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DEPEND 2013

Foreword

The Sixth International Conference on Dependability [DEPEND 2013], held between
August 25-31, 2013 in Barcelona, Spain, provided a forum for detailed exchange of ideas,
techniques, and experiences with the goal of understanding the academia and the industry
trends related to the new challenges in dependability on critical and complex information
systems.

Most of critical activities in the areas of communications (telephone, Internet), energy &
fluids (electricity, gas, water), transportation (railways, airlines, road), life related (health,
emergency response, and security), manufacturing (chips, computers, cars) or financial (credit
cards, on-line transactions), or refinery& chemical systems rely on networked communication
and information systems. Moreover, there are other dedicated systems for data mining,
recommenders, sensing, conflict detection, intrusion detection, or maintenance that are
complementary to and interact with the former ones.

With large scale and complex systems, their parts expose different static and dynamic
features that interact with each others; some systems are more stable than others, some are
more scalable, while others exhibit accurate feedback loops, or are more reliable or fault-
tolerant.

Inter-system dependability and intra-system feature dependability require more
attention from both theoretical and practical aspects, such as a more formal specification of
operational and non-operational requirements, specification of synchronization mechanisms, or
dependency exception handing. Considering system and feature dependability becomes crucial
for data protection and recoverability when implementing mission critical applications and
services.

Static and dynamic dependability, time-oriented, or timeless dependability,
dependability perimeter, dependability models, stability and convergence on dependable
features and systems, and dependability control and self-management are some of the key
topics requiring special treatment. Platforms and tools supporting the dependability
requirements are needed.

As a particular case, design, development, and validation of tools for incident detection
and decision support became crucial for security and dependability in complex systems. It is
challenging how these tools could span different time scales and provide solutions for
survivability that range from immediate reaction to global and smooth reconfiguration through
policy based management for an improved resilience. Enhancement of the self-healing
properties of critical infrastructures by planning, designing and simulating of optimized
architectures tested against several realistic scenarios is also aimed.

To deal with dependability, sound methodologies, platforms, and tools are needed to
allow system adaptability. The balance dependability/adaptability may determine the life scale
of a complex system and settle the right monitoring and control mechanisms. Particular
challenging issues pertaining to context-aware, security, mobility, and ubiquity require
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appropriate mechanisms, methodologies, formalisms, platforms, and tools to support
adaptability.

We take here the opportunity to warmly thank all the members of the DEPEND 2013
Technical Program Committee, as well as the numerous reviewers. The creation of such a high
quality conference program would not have been possible without their involvement. We also
kindly thank all the authors who dedicated much of their time and efforts to contribute to
DEPEND 2013. We truly believe that, thanks to all these efforts, the final conference program
consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the DEPEND 2013 organizing
committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that DEPEND 2013 was a successful international forum for the exchange of
ideas and results between academia and industry and for the promotion of progress in the field
of dependability.

We are convinced that the participants found the event useful and communications very
open. We hope Barcelona provided a pleasant environment during the conference and
everyone saved some time for exploring this beautiful city.
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Estimation of Performance and Availability  

of Cloud Application Servers through External Clients 

Sune Jakobsson 
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sune.jakobsson@comoyo.com

 
Abstract— This paper investigates two aspects of the QoS 

offered by some cloud providers on the Internet, the 

availability and the dedicated capacity in terms of how well a 

user process is isolated from other users of the same 

application server instance. By using standard components and 

software utilities, a small external measurement client is able to 

gather the necessary information about the cloud application 

servers in question, and hence, addresses the measured 

availability and capacity over time. In summary, I show that 

the biggest cloud providers indeed demonstrate good isolation 

and availability. 

Keywords-component; QoS; Java virtual machines; garbage 

collection; application servers; availability 

I.  INTRODUCTION 

More and more of our computing needs are being moved 
to the "cloud", but what does this really mean with respect to 
dedicated capacity, availability, and reliability? The terms 
used in this paper are defined in [6]. This paper describes a 
limited experiment with cloud providers on the Internet that 
commercially provides application server instances, with the 
objective to investigate the quality of service one can 
observe from these providers with a client connected to 
multiple providers as shown in Figure 1. The focus in this 
paper is on application availability, and to some extent 
dedicated capacity. Some major providers offer application 
server instances for free for a limited period of time and 
others provide them at a reasonable cost. None of the 
providers provide detail regarding their availability or their 
internal structure. The best one can find ahead of signing up 
are the relative up-time during the last period often without 
stating what the period is. So how can one assess their offer 
in reasonable time and at a reasonable cost?  

Several papers point out failures on servers present on the 
Internet, [2, 10]. There are several papers addressing the 
isolation among virtual machines, [11], but in these 
particular cases there is no prior knowledge available of the 
underlying system, and hence, a different approach is 
needed. The approach chosen here is to probe live 
application servers, and collect externally available data from 
their operation. This paper presents the approach, and 
discusses what is possible to observe from the outside of the 
application server providers.  

By analyzing just a few isolated parameters, one may 
yield significant conclusions regarding their behavior. In 

other papers related to this subject [1, 13], it is shown that it 
is sufficient to observe the response time and the amount of 
free memory in the application container to experimentally 
predict their long term behavior.  

Figure 1.  The measurement system. 

For the current experiment, a simple client and server 
instance is developed and run for more than a month. The 
external client, in turn, invokes four application instances at 
different nodes, i.e., virtual machines provided as cloud 
services. All virtual machines are running with the same 
server software. An application instance is defined as an 
application container running the application software in a 
virtualized environment. The client measures the response 
time of the invocation and logs the amount of free memory 
reported by the respective application servers. The operating 
systems provide a millisecond clock on the client side for 
time stamps, and by choice the trial was run over a period of 
one month, sampling the unavailability at 2.5 second 
intervals to obtain enough samples to validate the claims. 
The amount of free memory from the servers is reported in 
bytes, and varies from instance to instance, but their overall 
behavior is similar. In Section II the measurement system is 
described. Section III gives some background on memory 
allocation. The experiment and the kind of results obtained 
are presented in Section IV. Finally, the results are presented 
with a discussion related to the offerings from the vendors in 
Sections V.  

1Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-301-8
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II. THE MEASUREMENT SYSTEM 

One key element was to investigate cloud based servers 
and to see if the application server instances the providers 
provide are indeed isolated from other usage or not. Since 
Amazon EC2 [4] and Google App-server [3] are two big 
players in this domain, they were selected. To have some 
comparison and base line, a smaller vendor and a personal 
reference server connected to the Internet was part of the 
experiment as shown in Figure 1. All invocations were done 
from the same place, to avoid or filter out close and near 
network issues. With the chosen invocation rate of 2.5 
seconds, unavailability of less than 2.5 seconds is not 
detected, see Figure 2. The client logs the result code of the 
invocation, the invocation duration time, and the reported 
server side free memory.   

The client and the servers running on the virtual 
machines were all programmed in Java [7]. 
 

Figure 2.  Amount of free memory. 

Some of the cloud providers use intrusion detection 
systems, and to avoid having a client black listed when the 
server is unavailable, a back-off mechanism is included in 
the client. This is implemented so that if there are more than 
a fixed number of non-finished requests, the client waits until 
the server responds or the network connection times out.  

III. DEDICATED CAPACITY 

Each server allocates an amount of memory to process 
the request and in this context the amount is fixed and only 
dependent on the server side implementation. In this 
experiment the amount of free memory is logged by the 
client each time a server is invoked, typically resulting in 
steps of approximately 10k bytes as shown in Figure 2. In an 
idealized instance the amount of free memory would then 

produce a downward-stepping shaped curve until the garbage 
collector runs and restores the curve to the “max” value, or 
what memory it is able to free up, as shown in Figure 2. This 
curve can be modeled as follows. Let us assume the garbage 
collector runs at instances     ,…,      ,… and let      be 

the memory available to the virtual machine immediately 
after the garbage collection is finished. The free memory 
available to the virtual machine can then be expressed as 

 
            

        and                            (1) 

 
     (     )         ∫                           

 

     
     (2) 

Where p(t) is the instant load on the virtual machine at 
time t. For equidistant and constant invocations, the result is 
an almost linear behavior as shown in Figure 2. 

