadopoulos, S. Sharvia, D. Parker, and
T. Tohdo, “An approach to optimization of fault tolerant
architectures using hip-hops,” Softw. Pract. Exp., 2011.

[48] “Correctness, Modelling and Performance of Aerospace Sys-
tems,” http://compass.informatik.rwth-aachen.de; Last access:
2012/06/13.

[49] M. Bozzano, A. Cimatti, J.-P. Katoen, V. Nguyen, T. Noll, and
M. Roveri, “Safety, dependability and performance analysis
of extended aadl models,” Computer Journal, vol. 54, no. 5,
pp. 754–775, 2011.

[50] M. Güdemann and F. Ortmeier, “Towards model-driven safety
analysis,” in Proc. of DCDS 11, 2011, pp. 53 – 58.

[51] “The Open-Source Toolkit for Critical Systems,” http://www.
topcased.org; Last access: 2012/06/13.

[52] B. Berthomieu, J.-P. Bodeveix, P. Farail, M. Filali, H. Garavel,
P. Gaufillet, F. Lang, and F. Vernadat, “Fiacre: an intermediate
language for model verification in the topcased environment,”
in ERTS’08, 2008.

[53] “TINA,” http://projects.laas.fr/tina; Last access: 2012/06/13.

[54] “CADP,” http://http://www.inrialpes.fr/vasy/cadp/; Last ac-
cess: 2012/06/13.

[55] A. Gomes, A. Mota, A. Sampaio, F. Ferri, and J. Buzzi,
“Systematic model-based safety assessment via probabilistic
model checking,” in ISoLA’10. Springer, 2010, pp. 625–639.

[56] X. Ge, R. Paige, and J. McDermid, “Probabilistic failure
propagation and transformation analysis,” in SAFECOMP’09,
2009, vol. 5775, pp. 215–228.

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 20 / 49

Dependable Design: Trade-Off Between the Homogeneity and Heterogeneity of
Functions and Resources

Jose Ignacio Aizpurua, Eñaut Muxika
Department of Signal Theory and Communications

University of Mondragon
Spain

{jiaizpurua,emuxika}@mondragon.edu

Abstract—Designing a dependable system by reducing costs
is a challenging issue. Traditional design strategies replicate
resources in order to improve fault-tolerant capabilities of the
system, which leads to increasing the hardware cost. Originated
from over-dimensioning decisions, we outline an approach to
identify and gather inherent compatible resources of the system
to accomplish equivalent functions. Inference of reconfiguration
strategies from the inherent design redundancies of the system
not only decreases the hardware cost, but also maintains, or
even improves the dependability of the system.

Keywords-Dependable design, distributed and reconfigurable
systems, shared (quasi) redundancy.

I. INTRODUCTION

When designing a dependable system [1], redundancies
improve system safety and availability. However, the aggre-
gation of resources leads to higher costs and more failure
sources. Consequently, reliability decreases. Therefore, a
trade-off analysis between dependability and cost objectives
is necessary to design a dependable system.

In order to perform a function within distributed net-
worked control systems (NCSs), remote devices work in
cooperation. A sensor performs a measurement function and
sends it to a control algorithm through the network. The
control algorithm acts in consequence and sends actuation
commands to the remote actuator. Traditionally, sensors and
actuators accomplish a single function, while processing
units (PUs) handle multiple tasks. However, why not exploit
sensor and actuator strengths to perform as many functions
as they can?

Our design approach focus on NCSs operating under
massively networked scenarios, where a lot of PUs and
sensors are connected to a network for different purposes.
E.g., a train where the resources of each car are replicated
throughout the train cars or a building where room and floor
resources are replicated.

In this paper, we propose a system design approach for the
systematic identification of replaceable functions including
those performed by sensors and actuators. To do so, the
physical location is the key driver. Subsequent steps allow
associating and deducing inherent design redundancies of the
system. This approach allows improving specifically system

availability and generally system dependability without ad-
ditional hardware cost.

The remainder of this paper is organised as follows: Sec-
tion II gives an overview of related research work. Section
III describes the generic functional modelling approach.
Section IV describes an overall reconfiguration process for
designing a dependable system. Finally, Section V addresses
limitations and future objectives of our research.

II. BACKGROUND RESEARCH

This section is divided into two subsections: Subsection
II-A points out inspirations of our research and Subsection
II-B identifies conceptually aligned works.

A. Research Inspiration

A straightforward way to add redundancies to a system
design is to explicitly replicate components. The objective
of the added resources is to provide failover capabilities to a
dedicated component failure. These replications are usually
done using passive and active redundancies.

Shared-redundancy [2] and quasi-redundancy [3] con-
cepts emerge from the utilization of components to compen-
sate for a failure, despite not being primarily used with this
objective. Replication of control functions over distributed
processing units (PUs) is done in such a way, that failed
functions are compensated using existing components. These
redundancies are implemented reconfiguring the communi-
cation routes of the network and PUs.

Passive and active redundancies replicate the nominal
operation of the failed function and shared- and quasi-
redundancies make the failed function operate under de-
graded conditions. Note that shared- and quasi-redundancies
are a form of passive redundancies, i.e., they work only
when the primary resource fails.

In order to simplify the nomenclature, we name homo-
geneous resources those needed to perform passive/active
redundancies where the nominal operation is replicated and
heterogeneous resources those needed to perform shared-
/quasi-redundancies where failure of the nominal operation
is compensated (i.e., degraded operation).

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 21 / 49

We reuse existing concepts grouping them to consider the
trade-off between the replication of resources and the reuse
of existing ones. Homogeneous resources lead to increasing
the hardware cost. However, the integration and implementa-
tion of these resources is not as difficult as with the heteroge-
neous resources. The identification of replaceable functions
and the adaptation of the existing architecture to benefit
from compatibilities are the main challenges. Therefore, our
aim is to complement existing approaches with a method
to identify heterogeneous resources. This process enables a
systematic characterization of the replaceability properties of
the system, including those involving sensors and actuators.

B. Related Works

There is an increasing interest in automotive, avionics
and space industry for reusing existing hardware and/or
extracting system reconfiguration behaviour.

DySCAS middleware [4] partially addresses our con-
siderations using a context-aware adaptation mechanism,
specified by execution and architecture aware contexts. The
former context uses distributed policies to detect deviations
and react, while the latter embeds meta-information of con-
figuration reasoning (resource dependencies, QoS contracts,
compatibility, composability and dependability) within dy-
namically reconfigurable components. The approach deals
with task migrations to cope with hardware failures and
network balancing. A global node dynamically maintains for
the entire network the intentions of every node and decides
the possible configurations based on their requirements.
Each node locally performs admission control deciding if a
task is schedulable considering resource limitations (mem-
ory, CPU, bandwidth) and optimization of resources. The
middleware consolidates and disseminates the distributed
information.

Adler et al. [5] proposed a component-based modelling
and verification method for adaptive embedded systems. The
approach aims at exploiting implicitly available redundan-
cies to react to system failures. It provides methodological
support for identifying and gathering reasonable system con-
figurations. To do so, each port of the functional component
is attached with a quality attribute (QA), which provides
means to connect compatible components. Based on QAs,
the adaptation behaviour of each component is determined
with the required qualities for activation (preconditions) and
influences on the provided qualities (postconditions). In or-
der to ensure the causality of the reconfiguration sequences,
well-definedness properties are verified by using model-
checking and theorem proving techniques.

Integrated Modular Avionics (IMA) paradigm defines ro-
bust partitioning in onboard avionic systems so that one
computing module (Line Replaceable Unit (LRU)) is able
to execute one or more applications of different criticality
levels independently. The standardized generic hardware

modules forming a network leads to looser coupling between
hardware and software applications.

SCARLETT project [6] aims at designing reconfigurable
IMA architectures in order to mitigate the effect of failures
implementing functional and mitigation functions. Monitor-
ing and fault detection function aims at detecting com-
ponent failures. Once a permanent failure is detected, the
reconfiguration supervisor manages the modifications of
configurations given the current configuration and failed
module. Verification activities check the correctness of the
system configuration and the loaded data in the LRU. The
centralized supervisor determines a suitable configuration
based on a reconfiguration graph, which contains all pos-
sible configurations. Reconfiguration policies and real-time
and resource constraints, define the set of reachable safe
transitions and states. In order to analyse the reconfiguration
behaviour when failures occur, a safety model leads to
finding the combinations of functional failures. Based on
the same concepts, DIANA project [7] aims at distributing
these functionalities. This approach improves availability of
reconfiguration mechanisms at the expenses of relying on a
complex, resource consuming communication protocol.

Based on the potential of the IMA paradigm as a means to
provide fault containment strategies, Montano and McDer-
mid [8] presented an autonomous dynamic reconfiguration
system. Different information required for an effective dy-
namic reconfiguration (task scheduling, hardware resources,
operating modes, mission objectives, faults and dependabil-
ity requirements) is gathered based on interactive Constraint
Satisfaction Problem theory. The approach divides hard con-
straints and soft constraints. While the former is compiled
off-line the latter can be added and retracted dynamically.
Additionally, human interaction is allowed by translating
his requirements into soft constraints and weighting the
reconfiguration constraints so that higher priority decisions
can be controlled.

All these approaches address the integration of reconfig-
urability and dependability aspects. System reconfiguration
requires being aware of the system health, its operating
modes as well as the behavioural and dependability re-
quirements. These tasks should be implemented in a (au-
tonomous) centralized or distributed supervisor and coordi-
nated by a communication algorithm. However, the system-
atic identification of compatible resources has received scant
attention. Adler et al. [5] intuitively characterize the quality
attributes of the system components so that inter-component
compatibilities are identified. To the best of our knowledge,
no one is identifying and gathering replaceable resources
based on the physical location of hardware components. This
viewpoint may provide a useful systematic characterization
about the effect of placing components in determined places.

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 22 / 49

III. GENERIC FUNCTIONAL DESIGN MODEL

The goal of this section is to formalize design concepts so
as to provide a systematic consideration of system functions,
resources and the relation between them. In order to identify
systematically compatible subfunctions, this model accounts
for the physical location early in the design phase. The
system is characterized in a top-down manner, parting from
a set of high-level (HL) functions (cf. Figure 1).

...

...

...

...

High-Level Function1 High-Level Function2

Main Function1 Main Function2

Physical LocationA Physical LocationB Physical LocationC

Subfunction4Subfunction3Subfunction2Subfunction1

Res.3BRes.3ARes.2BRes.2A

Res.1BRes.1A

Impl.1A
(N)

Impl.1A
(D)

Impl.1B
(N)

Impl.2B
(N)

Impl.2A
(N)

... Impl.3B
(FS)

Impl.3B
(N)

Impl.3A
(N)

Figure 1. Generic Functional Design Model

Depending on the system HL functions, these are further
refined into a set of main control functions (MFs). Our
design considerations focus on system refinement from MFs
downwards to limit the scope of the analysis without losing
its generality. The physical location (PL) characterizes the
place in which these MFs are performed. A single MF
may cover different PLs or it may be replicated for each
PL (e.g., Temperature Control). A set of subfunctions (SFs)
define necessary and sufficient means to perform the MFs.
Hence, the characterization of the system MFs is specified
as follows:

MainFunction.PhysicalLocation.Subfunction.Implementation

There may exist different versions of SF implementations
determined by the availability of resources. The resources
provide means to perform a SF using a set of hardware
resources, which may allocate software functions. Based on
the system means to perform the same SF with different re-
sources, we differ nominal, degraded and fail-safe versions.

The nominal (N) version, performs under initial functional
design characteristics. The set of Input (I), Control (C)
and Output (O) SF components necessary to perform the
nominal MF, in conjunction with the necessary resources to
address the system requirements, form the nominal design
configuration.

When the I, C or O subfunction is lost due to the failure
of some resource, the configuration to achieve an acceptable
outcome may have to change. There may be subfunctions,
which provide a degraded (D) but acceptable service, even
in presence of faults. Fail-safe (FS) versions emerge from
the need to cope with the insurmountable loss of resources,

which result in hazard occurrences. Predetermined solutions
should be defined so as to avoid these situations.

According to this classification, we define the con-
cept of compatible subfunctions. Two SFs are compati-
ble if their SFs match and they are within a compati-
ble PL. This compatibility would determine the accept-
able value for the produced outcome. The compatibility
of the PL depends upon the examined SF component.
The PL of each SF specify whether we are dealing with
a zone-level (e.g., Train.car.zone) or specific-level (e.g.,
Train.car.zone.location) SF. For I/O SFs performed within
the zone-level and depending on the I/O type itself, we con-
sider that the difference (if it exists) between the produced
outcomes of compatible subfunctions is acceptable (e.g.,
Temperature Control in adjacent compartments). However,
specific PLs, confine the compatibility within a specific
physical space. Generally, output SFs are gathered within
this group, due to their specific actuation space. C subfunc-
tions, do not have an explicit dependency on the PL. They
are able to perform the C function provided it receives the
corresponding I values of the specific PL.

Emerging from these concepts, we make a comparison
between homogeneous and heterogeneous resources (cf. Ta-
ble I). To do so, we centre on the nominal MF configuration
(cfg) and those which use homogeneous and heterogeneous
resources. Remember that since heterogeneous resources
focus on reusing distributed compatible resources, the MF
configuration will vary from the nominal design implemen-
tation.

Table I
COMPARISON BETWEEN HETEROGENEOUS/HOMOGENEOUS

RESOURCES AND NOMINAL IMPLEMENTATION

Resources SF PL I C O cfg

Homogeneous = = = = = =

Heterogenous = ≡ ≡,= ≡,= ≡,= ≡

same(=); compatible(≡)

IV. RECONFIGURATION PROCESS

The process described throughout this section is based
on the application of the generic functional design model
(cf. Section III) to model, identify and gather compatibilities
and extract customized reconfiguration mechanisms. We rely
on a running example in order to discuss and evaluate the
process.

A. Modelling Functions and Resources

The goal of the modelling process is to identify and gather
compatible functions performed with alternative resources.
The design model, makes these tasks possible, tracing from
system functions towards physically distributed implementa-
tions. For instance, consider the temperature control (MF1)
within a train car (cf. Figure 2).

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 23 / 49

Car1

Zone A Zone B
iCam

Sprinkler
Heat

Detector

Reference
Temperature

Heater

Sensor
Temperature

Car2

Open
Button

Valve

Open
Sensor

Close
DetectorSpeaker

Zone A Zone B

Figure 2. Train Physical Topology

From MF1, temperature measurement, user’s temperature
reference, temperature control and heating SFs are charac-
terized (cf. Table II).

Table II
CHARACTERIZATION OF TRAIN CAR TEMPERATURE CONTROL

Main Function PhysicalLocation Subfunction Implementation

Temperature
Control

Car1.ZoneA

MeasureTemp SensorA

RefTemp RefButtonA

TempControlAlgorithm PID Control

Heating HeaterA

Car1.ZoneB

MeasureTemp SensorB

RefTemp RefButtonB

TempControlAlgorithm PID Control

Heating HeaterB

If we proceed to model all functions, heterogeneous re-
sources are systematically identified. This process consist of
matching SF and PL tokens, in order to identify compatible
resources.

B. Identification of Possible Redundancies

The layered modelling of functions, resources and physi-
cal locations allows identifying inherent redundancies from
multiple system functionalities. The systematic utilization of
the described modelling process permits gathering initially
different, but suitable, functions.

For instance, consider MF1 for both compartments (zone
A, B) of the train car (cf. Table II). Redundancies may
appear at input and control SFs. Input redundancies originate
from the utilization of a single temperature sensor for differ-
ent zones. Similarly, contiguous compartment temperature
reference values can be used to provide a degraded, but
acceptable, subfunction. Control SFs may be implemented
on any PU depending on its capabilities (e.g., memory,
execution time).

Once heterogeneous resources and possible redundancies
are identified, a strategy to avoid single point of failures
(SPOFs) could be to add homogeneous resources. As an
example, consider the management of heterogeneous re-
sources at the actuator level. Unless actuators are supplied
with explicit redundancies or compatible functions actuate
in a shared physical space, heterogeneous resources become
infeasible. Heating SF is not replaceable due to the lack of
suitable SFs within the same space. In these cases, homo-

geneous resources should be supplied in order to provide
switch over capabilities.

C. Resource Allocation

When analysing the resource allocation for MF1, some
architectural assumptions are made for exemplifying how
to customize the approach to a fully distributed system. It
is considered that sensors, user temperature references and
actuators are distributed in such a way, that they need a PU
in order to reach the rest of components using a network
communication protocol.

Additionally, even if for the purposes of this example
communication, fault detection and reconfiguration failures
are not considered, we are expanding the modelling of
functions and resources to include them. The idea we are
developing is to attach fault detection algorithms to each
subfunction so that component and communication failures
can be detected. We also need to attach reconfiguration
algorithms to each main function, which are responsible for
changing the homogeneus/heterogeneus resources using the
aforementioned fault detection outcomes.

Consequently, one sensor, one reference button, three PUs
and a heater connected through a communication network
constitute the nominal configuration for the train car temper-
ature control for each zone (cf. Figure 3). Each PU allocates
different control algorithms so as to assure functionalities
in case of input subfunction failures: Open Loop (OL)
algorithm manages the omission of temperature measure-
ment and a default Set Point (SPA) enables handling user’s
temperature reference failure. Each SF must be allocated to
the available resources. To do this, the model defined in
Subsection IV-A needs to be completed in order to address
the resource allocation decisions:

MF1.Car1.ZoneA.MeasureTemp.SensorA
MF1.Car1.ZoneA.MeasureTemp.SensorB
MF1.Car1.ZoneA.RefTemp.RefButtonA
MF1.Car1.ZoneA.RefTemp.RefButtonB

MF1.Car1.ZoneA.RefTemp.SPA.PUA1,A2,A3
MF1.Car1.ZoneA.TempControlAlgorithm.PID.PUA1,A2

MF1.Car1.ZoneA.TempControlAlgorithm.OL.PUA3
MF1.Car1.ZoneA.Heating.HeaterA

From the previous model, we can observe that there is
only one implementation for the Heating SF and therefore,
we can deduce that it is a SPOF. This method allows an
straightforward identification of SPOFs.

D. Inference Process and Reconfiguration

Once resource allocation decisions have been adopted,
this approach enables the extraction of alternative system
configurations. For instance, for MF1 in the train car, the
system configurations transit from nominal (N) configu-
rations, in which the initial resources are working (W)
correctly, to degraded configurations. These configurations
allow handling for example the failures of sensorA (Da),

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 24 / 49

both sensors (Db), reference buttonA (Dc) and both reference
button failures (Dd). Further degradation occurs when the
communication network fails (De). These configurations are
illustrated in the Table III. Note that the purpose of this
example is not to provide an exhaustive analysis of all
existing configurations, but rather we want to illustrate a
subset of these configurations, to show the application of
the method without losing its generality.

Table III
CONFIGURATION EXAMPLES FOR ZONE A

Compatible Tokens: Implementations N Da Db Dc Dd De

MF1.Car1.ZoneA.MeasureTemp.SensorA W F F W W F

MF1.Car1.ZoneA.MeasureTemp.SensorB W F F

MF1.Car1.ZoneA.RefTemp.RefButtonA W W W F F F

MF1.Car1.ZoneA.RefTemp.RefButtonB W F F

MF1.Car1.ZoneA.RefTemp.SPA.PUA2 W F

MF1.Car1.ZoneA.RefTemp.SPA.PUA3 W

MF1.Car1.ZoneA.TempControlAlg.PID.PUA1 W W W W F

MF1.Car1.ZoneA.TempControlAlg.OL.PUA3 W W

MF1.Car1.ZoneA.Heating.HeaterA W W W W W W

We need to assign priorities to each implementation for
the SF components. This allows an automated generation
of configurations in the case of failure occurrences, e.g.,
the priorities for the MeasureTemp SF for MF1.Car1.ZoneA
would be {SensorA, SensorB}.

Figure 3 shows the network and the data flow between
different PUs. The thick lines represent the physical mea-
surements of the sensors. The solid lines represent the
data transfers in nominal operation mode. The dashed lines
represent data transfers in a degraded operation mode when
PUA1 and PUB1 fail. Finally, the dotted lines with empty
arrowheads represent the data transfers in a degraded oper-
ation mode when PUA1, PUB1, PUA2 and PUB2 fail. In this
configuration, PUA3 and PUB3 manage the temperature using
OL algorithms and default reference temperature values.

ZoneA ZoneBCar1

SensorA UserRefA UserRefB SensorB

PUA1 PUA2 PUB2 PUB1

Network

PUA3

HeaterA

PUB3

HeaterB

Figure 3. Train Car Logical Reconfiguration Topology

V. CONCLUSION AND FUTURE WORK

In this paper, a dependable design strategy has been
sketched. Dedicated replication of system components sat-
isfy the avoidance of SPOFs. However, in some environ-
ments it is feasible and desirable to make use of existing

resources so that other compatible functions are supplied
with heterogeneous resources (e.g., trains, buildings).

Identification and implementation of the proposed recon-
figuration strategies will incur an extra cost. However, for
a given dependability level, this approach would reduce the
overall system hardware cost as heterogeneous resources are
systematically identified. Note that this is only true in the
previously mentioned environments.

We are developing the approach to support fault detection
and reconfiguration. This will complete the method and we
will be able to evaluate the dependability gains and cost
trade-offs of this approach. Kazman et al. [9] propose a
trade-off analysis method, which enable the architectural
dependability-cost evaluation. This method could be inte-
grated with this approach. The final goal is to obtain a
complete method, where a quasi-optimal solution is obtained
in a massively networked scenario.

In the cases where the dependability is critical, greater
architectural details should be considered (e.g., power sup-
plies, communication routes). This would allow evaluating
the needed homogeneus/heterogeneous resources.

REFERENCES

[1] A. Avizienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic
concepts and taxonomy of dependable and secure computing,”
IEEE Trans. Dependable Secur. Comput., vol. 1, pp. 11–33,
January 2004.

[2] J. Wysocki, R. Debouk, and K. Nouri, “Shared redundancy as a
means of producing reliable mission critical systems,” in Proc.
of RAMS’04, 2004, pp. 376 – 381.

[3] J. Galdun, J. Ligus, J.-M. Thiriet, and J. Sarnovsky, “Relia-
bility increasing through networked cascade control structure
- consideration of quasi-redundant subsystems,” in IFAC Proc.
Volumes, vol. 17, 2008, pp. 6839–6844.

[4] R. Anthony, D. Chen, M. Törngren, D. Scholle, M. Sanfridson,
A. Rettberg, T. Naseer, M. Persson, and L. Feng, Autonomic
Communication. Springer, 2009, ch. Autonomic Middleware
for Automotive Embedded Systems, pp. 169–210.

[5] R. Adler, I. Schaefer, M. Trapp, and A. Poetzsch-Heffter,
“Component-based modeling and verification of dynamic adap-
tation in safety-critical embedded systems,” ACM Trans. Em-
bed. Comput. Syst., vol. 10, no. 2, pp. 20:1–20:39, Dec. 2010.

[6] P. Bieber, E. Noulard, C. Pagetti, T. Planche, and F. Vialard,
“Preliminary design of future reconfigurable ima platforms,”
SIGBED Rev., vol. 6, no. 3, 2009.

[7] C. Engel, A. Roth, P. H. Schmitt, R. Coutinho, and T. Schoofs,
“Enhanced dispatchability of aircrafts using multi-static con-
figurations,” in Proc. of ERTS’10, 2010.

[8] G. Montano and J. McDermid, “Autonomous and/or interac-
tive constraints-based software reconfiguration for planetary
rovers,” in Proc. of ASTRA’08. ESA/ESTEC, 2008.

[9] R. Kazman, M. Klein, and P. Clements, “ATAM: Method
for Architecture Evaluation,” SEI, Carnegie Mellon University,
Tech. Report CMU/SEI-2000-TR-004, 2000.

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 25 / 49

Security Control Variations Between In-house and Cloud-based Virtualized
Infrastructures

Ramaswamy Chandramouli

Computer Security Division, Information Technology Laboratory
National Institute of Standards & Technology

Gaithersburg, MD, USA
mouli@nist.gov

Abstract-Virtualization-related components (such as
Hypervisor, Virtual Network and Virtual Machines (VMs)) in
a virtualized data center infrastructure need effective security
controls. However, the differences in scope of control (among
stakeholders) over this component set between in-house and
cloud-based virtualized infrastructures introduce variations in
security control measures that can be deployed by the
respective stakeholders. In this paper, we analyze those
variations and their efficiency and security impacts. We also
suggest technology enablers that can minimize those impacts
and improve the overall security robustness of the basic
computing units of a virtualized infrastructure, (i.e.,VMs).

 Keywords-Virtual Machine; Virtual Network; Hypervisor;
Virtualized Host; Cloud Service Model

I. INTRODUCTION

 Server Virtualization, in some instances augmented with
storage virtualization, is becoming the trend for data center
infrastructures in both enterprises and cloud provider
environments. In fact, Virtualized Servers and Virtualized
storage have become the platform for many enterprise
applications such as Enterprise Resource Planning (ERP)
[1] because of the following:
 (a) Efficiency in the utilization of processor and
memory resources in a virtualized host because of the
ability to run multiple Virtual Machines (VMs) as opposed
to a non-virtualized host where only a single O/S stack can
be run. Similar efficiencies can be achieved in the case of
virtualized storage because of the presence of an abstraction
layer above the physical storage layer, (e.g., disk arrays).
 (b) Scalability and Elasticity that are enabled in Virtual
Servers and Virtual Storage by the very nature of
virtualization. An example is the capability to add VMs at
will to a physical host with underutilized capacity and
ability to add disk arrays transparent to the programs that
gather, store, retrieve and process data.

 There is general agreement in the security community
that the security control measures used for protecting
servers that run a single O/S stack (referred to as non-
virtualized hosts) alone are not sufficient for protecting
servers that run multiple O/S stacks (referred to as
virtualized hosts). The reason for the agreement is the
presence of a single trusted layer, (i.e., the hypervisor)
below multiple VMs in virtualized hosts and the risk of
compromise to this layer posing the risk of compromising
the integrity of all VMs running in that host [2]. The
detailed differences between virtualized hosts and non-
virtualized hosts are given below:
 (a) In a non-virtualized host, the interface to the
hardware is through a regular O/S, whereas in a virtualized
host, the interface to the hardware is through a software
module, called a hypervisor, which contains just the kernel
of an O/S with some necessary additions such as device
drivers, etc.
 (b) A virtualized host has resident in it multiple Virtual
Machines (VMs), each with its own stack of O/S and
Applications. All of the VMs share the same physical
resources provided by the virtualized host – such as the
processor, memory and directly attached storage. The
hypervisor mediates access to shared resources by the
various VMs, and provides isolation between the VMs.
 (c) To enable VMs to communicate to the physical
network and to provide isolation among them, a Virtual
network is defined within each virtualized host. A Virtual
network can be looked upon as a set of logical
(sub)networks within a shared physical network. A virtual
network can be configured using a combination of
software-defined communication interfaces called virtual
network interfaces (or vNICs) inside a VM as well as
software-based switches, called Virtual Switches,that can
be defined within the hypervisor.
 In a virtualized enterprise data center, catering to
internal information technology (IT) processing needs of an

18Copyright (c) The Government of USA, 2012. Used by permission to IARIA. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 26 / 49

enterprise (henceforth referred to as in-house virtualized
infrastructure), all the components of a virtualized host are
owned and controlled by the single entity, i.e., the
enterprise. However, in the virtualized data center owned
and operated by cloud service providers (henceforth
referred to as cloud-based virtual infrastructure), while the
virtualized host (the physical machine) and the software
that provides the virtualization, (i.e., the hypervisor) are
owned by the cloud service provider, the VMs in it are
created and operated by the cloud service consumer. Hence,
the internal configuration of VMs in a cloud-based virtual
infrastructure belonging to an Infrastructure as a Service
(IaaS) cloud provider is under the control of the cloud
service consumer although the capabilities to configure a
virtual network linking these VMs will still rest with the
cloud service provider. Thus, we see that there are
differences in the scope of control over the components of a
virtualized infrastructure between in-house and cloud-based
virtualized environments.
 The main objective of this paper is to illustrate the
variations in security control measures between the in-
house and cloud-based virtualized infrastructures that these
scope of control differences introduce. A second objective,
or rather a by-product of the illustration process is to show
the impact of these variations (in security control measures)
on the effectiveness and efficiency of the total set of
security controls and how they can be addressed to improve
the overall security robustness of the basic computing units
of a virtualized infrastructure, (i.e., the VMs).
 The organization of this paper is as follows. In Section
II, we identify the differences in scope of control among
stakeholders over the components of a virtualized
infrastructure by looking at the layers of a cloud service
architectural stack. Section III identifies threat scenarios
relating to virtualization-related components. In that section
we also look at the broad class of security control measures
and identify whether these control measures may be
affected by differences in scope of control between in-
house and cloud-based virtualized infrastructures. Section
IV describes in detail the security control variations for VM
protection at the Virtual Network layer and VM end-point.
Section V provides the summary and conclusions.