In a server that is little used, the period between garbage 
collections is long compared to the invocation time, and 
when plotted on a curve it will show a downward stepping 
function until the minimum memory point is reached and the 
garbage collector recovers the memory at which point it 
starts at the “Mmax” point again. If one removes the garbage 
collection steps and only looks at the slope of the steps there 
is a correlation between how often the server is invoked and 
how much memory is used for each invocation. This 
correlation is then proportional to the load that the server 
process processes. If the load is constant then the slope is 
only dependent on the invocation frequency and if the slope 
is constant this implies that there are no others invoking the 
server in that same time period. Assuming that there is little 
amount of processing in the request, the requests will be 
memory intensive and show the amount of available memory 
at any time.   

Figure 3.  Distorted delta free memory 

 

2Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-301-8
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The time between when the garbage collector is run then 
depends on the amount of initial memory and the load on the 
server. The higher the load on the server, the more memory 
is allocated, and the more often the garbage collector runs 
[8]. Also if there are other users of the same application 
server instance the relatively modest usage of the application 
server is then cluttered by other invocations and the smooth 
downward-stepping pattern is not observed. Figure 3 shows a 
delta free memory plot that is showing distorted available 
free memory. 

If one plots the memory usage over a long period, as in 
Figure 4, one gets a macro view of the data, where the 
amount of free memory shows up as a fat black line on the 
graph, this is due to the number of samples, but if the time 
axis is expanded, the figure would show a pattern as in 
Figure 2. In Figure 4, the invocation times are shown in 
green, however, the details get lost in the macro view except 
in the cases where the server does not respond and the free 
memory sample is unavailable, and hence, is zero.  

The minimum invocation time illustrates the physical 
transport times and the clustering of these indicate that the 
route the requests took was the same over longer periods of 
time which establishes the pattern seen in the Figure 4.  

 

Figure 4.  Macro view of the collected data from a Amazon EC2 instance. 

By sorting the green invocation times in descending 
order and plotting them according to their value as shown in 
Figure 5, the different invocation times appear in better detail 
and the different “plateaus” seen in Figure 4 are recognized.  
Note the logarithmic scales. Where the red horizontal and 
vertical lines cross, the lower right quadrant contains the 
“successful” invocations meeting the requirement of a 
response within 5 seconds. 

 
 

 

Figure 5.  Sorted invocation times from a Amazon EC2 instance. 

 

IV. INVOCATION TIME 

When a server is invoked the invocation consists of 
multiple parts: 

 
1. Connection set-up time 
2. Request transport time 
3. Request acknowledge time 
4. Processing time 
5. Response transport time 
6. Response acknowledge time 

 
In this experiment the client is the same running instance 

sending requests in parallel to all servers. The amount of data 
in the request and the response is small enough to fit into a 
single transport unit, so there is no consideration of 
reassembly of transport packets in this experiment. To avoid 
blacklisting by intrusion detection systems, a back-off 
mechanism was implemented, so that in the cases where a 
server ceases to respond, no more than 5 new requests were 
issued before responses started returning, hence, effectively 
changing the sampling interval until the server starts 
responding again.  

Note that if the client in question was a person interacting 
with a graphical user interface and consuming a service and 
the invocation takes more than 5 seconds their interpretation 
of the situation would be that something may have gone 
wrong. 

The invocation times were measured with the internal 
system clock with millisecond accuracy. The invocation 

3Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-301-8
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times are typically one to a few hundred milliseconds range 
as shown in Figure 5. 

V. AVAILABILITY STATES 

The invocations are logged on the client side and they 

are categorized using the following states depending on 

their outcome. 

 

1. Invocation succeeded (Ok). 

2. Invocation succeeded, but the invocation took more 

than 5 seconds (Slow). 

3. Invocation failed, and connection was established, 

but a timeout occurred when reading or writing the 

data to the client (Time-out). 

4. Invocation failed due to lack of connectivity, no 

route to server was available (No conn.). 

5. Invocation of server was not started since there are 

currently more than five outstanding unanswered 

requests in a row (Un-answer.). 

6. Skipped requests due to errors in a row (Skip).  

 

In order to avoid the black-listing of the client, the client 

stops sending new requests when the server does not 

respond in a timely manner. These impacts the availability 

in state 5 by staying in that state until the issued request 

receives a response or the network connection times out. A 

consequence of this is that the server or network might have 

recovered earlier than the built-in retry times at the TCP 

transport layer. The results of the invocation per server are 

summarized in Table I. 

TABLE I.  STATES OBSERVED BY INVOCATIONS 

Servers  

Availability states  

1. Ok 
2. 

Slow 

3.  

Tim-

out 

4.  

No  

Conn. 

5.   

Un- 

answer. 

6.  

Skip 

Amazon 
EC2 

1259371 326 7 10 170 89 

Google 

App. 
Engine 

1258780 1167 471 36 761 3319 

GetNet 1258890 2288 380 17 651 5320 

Reference 

system 
1259191 320 25 17 350 901 

 

VI. OPERATIONS 

The client was deployed in the NTNU network and was 
run for a period of over a month. Initially some adjustments 
had to be made on the client to avoid getting blacklisted on 
intrusion detection systems if one issued request towards a 
server that was taken down for maintenance. All but one of 
the providers provided continuous service, while one took a 
restart every night in order to restore the system to a known 
state, also called software rejuvenation [5, 9]. This resulted 
in a down-period, at a fixed time every night (2AM), 
however, this is not mentioned anywhere in the terms or 

conditions for their site. The biggest players announce their 
target figures for the availability of services and instances. In 
the case of not meeting their targets, customers may get 
credits for future free usage. Amazon states that they will use 
commercially reasonable efforts to make Amazon EC2 
available with an “Annual Uptime Percentage” of at least 
99.95% during the Service Year. “Annual Uptime 
Percentage” is calculated by subtracting from 100% the 
percentage of 5 minute periods during the Service Year in 
which Amazon EC2 was in the state “Region Unavailable”.  
The Google Apps Covered Services web interface will be 
operational and available to Customer at least 99.9% of the 
time in any calendar month. Since the experiment is run over 
a one month time the results show that they are indeed close 
to their targets, where Amazon EC2 availability is 
conservative, however, it is difficult to predict how much the 
results would differ over a longer period of time. 

VII. CONCLUDING REMARKS 

As this simple experiment indicates, the cloud providers 
may provide application servers with similar or better 
availability than what one can obtain with a traditional non-
redundant approach using standard of the shelf hardware and 
software. Using the results for “Ok” state in Table I, as 
available, the availability is calculated and the results are 
shown in Table II.  

TABLE II.  AVAILABILITY SUMMARIZED 

Servers  
Monthly values 

Announced 

Availability 

Observed 

Availability 

Accumulated obs. 

downtime in minutes  

Amazon EC2 0.9995 0.999522 25 

Google App. Eng. 0.999 0.995432 239 

GetNet No info 0.993128 360a 

Reference system No info 0.998719 67 

a. Nightly restarts. 

The reference system in this experiment is a standard PC 
running Ubuntu operating system [12] and connected to the 
NTNU campus network.  

In summary the big players announce the same numbers 
for availability as obtained in this experiment. 

Concerning how well an instance in the “cloud” is really 
isolated from other instances, if no prior information exists, 
is possibly by the limited measurements, as described in this 
paper. One can observe if the instance is alone or disturbed 
by other usage from that provider. By comparing the macro 
results with the micro results it is then possible to assess the 
offer at hand and make qualified choices regarding the cloud 
providers in question. 