II. SCOPE OF CONTROL IN CLOUD-BASED
INFRASTRUCTURES

 In the case of in-house virtualized infrastructures, since
all components are owned and operated by a single entity,
i.e., the enterprise, differences in scope of control over the

overall set of components do not arise. Hence we limit the
scope of control analysis only to cloud-based virtualized
infrastructures. In order to do that we digress a bit and look
at the broad picture of cloud service models. The three
widely accepted cloud service models are [3]: Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS), all of them consisting of two
major players – the cloud provider and the cloud consumer.
In the case of SaaS, the cloud provider makes available a
software application while PaaS offers a set of development
tools (or an application development environment such as
J2EE [4] or .NET [4]) to develop and possibly host
applications. In these two service offerings, (i.e., SaaS and
PaaS) the underlying data center infrastructure used (or
leased from another provider) by the corresponding
category of cloud service providers need not be based on
virtualized servers. In the case of IaaS, what is made
available to the cloud consumer are computing units in the
form of VMs. Hence, the data center infrastructure in the
case of IaaS cloud service providers should consist of only
virtualized hosts. However, in this paper, we assume that
the data center infrastructure of a cloud service provider
irrespective of the cloud service model (because of
efficiency, scalability and elasticity considerations) is a
virtualized one consisting of virtualized hosts, virtual
network and VMs. Based on this assumption, we can start
taking a look at the various layers in a cloud service
architectural stack. One such architectural stack based on
slight variations from the model given by the Cloud
Security Alliance [5] is given in Figure 1 below. In this
stack, we notice that the facility, networking infrastructure
and the physical host layers are common to all IT
infrastructures - whether virtualized or not- and hence these
layers are not relevant for our scope of control analysis.
Going up one more layer in the stack, we find that it is in
the resource abstraction layer that the main engine
providing the virtualization, (i.e., the hypervisor) and
virtual network are defined. Virtual Machines - the main
computing units of a virtualized infrastructure reside in the
VM layer. Our focus of attention for identifying the
differences in scope of control between in-house and cloud-
based environments is limited to these two layers. This is
due to the fact that these are the two layers whose
composition differs between virtualized and non-virtualized
infrastructures. We give below our observations on the
scope of control among stakeholders over components in
cloud-based virtualized infrastructures used in all three
cloud service-models.

19Copyright (c) The Government of USA, 2012. Used by permission to IARIA. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 27 / 49

Figure 1. Cloud Service Layers.

(a) In the resource abstraction layer (virtualization layer),
all components - the hypervisor and the virtual network (in
all three cloud service models) - are totally under the
control of only one entity, (i.e., the cloud provider).
 (b) In the case of VM layer, the single component it
holds - the VM instance with its embedded Guest Operating
System -is under the control of cloud service provider in
the case of SaaS and PaaS service models but controlled by
the cloud service consumer in the IaaS model (mainly due
to the fact that the SaaS provider does not want to assume
any administrative responsibility for it after a VM instance
is configured and instantiated by an IaaS consumer).
 Although not shown in the architecture diagram,
conceptually, one can think of a data layer which contains
the components for the management software and the
physical artifacts for storing the data that applications
generate and use. This layer is entirely under the control of
a single entity, i.e., the cloud provider - in all three cloud
service models and hence is not relevant for our scope of
control analysis. It is worth mentioning that although all
storage-related technologies (both virtual and physical) are
under the control of cloud service providers, the

responsibility for appropriate security control measures for
data protection (through encryption of data in transit and
data at rest - for the portion of data generated and used) still
rests with the cloud consumer [6].

III. THREAT SCENARIOS & SECURITY CONTROL
MEASURES FOR ENTIRE VIRTUALIZED

INFRASTRUCTURES

 Our scope of control analysis narrowed our focus to just
two layers that contain all the artifacts relating to
virtualization, i.e., the Resource Abstraction layer and the
VM layer. Hence, our threat analysis is also limited to
scenarios involving the components contained in these
layers. These components are re-listed here for facilitating
further discussion:
 (a) Hypervisor and Virtual Network - from the Resource
Abstraction Layer
 (b) Virtual Machines (VMs) with their Guest O/S - from
the VM Layer

FACILITY

NETWORK

HARDWARE (PHYSICAL HOST)

RESOURCE ABSTRACTION LAYER (HYPERVISOR +
VIRTUAL NETWORK)

VIRTUAL MACHINE
(VM)/GUEST O/S

 MIDDLEWARE

APPLICATION

20Copyright (c) The Government of USA, 2012. Used by permission to IARIA. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 28 / 49

 VM VM VM

Figure 2. A Virtual Network Configuration.

The virtualization environment involving the above
components can be described as follows. The VMs provide
the complete, encapsulated computing stacks built up of
Guest O/S with middleware and applications riding on top
of the chosen O/S. A network linking these VMs , thus
enabling communication among them is called a Virtual
Network. An example of a virtual network configured using
software-defined virtual network interface card (vNIC)
within each VM and software-defined virtual switches
(vSwitch) defined within the hypervisor is shown in Figure
2. A virtual network provides communication not only
among VMs residing on a single virtualized host but also
connectivity with the outside world (the physical network),
if any of the virtual switches is also connected to a physical
network interface card (pNIC) of the virtualized host. In
this virtualization environment, the most common (though
not exhaustive) threat scenarios are identified below:
 TS-1: The compromise of the hypervisor (by exploiting
the vulnerabilities in the kernel - which is rare) can
potentially compromise the security of multiple VMs (in
fact potentially all) resident on that virtualized host [7].
 TS-2: A single VM that has been compromised can be
used as a launching pad for attacking other VMs (especially
if they share some common resources such as memory or

there exists a communication channel between them due to
the fact that these VMs constitute the different tiers
(webserver, application server , database server etc) of a
multi-tier application) [8].
 TS-3: Normally, the effect of all operations performed
within a VM must be restricted to that VM. However,
under some circumstances, a malicious program running in
a VM, by exploiting vulnerabilities in the hypervisor
software, can alter the state of other VMs, the hypervisor
itself or even the hardware. Such a VM is called a rogue
VM and it poses the threat of subverting the isolation
property required to be provided by the hypervisor.
 TS-4: Attacks on running guest VMs by a malicious
hypervisor. The impact of this threat is the same as that of
TS-3 but the threat source here is the hypervisor as opposed
to a rogue VM in the case of TS-3.
 For each of the threat scenarios, let us see the broad
class of security control measures that are required and
identify whether these control measures may be affected
by differences in scope of control among stakeholders
between in-house and cloud-based virtualized
infrastructures.
 TS-1 has to do with the compromise of the hypervisor.
The usual security control measure adopted is to keep the

 vNIC vNIC vNIC

vSwitch vSwitch vSwitch

pNIC pNIC HYPERVISOR

21Copyright (c) The Government of USA, 2012. Used by permission to IARIA. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 29 / 49

patches from the hypervisor vendor up to date. This is a
hypervisor-based security control measure and since the
hypervisor is always under the control of the single entity
in both in-house and cloud-based virtualization
infrastructure, the potential for variation in security control
measures due to differences of who has control does not
arise.
 TS-2, TS-3 & TS-4 have to do with compromise of the
VM. Security control measures can be provided for VMs
through a combination of: (a) Virtual Network-resident
security controls and (b) VM-resident security controls [9].
In the case of in-house and SaaS/PaaS cloud-based
virtualized infrastructures, both the Virtual Network and
the VMs are under the control of a single entity. However,
in the case of IaaS cloud-based virtualized infrastructure,
the VMs to be protected are under the control of IaaS cloud
consumer. This is where there is potential for variations in
control measures for protection of VMs between in-house
and cloud-based virtualized infrastructures. These
variations are analyzed and discussed in the next section.

IV. SECURITY CONTROL VARIATIONS FOR VM
PROTECTION

 Security controls for VM protection can be deployed
both at the Virtual Network layer as well as in the VMs
themselves. As we have already seen, both these layers are
accessible to a single entity only in the case of in-house and
SaaS/PaaS cloud-based virtualized infrastructures.
However, only the Virtual Network layer is accessible for
IaaS cloud provider and the VMs are accessible for IaaS
cloud consumer. Hence variations in security controls for
protection of VMs are introduced due to these differences
in scope of control among stakeholders as discussed below:

A. Security Control Variations at the Virtual Network
Layer

 In virtualized infrastructures for in-house IT as well as
for providing cloud services (all three service models), the
configuration of a Virtual Network (the network linking
all virtual machines within a single virtualized host) is
entirely under the control of the data center
owner/operator. Leveraging the virtual network, there are
two approaches to providing security for VMs. They are
[10]:
 (a) Extending the concept of Virtual LAN (VLANs)
into the virtual network and

 (b) Virtual Network Configuration-based solutions for
VM protection
 In the VLAN-based approach, the virtual switches
defined in a hypervisor are made to recognize the VLAN
tags and thus the concept of network isolation in the
physical network is extended to the virtual network inside a
virtualized host. As far as Virtual Network Configuration-
based solutions go, there are two types: In the first
approach, VMs hosting sensitive resources such as fileshare
VM or hosting sensitive applications such as data
warehousing or payroll processing are connected to isolated
virtual network segments which are not behind any firewall
or Network Address Translation devices. In the second
approach, a special-purpose VM called a Virtual Security
Appliance [11] that contains a hardened Guest O/S and one
or more security applications, is installed and configured to
provide the necessary protection for VMs. The type of
protection depends upon the security application(s) that is
(are) packaged as part of the Virtual Security Appliance.
Examples of popular security applications are Firewall and
Intrusion Prevention [12]. In a firewall solution, the data
center operator can provide protection to VMs by defining
VM-specific rules that can control traffic to and from
virtual machines. There are tools in the market place [11],
which, using a combination of a management server and a
set of security appliances, can control traffic in and out of
an arbitrary set of VMs irrespective of the VLANs to which
they belong. By placing the entire set of virtual machines to
be protected on an internal-only virtual switch of the virtual
network, all traffic is made to flow through the security
appliance and thus the security appliance can act as a Layer
2 bridge that controls all traffic flowing to and from the
protected VMs without reconfiguring them in any way. The
consequence of this is that firewall rules encompassing
layers 2, 3 & 4, (i.e., including IP addresses and specific
TCP or UDP port) can all be defined using this virtual
network-based security appliance. However, in the case of
an IaaS Cloud consumer, who owns and operates a set of
VMs, the virtual network layer is not under his/her control.
Hence a virtual network-based firewall cannot be deployed
in this situation and this class of user can only provide the
necessary traffic control by having a VM-based firewall.
Deploying a VM-based firewall solution imposes a great
deal of performance overhead compared to a virtual
network-based firewall as this security application
competes for the same resources, (i.e., CPU, Memory, etc.)
as functional (business) applications do on each of the
VMs. For example, if there are 10 VMs in a virtualized
host, 10 firewall applications will be competing for its

22Copyright (c) The Government of USA, 2012. Used by permission to IARIA. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 30 / 49

resources. On the other hand, providing the same firewall
functionality using a Virtual Security Appliance will
involve running a single instance of a firewall application
instead of ten (in the case of VM-based solution), thus
providing a significant performance improvement while
accomplishing the same security objective of blocking
unwanted/malicious traffic in and out of the VMs that the
cloud service consumer has rented and is operating.

B. Security Control Variations at the VM end-point

 The VMs (often called the endpoints) in a virtualized
infrastructure need to have the same protection measures
as a physical server in a non-virtualized environment.
These protection measures include but not limited to [8]:

• Anti Virus/Anti Malware Software
• Intrusion Prevention

 In the case of a virtualized infrastructure providing
IaaS cloud service, the VMs are owned and operated by
cloud consumers and hence the security of these VMs rest
with them. Because of the fact that the hypervisor
controlling these VMs is owned and under the control of
the IaaS cloud provider, the only security control measure
available to the cloud consumer is to run individual
instances of above classes of software (anti-virus, etc.) in
each of the VMs rented and operated by them.
 In the case of virtualized infrastructures providing in-
house IT needs or providing SaaS or PaaS cloud services,
both the hypervisor and the VMs are owned and operated
by a single entity - data center owner or operator. Using
the published interfaces (called the hypervisor
introspection APIs) provided by the hypervisor vendor,
the data center owner/operator can either develop (or
procure from a third-party), a security application that can
be installed as a security appliance on a special hardened
VM. This security appliance thus runs as a single instance
of security software and this instance would be running
separate from all other instances of Guest O/Ss running in
the various VMs that it would protect. For example, a
security appliance for an antivirus solution can perform
the functions of - memory scanning, monitoring of
processes and investigation of network traffic - for all
VMs and Guest O/Ss running on that virtualized host. The
variations in security control measures that can be
deployed by the stakeholder between the two virtualized
infrastructure environments, (i.e., IaaS cloud Versus
SaaS/PaaS cloud) for VM protection has the following
efficiency and security implications:

 (a) Multiple instances of say (an anti-virus solution) in a
single physical (virtualized) host makes of the order of
magnitude huge demands on the processor and memory
cycles of that host as opposed to a single instance of
security software. Related to this is the management issue
of keeping these security solutions in synch in all of the
VMs in a virtualized host.
 (b) A rogue process within a Guest O/S can potentially
shut down the anti-virus solution running in that same
Guest O/S. However, the single instance of such a solution
running in a security appliance in a hardened VM that runs
in the same virtualized host is not only able to thwart such
attacks on itself, but is also able to provide protection to all
other VMs running in that virtualized host.

V. CONCLUSION

 In this paper, we saw that protection of VMs can be
obtained through efficient and effective means in the case
of in-house and SaaS/PaaS cloud-based virtualized
infrastructures through the following:

• Implementing VLANs in the virtual network
• Creating isolated network segments for VMs

running sensitive applications, and
• Virtual Security Appliances utilizing hypervisor

introspection API
 However, the protections provided by the above
measures have to be obtained through a less efficient way
by means of individual VM-based solutions in the case of
IaaS cloud-based virtualized infrastructures. This is due to
the fact that the IaaS cloud consumer who needs to protect
VMs does not have access to components of Resource
Abstraction layer such as the Hypervisor and the Virtual
Network. Analysis of such variations in security control
measures and their relative effectiveness and efficiency
impacts can lead to exploration of ways to minimize those
impacts.
 Specifically, to address the effectiveness and efficiency
gap between security controls available for stakeholders in
the in-house and cloud-based infrastructures, we propose
the following:
 (a) Provide selective visibility to cloud customers to
VMs rented by them through hypervisor introspection API
 (b) Define pre-defined VLAN segments for cloud
customers to place the VMs created/rented by them..
 The justification for the above measures to improve the
overall security robustness of VMs can be made based on
the following observations:

23Copyright (c) The Government of USA, 2012. Used by permission to IARIA. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 31 / 49

 (a) Any security/monitoring solution based on virtual
network can significantly reduce the demand on the CPU
cycles of the virtualized host compared to a host-based (i.e.,
VM-based) solution
 (b) The vulnerability of the Guest O/S itself is not a
factor with respect to the integrity of the security solution

as these types of solutions that are based on visibility into
the virtual network are run on dedicated VMs with
hardened Guest O/Ss.

REFERENCES

[1] M.Hoyer, K.Schröder, Daniel Schlitt, and D. Wolfgang Nebel,
 ”Proactive Dynamic Resource Management in Virtualized Data
 Centers”, ACM
 Conference on e-Energy, New York, NY, USA, May 2011.
[2] T. Garfinkel and M. Rosenblum, "When Virtual is harder than Real:
 Security Challenges in Virtual Machine Based Computing
 Environments" ,Stanford University Department of Computer
 Science. http://www.stanford.edu/~talg/papers/ HOTOS05/virtual-
 harder-hotos05.pdf [Retrieved: July, 2012]
[3] P. Mell and T. Grance,“A NIST Definition of Cloud Computing,” NIST
 SP 800-145, http://csrc.nist.gov/publications/ #SP- 800-145,
 [Retrieved: May, 2012]
[4] D.M. Whittinghill, and K.D. Lutes, “Teaching Enterprise Application
 Development: strategies and challenges”, ACM SIGITE’ 11
 Conference, West Point, NY, Oct 2011.
[5] Cloud Security Alliance, “Security Guidance for Critical Areas of
 Focus in Cloud Computing, v2.1,” www.cloudsecurityalliance.org/
 csaguide.pdf, pp. 61-64.

[6] L.M. Kaufman,"Data Security in the world of cloud computing."
 IEEE Security and Privacy, Vol. 7, No. 4, 2009
[7] S. Jin, J.Ahn, S.Cha, and J.Huh, “Architectural Support for Secure
 Virtualization under a Vulnerable Hypervisor, “ACM MICRO’11
 Conference, Porto Alegre, Brazil, Dec 2011, pp. 272-283.
[8] J. Sahoo, S.Mohapatra, and R.Lath, “Virtualization: A Survey On
 Concepts, Taxonomy And Associated Security Issues,” IEEE 2nd
 International Conference on Computer and Network Technology,
 Bangkok, Thailand, Apr 2010, pp. 222-226.
[9] J. N. Matthews, ‘et al.’“Running Xen – A Hands-On Guide to the Art
 of Virtualization,” Prentice Hall, 2008
[10] Five exciting VMware networking features in vSphere 5
 http://searchvmware.techtarget.com/tip/Five-exciting-VMware-
 networking-features-in-vSphere-5 [Retrieved: March, 2012]
[11] S. Lowe “Mastering VMware vSphere 4,” Wiley Publishing, 2009.
[12] L. Garber, “The Challenges of Securing the Virtualized
 Environment”, IEEE Computer, Volume 45 Issue 1, Jan 2012.

24Copyright (c) The Government of USA, 2012. Used by permission to IARIA. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 32 / 49

Towards a State-driven Workload Generation
Framework for Dependability Assessment

Domenico Cotroneo, Francesco Fucci, Roberto Natella
Dipartimento di Informatica e Sistemistica

Università degli Studi di Napoli Federico II
Via Claudio 21, 80125, Naples, Italy

Email: {cotroneo,francesco.fucci,roberto.natella}@unina.it

Abstract—Assessing dependability of complex software systems
through fault injection is an elaborate process, since their fault
tolerance is influenced by the state in which they operate. This
paper focuses on the definition of state-driven workloads in fault
injection experiments, that is, workloads that bring a system in
a given target state to be evaluated. We discuss a framework for
the automated generation of state-driven workloads, and provide
a preliminary evaluation in the context of the Linux 2.6 OS.

Keywords-Fault Injection, Fault Tolerance, Stateful Systems

I. INTRODUCTION

Fault injection, that is, the deliberate introduction of faults
into a system, is an approach for providing evidences that
a system is tolerant to faults in the environment and in the
system itself. The increasing complexity of software systems
makes fault injection an elaborate process, since these systems
can operate in several different conditions, namely states,
which have influence on their dependability. The importance of
the state for dependability assessment purposes is emphasized
by several studies on dependability assessment of stateful
complex systems, such distributed filesystems [1], DBMSs [2],
and multicast and group membership protocols [3], [4], [5]. In
fact, when complex software systems are evaluated both the
activation and manifestation of faults, as well as the ability
of the system to tolerate them, depend on the system state,
such as the current step of a numerical algorithm or of a
distributed protocol [6], [7], [8]. For instance, this is the case of
Mandelbugs [9], that is, a class of software faults that manifest
themselves depending on the system state and on complex
interactions with the hardware, the OS and other software in
the system. Therefore, fault injection experiments have to be
carefully planned by including the system state [10].

To take into account the state, a fault injection experiment
should adopt an appropriate workload, which is the set of
requests that are being submitted to the system when a fault is
injected. A state-driven workload, i.e., a workload that brings
the system in a given state during the experiment, is important
to assure the significance and the efficiency of experiments, by
avoiding faults that do not actually manifest themselves and
by covering every state in which fault tolerance mechanisms
need to be tested.

The generation of workloads for complex software systems
is an open issue. Past studies proposed the generation of
synthetic randomly-generated workloads (e.g., random CPU

and I/O operations) according to a given distribution [11], [12],
but this approach does not allow to bring a system into certain
states that can be hard-to-reach, which therefore cannot be
exercised and analyzed. Other fault injection approaches rely
on hand-written workloads developed by testers [13], [14],
[10], [15]. However, complex software systems are difficult to
control since the relationship between the workload and states
is complex and non-deterministic, due to the effect of random
factors such as process scheduling and I/O delays. Therefore, it
is still a difficult and time-consuming task to define a workload
that brings the system in a desired state.

This paper is a first step towards the automated generation of
state-driven workloads in complex software systems, which is
an open research issue. We discuss a general framework for the
purpose, and present a preliminary experiment on a complex
system. The proposed framework is based on a closed-loop
paradigm: a workload generator explores the space of possible
workloads, and a positive feedback is provided to the workload
generator if the system is approaching the target state, until
the system converges to this state. The approach is fully
automated, as it is only based on the feedback it receives from
the controlled system, and does not rely on a priori knowledge
about the relationship between workloads and states. The
feasibility of the approach and its ability to reach a target
state were evaluated in a preliminary case study, in which the
workload generator is adopted to control the state of the Linux
2.6 SMP scheduler.

The paper is organized as follows. Section II discusses
relevant fault injection techniques and tools for stateful soft-
ware systems. Section III describes the proposed state-driven
workload generation framework, which is further detailed
in Section IV. Section V discusses a case study and some
preliminary results. Section VI concludes the paper.

II. RELATED WORK

Dependability attributes of stateful systems have been stud-
ied in fault injection studies since a long time. For this reason,
theoretical frameworks have been proposed in past works to
make the fault injection process systematic. In [16], [17],
[18], formal testing approaches for fault-tolerant systems are
proposed, based on state models that describe the expected
behavior with respect to normal inputs and faults (e.g., com-
munication or memory faults). The model is used to generate

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 33 / 49

and monitor events for testing the actual implementation of
the system, and to assess the coverage of the tests. The role
of the system state was also emphasized by [19], in which
faulty inputs are injected at the interface between drivers and
the OS. It is showed that if faults are injected at different
times during a sequence of interface function calls, then a
higher number of vulnerabilities is discovered than injecting
at the first occurrence of the target function call.

Tools have also been developed to aid testers in fault
injection experiments in stateful systems. FTAPE [11], [12],
a tool for injecting CPU, memory, and I/O faults in fault-
tolerant computers, provides support for generating synthetic
stressful workloads, based on the observation that a stressful
workload is able to increase the percentage of injected faults
that are activated and that propagate through the system, and
thus are useful to assess the system response to faults. Faults
are injected when the stress level of CPU, memory, or I/O (i.e.,
CPU utilization and memory and I/O throughput) are higher
or lower than a threshold. To control the system state, FTAPE
spawns a set of one or more processes that are CPU-intensive
(by performing arithmetic operations), memory-intensive (by
performing sequential reads and writes to large memory areas),
and I/O-intensive (by repeatedly performing file opens, reads,
writes, and closes), and lets testers to specify the distribution
of CPU, memory, and I/O operations.

The ORCHESTRA tool [13], [20], aimed at testing dis-
tributed real-time systems, adopts a script-driven probing
approach, in which messages exchanged by a process are
intercepted and analyzed by a protocol fault injection layer
(PFI) in the OS kernel, which identifies the current state of the
protocol under test and corrupts/delays messages to perform
fault injection. In order to track the protocol and to trigger fault
injection, the PFI layer executes a script program provided
by the tester, which describes the protocol under test using
a state machine specification. In a similar way, the FCI fault
injection framework for grid computing systems [15] provides
a language specifically developed for specifying fault injection
scenarios, which is used by the tester to describe commands to
be sent to processes in the system (e.g., for stopping, halting,
or resuming process execution) and guard conditions that
trigger commands. NFTAPE [14] is a portable fault injection
tool for distributed systems (i.e., it allows to easily customize
fault injection for different systems and fault models), which
introduced the concept of LightWeight Fault Injector, i.e., a
small program running in the target system that is invoked by
a remote controller to inject a fault, and that embeds the logic
needed to implement a fault model for a given target platform.

The Loki tool [10] addressed the important problem of
performing fault injection based on the global state, i.e.,
the condition that triggers fault injection is based on several
nodes of the distributed system. Due to the problem of clock
synchronization at each node and to message delays, a fault
may be injected in a global state that is different than the
desired target state. To mitigate this problem, Loki performs
an off-line analysis of execution traces in order to discard
experiments in which fault injection is likely to have been

triggered in a wrong state.
A limitation of the tools mentioned above is that the

workload has to be manually tuned in order to bring the system
in a desired state. In the case of FTAPE, the tester selects the
distribution of CPU, memory, and I/O operations generated
by the synthetic workload. In the case of other tools, such as
ORCHESTRA, FCI, NFTAPE, and Loki, the tester specifies
a fault injection scenario by means of state machines, which
are used by the fault injection tool to track the current state
and trigger a fault when a desired state is reached. These
approaches assume that the system is excited by a workload
able to bring the system in the target state. However, devising
such a workload is a tricky task for complex systems, since
the tester has to carefully define the timing and the order of
messages or inputs to be sent to the system. This problem
is further complicated by the inherent non-determinism of
complex systems, which makes difficult to bring the system
in the target state and does not assure a correct execution of
the fault injection experiment. This paper represents a further
step towards solving this research problem.

III. OVERVIEW

Our framework for workload generation is composed by
three subsystems, namely: (i) the System Under Test (SUT),
which is the target of the experimental dependability evalua-
tion, (ii) the Workload Generator (WG), which submits inputs
to the SUT in order to provide a workload and monitors its
behavior, and (iii) a Fault Injector (FI), which is adopted
to inject faults into the SUT. The problem considered in
this paper, namely state-driven workload generation, can be
formulated as follows: given an initial state s0 of the SUT, and
a goal state sg in which an experiment has to be performed,
the WG has to find a sequence of actions that drives the SUT
from s0 to sg . To this purpose, the WG and the SUT are put
in a closed-loop configuration (shown in Fig. 1), in which the
WG sends inputs to the SUT and collects information about its
state. When the SUT is in the target state sg , the WG triggers
the FI, and then the fault injection experiment is performed.

SUT	
 WG	

FI	

a fault is injected
into the SUT

when the target
state is reached,
a fault is triggered

collects state
information

submits
inputs

Fig. 1: Overview of the workload generation framework.

The WG evaluates how the SUT is behaving by computing
a feedback function D based on state information. An increase

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 34 / 49

of the feedback value means that the action at has driven the
SUT to a state “close” to the goal state; otherwise, the function
decreases. Actions to be performed by the WG may consist
in messages or commands sent to the SUT, or in variations
in the rate or type of inputs generated by the WG. The WG
aims to find a sequence of actions s =< a1 . . . at >∈ S that
brings the SUT as close as possible to the goal state, i.e., after
performing the actions in s, D reaches a peak value at time t:

s = arg maxŝ∈SD(t) . (1)

An example of stateful system in which such a framework
could be deployed is represented by a File System, since
several past studies on fault injection and robustness testing
have investigated dependability of File Systems with respect
to faulty disks or applications [1], [21], [22]. In this kind
of system, the state could include aspects related to I/O
transactions, such as the amount of cached data that still has
to be flushed to disk and the available disk bandwidth. A
dependability analysis of a File System could aim to assess the
probability of persistent data corruption due to faults, which
in turn depends on the state of the system (e.g., the amount of
cached data). In order to bring the File System in a given target
state, the Workload Generator should perform I/O operations
or instantiate new I/O-bound processes until the target is
reached. Tuning a state-driven workload in such a scenario
can be a tricky task due to complex interactions between
the File System, other OS subsystems, user applications, and
I/O devices, and automated workload generation is useful to
relieve the tester of this task.

IV. THE PROPOSED FRAMEWORK

In this section, we will give a description of the framework
focusing on its key elements: (i) state modeling, (ii) actions,
(iii) reward function, (iv) search algorithm. The framework
is meant to be tailored to the specific SUT, by using an
appropriate definition of these elements. We discuss how these
aspects should be defined by the tester, and will provide an
example in the next section. These elements are orchestrated
by the loop shown in Algorithm 1, which takes as inputs
the target state sg . Furthermore, the tester can choose a
search algorithm to update the command sequence S, and
a tolerance value ε that represents the stop condition of the
search algorithm.

Algorithm 1 WGMAINLOOP(sg ,ε)

1: while D(sg)−D(sc) ≥ ε and T ≤MAX TIME do
2: update the action sequence S
3: apply the last action in sequence S on the SUT
4: update the current state sc
5: end while

A. State

The problem of the state definition is of paramount impor-
tance in our framework, and it is strictly dependent on the

SUT. The framework is aimed at complex and ”black-box”
systems, for which a detailed knowledge about its internals
is not available. Therefore, we consider as ”state” a vector of
variables that reflect the state of a subset resources or data
structures in the system that are relevant for the dependability
and performance of the SUT. Since several studies on field
failure data have shown that fault activation and propagation
is influenced by stress conditions [23], [24], the definition
of state may include the usage of internal resources such as
buffers, queues and communication channels, and performance
measures such as the throughput of the system [25]. Moreover,
the state can be defined based on the objectives of the
fault injection and from the requirements of the system. For
instance, in [9] fault injection is adopted in the context of a
fault-tolerant distributed system based on a warm-replication
mechanism to copy the state of a process to a backup replica:
in this scenario, the evaluation of fault tolerance takes into
account the number of requests in the queues of the process,
which affects the amount of data that has to be copied to
the backup replica and ultimately on the effectiveness of fault
tolerance, and it is included in the state.