By looking at details of invocation times and amount of 
free memory at both macro and micro levels, different types 
of information emerges, to support decisions on scaling and 
availability. 
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VIII. FURTHER WORK 

Given the dynamic nature of cloud computing and the 
possibility to both scale up and scale down by requesting 
more or bigger instances from the cloud providers, finding a 
simple means to detect when this should be done is of 
economic interest for the users, however, starting new 
instances of servers requires some startup time, and finding 
good predictors on when new instances are required, or when 
redundant instances can be stopped and shut down, are still 
an issue for further work.  
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Abstract—We present a prototype implementation and simu-
lation-based evaluation of a recently proposed novel approach
for Byzantine fault-tolerant and self-stabilizing clock distribution
in multi-synchronous GALS architectures. Fault-tolerant clock
generation and clock distribution is a mandatory prerequisite
for highly dependable multicore processors and Systems-on-Chip,
as it removes the single point of failure typically created by
central oscillators and conventional clock distribution trees. Our
scheme, termed HEX, is based on a hexagonal grid topology,
which connects simple intermediate nodes implemented using
the UMC 90 nm standard cell library. Their purpose is to (i)
forward synchronized clock signals throughout the grid and (ii)
to supply the clock to nearby application modules. To achieve (ii),
we show how to construct a fast clock on top of the clock signal
provided by HEX and analyze its properties. In sharp contrast to
existing solutions, HEX is not only Byzantine fault-tolerant, but
also self-stabilizing, i.e., it can recover from arbitrarily corrupted
system states. ModelSim-based simulation experiments confirm
the excellent performance and fault-tolerance properties of our
approach achieved in practice, which were already suggested by
an earlier theoretical worst-case analysis.

Keywords—fault-tolerance; self-stabilization; clock distribution;
fault-injection; simulation analysis

I. INTRODUCTION

Thanks to the advances in very large scale integration
(VLSI) technology, which nowadays allows clock speeds in
the GHz range, complex hardware architectures such as multi-
core processors and Systems-on-Chip (SoC) typically comprise
multiple clock domains: Individual system components (e.g., a
single core) execute synchronously, driven by a common clock
signal. Different components may reside in different clock do-
mains, which, however, are driven by clock signals generated
by multiple unsynchronized clock sources. Communication
between components in different domains must hence be syn-
chronized or performed asynchronously, as in classic globally
asynchronous locally synchronous architectures (GALS) [1].

This material is based upon work supported by the National Science
Foundation under Grant Nos. CCF-AF-0937274, CNS-1035199, 0939370-
CCF and CCF-1217506, the AFOSR under Contract No. AFOSR Award
number FA9550-13-1-0042, the Swiss Society of Friends of the Weizmann
Institute of Science, the German Research Foundation (DFG, reference number
Le 3107/1-1), and the Austrian Science Foundation (FWF) project FATAL
(P21694).

Multisynchronous GALS [2][3] architectures assume boun-
ded synchrony (a maximum skew of a few clock cycles) also
between different clock domains. This mesochronous clocking
[4] not only allows to build a global notion of time throughout
the chip, which, e.g., facilitates time-triggered transmission
scheduling/routing in Networks-on-Chip (NoC) like Aelite [5],
but also enables metastability-free high-speed cross-domain
communication via FIFO buffers [6][7].

As mesochronous clocking inherently facilitates distributed
clock generation, it also allows to address the lacking robust-
ness of conventional centralized clocking approaches: If the
central oscillator or some wire in the clock tree (used for
distributing the clock signal to the functional units on the chip)
breaks in such an architecture, even replicated functional units
are of no use. This is also true for the few non-fault toler-
ant approaches for distributed mesochronous clock generation
[8][9][10][11][12][13] described in literature, which either use
distributed ring oscillators or distributed phase-locked loops
(PLL). The only fault-tolerant clock generation approaches we
are aware of are our Byzantine fault-tolerant DARTS [14][15]
and our self-stabilizing Byzantine fault-tolerant FATAL ap-
proach [16]. However, both approaches focus on the distributed
generation of a small number of synchronized clock signals
and do not address the question of how to distribute these to
a large number of functional units.

In [17], we proposed a novel approach, termed HEX,
for reliably distributing a synchronized clock signal in multi-
synchronous GALS systems. It works with arbitrary clock
sources, ranging from a central oscillator to a fully distributed
synchronized clock generation scheme like DARTS or FATAL.
HEX is based on a sufficiently connected wiring topology,
namely, a hexagonal grid. Intermediate nodes placed at each
grid point control when the clock signal transitions are for-
warded to adjacent nodes, and supply the clock signal to the
functional units in their vicinity via small local clock trees.
This way, HEX ensures that the clock signals at physically
close nodes are well-synchronized throughout the chip.

The analytical worst-case analysis presented in [17] re-
vealed excellent synchronization and fault-tolerance properties.
In particular, in sharp contrast to the alternative approaches
[8][9][10][11][12][13], HEX supports multiple synchronized
clock sources, tolerates Byzantine failures of both clock
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sources and nodes as well as link failures, and self-stabilizes
[18] quickly from arbitrary states, as, e.g., caused by an
overwhelming number of transient failures. Its resilience to
failures scales with the size of the grid, in the sense that it
tolerates a constant density of isolated Byzantine nodes; it can
handle an even larger number of more benign failures like
broken wires and mute clock sources and nodes. Moreover,
HEX obeys a fault locality property: The adverse effect of
failures in the grid on the clock skew between non-faulty
neighbors decreases with the distance.

Contributions: The present paper provides the first step to-
wards a physical implementation of HEX and complements
the theoretical analysis provided in [17]:

(i) We show how the HEX nodes can be implemented and
synthesized using the UMC (United Microelectronics
Corporation) 90 nm standard cell library.

(ii) We study the average-case performance of our HEX
implementation, in particular, in the presence of faults,
using ModelSim-based simulation and fault-injection in a
custom testbed. Our results confirm that the quite “exotic”
worst-case scenarios identified in [17] are extremely un-
likely to occur in practice even in the presence of failures;
note that the MATLAB-simulations described in [17] have
only been devoted to the fault-free case.

Moreover, we address the question of how to utilize the
synchronized clock generated by HEX in applications. We
consider a high-speed point-to-point communication subsys-
tem for this purpose, which is, e.g., instrumental for multi-
hop communication between HEX nodes and thus for any
higher-level communication service. It primarily requires a
synchronized clock with high frequency (to facilitate high-
speed communication) and small clock skew (to avoid large
data buffers). The last major contribution of our paper is hence
the following:

(iii) We show how to augment HEX nodes to generate a
synchronized fast clock, and analyze its skew.

Our paper is organized as follows: Section II provides
an overview of HEX and some results from our previous
work [17]. All subsequent sections present novel results:
In Section III, we briefly describe how to add a particular
communication subsystem to the HEX nodes, and provide the
resulting requirements for the fast clock. Section IV gives an
overview of our HEX implementation and the features of our
custom testbed, which has been used to obtain the results
described in Section V. Finally, Section VI is devoted to the
implementation and analysis of a fast clock suitable for our
communication subsystem. Some conclusions and directions
of further research in Section VII round off our paper.

II. OVERVIEW OF HEX

HEX [17] assumes a system consisting of (simple) com-
puting nodes that exchange zero-bit messages (i.e., the only
information they contain is their occurrence time) over a
directed cylindrical hexagonal grid G = (V,E) defined as
follows (see Figure 1): With L ∈ N denoting its length and
W ∈ N its width, the set of nodes V is the set of tuples
(ℓ, i) ∈ [L+1]×[W ]. Herein, [L+1] := {0, . . . , L} denotes the
row index set, referred to as layers, and [W ] = {0, . . . ,W−1}

column

layer

i− 1 i i+ 1

ℓ− 1

ℓ

ℓ+ 1

Fig. 1. Node (ℓ, i) and its incident links in the cylindrical hexagonal grid
topology. Columns are modulo W and layers (rows) are between 0 and L.