B. Actions

In general terms, actions are changes in the workload gen-
erated by the WG. They may consist in individual messages
or commands sent to the SUT, or may represent parameters
of a synthetic workload (as in the case of FTAPE [11]). The
choice of the set of actions to adopt is dependent on the SUT,
since the workload exercises the system through its interface to
users and to other systems. Moreover, the definition of actions
is also affected by the state definition, since the actions should
be able to modify the state of the SUT. For instance, in the
case of a web server, actions may change of the rate and kind
of HTTP requests [26].

C. Feedback function

The WG selects actions to be performed on the basis of the
feedback from the SUT, by means of the feedback function D.
This function embeds the fact that a command that drives the
system in a state st close to sg gives a positive feedback; the
function assumes its maximum value in st = sg . The function
should compute a scalar value that could be analyzed by the
search algorithm, by accounting for the current value of state
variables and their target value. For instance, if the WG aims
to maximize the throughput of the system during the test, the
function could return the current throughput. If more than one
state variable is involved, the feedback function could compute
a weighted sum of the factors that have to be tuned by the WG.

D. Search Algorithms

The core of the WG is based on search algorithms. In fact,
the workload generation problem is an optimization problem
in a discrete space, since the action space is typically discrete.
It is known that this problem is NP-hard, therefore the search
algorithm should be based on some kind of heuristic. The
choice for the action to perform is based on the values returned

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 35 / 49

by the D function. If the last actions provided an increase of
the D function (e.g., D(st)−D(st−1) > 0 for the action per-
formed at time t), then the algorithm should take into account
those actions to build the action sequence S; otherwise, the
search algorithm could consider to discard that action in the
sequence, and to try a new action. The tester can adopt well-
known algorithms in the fields of combinatorial optimization
and artificial intelligence, such as simulated annealing, genetic
algorithms, and A*.

V. EVALUATION

In this section we illustrate the proposed workload gener-
ation framework in the context of a case study and provide
a preliminary evaluation. We consider a scenario of a fault
injection campaign targeting a Linux-based system, in which
experiments have to be performed when the CPU and I/O
usage (which represents the state of the system) is equal to
a given value. CPU and I/O are exercised by a synthetic
workload consisting of CPU-bound and I/O-bound processes,
which stress the system through the OS interface. Several fault
injection studies were conducted in scenarios similar to ours
[27], [11], [12]. In order to control CPU and I/O usage, the WG
instantiates CPU-bound and I/O-bound processes, and tunes
the number and type of processes using a search algorithm (see
Section IV). We evaluate the ability of the proposed framework
to find the best mix of CPU-bound and I/O-processes for
reaching a desired level of CPU and I/O usage.

A. System under test

The SUT consists of the Linux OS running in a quad-
cpu system. The state of this system (the average utilization
of CPU and I/O) can be controlled by spawning synthetic
processes that perform CPU- and I/O-intensive operations.
However, it is tricky to tune the relative amount of CPU and
I/O operations that brings the average CPU and I/O usage to a
desired level, since there is a mutual relationship between CPU
and I/O operations. In fact, I/O-bound processes often require
to use the CPU for short time periods, in order to prepare I/O
commands and to send or to retrieve data; therefore, CPU-
bound processes may delay I/O-bound processes and affect
I/O usage, and I/O-bound processes contribute to CPU usage.
CPU and I/O usage is mainly affected by the process scheduler
of the OS, which selects the order in which CPU- and I/O-
bound processes are executed.

In order to evaluate the proposed framework, we adopted
Linsched [28], a simulator of the Linux OS in multi-cpu
environments. It is important to note that Linsched is based
on the actual source code of the Linux kernel (v. 2.6.35),
and that it allows to simulate process execution with high
accuracy. In particular, Linsched includes the whole source
code of the Linux process scheduler, namely the Completely
Fair Scheduler (CFS) [29], and allows to evaluate the effect
of process scheduling on CPU and I/O usage. Fig. 2 shows
the scenario considered in our experiments, which consists
of 4 CPUs and an I/O device each associated with a process
queue. The system state is defined by two variables, that is, the

average number of processes in CPU queues (runqueues) and
in the I/O queue respectively. In order to control the system
state, the WG generates CPU bound and I/O-bound processes,
which are allocated to a CPU by a load-balancing algorithm
in the Linux kernel, and each CPU is managed using the CFS
algorithm. When a process performs an I/O operation, it is
moved in the I/O queue, which is managed using a First-In-
First-Out algorithm. The complex relationship between CPU
and I/O usage can be seen in Fig. 3, which shows the average
length of each queue as a function of the number of CPU
bound and I/O-bound processes: these functions are non-
linear, and where one of the functions increases, the other
one decreases.

CPU 1

CPU 2

CPU 3

CPU 4

I/O

Average number of ready
processes (CPU usage)

Average number of blocked
processes (I/O usage)

Processes
generated
by the WG

Fig. 2: Execution scenario.

B. Instantiating the WG framework

Following the proposed framework, we have defined the
state s as a vector of two components: (i) the average number
of the processes in the runqueues (ii) the average number of
processes in I/O queue. The function D is defined as:

D(st) = −||st − sg||

where ||.|| is the euclidean norm between the state vectors
st and sg . The processes that can be generated by the WG
are of three types, as shown in TABLE I. The first column
is the process type, that can be CPU-bound, I/O-bound or
Mixed; the second and the third column provide the average
time that a process of each type spends in the running state
(i.e., it is using the CPU) and in the blocked state (i.e., it is
waiting for the completion of an I/O operation), respectively.
The WG starts its execution using a process set filled with n1

CPU-bound processes, n2 I/O-bound processes, and n3 Mixed
processes (we assume n1 = n2 = n3 = 10 as initial value)
and we have set ε to 0.4. The actions of the WG consist in
increasing or decreasing (by one, five, or ten) the number of
processes of each type (n1, n2, and/or n3). For every action a
in the action set A, we refer to the action opposite to a as a′,
which removes the effects of a. In the case that such actions
are not available or applicable for the target system, the WG
should at each iteration (i) reset the system state, and (ii) apply
the whole sequence S. Finally, we have chosen the Simulated

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 36 / 49

0
20

40
60

80
100

0
20

40
60

80
100

0

20

40

60

80

100

IO−bound processes# CPU−bound processes

A
ve

ra
ge

 le
ng

th
 o

f C
PU

 ru
nq

ue
ue

0
20

40
60

80
100

0
20

40
60

80
100

0

20

40

60

80

100

120

140

160

IO−bound processes# CPU−bound processes

A
ve

ra
ge

 le
ng

th
 o

f I
O

 q
ue

ue

Fig. 3: Average length of CPU and I/O queues in function of the number of CPU- and I/O-bound processes in the system.

Annealing [30] as search algorithm (Algorithm 2), which is
executed in the context of the WG main loop (Algorithm 1).
It randomly chooses an action, and evaluates D in the new
state sn. If the action produced an increase of D compared to
the previous state, then the action is appended to the action
sequence. If D decreases, then the action is not included in
the sequence and the system is reverted to its previous state
using the action a′. However, the algorithm may still include
action a in the sequence and remain in the state sn (even if D
decreased) with probability e−∆E/T (decreasing with time).

Algorithm 2 SIMULATEDANNEALING(sc)

1: a← random select(A)
2: do a on SUT and get the next state sn
3: ∆E ← R(sn)← D(sn)−D(sc)
4: if ∆E < 0 and random(1− e−∆E/T) then
5: do a′ on SUT
6: end if

TABLE I: Process types instantiated by the WG.

Type Mean CPU time Mean I/O time

CPU-bound processes 200 ticks 20 ticks

I/O-bound processes 5 ticks 20 ticks

Mixed processes 20 ticks 20 ticks

C. Experimental results

In our experiments, we evaluated the framework using 9
different goal states, by selecting different realistic conditions
in which the SUT could be operating. The target values for the
average length of CPU queues were respectively low = 10,
medium = 50, and high = 100. In a similar way, the
target values for the average length of the I/O queue were
respectively low = 10, medium = 50, and high = 100. At
every iteration of Algorithm 1, the system is simulated for 10

seconds, and the state of the system is collected by computing
the average number of ready and blocked processes. We
evaluate the number of iterations for reaching the goal state.

In every experiment, the WG reached the target state. The
distance from the target state approaches to zero in at most 250
iterations, as shown in Fig. 4. The worst case is represented
by the target state (100, 100), which is the state farther from
the initial state (i.e., the state obtained using the initial mix
of processes n1, n2, and n3). It could possible to improve the
speed of convergence using a different initial mix of processes.
For instance, a tester could consider a set of several random
process mixes, and the Workload Generator can choose as
initial mix the one that is closer in the state space to the
target state. It is important to note that this is a general
problem of search and optimization algorithms. Figure 5 shows
how the search algorithm moves towards the target state. The
oscillations are due to the random choices made by the search
algorithm, which in the long term brings the system in the
target state (the filled dot in the figure).

VI. CONCLUSION

In this paper, we discussed a framework for automatically
generating a workload to reach a target state defined by the
tester. In this framework, a Workload Generator interacts with
the System Under Test in a closed loop, to iteratively search
for a sequence of actions that brings the System Under Test
in the target state. The framework has been evaluated in a real
complex system, namely the Linux 2.6 OS scheduler. From the
results, we found that the Workload Generator is able to reach
the target state in every experiment in a reasonable number
of iterations. Future work in this area can be focused on the
application of the approach to other systems, with the aim
of evaluating and improving its effectiveness and portability.
Another area worth of investigation is the adoption of the
framework in the context of dependability benchmarking.

ACKNOWLEDGMENT

This work has been supported by the projects ”Embed-
ded Systems in Critical Domains” (CUP B25B09000100007)

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 37 / 49

50 100 150 200 250

5
10
15
20
25

CPU=10, I/O=10

Steps

D
is

ta
nc

e

50 100 150 200 250

10

20

30

CPU=10, I/O=50

Steps

D
is

ta
nc

e

50 100 150 200 250

20

40

60

CPU=10, I/O=100

Steps

D
is

ta
nc

e

50 100 150 200 250

10
20
30
40
50

CPU=50, I/O=10

Steps

D
is

ta
nc

e

50 100 150 200 250

10
20
30
40
50

CPU=50, I/O=50

Steps

D
is

ta
nc

e

50 100 150 200 250

20

40

60

80

CPU=50, I/O=100

Steps

D
is

ta
nc

e

50 100 150 200 250

20
40
60
80

100

CPU=100, I/O=10

Steps

D
is

ta
nc

e

50 100 150 200 250

20
40
60
80

100
CPU=100, I/O=50

Steps

D
is

ta
nc

e

50 100 150 200 250

20
40
60
80

100
120

CPU=100, I/O=100

Steps

D
is

ta
nc

e

Fig. 4: Speed of convergence of the Workload Generator.

0 10 20 30
0

10

20

30

40
CPU=10, I/O=10

CPU runqueue (avg.)

IO
 q

ue
ue

 (a
vg

.)

0 10 20 30
0

20

40

60

80
CPU=10, I/O=50

CPU runqueue (avg.)

IO
 q

ue
ue

 (a
vg

.)

0 10 20 30
0

50

100

150
CPU=10, I/O=100

CPU runqueue (avg.)

IO
 q

ue
ue

 (a
vg

.)

0 50 100
0

20

40

60
CPU=50, I/O=10

CPU runqueue (avg.)

IO
 q

ue
ue

 (a
vg

.)

0 50 100
0

50

100
CPU=50, I/O=50

CPU runqueue (avg.)

IO
 q

ue
ue

 (a
vg

.)

0 50 100
0

50

100

150
CPU=50, I/O=100

CPU runqueue (avg.)

IO
 q

ue
ue

 (a
vg

.)

0 50 100 150
0

20

40

60
CPU=100, I/O=10

CPU runqueue (avg.)

IO
 q

ue
ue

 (a
vg

.)

0 50 100 150
0

50

100
CPU=100, I/O=50

CPU runqueue (avg.)

IO
 q

ue
ue

 (a
vg

.)

0 50 100 150
0

50

100

150
CPU=100, I/O=100

CPU runqueue (avg.)

IO
 q

ue
ue

 (a
vg

.)

Fig. 5: State space explored by the Workload Generator.

within the framework of ”POR Campania FSE 2007-2013”
and ”Iniziativa Software CINI-Finmeccanica”.

REFERENCES

[1] R. Lefever, M. Cukier, and W. Sanders, “An experimental evaluation
of correlated network partitions in the Coda distributed file system,” in
Proc. Intl. Symp. Reliable Distributed Systems, 2003, pp. 273–282.

[2] M. Vieira and H. Madeira, “A dependability benchmark for OLTP
application environments,” in Proc. 29th Intl. Conf. on Very Large Data
Bases, 2003, pp. 742–753.

[3] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J. Fabre, J. Laprie, E. Martins,
and D. Powell, “Fault injection for dependability validation: A method-
ology and some applications,” IEEE Trans. Software Eng., vol. 16, no. 2,
pp. 166–182, 1990.

[4] K. Joshi, M. Cukier, and W. Sanders, “Experimental evaluation of the
unavailability induced by a group membership protocol,” Proc. European
Dependable Computing Conf., pp. 644–648, 2002.

[5] B. Helvik, H. Meling, and A. Montresor, “An approach to experimentally
obtain service dependability characteristics of the Jgroup/ARM system,”
Proc. European Dependable Computing Conf., pp. 179–198, 2005.

[6] E. Czeck and D. Siewiorek, “Observations on the Effects of Fault
Manifestation as a Function of Workload,” IEEE Trans. Computers,
vol. 41, no. 5, pp. 559–566, 1992.

[7] R. Chillarege and R. Iyer, “An experimental study of memory fault
latency,” IEEE Trans. Computers, vol. 38, no. 6, pp. 869–874, 1989.

[8] J. Meyer and L. Wei, “Analysis of workload influence on dependability,”
in Proc. Intl. Fault-Tolerant Computing Symp., 1988, pp. 84–89.

[9] R. Natella and D. Cotroneo, “Emulation of transient software faults for
dependability assessment: A case study,” in Proc. European Dependable
Computing Conf., 2010, pp. 23–32.

[10] R. Chandra, R. Lefever, K. Joshi, M. Cukier, and W. Sanders, “A Global-
State-Triggered Fault Injector for Distributed System Evaluation,” IEEE
Trans. Parallel and Distributed Sys., vol. 15, no. 7, pp. 593–605, 2004.

[11] T. Tsai and R. Iyer, “Measuring fault tolerance with the FTAPE fault in-
jection tool,” Quantitative Evaluation of Computing and Communication
Systems, pp. 26–40, 1995.

[12] T. Tsai, M. Hsueh, H. Zhao, Z. Kalbarczyk, and R. Iyer, “Stress-Based
and Path-Based Fault Injection,” IEEE Trans. Computers, vol. 48, no. 11,
pp. 1183–1201, 1999.

[13] S. Dawson, F. Jahanian, T. Mitton, and T. Tung, “Testing of fault-tolerant
and real-time distributed systems via protocol fault injection,” in Proc.
Fault Tolerant Computing Symp., 1996, pp. 404–414.

[14] D. Stott, B. Floering, D. Burke, Z. Kalbarczpk, and R. Iyer, “Nftape:
a framework for assessing dependability in distributed systems with
lightweight fault injectors,” in Proc. IEEE Intl. Computer Performance
and Dependability Symp., 2000, pp. 91–100.

[15] W. Hoarau and S. Tixeuil, “A language-driven tool for fault injection in
distributed systems,” in Proceedings of the 6th IEEE/ACM International
Workshop on Grid Computing, 2005, pp. 194–201.

[16] D. Avresky, J. Arlat, J. Laprie, and Y. Crouzet, “Fault Injection for
Formal Testing of Fault Tolerance,” IEEE Trans. Reliability, vol. 45,
no. 3, pp. 443–455, 1996.

[17] A. Arazo and Y. Crouzet, “Formal Guides for Experimentally Verifying
Complex Software-Implemented Fault Tolerance Mechanisms,” in Proc.
Intl. Conf. on Eng. of Complex Computer Systems, 2001, pp. 69–79.

[18] A. Ambrosio, F. Mattiello-Francisco, V. Santiago, W. Silva, and E. Mar-
tins, “Designing Fault Injection Experiments Using State-Based Model
to Test a Space Software,” Lecture Notes in Comp. Science, vol. 4746,
pp. 170–178, 2007.

[19] A. Johansson, N. Suri, and B. Murphy, “On the Impact of Injection
Triggers for OS Robustness Evaluation,” in The 18th Intl. Symp. on
Software Reliability Eng., 2007, pp. 127–136.

[20] S. Dawson, F. Jahanian, and T. Mitton, “Experiments on six commercial
TCP implementations using a software fault injection tool,” Software
Practice and Experience, vol. 27, no. 12, pp. 1385–1410, 1997.

[21] V. Prabhakaran, A. Arpaci-Dusseau, and R. Arpaci-Dusseau, “Model-
based failure analysis of journaling file systems,” in Proc. Intl. Conf.
Dependable Systems and Networks, 2005, pp. 802–811.

[22] D. Cotroneo, D. Di Leo, R. Natella, and R. Pietrantuono, “A case study
on state-based robustness testing of an operating system for the avionic
domain,” Lecture Notes in Comp. Science, vol. 6894, pp. 213–227, 2011.

[23] M. Sullivan and R. Chillarege, “Software Defects and their Impact on
System Availability: A Study of Field Failures in Operating Systems,”
in Proc. Intl. Fault-Tolerant Computing Symp., 1991, pp. 2–9.

[24] I. Lee and R. Iyer, “Software dependability in the Tandem GUARDIAN
system,” IEEE Trans. Software Eng., vol. 21, no. 5, pp. 455–467, 1995.

[25] R. Jain, The art of computer systems performance analysis. John Wiley
& Sons, 2008.

[26] R. Matias et al., “An experimental study on software aging and reju-
venation in web servers,” in Proc. Computer Software and Applications
Conf., vol. 1, 2006, pp. 189–196.

[27] W.-I. Kao, R. Iyer, and D. Tang, “FINE: A Fault Injection and Monitor-
ing Environment for Tracing the UNIX System Behavior under Faults,”
IEEE Trans. Software Eng., vol. 19, no. 11, pp. 1105–1118, 1993.

[28] J. Calandrino, D. Baumberger, T. Li, J. Young, and S. Hahn, “Linsched:
The linux scheduler simulator,” in Proc. Intl. Conf. on Parallel and
Distributed Comp. and Comm. Systems, 2008, pp. 171–176.

[29] C. Wong, I. Tan, R. Kumari, and F. Wey, “Towards achieving fairness in
the linux scheduler,” ACM SIGOPS Operating Systems Review, vol. 42,
no. 5, pp. 34–43, 2008.

[30] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, pp. 671–680, 1983.

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 38 / 49

Improving Consumer Satisfaction through Building an Allocation Cloud

Kuo Chen Wu
Institute of Computer and Communication Engineering

National Cheng Kung University
Tainan, Taiwan

kuchenwu@nature.ee.ncku.edu.tw

Hewijin Christine Jiau, Kuo-Feng Ssu
Department of Electrical Engineering

National Cheng Kung University
Tainan, Taiwan

{jiauhjc, ssu}@mail.ncku.edu.tw

Abstract—Consumer satisfaction depends on the quality of
service. Services with high quality usually lead to high cost. Due
to the budget limitation, consumers tend to acquire services
with lowest cost. Feasible request allocation can improve
service quality or reduce service cost. Some request allocation
algorithms need the coordination with service consumers, but
the benefits from consumers’ coordination are arranged by
service providers, especially for on-demand consumers. On-
demand consumers have no idea to improve service quality
or reduce service cost through allocating their requests, even
though service providers can collect on-demand requests to
perform feasible request allocation for efficient service exe-
cution. To solve this issue, an allocation cloud is proposed
in this study. The allocation cloud assists consumers in al-
locating requests to optimize consumer satisfaction. Because
the allocation cloud contains various allocation algorithms and
collects a large amount of service requests, the allocation cloud
can coordinate service consumers to follow feasible request
allocation algorithms. Moreover, the allocation cloud can reveal
the relation between service consumers’ coordination and the
improvement of service execution. The revealed relation can
help service consumers decide beneficial strategies to improve
their satisfaction. To evaluate the effectiveness of our approach,
a study of video delivery service is conducted. The results
confirm that consumer satisfaction can be improved through
the proposed allocation cloud.

Keywords-Cloud Computing; Quality of Service; Request Al-
location; Consumer Satisfaction.

I. INTRODUCTION

High quality of service (QoS) leads to high consumer
satisfaction and also means high service cost. For example,
service respond time increasing usually needs to increase
network bandwidth, computation power, or cache size. The
addition of resources means the cost increasing. However,
service consumers always has budget limitation and need to
consider the trade-off between QoS improvement and service
cost increasing. Besides considering the trade-off between
QoS and service cost, consumers can try to reduce through
two approaches. One approach is making a favourable
service agreement with service providers and the other
approach is performing service sharing through appropriate
request allocation. However, On-Demand consumers ask
services when they need and usually send small numbers
of requests. Their characteristics make the cost reduction

through request allocation or service agreement becomes
difficult. The reasons are listed as follows:

1) The amount of service requests from each On-Demand
consumer is small. It is hard for on-demand consumers
to gain benefits by performing request allocation with a
small amount of requests.

2) An on-demand consumer cannot guarantee the amount
of service requests. Therefore, service providers do
not make a favourable service agreement with an On-
Demand consumer.

Therefore, it is difficult for On-Demand consumers alone
to improve consumer satisfaction through request allocation
and service agreements. However, via collecting the requests
from on-demand consumers, service providers can still per-
form suitable request allocation for efficient service exe-
cution. Through the suitable request allocation, on-demand
consumers can acquire efficient service execution. However,
on-demand consumers have no idea to coordinate with
other on-demand consumers to follow feasible requestion
allocation and gain additional benefits.

We propose an allocation cloud to coordinate on-demand
consumers for efficient request allocation. The allocation
cloud contains two important concepts. The first concept
is the collection of on-demand consumers’ requests. The
allocation cloud coordinates on-demand consumers to follow
request allocation according to these on-demand consumers’
requests. The requests contain the functional and non-
functional requirements of requesting services. The non-
functional requirements are presented as hard constraints
and soft constraints [1] in this study. Hard and soft con-
straints are criteria to evaluate request allocation in this
study. Furthermore, on-demand consumers’ coordination and
request allocation are based on the evaluation of hard and
soft constraints. The second concept is the request alloca-
tion algorithm set. A request allocation algorithm specifies
targeted request collection, performs request allocation for
the request collection, and presents the effects of apply-
ing the request allocation. Multiple allocation algorithms
are available in the allocation cloud for different request
collections. With these allocation algorithms, the allocation
cloud can coordinate consumers to follow feasible allocation

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 39 / 49

algorithms for corresponding request collection. In addition,
the allocation cloud can further improve service execution
using how consumers’ coordination for more efficient re-
source usage or better QoS. Keeping the relation between
consumers’ coordination and service execution is important
for making service agreements with service providers. On-
demand consumers and the allocation cloud can be aware
that their coordination really contributes the service quality
improvement. Therefore, the allocation cloud makes service
agreements with service providers for improving QoS or
reducing prices.

This paper is organized as follows: Section II lists rele-
vant studies which discuss the relation between consumer
satisfaction and cloud services. Section III introduces the
major concept of the allocation cloud. Section IV discusses
the effectiveness of the allocation cloud through an exper-
iment. The experiment which simulates the video delivery
service with Coordinated Channel Allocation [2] (COCA)
is attached. Section V is the conclusion of this paper.

II. RELATED WORK

Due to increasing popularity of cloud computing [3][4],
more and more service providers utilize clouds as their
deployment platforms [5][6][7]. There are sufficient re-
sources for service executing in cloud platforms, and how to
allocate service requests adequately and optimize profit [8]
or consumer satisfaction becomes important.

Several studies define and explore consumer satisfaction
of using cloud services. Tsakalozos et al. [9] explore the
consideration of Infrastructure as a Service (IaaS) cloud ad-
ministrator to maximize cloud-consumer satisfaction. They
map cloud-consumer satisfaction into financial profit, which
is defined as the difference between revenue and cost. Both
of revenue and cost are impacted by the cloud’s physical
resource usage. Besides that, there are two assumptions in
this study. The first assumption is that a cloud-consumer
has a budget constraint. The second one is that the cloud’s
physical resources are limited. They develop the approach
for cloud administrators to maximize per-consumer financial
profit through allocating physical resources.

Kantere et al. [10] propose an pricing method to optimize
the profit of cloud cache services. They expect that con-
sumer dissatisfaction from high service charge leads to the
dropping of service demand. Besides that, the cloud risks
to permanently lose the dissatisfied consumers. Base on this
expectation, consumer satisfaction is the factor of optimizing
profit. The consumer satisfaction is an altruistic tend of the
optimization that is opposite to the egoistic tend of cloud
profit. They express altruistic tend as: 1) a guarantee for
a low limit on consumer satisfaction, or 2) an additional
maximization objective. According to the expression, they
optimize cloud cache service profit with consider consumer
satisfaction.

Figure 1. Request allocation without the allocation cloud.

Figure 2. Request allocation within the allocation cloud.

Chen et al. [11] develop an utility model for measuring
consumer satisfaction in the cloud. Since they focus on
the service provisioning problem, the utility model defines
consumer satisfaction with two factors: service price and
response time. They assume that consumer satisfaction is
decreased with higher service price and longer response
time. The developed utility model can help service providers
build services in the IaaS cloud platform with maximal
profit.

III. ALLOCATION CLOUD

Consumers want to perform efficient request allocation to
share services and reduce cost. However, consumers are lim-
ited to perform efficient request allocation because they ask
for services independently and usually have a small amount
of requests. Figure 1 illustrates such situation. In Figure 1,
each consumer has one request to the same service. The
desired service provides two allocation algorithms. Both the
algorithm A and the algorithm B reserve request processing

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 40 / 49

units to serve request. The algorithm B allows three the same
requests to share the service. However, consumers can only
perform request allocation with allocation algorithm A since
each consumer does not know they can cooperate to perform
allocation algorithm B. The allocation cloud is proposed
to solve this issue. Figure 2 illustrates the overview of the
allocation cloud. In Figure 2, the allocation cloud includes
several allocation algorithms and a request collector. The
allocation cloud collects consumers’ requests and reserves
them in the request collector. The allocation cloud can find
several requests that can be shared with the same service
because the allocation cloud can evaluate the global request-
ing situation. The allocation cloud subsequently performs
request allocation with allocation algorithm B. As a result
of service sharing, consumers can reduce cost and improve
satisfaction through the allocation cloud.

Besides the request allocation, there are two operations
in the allocation cloud which can improve consumer satis-
faction. The first operation is the service agreement through
the allocation cloud. Because the allocation cloud reserves
requests, the allocation cloud can predict service requesting
situation and make service agreements according to the
prediction. While the actual service requesting fulfils the
prediction, the cost can be reduced and consumer satisfaction
can be improved. The second operation is the consumer
negotiation in the allocation cloud. The allocation cloud can
negotiate service requesting with consumers when actual
service requesting is not conformed to the expected situation.
If consumers accept to modify their requesting to fulfil the
expectation, consumer satisfaction can be improved.

In the following sections, the definition of consumer
satisfaction is described in Section III-A. Operations of the
allocation cloud, request allocation, service agreement, and
consumer negotiation, are explained in Section III-B, III-C
and III-D, respectively. Finally, Section III-E discusses the
restriction of building an allocation cloud.

A. Consumer Satisfaction

Consumer satisfaction in the allocation cloud is the sum of
all request satisfaction. Given all requests R = {r1, . . . , rm}
in the cloud, every request satisfaction is impacted by two
factors. One factor is the evaluation on the quality qr that
the service exhibits and the other factor is the service price.
QEr is the function of quality evaluation for request r and is
specified by hard constraints, CHr, and soft constraints, CSr.
The quality evaluation QEr on qr is presented as follows.

QEr(qr) = CHr(qr) · CSr(qr), where (1){
CHr(qr) ∈ {0, 1}
CSr(qr) = [0.0, 1.0]

If qr does not conform to CHr, the value of CHr(qr) is
0 that means that qr is not satisfied with hard constraints.
Therefore, qr must conform to CHr first and the influence of

CSr(qr) is revealed. Based on QEr, the request satisfaction
Sr is presented as follows.

Sr(qr) =
QEr(qr)

P
(2)

The service price is represented as P . The low price and the
high quality of service lead the high request satisfaction.
Based on Sr, consumer satisfaction CS in the allocation
cloud is presented as follows.

CS =

∑
r∈R Sr(qr)

| R |
(3)

The CS function is defined as the ratio of total request sat-
isfaction values to the total request amount in the allocation
cloud. It should be noted that qr and P exhibited by a service
vary upon different service types. Also, the specifications
of CHr and CSr are related to service requests. Based on
CS function, the allocation cloud can improve consumer
satisfaction by performing optimization techniques. The
cloud operations on request allocation, service agreement,
and consumer negotiation can be executed to achieve the
optimization.

B. Request Allocation

The allocation cloud can perform alternative allocation
algorithms. Different allocation algorithms lead to a change
of service quality and service cost. The allocation cloud
needs to estimate the change of qr and P and attempts to
optimize consumer satisfaction defined in (3) from available
allocation algorithms. Besides, there are some rules that
should be fulfilled before allocating requests, as listed as
follows.