1: once received trigger messages from (left and lower left) or
(lower left and lower right) or (lower right and right) neighbors
do

2: broadcast trigger message; ⊲ local clock pulse
3: sleep for some time within [T−, T+];
4: forget previously received trigger messages;

Fig. 2. Pulse forwarding algorithm for nodes in layer ℓ > 0.

the column index set, referred to as columns, of the nodes in
the grid. For each node (ℓ, i) ∈ V , ℓ ∈ [L + 1], i ∈ [W ],
the following links are in E: (i) Incoming and outgoing links
to neighboring nodes of the same layer, namely from (ℓ, i)
to (ℓ, i − 1modW ), called the left neighbor of (ℓ, i), and to
(ℓ, i + 1modW ), called the right neighbor, and vice versa
from the left and the right neighbor to (ℓ, i); (ii) if (ℓ, i) is in
a layer greater than 0, incoming links from (ℓ − 1, i), called
its lower left neighbor, and (ℓ − 1, i + 1modW ), called its
lower right neighbor; (iii) if (ℓ, i) is in a layer smaller than L,
outgoing links to (ℓ+1, i−1modW ), its upper left neighbor,
and (ℓ+ 1, i), its upper right neighbor.

The failure model of HEX assumes that every node has
at most one Byzantine faulty neighbor on an incoming edge,
which can exhibit arbitrary behavior. However, a faulty node
must not be able to prevent a correct neighbor from trig-
gering correctly on behalf of its other neighbors. Hence, it
is not allowed to output excessive voltages that destroy the
receiver, or cause metastability that also upsets the receiver,
for example. Note that tolerating two or more faulty neighbors
would require an in-degree of at least 5, resulting in a non-
planar communication graph due to the directed propagation
of pulses utilized in HEX. All fault-free links in the graph
respect FIFO order, with end-to-end delays that may vary non-
deterministically within [d−, d+] ⊆ (0,∞).

Nodes at layer 0 execute a clock pulse generation algo-
rithm like the ones of [15][16], whose purpose is to generate
synchronized and well-separated initial messages (i.e., pulses).
Nodes at layers larger than 0 run the simple pulse forwarding
algorithm specified in Figure 2. Basically, nodes forward pulse
k once they received trigger messages for pulse k from two
adjacent neighbors. Therefore, synchronized pulses generated
by the layer 0 nodes propagate as “waves” through the HEX
grid up to the very last layer (cf. Figure 5).

We denote the distance of column i and j in the grid by
|i− j|W := min{(i− j)modW, (j − i)modW} and the kth
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triggering time of node (ℓ, i), i.e., the time when it forwards the

kth pulse, by t
(k)
ℓ,i . In [17], quite “exotic” (but possible) worst-

case propagation paths have been used to develop the worst-
case skew bounds. These bounds are very robust against initial
skews, which are captured by the skew potential on layer 0
denoted by ∆0 := maxi,j∈[W ]{t0,i − t0,j − |i− j|Wd−}. The
latter is always non-negative, and is 0 when nodes in layer 0
that are separated by h hops trigger their pulse at times that are
at most hd− apart. Dropping the superscript (k) for readability,
we restate the main result from [17] in Theorem 1. From here
on we require that ε = d+ − d− ≤ d+/7 holds.

Theorem 1 (Skew Bounds—Fault-free Case [17, Thm. 3.8]):
Suppose that ε ≤ d+/7. Then the following upper bounds
hold on the intra-layer skew σℓ := maxi∈[W ]{|tℓ,i − tℓ,i+1|}
in layer ℓ: If ∆0 = 0, then σℓ is uniformly bounded by
d+ + ⌈Wε/d+⌉ε for any ℓ ∈ [L+ 1]. In the general case,

∀ℓ ∈ {1, . . . , 2W − 3} : σℓ ≤ d+ + 2Wε2/d+ +∆0. (1)

∀ℓ ∈ {2W − 2, . . . , L} : σℓ ≤ d+ + ⌈Wε/d+⌉ε. (2)

Moreover, regarding the inter-layer skew of layer ℓ ∈ [L] to
its neighboring layer(s), it holds for all i ∈ [W ] that

tℓ,i − σℓ + d− ≤ tℓ+1,i ≤ tℓ,i + σℓ + d+ and (3)

tℓ,i+1 − σℓ + d− ≤ tℓ+1,i ≤ tℓ,i+1 + σℓ + d+. (4)

In the presence of failures, the above worst-case skew is
only moderately increased (depending on the number of faulty
nodes encountered along the worst-case propagation path). In
addition, Theorem 2 shows that HEX self-stabilizes quickly
from an arbitrary system state, e.g., caused by excessive
transient failures.

Theorem 2 (Stabilization [17, Thm. 3.11]): Suppose

maxk∈N{∆
(k)
0 } ≤ ∆ and denote σ0 := ∆ + d−. Assume that

min
i∈[W ]

{t
(k+1)
0,i } ≥ max

i∈[W ]
{t

(k)
0,i }+Wd+ + Lε+ T+, (5)

that T− > σℓ + d+ + ε for all ℓ ∈ [L + 1], where σℓ is as
in Theorem 1 with ∆0 = ∆, and that the pulse generation
algorithm employed at layer 0 is self-stabilizing. Then, HEX
self-stabilizes within L pulses once layer 0 stabilized, in the
sense that each node triggers exactly once per pulse, and for
each pulse the bounds from Theorem 1 apply.

III. AN APPLICATION: HEX-BASED COMMUNICATION

In order to add a point-to-point communication subsystem
to HEX, the canonical choice is to augment every (unidirec-
tional) link in the HEX grid by additional signal wires for data
communication, in both directions. The result is a (cylindrical)
hexagonal grid with bidirectional communication between
adjacent nodes. Every node in the grid now consists of two
distinct parts, an extended HEX node and a communication
node that uses the HEX clock.

In order to demonstrate the benefits of a synchronized clock
for communication, and to reason about desired properties,
we briefly describe a communication solution based on bi-
synchronous first in first out (FIFO) buffers (shortly denoted
FIFO) that has been adopted from [19]. More specifically,
every communication node has a FIFO for each incoming

Data Buffer

Full

Detector

Empty

Detector

Write

Pointer

Read

Pointerwrite

write data

write clk

empty

read data

read clk

full

Fig. 3. Bi-Synchronous FIFO. Every Node has one FIFO for each incoming
communication link. The sender is connected to the write interface, the
receiver to the read interface.

communication link. Each FIFO has a write interface for
writing data into and a read interface for reading data from
the FIFO. The write interface is accessed and clocked by the
sender, the read interface by the receiver.

The bi-synchronous FIFO is composed of five modules:
data buffer, read pointer, write pointer, full detector and empty
detector (see Figure 3). For the data buffer, we use a dual-
ported random access memory (RAM). The sender- and the
receiver-data lines are directly connected to the data buffer.
The read pointer, as well as the write pointer, consist of a shift-
register. The read pointer resp. write pointer determines the
current read resp. write address. Furthermore, the two pointers
are used by the full detector and the empty detector. Write data
is queued into the FIFO if write is high and full is low at
the rising edge of write clk. Data is dequeued to read data
if empty is low at the rising edge of read clk. With every
write access, the write address is incremented by one unless
the FIFO is full. The read address is incremented by one with
every read access, unless the FIFO is empty.