∀r ∈ R,CHr(qr) ≤ CHr(q
′
r) (4)∑

r∈R
QEr(qr) ≤

∑
r∈R

QEr(q
′
r) (5)

In (4) and (5), q′r is the service quality with alternative
allocation algorithms. Equation (4) ensures that q′r cannot be
worse that qr. If qr conforms to CHr, q′r must also conform
to CHr. The allocation cloud needs to make sure that all
involved consumers are not sacrificed in alternative alloca-
tion algorithms. Equation (5) ensures that

∑
r∈R QEr(qr)

cannot be worse within alternative allocation algorithms. The
allocation cloud needs to promise that QoS of all requests
are not sacrificed in alternative allocation algorithms.

C. Service Agreement

Request allocation in the allocation cloud can lead request
fulfilment with lowest cost under the prerequisite of (4) and
(5). Besides, the allocation cloud has to prepare enough
services for requests with expected quality constraints. The
allocation cloud, instead of consumers, performs service
agreements with service providers to prepare enough ser-
vices. Figure 3 illustrates the communication protocol for

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 41 / 49

Figure 3. A service agreement protocol.

making service agreements between the allocation cloud
and service providers. As shown in Figure 3, the allocation
cloud does not find suitable services through service bro-
kers and does not actively contact with service providers.
Alternatively, service providers send query messages to the
allocation cloud to check the service requesting situation.
After confirming the service requesting situation, service
providers can propose suitable service agreements according
to this situation.

The communication protocol has four steps, as follows
1) predict Service Requesting(): The allocation cloud can

collect historical service requesting records. Therefore,
the allocation cloud predicts service requesting according
to historical service requesting records and all other
related information. The prediction is represented as
R = {r1, . . . , rm} and ∀r ∈ R includes CHr and CSr

2) access Requesting Situation(Query Statement): Service
providers query service requesting situation in this step.
Service providers can specify query messages, such
as needed service amount or occupied time. Service
providers can concentrate on target service requesting
through specifying query messages. The allocation cloud
receives the query messages and returns service request-
ing situation according to the query messages.

3) propose Service Agreement(ID, Q, Request Constraints):
Service providers can decide whether to propose service
agreements or not according to the received service
requesting situation. If service providers judge that they
can propose profitable service agreements, they continue
to propose service agreements to the allocation cloud.
The proposed service agreements need to contain three
parameters, ID, Q, and Request Constraints. The
ID is the identification of this service agreement and is
used by the allocation cloud to recognize this service
agreement. The Q is QoS for this service agreement. The
allocation cloud uses this parameter to judge consumer
satisfaction of this service agreement. The Request
Constraints are the constraints which the allocated

requests must be conformed to. Service providers use this
parameter to specify target service requesting.

4) decide optimal Service Agreements(): The purpose of
step 4 is to select a set of service agreements from all
received service agreements. This selected set of service
agreements can optimize consumer satisfaction in the
allocation cloud. The fitness function of the optimization
is the CS function defined in (3). The allocation cloud
simulates the request allocation with different allocation
algorithms and calculates the value of CS. The allocation
cloud returns selected service providers to achieve service
agreements when deciding the set of service agreements
which can optimize consumer satisfaction.

This communication protocol is proposed for the listed
reasons.
• The allocation cloud can trigger service providers to

propose service agreements actively because the allo-
cation cloud keeps a large amount of service requests.

• Service providers can be aware of the service requesting
situation through the allocation cloud. Service providers
can propose the most profitable service agreements
specialized for target service requesting.

• The allocation cloud does not need to specify service
specification and find suitable services. The allocation
cloud can concentrate on comparing proposed service
agreements and on deciding the set of service agree-
ments which lead to consumer satisfaction optimiza-
tion.

• Because service providers only propose their service
agreements for target service requesting, the amount of
proposed service agreements is less than the amount of
all service agreements which service providers can pro-
vide. This situation reduces the complexity of achieving
service agreements

D. Consumer Negotiation
The allocation cloud makes service agreements based

on the expected service requesting situation. Consumer
satisfaction optimization is achieved in accordance with the
expected situation. However, actual service requesting situ-
ation is different with the expected situation and consumer
satisfaction is not as good as the expectation. Consumer sat-
isfaction can be improved when the actual service requests
are adjusted to fulfil the expected situation. For this purpose,
the allocation cloud negotiates quality constraint refinement
of service requests with consumers. The allocation cloud
negotiates with consumers who send requests fulfilled the
conditions, as listed as follows.
• The service request r ∈ R proposed by a consumer is

similar to the expected service request for a specific
service.

• Request satisfaction Sr will be improved if the alloca-
tion cloud modifies quality constraints of this request
r.

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 42 / 49

• Consumer satisfaction CS in the allocation cloud will
also be improved if the allocation cloud modifies qual-
ity constraints of this request r.

The purpose of the allocation cloud is to serve consumers
and improve consumer satisfaction. Therefore, the allocation
cloud must allow consumers to be aware of the modification
of quality constraints and request satisfaction.

E. Restrictions

The major restriction of building an allocation cloud
are privacy and scalability concerns. The administrator of
the allocation cloud must be trusted by target consumers
because the allocation cloud collects service requests from
consumers. Besides that, the allocation cloud must collect
enough requests in order to trigger service providers to
propose their service agreements for the allocation cloud.

IV. EXPERIMENT

An experiment is conducted to evaluate the effectiveness
of the allocation cloud. In this experiment, streaming video
delivery service is selected as the targeted application. Due
to the high resource need and heavy workload, selectively
feasible allocation algorithm is important to guarantee sys-
tem capability with efficient resource utilization. Some allo-
cation algorithms need to coordinate with service consumers,
such as coordinated channel allocation [2] (explained in the
next section). However, the benefits of request allocation al-
gorithms only reflects on the service providers, even though
the request allocation algorithms need consumers’ coordi-
nation. We regard these allocation algorithms as services in
the allocation cloud for service consumers and evaluate the
improvement of consumer satisfaction using the allocation
cloud. There are two assumptions for resolving the concerns
for the restrictions mentioned in Section III-E. The first
assumption is that consumers of the video delivery service
have minor privacy concerns and allow the allocation cloud
to allocate their video requests. The second assumption is
that the allocation cloud can collect large amount of requests.
We make the second assumption because streaming video
is popular and most consumers request video on-demand.
In the following contents, coordinated channel allocation is
introduced. The benefits of the allocation cloud is explained
while applying COCA to the allocation cloud.

A. Coordinated Channel Allocation for Video Delivery Ser-
vices

COCA is based on batching techniques [12][13][14].
Therefore, these requests are grouped together in a small
interval. A scheduler with COCA negotiates with consumers
for reserving the requests with larger resource needs and
sets a deadline of starting service for each reserved group.
Based on the reserved groups, the scheduler with COCA
has two queues, reservation queue and regular queue. The
reservation queue keeps all reserving groups and performs

sort on groups according to group deadline. The regular
queue keeps all awaiting groups and performs sort on all
groups according to group arrival time and resource needs.
When there exists free channels and the deadline of the
group in the reservation queue is reached, the scheduler
with COCA allocate the group in the reservation queue to a
free channel. When there exists free channels but no group
deadline is reached, the Scheduler with COCA allocate the
group in the regular queue to a free channel. This algorithm
avoids that the groups with large resource needs occupy
channels for a long time and hinders other groups from using
the service.

According to COCA, delivery service providers perform
efficient request allocation based on the arrival requests
and the coordination with consumers. In other words, if
consumers can coordinate with each other before requesting
services, consumers can negotiate with service providers
for additional benefits. However, there are two reasons
make on-demand consumers unable to coordinate with each
other. First, on-demand consumers do not know other arrival
requests. Since consumers have no idea of other arrival
requests, they cannot coordinate with each other. Second,
on-demand consumers have no idea about efficient request
allocations for the video delivery service. Moreover, video
on-demand consumers are usually end users and do not
have background knowledge of efficient request allocations.
Even if they know other arrival requests, they still cannot
coordinate with each other because they have no background
knowledge to perform request allocation. Therefore, this
case is suitable to apply the allocation cloud. The allo-
cation cloud for video delivery services contains efficient
request allocation algorithms and regard these algorithms
as services. The allocation cloud collects the information
of video requests and available video delivery services.
Through actively detecting the video requests and the avail-
able video delivery services, the allocation cloud can decide
feasible allocation services, such as COCA, and negotiate
with consumers for request allocation. Since the allocation
cloud can be aware of how consumer coordination impacts
the profit of service providers, it can negotiate with service
providers for consumers’ addition benefits, such as video
discount.

B. The Relation between Consumer Coordination and Ser-
vice Providers’ Profit

Experiment Setting: It is assumed that a video delivery
service owns 500 videos and the average delivery time
of a video is 30 minutes. The allocation cloud predicts
the service requesting situation in the next one hour. The
request arrival rate is from 5 to 30 requests per minute and
is based on a Poisson distribution. The maximum waiting
period of each request is between 2.5 minutes and 7.5
minutes and is based on an exponential distribution. It is
assumed that there are four available allocation services,

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 43 / 49

Table I
COMPARISON THE DIFFERENCE OF RENEGE RATE FOR STRATEGIES WITHOUT COCA AND WITH COCA IN THE SIMULATION RESULT. RENEGE RATE

IS THE NUMBER OF RENEGED REQUESTS DIVIDED BY THE TOTAL NUMBER OF REQUESTS MADE IN THE EXPERIMENT.

Channels On-Demand PRC
Without COCA With COCA Difference Without COCA With COCA Difference

100 60% 34% 26% 56% 29% 27%
120 55% 34% 21% 51% 27% 24%
140 52% 30% 22% 46% 26% 20%
160 46% 29% 17% 42% 24% 18%
180 41% 26% 15% 37% 23% 14%

Table II
COMPARISON THE IMPROVEMENT OF SATISFIED REQUESTS FOR STRATEGIES WITHOUT COCA AND WITH COCA IN THE SIMULATION RESULT.

SATISFIED REQUESTS IS THE NUMBER OF FULFILLED REQUESTS IN THE EXPERIMENT.

Channels On-Demand PRC
Without COCA With COCA Improvement (%) Without COCA With COCA Improvement (%)

100 765 1227 60.39% 824 1326 27%
120 844 1231 45.85% 907 1354 24%
140 915 1301 42.50% 1004 1390 20%
160 1013 1330 31.29% 1330 1423 18%
180 1094 1375 25.69% 1375 1442 14%

On-Demand strategy [14], Pure-Rate-Control (PRC) strat-
egy [15], On-Demand + COCA [2], and PRC + COCA [2].
The allocation cloud simulates the request allocation and
the result is shown in Table I and Table II. Table I lists
the renege rate in different channel numbers. The renege
rate is the ratio of requests finally cancelled by service
consumers due to over request deadline. Table II shows the
number of satisfied requests in different channel numbers.
According to the renege rate and satisfied requests in Table
I and II, both on-demand allocation and PRC allocation can
improve the number of satisfied requests by applying COCA.
The more requests served, the higher profit gained by the
service provider. Moreover, the profit is from consumers’
coordination. Table I also displays the reduction of renege
rate due to consumers’ coordination. When video delivery
service provides 100 channels, COCA reduces renege rate
by 26% on the on-demand strategy and 27% on the PRC
strategy. The reduction on the on-demand strategy and the
PRC strategy is similar in different number of channels.
Table I also shows that the reduction is more notable when
the number of available channels is smaller. Table II displays
the improvement of satisfied requests due to consumers’
coordination. The result shows that satisfied requests can
be improved approximately 60% when the video delivery
service provides 100 channels. When the video delivery
service provides 180 channels, the improvement is still over
20%.

Applying COCA to the Allocation Cloud: In brief, the
result shows that video delivery services can have better
satisfied requests but video requests with larger resource
needs have to be reserved until the deadline. This indicates
that some requests have to sacrifice their average waiting
time to improve the total satisfied requests. Without the

allocation cloud, service consumers cannot coordinate with
each other and are not aware of their contributions on
improving the profit of the video delivery service. With the
allocation cloud, these service consumers who sacrifice their
average waiting time can be aware of their contributions.
The allocation cloud can also make favourable service
agreements with video delivery service providers. Therefore,
service consumers can reduce service price if they can afford
to sacrifice their waiting time.

V. CONCLUSION AND FUTURE WORK

We propose the allocation cloud to deal with the re-
quest allocation for consumers. Consumer satisfaction can
be improved through the allocation cloud because it opti-
mizes service utilization and guarantees QoS. We introduce
the operations of the allocation cloud and demonstrate
its effectiveness through an experiment. According to the
experiment results, we conclude that the allocation cloud
collects service requests and reveals the relation between
consumers’ coordination and service execution. Therefore,
service consumers can be aware of how to improve their
satisfaction through feasible coordination. In the future, the
consideration of consumer satisfaction optimization must
be further explored. For this purpose, we need to decide
a specific service and a set of consumers which make
requests for the specific service. According to the specific
service and corresponding consumers, allocation algorithms
are selected in the allocation cloud. We plan to explore the
consumer satisfaction optimization based on these allocation
algorithms.

ACKNOWLEDGMENTS

Part of this work has been supported by National Science
Council, Taiwan (NSC 100-2221-E-006-133-MY3, NSC

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 44 / 49

100-2628-E-006-028-MY3, and NSC 100-2221-E-006-136-
MY2).

REFERENCES

[1] L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,
J. Kalagnanam, and H. Chang, “Qos-aware middleware
for web services composition,” IEEE Trans. Softw. Eng.,
vol. 30, no. 5, pp. 311–327, May 2004.

[2] Y.-W. Ho, “Coordinated resource allocation for video delivery
services,” Master’s thesis, National Cheng Kung University,
Tainan, Taiwan, 2009.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “A view of cloud computing,” Comm. ACM,
vol. 53, no. 4, pp. 50–58, Apr. 2010.

[4] M. Creeger, “CTO Roundtable: Cloud computing,” Comm.
ACM, vol. 52, no. 8, pp. 50–56, Aug. 2009.

[5] A. Ojala and P. Tyrväinen, “Developing cloud business mod-
els: A case study on cloud gaming,” IEEE Softw., vol. 28,
no. 4, pp. 42–47, Jul./Aug. 2011.

[6] P. Louridas, “Up in the air: Moving your applications to the
cloud,” IEEE Softw., vol. 27, no. 4, pp. 6–11, Jul./Aug. 2010.

[7] M. Cusumano, “Cloud computing and SaaS as new computing
platforms,” Comm. ACM, vol. 53, no. 4, pp. 27–29, Apr. 2010.

[8] F. I. Popovici and J. Wilkes, “Profitable services in an uncer-
tain world,” in Proc. 2005 ACM/IEEE Conf. Supercomputing
(SC’05), Seattle, USA, Nov. 2005.

[9] K. Tsakalozos, H. Kllapi, E. Sitaridi, M. Roussopoulos,
D. Paparas, and A. Delis, “Flexible use of cloud resources
through profit maximization and price discrimination,” in
Proc. 2011 IEEE 27th Int’l Conf. Data Eng. (ICDE’11),
Hannover, Germany, Apr. 2011, pp. 75–86.

[10] V. Kantere, D. Dash, G. François, S. Kyriakopoulou, and
A. Ailamaki, “Optimal service pricing for a cloud cache,”
IEEE Trans. Knowl. Data Eng., vol. 23, no. 9, pp. 1345–
1358, Sep. 2011.

[11] J. Chen, C. Wang, B. B. Zhou, L. Sun, Y. C. Lee, and A. Y.
Zomaya, “Tradeoffs between profit and customer satisfaction
for service provisioning in the cloud,” in Proc. 20th Int’l
Symposium on High Performance Distributed Computing
(HPDC’11), San Jose, USA, Jun. 2011, pp. 229–238.

[12] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies
for an on-demand video server with batching,” in Proc. Sec-
ond ACM Int’l Conf. Multimedia, San Francisco, California,
USA, Oct. 1994, pp. 15–23.

[13] A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batching
policies for an on-demand video server,” Multimedia Systems,
vol. 4, no. 3, pp. 112–121, Jun. 1994.

[14] Y. Zhang, M.-Y. Wu, and W. Shu, “Adaptive channel allo-
cation for large-scale streaming content delivery systems,”
Multimedia Tools and Applications, vol. 32, no. 3, pp. 253–
273, Mar. 2007.

[15] K. C. Almeroth, “Adaptive workload-dependent scheduling
for large-scale content delivery systems,” IEEE Trans. Cir-
cuits and Systems for Video Technology, vol. 11, no. 3, pp.
426–439, Mar. 2001.

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 45 / 49

Design and Implementation of Cloud-based

Application for Cloud Provider System with SSL

Accelerator and Content Redirection

Boon Keong Seah

Advanced Computing Lab, MIMOS

Technology Park Malaysia, Malaysia

bk.seah@mimos.my

Abstract—The requirement to handle large SSL connection for

secure login access to applications residing in the virtual machine

hosted in the cloud provider system has given rise to the need to

restructure applications in the cloud utilizing the hardware load

balancer or Secure Socket Layer (SSL) Accelerator. In this

paper, we share our experience in designing and implementing a

system in enabling SSL and non-SSL content redirection for

cloud-based application. We describe the configuration and

optimization rules for handling SSL transactions in the SSL

Accelerator. In addition, we covered requirement by applications

for sharing the HTTP session to enable seamless application

access without prompting of re-login. Hence, a Single Sign-On

capability in applications can be achieved.

Keywords-SSL; security in cloud; SSO; load balancer; SSL

Accelerator.

I. INTRODUCTION

With increasing demands for applications to be deployed in
cloud system, there is urgent need to ensure that similar
security features offered in non-cloud environment be available
in the cloud system as well. SSL [1][2] has been the common
protocol used to provide secure communications to the web
server be it in physical servers or in the virtual environment.
Nevertheless, SSL also requires high CPU computation during
the SSL handshake [3][6] which will impact the performance
of the system hosting it. Hence, a combination of SSL and web
server will consume the server resources significantly [15]. In
order to distribute the SSL processing, there are two
approaches. The first approach is through utilizing a load
balancer and distributes the SSL process to multiple web server
with SSL enabled. The load balancing of SSL can utilize
several different schemes such as round robin, SSL with
session, and SSL with backend forwarding [16][17]. Another
approach is through utilizing the SSL Accelerator [5] as SSL
reverse proxies where the SSL handshake process is offloaded
[9] to the SSL Accelerator. Nevertheless, the above two
approaches enforce a HTTPS connection to the client browser
including accessing to the web contents.

In our implementation approach, we have designed and
developed a system for enabling applications deployed in the
cloud system, where only user authentication or login will
require a secure channel. A session ticket will be created in the

authentication system which will redirect the user to the
personalized content of the applications. Each application
hosted in the non-SSL channel will only be allowed access
with a valid session ticket created earlier in the user
authentication system. A Single Sign-On (SSO) [4] amongst
applications can be realized utilizing the session ticket and
hence provide a single user authentication experience.

We detailed in Section II the motivation for implementing
the HTTPS and HTTP content redirection. Section III gives an
overview of the system design and the operational scenario.
Section IV presents the steps for the configuration and
optimization rules for handling the SSL transactions in the SSL
Accelerator. The implemented system is then tested and the
result of the performance is shown in Section V. Section VI
presents the conclusion of this paper.

II. APPLICATION OF HTTPS AND HTTP CONTENT

REDIRECTION

The system can be applied to applications hosted in the
cloud where the performance and SSO of accessing the
contents are of great importance. Applications such as
personalized knowledge management system, media streaming,
news journal content subscription and others can utilize this
system to deliver contents with lower latency [15] as the
contents are not accessed in the SSL protocol. In addition, the
contents are protected with user authentication access rights.

In this paper, we have shown the benefits of this
implementation approach in improving the performance of user
access. Our implementation approach of securing the user
authentication part with HTTPS whilst leaving the web content
in HTTP in the cloud system is that it will enable better
performance as shown in Figure 5 as compared to
implementing HTTPS connection to all web contents including
the user authentication as shown in Figure 4.

Major websites such as Yahoo! Mail and Facebook also
have implemented this approach where only the user
authentication are protected. Nevertheless the detail of such
implementation approach was not published. To support high
performance SSL for all contents, it involves cost and
resources [15].

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 46 / 49

III. SYSTEM DESIGN

A. System Overview

Figure 1. Overview of system design

Figure 1 shows the overview of the system design. In this
design, we have the physical SSL Accelerator appliance [7][8]
with integrated features such as load balancer, SSL hardware
offloading and cache system acting as the SSL reverse proxy.
The SSL Accelerator manages the HTTPS communications
from clients and communicates in HTTP protocol to web
servers hosted in the virtual machines.

In our design, the SSL Accelerator uses a combination of
round robin load balancing and session persistent of client IP
address to distribute the authentication and application Virtual
Machine (VM) Servers load. The SSL Accelerator determines
if the client IP address is previously connected; if it is, it
returns the client to the same VM Server.

In our design, the architecture also takes into consideration
the distribution of HTTPS amongst the SSL Accelerator. The
SSL Accelerator [7][8] has the capability to scale with HTTPS
load via workload distribution.

B. Operational Scenario

The system, illustrated in Figure 1, works as follows:

1) HTTPS requests from client to the personalized
content are intercepted by the SSL Accelerator.

2) The SSL Accelerator establishes an SSL
connection to the client.

3) The SSL Accelerator checks the client’s IP
address is previously connected and has the
session information. If the client’s IP is
previously connected, SSL Accelerator
establishes a HTTP connection to the same VM
server.

4) The SSL Accelerator checks whether the request
for static contents is cached. If the content is
cached, it will be serviced by the SSL
Accelerator. The details of the cached
configuration are given in Section IV.

5) The SSL Accelerator will assess further
optimization rules configuration such as disabling
HTTP TRACE and disabling accepting weak SSL
cipher connection from client. The details of the
optimization rules configuration are given in
Section IV.

6) Upon completion of the checking by the SSL
Accelerator, the HTTPS request will be forwarded
as HTTP request to the pool of back-end VM
applications. The back-end forwarding methods
will utilize the round robin load balancing
amongst the pool of VM Servers configured.

7) VM applications checks whether there is an
authenticated session.

a) If authenticated session does not exist,
then it redirects to the Authentication
Server for user authentication; otherwise,
it permits the client access to the
application without having to re-login.

IV. IMPLEMENTATION APPROACH

The SSL Accelerator we use to implement this system is
BIG-IP LTM F5 which is a combination of load balancer,
SSL hardware offloading system and cache system. In addition,
the LTM F5 has in-built IDS (Intrusion Detection System) [13]
to prevent network attack such as DDoS (Distributed Denial-
of-Service) and IP Spoofing. The SSL Accelerator can be
appliance-based, SSL Accelerator PCI card [10] based or a
combinations of SSL reverse proxy applications such as
POUND [11].

The authentication and application Virtual Machine (VM)
Servers are deployed in MIMOS cloud. Each of the VM is
allocated with 6 Virtual CPU, 16 GB of Virtual Memory, and
20 GB of Hard Disk. The VM guest OS is based on Centos 5.4
64 bit, deployed in the KVM platform [14].

As discussed earlier in Section III, in order to further
improve on security and performance, the following
optimization rules can be deployed in the SSL Accelerator:

1) Disable HTTP TRACE rule

a) The HTTP TRACE request includes all
HTTP headers and cookies credentials
available to the web browsers. This will
enable cross-site security vulnerability. In
F5, the HTTP TRACE can be disabled as
shown in Figure 2.

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 47 / 49

Figure 2. Disabling of HTTP TRACE

2) Disable Connection for Weak SSL Cipher

a) In the system, we also disable weak SSL
cipher in the F5 for older browser as it
may have SSL vulnerabilities [12]. The
rule shown below will disable weak SSL
Cipher connection:

• ALL:!ADH:!LOW:!EXP:!SSLv
2:!NULL:HIGH:MEDIUM:RS
A:RC4:

3) Cache Optimization

a) The cache optimization enables static
contents caching at the SSL Accelerator
which will improve the performance of
the VM applications. Figure 3 illustrates
the F5 configuration:

Figure 3. Enabling static content cache

V. PERFORMANCE

In the evaluation of the performance of the system, we have
deployed six web servers running applications using the Zend
Framework. For the Authentication service, we also have
deployed six Apache web servers serving user authentication.
We prepared the system and measured the user response time
for 3000 concurrent user connections with and without both the
SSL Accelerator and content switching. We use JMeter as the
test benchmark tool. Figures 4 and 5, shows the respective
results:

Figure 4. Concurrent user connections to the system with SSL terminating
in each of the respective Apache web server.

Figure 5. Concurrent user connections to the system with user
authentication service using the six Apache web servers and SSL Accelerator

From Figures 4 and 5, the system we implemented shows a

significant improvement of user response time. Nevertheless,
in Figure 5, we noticed that the performance shows a relatively
stable response time for the user connections, but degraded
significantly when the concurrent user connection reaches
3000. One plausible explanation for this is that a large number
of TCP connection requests are queued in the Linux network
kernel buffer. This large queue will slows the network packet
processing as the kernel needs to maintain the TCP connection
states. In addition to the TCP connection queue size, each of
the six Apache servers we used for this system implementation
has a configuration of 500 maximum concurrent user
connections. We did not pursue further research into

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

 48 / 49

modification and testing of the system implemented due to
time and resource constraint.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have successfully designed and
implemented a content redirection utilizing SSL Accelerator as
the SSL reverse proxy for virtual applications deployed in the
cloud provider system. This approach enables the applications
to offload the SSL process to the SSL Accelerator. In this
system, the approach we have taken is to protect only the user
authentication in HTTPS connection, while the personalized
content is redirected to HTTP connection for successful
authenticated user. In terms of performance, we have managed
up to 3,000 concurrent SSL connections in less than 5 seconds.
As part of future work, we intend to develop an SSL appliance
to cater for SSL offloading; it will also be able to integrate to
the cloud provider system directly for SSL subscription
purposes. For user authentication protocol, federated SSO
protocol such as SAML 2.0 [18] and OpenID [19] are currently
being evaluated.

REFERENCES

[1] A. O. Frier, P. Kocher, and P. C. Kaltorn, The SSL Protocol Version 3.0

draft, March 1996.

[2] J. Viega, P. Chandra, and M. Messier, Network Security with OpenSSL,
1st ed., Oreilly Publications, 2002.

[3] R. Hatsugai, T. Saito, “Load-balancing SSL Cluster Using Session
Migration”, 21st International Conference on Advanced Networking and
Applications (AINA’07), Niagara Falls, USA, IEEE Press, Dec 2007,
pp. 62-67.

[4] N. Chamberlin, Brief Overview of Single Sign-On Technology,
Government Information Technology, 2000.

[5] S. Abbot, “On the Performance of SSL and an Evolution to Crytographic
Coprocessors,” Proc. RSA Conf., San Francisco, USA, Jan 1997.

[6] G. Apostolopoulos, V. Peris, and D. Saha, “Transport Layer Security:
How much does it really cost?”, IEEE INFOCOMM 1999, New York,
USA, June 1999, pp. 717-725.

[7] http://www.f5.com/products/big-ip/ [retrieved: February, 2012]

[8] http://www.barracudanetworks.com/ns/products/web-site-firewall-
overview.php [retrieved: February, 2012]

[9] R. Mraz, “Secure Blue: An Architecture for a Scalable, Reliable High
Volume SSL Internet Server”, Proc. ACSAC 2001, Australia, Dec 2001,
pp. 391-398.

[10] http://www.safenet-inc.com/products/data-protection/hardware-security-
modules-hsms/ [retrieved: July, 2012]

[11] http://www.apsis.ch/pound/ [retrieved: February, 2012]

[12] A. Klein, "Attacks on the RC4 stream cipher", Designs, Codes and
Cryptography, vol. 48, Springer-Verlag, 2008, pp. 269-286.

[13] http://www.f5.com/pdf/white-papers/securing-enterprise-wp.pdf
[retrieved: January, 2012]

[14] A. J. Younge, R. Henschel, J. T. Brown, G. Laszewski, J. Qiu, and G. C.
Fox, “Analysis of virtualization technologies for high performance
computing environments”, IEEE CLOUD 2011, Washington, USA, July
2011, pp. 9-16.

[15] C. Coarfa, P. Druschel, and D. S. Wallach, "Performance analysis of
TLS Web servers", ACM Trans. Comput. Syst., 2006, pp. 39-69.

[16] V. M. Suresh, D. Karthikeswaran, V. M. Sudha, and D. M.
Chandraseker, “Web server load balancing using SSL back-end
forwarding method”, IEEE ICAESM 2012, Tamil Nadu, India, March
2012, pp. 822-827.

[17] J. H. Kim, G. S. Choi, and R. D. Chita, "An SSL Back-End Forwarding
Scheme in Cluster-Based Web Servers", IEEE Trans. Parallel Distrib.
Syst., 2007, pp. 946-957.

[18] W. Baozhu, X. Bing, and S. Lianghong, “Design of web service single
sign-on based on ticket and assertion”, IEEE AIMSEC 2011, Deng
Feng, China , 2011, pp. 297-300.

[19] P. Urien, “OpenID Provider based on SSL Smart Cards”, Proc. CCNC
2010, Las Vegas, USA, 2010, pp. 1-2.

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-212-7

DEPEND 2012 : The Fifth International Conference on Dependability

Powered by TCPDF (www.tcpdf.org)

 49 / 49

http://www.tcpdf.org