We have chosen this implementation because of its simple
and metastability-aware design and its good fault-tolerance
and containment properties. Notice that the obvious way,
for a faulty sender to corrupt the corresponding receiver, is
by writing to the address that is currently read and thus
inducing metastability. Even if a faulty sender permanently
sends messages, the full flag is set before the sender can write
into the current read address. Thus the sender is prevented from
corrupting the receiver. Another advantage arises from the fact
that HEX provides bounded synchrony: A FIFO with a depth
twice the synchronization precision plus one (plus a constant
value to compensate the difference in end-to-end delays) is
sufficient to ensure no message loss. Note carefully that this
holds independently of the clock frequency (which determines
the communication speed) and for any clock duty-cycle. In
fact, the implementation also works with a quite irregular clock
- as long as it remains synchronized. In Section VI, we will
show how to build a fast clock atop of the synchronized HEX
clocks, which allows high-speed communication.

IV. HEX IMPLEMENTATION AND TESTBED

Every HEX Node consists of a couple of very simple
design entities. Its core is the asynchronous state machine
shown in Figure 4, which implements the algorithm shown
in Figure 2. It consists of three states only: fire, sleep and
ready. The initial state is ready, where the state machine waits
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sleep

ready

fire

timeout Tsleep (started
when switching to fire)

Ml ∧Mll

or Mll ∧Mlr

or Mlr ∧Mr

timeout Tfire

Ml,Mll,Mlr,Mr

Fig. 4. Main state machine of a HEX node. Circular nodes represent states
connected by transitions, labeled with their transition guards. A boxed node
lists the memory flags to be cleared when taking the transition.

for the trigger condition in Figure 2 to become true. Resettable
memory flags are used to memorize the occurrence of a pulse
(indicated by active high (1)) from the neighbors. For example,
the left neighbor is represented by the memory flag Ml. It is
reset to low (0) when the state machine takes the transition
from sleep to ready, as indicated by the boxed node. Ml is set
to 1 when the input from the left neighbor becomes 1 after the
most recent reset of Ml.

When the state fire is entered, both the sleep timer Tsleep

and the minimal pulse duration timer Tfire are started and 1
is outputted on all outgoing links, to signal the pulse. After
the timeout Tfire has occurred, the output is reverted to 0 and
the state sleep is entered. The state sleep is a dormant state
that is only left when the timeout of Tsleep (within [T−, T+], as
specified in Figure 2) occurs. Note that the reset of all memory
flags occurring upon the transition to ready causes the node to
forget all pulses sensed before.

The implementation of the above state machine is com-
pletely asynchronous and has been generated using the Petrify
tool [20]. Both timers Tsleep and Tfire are driven by the same
start/stoppable ring oscillator, which (like the memory flags)
has already been used in our implementation of the FATAL+

clock generation approach [16]. The resulting design of the
HEX node was finally synthesized with Synopsis R© Design
Compiler version C-2009.06-SP4, using the UMC 90 nm
standard cell library [21]. Note that we had to augment this
library by a custom Muller C-Gate [22] developed in the
context of the DARTS project [15][23]. Since an accurate
timing characterization of this C-Gate is not available, its
timing information was just copied from an AND-Gate of the
standard library. The resulting inaccuracy is negligible w.r.t.
our purposes, though.

The HEX grid itself was implemented by means of a
custom testbench, which has the following purposes:

(1) Set the grid size and instantiate the corresponding number
of nodes and interconnecting wires.

(2) Provide the layer 0 clock sources, i.e., generate the clock
pulse of node (0, i), i ∈ [W ], at time t0,i, with some pre-
selected skews. Clock sources for a single pulse and for
multiple pulses are supported.

(3) Control the individual link delays during the simulation.
Both random delays (uniform within lower and upper

bound) and deterministic delays are supported.
(4) Control fault injection during the simulation: Both nodes

and links can be declared correct, Byzantine (for each
pulse and link, randomly choose output constant 0 or 1,
which corresponds to no/fast pulse), or fail-silent (output
constant 0). The selection of faulty nodes and/or links
can be done deterministically or randomly (but static for
multi-pulse simulations).

In order to support a reasonably systematic evaluation, we
developed a software infrastructure in Haskell that allowed
us to generate testbenches for different parameter settings
(1)-(4). Every such testbench was then evaluated by means
of pre-layout timing simulations, using Mentor Graphics R©

ModelSim 10.1d. The simulation results were recorded via
event lists, which facilitated post-processing by our software
infrastructure.

V. SIMULATION RESULTS

The primary purpose of our simulation experiments is
to complement the analytic worst-case bounds by statistics
and average-case results, which are difficult to determine
analytically. In view of the quite exotic worst-case scenarios
obtained in [17], we (correctly) conjectured that the latter
should be much better in reality. In the fault-free case, this
has already been confirmed by means of high-level MATLAB-
simulations of the algorithm in Figure 2 in [17]. The primary
focus of the simulations presented in this paper, which employ
the digital HEX implementation described in Section IV, lies
(A) on scenarios including faulty nodes and (B) on stabilization
time.

More specifically, using the testbed described in Sec-
tion IV, we conducted the following simulation experiments:

(A) Statistical evaluation of the neighbor skews. These
experiments require simulations involving a single pulse only.
The primary quantities of interest here are:

• the (absolute) layer ℓ intra-layer neighbor skews |tℓ,i −
tℓ,i−1| of every node (ℓ, i) in layer ℓ,

• the (signed) inter-layer neighbor skews tℓ,i − tℓ−1,i and
tℓ,i − tℓ−1,i+1 of every node (ℓ, i) relative to its direct
layer ℓ − 1 neighbors (ℓ − 1, i) and (ℓ − 1, i + 1),
respectively.

We remark that the former is defined in terms of the absolute
values due to the symmetry of the topology (and thus skews)
within a layer, whereas the latter respects the sign and thus
correctly captures the non-zero bias (of at least d−) in the inter-
layer neighbor skew. Note that such a known bias can be com-
pensated at the application layer if desired, see Section VI. Let
σop
ℓ := opi∈[W ]{|tℓ,i − tℓ,i+1|} with op ∈ {avg,max} denote

the average and maximum (absolute) layer ℓ intra-layer skew,
respectively. Similarly, let σ̂op

ℓ := opi∈[W ]{tℓ,i − tℓ−1,i, tℓ,i −
tℓ−1,i+1}, where op ∈ {min, avg,max}, be the (signed) inter-
layer skew between layer ℓ and ℓ − 1. The global intra-layer
resp. inter-layer skews in the entire system are defined as
σop = opℓ∈[L+1]{σ

op
ℓ } resp. σ̂op = opℓ∈[L+1]\{0}{σ̂

op
ℓ }.

(B) Statistical evaluation of the stabilization time. These
experiments require multiple pulses. Essentially, the system is
started, with every node in an arbitrary state, and then used
to forward a sequence of correct pulses generated at layer 0.

9Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

                            18 / 62



0
2

4
6

8 0
5

10
15

1

3

5

7

9

11

13

15

17

19

21

23

layercolumn

tr
ig

g
e
r 

ti
m

e
 [

d
+
]

Fig. 5. Pulse wave propagation for uniformly chosen link delays in [7, 8]
and layer 0 neighbor skews ramping up/down by d+.

TABLE I. INTRA- AND INTER-LAYER SKEW σop AND σ̂op OF ALL

NODES IN A 100× 25 GRID FOR UNIFORM RANDOM END-TO-END DELAYS

IN [7.125, 8.165] NS. VALUES ARE DETERMINED OVER 300 TEST RUNS.

intra-layer σop inter-layer σ̂op

init. layer 0 avg max min avg max

0 0.40 3.63 7.13 7.91 11.58

rand. [0,d−] 0.46 6.97 7.13 7.94 15.07

rand. [0,d+] 0.46 7.86 7.13 7.94 15.88

ramp d+ 1.41 8.16 0.96 8.36 16.28

Using post-processing of the recorded triggering times, we
compute the stabilization time as the number of pulses needed
for all intra- and inter layer skews to persistently go below
their respective thresholds (determined according to σmax

ℓ and
σ̂max
ℓ determined in (A)). Unfortunately, lack of space does

not allow us to adequately present these results in this paper.

Both types of experiments were performed with and with-
out faulty nodes of different types. Note that the triggering
times of faulty nodes are of course not considered when
computing the inter- and intra-layer skews.

A. Neighbor skew evaluation

As an appetizer, Figure 5 shows a 3D plot of a typical pulse
propagation wave in a fault-free grid with W = 10 and L =
20, with uniformly distributed link delays in [7.125, 8.165] ns
and layer 0 skews ramping up/down by d+. The grid (sliced
between width W − 1 and 0 ≡ W ) lies in the (ℓ ∈ [L +
1], i ∈ [W ]) plane, the z-axis gives the triggering time tℓ,i
of the corresponding node (ℓ, i). To improve the readability
of intra-layer skews, we connected all points (ℓ, i, tℓ,i) and
(ℓ, i + 1, tℓ,i+1), i ∈ {0, . . . ,W − 2}. It is apparent that the
wave propagates evenly throughout the grid, nicely smoothing
out differences in link delays and the large skews on layer 0.

To allow some qualitative comparison with the MATLAB-
simulation results provided in [17], Table I shows the average
(σavg) and maximal (σmax) intra-layer skew and the minimal
(σ̂min), average (σ̂avg), and maximal (σ̂max) inter-layer skew,
respectively, in the absence of faulty nodes. These values
were computed over all nodes and 300 simulation runs, in
the following setting (used throughout the remainder of this
section): L = 100, W = 25 and link delays uniformly chosen
within [d−, d+] for d− = 7.125 ns and d+ = 8.165 ns
(ε = 1.04 ns); these values result from combining assumed
wire and routing delays within [7, 8] ns with the switching

delay bounds [0.125, 0.165] ns determined during the HEX
node synthesis. For the timeout Tsleep, a nominal value has
been chosen that ensures a timeout within [T−, T+] ns with
T− = 20.393 ns and T+ = 23 ns, given the ring oscillator
drift bounds determined during synthesis.

Table I shows the results of our experiments, using four
different choices for the layer 0 skews between neighbors: The
triggering times of the layer 0 nodes t0,i are (i) all 0 (resulting
in σ0 = 0 and skew potential ∆0 = 0), (ii) uniformly in
[0, d−] (i.e., σ0 ≈ d− and ∆0 = 0), (iii) uniformly in [0, d+]
(i.e., σ0 ≈ d+ and ∆0 ≈ ε), and (iv) ramping-up/down by d+,
i.e., t0,i+1 = t0,i+d+ for 0 ≤ i < W/2 and t0,i+1 = t0,i−d+

for W/2 ≤ i < W − 1 (i.e., σ0 = d+ and ∆0 ≈ Wε/2 ≈ 13).
Note that (iii) resp. (iv) reasonably model the average case and
worst-case input provided by a layer 0 clock generation scheme
with neighbor skew bound d+, respectively. It is noteworthy
that not a single instance in the collected data showed a skew
of σ̂max

ℓ > 2d+, and in scenarios (i) to (iii) we always had
σ̂min
ℓ < d−, i.e., all nodes were always triggered by their lower

neighbors (obviously, this latter property is violated in scenario
(iv) due to the excessive initial skews). The histogram of the
skew distributions in case (i) are shown in Figure 6; the other
cases look similar.
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Fig. 6. Cumulated histograms for global intra-layer (top) and inter-layer
(bottom) skew (in ns), from 300 simulation runs in scenario (i).

A comparison with the results of Theorem 1, which pre-
dicts σmax ≤ 14 ns and [σ̂min, σ̂max] ⊆ [−5, 22] ns for
scenarios (i) to (iii), reveals a much better behavior in the
average case. Moreover, Figure 6 shows a sharp concentration
with an exponential tail, i.e., most skews are very small in
comparison to the worst-case bounds. For scenario (iv), the
large initial skew (cf. Figure 5) leads to larger observed skews,
which are also in accordance with our theorem, however.

Given the considerable differences between the minimum
(σ̂min) and maximum (σ̂max) inter-layer skew in Table I,
in conjunction with its non-zero bias, the question of layer-
dependence arises. Table II provides σ̂min

ℓ , σ̂avg
ℓ and σ̂max

ℓ for
selected layers ℓ in case of scenario (iii). It reveals that there
is no significant layer-dependent bias. Last but not least, the
strong concentration of skews on each layer around the average
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TABLE II. AVERAGE AND STANDARD DEVIATION OF σ̂min
ℓ

, σ̂
avg

ℓ
, AND

σ̂max
ℓ

, TAKEN OVER 250 SIMULATION RUNS OF SCENARIO (III).

layer ℓ σ̂min
ℓ σ̂

avg

ℓ
σ̂max
ℓ

1 7.19±0.04 9.01±0.22 14.22±0.78

2 7.20±0.05 8.41±0.15 12.88±1.03

3 7.21±0.05 8.18±0.12 11.73±1.20

5 7.21±0.06 8.02±0.08 10.33±0.97

9 7.23±0.07 7.94±0.06 9.36±0.52

10 7.22±0.06 7.94±0.06 9.29±0.47

11 7.22±0.06 7.92±0.06 9.23±0.45

12 7.22±0.06 7.93±0.06 9.17±0.45

15 7.23±0.07 7.92±0.06 9.11±0.35

19 7.21±0.06 7.92±0.06 9.09±0.36

20 7.23±0.06 7.92±0.06 9.11±0.36

(i.e., the very small standard deviation of σ̂avg
ℓ ), in particular

in layers ℓ > 5, shows that the smoothing out of local skews
observed in Figure 5 is very typical.

Next, we consider the case where a certain number f of
randomly chosen isolated nodes may be Byzantine faulty. All
our simulations use the “average-case” scenario (iii) and the
“worst-case” scenario (iv) described above. First, we choose
f locations in the grid where faulty nodes are to be placed,
subject to the constraint that no node has more than one
faulty neighbor on an incoming edge. For a small number
and a uniform distribution of faults, it is very likely that
this constraint is satisfied. For an excessive number of faults,
the birthday paradox kicks in: for f = 5, 10, 20, 30, the
respective probabilities are roughly 0.95, 0.79, 0.36, and 0.09,
respectively.

The behavior of the Byzantine faulty nodes is chosen
randomly in every run on a per-link basis. Due to the usage of
memory flags on the link port at the receiver side, a Byzantine
faulty node has only two options: slowing down the firing of
a node, or speeding it up. These two options are implemented
as constantly sending pulses (i.e., constant high) and sending
no pulse at all.

Then, 300 simulation runs of single pulse propagation are
executed, each of which takes less than 2 minutes to simulate.
We then later compute average and maximum of the intra-layer
skew and minimum, average and maximum of the inter-layer
skew. These computations where made several times on the
generated data set, each time considering only pairs of correct
nodes that are not reachable from any faulty node within at
most h = 0, 1, 2, 3 directed hops in the grid. From these runs,
we finally compute the average and standard deviation of σavg,
σmax and σ̂min, σ̂avg, σ̂max.

The results are shown in Table III. It is apparent that
HEX copes very well with a considerable number of faults;
minimal, average, and maximal skews are almost insensitive
to the number of faults. For scenario (iv), we observe that
standard deviations are generally larger, and that, in particular,
nodes in directed distance 1 or 2 from faulty nodes experience
larger skews. This is quite natural, given the large skews of
the input; if the system suffers from a considerable number of
faults, this limits its ability to reduce the initial skews.

Table IV shows the analogous results for fail-silent nodes;
for brevity, we leave out f = 2, 3, for which we observed a

TABLE III. AVERAGE ± STANDARD DEVIATION OF σavg , σmax , σ̂min ,
σ̂avg , AND σ̂max , EXCLUDING ALL NODES WITH DIRECTED DISTANCE ≤ h

FROM f ISOLATED BYZANTINE FAULTY NODES, OVER 300 SIMULATION

RUNS OF SCENARIO (III) [TOP] AND (IV) [BOTTOM].

Scenario (iii) Byzantine

f h σavg σmax σ̂min σ̂avg σ̂max

1 0 0.54±0.05 7.76±0.92 6.95±0.36 7.98±0.03 15.56±1.02
1 1 0.54±0.05 7.35±0.58 7.12±0.06 7.98±0.03 15.13±0.63
1 2 0.53±0.05 7.21±0.58 7.13±0.03 7.97±0.02 14.99±0.62
1 3 0.53±0.05 7.11±0.57 7.13±0.02 7.97±0.02 14.89±0.62

2 0 0.60±0.07 8.15±0.87 6.75±0.79 8.00±0.03 16.09±1.11
2 1 0.59±0.07 7.56±0.48 7.12±0.07 8.00±0.03 15.39±0.52
2 2 0.58±0.06 7.36±0.51 7.12±0.06 8.00±0.03 15.17±0.56
2 3 0.57±0.06 7.23±0.52 7.13±0.04 7.99±0.03 15.01±0.59

3 0 0.65±0.07 8.48±0.87 6.33±1.36 8.03±0.04 16.47±1.27
3 1 0.64±0.07 7.73±0.35 7.10±0.12 8.03±0.03 15.56±0.32
3 2 0.63±0.07 7.53±0.39 7.12±0.07 8.02±0.03 15.35±0.36
3 3 0.62±0.07 7.38±0.44 7.12±0.07 8.02±0.03 15.21±0.41

5 0 0.76±0.10 8.91±1.01 5.54±1.99 8.09±0.05 17.13±1.72
5 1 0.74±0.09 7.86±0.29 7.05±0.21 8.08±0.05 15.70±0.28
5 2 0.72±0.09 7.70±0.30 7.10±0.09 8.07±0.05 15.53±0.30
5 3 0.70±0.09 7.59±0.33 7.11±0.07 8.06±0.04 15.40±0.33

10 0 0.95±0.12 9.55±1.18 3.62±2.59 8.18±0.06 18.85±2.52
10 1 0.91±0.11 8.01±0.38 6.89±0.54 8.16±0.06 15.84±0.17
10 2 0.87±0.11 7.84±0.17 7.05±0.15 8.14±0.05 15.63±0.19
10 3 0.84±0.11 7.75±0.22 7.07±0.14 8.13±0.05 15.53±0.22

20 0 1.27±0.13 10.61±1.46 0.65±2.54 8.34±0.07 21.29±2.17
20 1 1.18±0.13 8.45±1.15 6.20±1.51 8.31±0.07 15.92±0.15
20 2 1.11±0.13 7.96±0.12 6.96±0.23 8.28±0.06 15.75±0.18
20 3 1.05±0.13 7.88±0.16 7.01±0.17 8.25±0.06 15.64±0.19

Scenario (iv) Byzantine

f h σavg σmax σ̂min σ̂avg σ̂max

1 0 1.50±0.24 8.51±1.44 2.42±1.73 8.40±0.10 16.44±1.65
1 1 1.50±0.24 8.27±0.88 2.65±1.05 8.40±0.10 15.89±0.13
1 2 1.49±0.24 8.15±0.10 2.72±0.96 8.40±0.10 15.89±0.13
1 3 1.49±0.24 8.14±0.02 2.75±0.93 8.40±0.10 15.89±0.13

2 0 1.58±0.31 9.30±2.78 1.89±2.64 8.44±0.14 17.11±2.28
2 1 1.57±0.31 8.53±1.61 2.49±1.33 8.43±0.14 15.91±0.12
2 2 1.56±0.31 8.17±0.34 2.69±1.08 8.43±0.14 15.89±0.12
2 3 1.56±0.31 8.14±0.04 2.75±1.02 8.43±0.14 15.89±0.12

3 0 1.62±0.28 10.03±3.52 1.13±3.32 8.45±0.13 17.86±2.74
3 1 1.61±0.28 8.90±2.19 2.19±1.50 8.45±0.12 15.90±0.13
3 2 1.60±0.28 8.21±0.40 2.51±1.15 8.44±0.12 15.89±0.13
3 3 1.59±0.28 8.14±0.05 2.59±1.09 8.44±0.13 15.89±0.13

5 0 1.78±0.52 10.82±3.92 0.24±3.75 8.53±0.22 18.75±2.93
5 1 1.76±0.52 9.25±2.63 1.87±1.72 8.52±0.22 15.92±0.13
5 2 1.75±0.53 8.25±0.54 2.37±1.24 8.51±0.22 15.89±0.12
5 3 1.74±0.54 8.14±0.03 2.52±1.18 8.51±0.23 15.88±0.12

10 0 2.12±0.71 12.21±4.67 -1.36±4.18 8.67±0.29 21.09±2.61
10 1 2.09±0.72 10.06±3.31 1.09±2.11 8.66±0.29 15.93±0.13
10 2 2.06±0.73 8.39±0.90 1.89±1.55 8.65±0.30 15.89±0.13
10 3 2.04±0.76 8.14±0.11 2.12±1.53 8.64±0.31 15.88±0.15

20 0 2.59±0.98 16.20±7.91 -4.17±4.33 8.87±0.41 22.73±2.56
20 1 2.52±1.00 12.53±5.91 -0.14±2.25 8.85±0.41 16.16±1.93
20 2 2.48±1.04 9.20±4.99 1.20±1.66 8.83±0.43 16.01±1.74
20 3 2.44±1.07 8.68±4.84 1.63±1.71 8.82±0.46 15.92±1.20

behavior that interpolates between f = 1 and f = 5. The main
difference to Byzantine faults are much more stable, but worse
skews, the latter in particular demonstrated by σ̂min. This can
be easily understood, since the random behavior of Byzantine
nodes increases the volatility of the setup, but decreases the
number of “dead” links that inhibit the propagation of the pulse
wave. With many faults, the wave needs to navigate a “maze”
of dead nodes.

VI. FAST CLOCKS

HEX provides each node with a local clock signal that
is well-synchronized even in a system with multiple persistent
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TABLE IV. AVERAGE ± STANDARD DEVIATION OF σavg , σmax , σ̂min ,
σ̂avg , AND σ̂max , EXCLUDING ALL NODES WITH DIRECTED DISTANCE ≤ h

FROM f ISOLATED FAIL-SILENT NODES, OVER 300 SIMULATION RUNS OF

SCENARIO (III) [TOP] AND (IV) [BOTTOM].

Scenario (iii) fail silent

f h σavg σmax σ̂min σ̂avg σ̂max

1 0 0.57±0.04 7.83±0.26 7.09±0.11 7.99±0.02 15.90±0.65
1 1 0.56±0.04 7.58±0.32 7.13±0.04 7.99±0.02 15.44±0.32
1 2 0.56±0.04 7.40±0.39 7.13±0.03 7.99±0.02 15.24±0.38
1 3 0.55±0.04 7.26±0.44 7.13±0.02 7.98±0.02 15.11±0.43

5 0 0.85±0.09 8.13±0.43 6.87±0.46 8.14±0.04 17.42±1.95
5 1 0.82±0.09 7.92±0.14 7.04±0.15 8.12±0.04 15.79±0.19
5 2 0.80±0.09 7.81±0.19 7.08±0.13 8.11±0.04 15.61±0.21
5 3 0.77±0.08 7.71±0.24 7.09±0.12 8.10±0.04 15.51±0.23

10 0 1.12±0.12 9.09±1.96 5.95±1.86 8.28±0.06 19.62±2.44
10 1 1.07±0.12 8.04±0.30 6.91±0.33 8.26±0.06 15.91±0.16
10 2 1.01±0.11 7.93±0.13 6.99±0.17 8.23±0.06 15.74±0.17
10 3 0.97±0.11 7.87±0.16 7.03±0.16 8.21±0.06 15.64±0.20

20 0 1.54±0.14 11.60±3.50 3.49±3.43 8.51±0.07 22.22±1.38
20 1 1.42±0.14 8.42±1.11 6.48±1.07 8.46±0.07 15.99±0.12
20 2 1.33±0.14 8.03±0.10 6.87±0.21 8.41±0.07 15.82±0.15
20 3 1.24±0.14 7.97±0.12 6.93±0.20 8.37±0.07 15.73±0.15

Scenario (iv) fail-silent

f h σavg σmax σ̂min σ̂avg σ̂max

1 0 1.50±0.05 9.49±3.96 1.95±2.91 8.40±0.02 16.71±1.98
1 1 1.50±0.05 8.69±1.87 2.62±1.18 8.40±0.02 15.90±0.13
1 2 1.49±0.05 8.17±0.26 2.86±0.83 8.40±0.03 15.89±0.13
1 3 1.49±0.05 8.14±0.02 2.87±0.83 8.40±0.03 15.89±0.13

5 0 1.77±0.09 14.46±6.75 -1.25±5.08 8.54±0.05 19.98±2.95
5 1 1.74±0.09 10.74±3.56 1.66±2.14 8.53±0.05 15.94±0.12
5 2 1.71±0.10 8.42±0.92 2.88±0.85 8.51±0.05 15.90±0.12
5 3 1.69±0.10 8.14±0.02 2.92±0.85 8.50±0.05 15.89±0.12

10 0 2.02±0.13 18.38±6.47 -4.03±5.21 8.67±0.06 22.04±2.09
10 1 1.96±0.13 12.68±3.92 0.59±2.61 8.64±0.07 15.97±0.12
10 2 1.91±0.14 8.74±1.33 2.92±1.00 8.62±0.07 15.91±0.11
10 3 1.87±0.15 8.15±0.22 3.03±0.94 8.60±0.08 15.89±0.11

20 0 2.40±0.16 22.58±4.20 -7.39±3.60 8.87±0.08 23.19±1.16
20 1 2.29±0.16 15.26±3.03 -1.08±2.66 8.83±0.08 16.03±0.11
20 2 2.20±0.17 9.49±1.85 2.81±0.97 8.78±0.09 15.92±0.11
20 3 2.12±0.19 8.15±0.15 3.11±0.91 8.74±0.10 15.89±0.12

faults. Furthermore, HEX is able to recover from an unbounded
number of concurrent transient faults. It should not come as a
surprise that these impressive fault-tolerance properties come
at a cost: The HEX clock signal has a fairly low and unstable
frequency and a large jitter. This makes HEX unsuitable for
applications that need to determine real-time durations very
accurately. One such negative example is clock multiplication
based on PLLs, which sustain only moderate input jitter.
Fortunately, as exemplified by our communication subsystem
in Section III, many applications do not have such stringent
requirements.

A. Trade-offs between Quality and Dependability

To understand that the undesirable properties of HEX are
inherent to our approach, if not even inevitable under the given
design goals, recall that Byzantine or fail-silent nodes locally
affect the triggering times by (i) cutting off or delaying the
clock distribution signal on a (shortest) path to some node
or (ii) triggering a pulse early. Because of (ii), a node cannot
locally trigger a pulse just based on one of its lower neighbors;
because of (i), a faulty lower-left or lower-right neighbor
entails that the node must be triggered with the help of a
node in the same layer, thereby increasing the length of a
causal chain [24] involved in triggering the node compared
to the fault-free case. Consequently, the time when the node

is triggered may be affected notably, and this effect may
accumulate over several layers (in contrast to the skew, which
is the local difference of triggering times).

From these observations, we can conclude that simultane-
ously guaranteeing tolerance of Byzantine faults and a stable
clock frequency would entail a stronger connectivity of the
grid and thus larger node degrees. In particular, nodes would
need to receive clock signals from at least 3 nodes from
the previous layer, as well as forwarding them to at least
3 nodes in the subsequent layer. Higher degrees, however,
increase the complexity of nodes—and thus the likelihood that
an individual node fails—as well as the probability that two
neighbors are faulty (even for a fixed probability of failure).
We hence conclude that there is a trade-off between frequency
stability and resilience to failures.

Besides the inevitable switching delays of the components
making up the HEX nodes, the low frequency of the generated
HEX clock is also caused by our self-stabilization requirement:
Ensuring that the nodes become ready for the next, well-
synchronized pulse, a conservative pulse separation time must
be granted to “flush out” spurious pulses from the system; oth-
erwise, we might observe a phenomenon similar to “ventricular
fibrillation”.

B. Local Clocks

While increasing the frequency stability of the HEX clock
signal would require a more dense topology, there is an
obvious solution to the low clock frequency issue: frequency
multiplication. By equipping each node with a high-frequency
oscillator that is synchronized to the HEX clock, one can
generate well-synchronized high-frequency clocks (termed fast
clocks in the sequel).

However, synchronizing a fast clock to an unstable HEX
clock involves a trade-off:

(a) If a stable fast clock frequency is desired, the HEX clock’s
jitter must be amortized over m > 1 pulses. For example,
this could be implemented by first dividing the HEX clock
by m and then using a PLL clock multiplier to generate
the desired fast clock; m must be chosen appropriately
to guarantee an acceptable PLL input clock jitter. Un-
fortunately, this approach may increase the skew of the
fast clock considerably if the high-frequency oscillators
driving the fast clocks have a large drift.

(b) If a fast clock with minimal skew is desired, which is our
major objective, the HEX clock jitter must be amortized
within a single pulse. Unfortunately, using solutions like
[25] are complex and inherently lead to considerable
frequency fluctuations of the fast clock.

With this in mind, we propose a simple, robust approach
for (b) that achieves a high and reasonably stable fast clock
frequency with good skews, at the expense of burstiness. For
each HEX pulse, the fast clock generates a fixed number
B of fast clock pulses [26] as shown in Figure 7. This is
accomplished by means of a free-running start/stoppable ring
oscillator, which is started by a HEX pulse and stops when
it has generated B pulses; in fact, we may make use of the
same oscillator design already used for the timeouts Tfire and
Tsleep of the HEX state machine (Figure 4). Note that this can
be implemented in a way that entirely avoids metastability.
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Fig. 7. A pulse generated by HEX will result in a fixed number of clock
cycles being generated. The number of clock cycles and their frequency has
to be chosen so that the required time span for them is less than the minimal
time between pulses at correct nodes.

C. Analysis

First, we determine conservative timing constraints under
the assumption that the system is fault-free. In this setting, the
feasible number of clock cycles in each burst can be precisely
expressed in terms of the minimal pulse separation time

Γmin := inf
i∈[W ],ℓ∈[L+1],k∈N

(ℓ,i) correct

{t
(k)
ℓ,i − t

(k−1)
ℓ,i }. (6)

Assuming that the fast clock sources are guaranteed to run at
least with frequency fmin, the number B of generated ticks
per pulse must satisfy

B ≤ fminΓmin. (7)

Note that it is sufficient here if the frequency bound holds
amortized over Γmin time. To understand the resulting perfor-
mance, assume for simplicity that this bound is an integer (i.e.,
we neglect that we may lose a “fractional tick”) and choose
B = fminΓmin. First, let us check the amortized frequency of
the system. Clearly, we cannot guarantee a larger amortized
frequency than fmin. Of course, in addition Γmin could be
smaller than the long-term average time between pulses

Γavg := lim
k→∞

t
(k)
0,0 − t

(0)
0,0

k
. (8)

Note that choosing the reference node to be (0, 0) in this
definition is arbitrary, as using every other node must lead
to the same result: Since the skew in the fault-free case is
bounded, the influence of the difference of the triggering times
vanishes in the limit (of course we assume here that the clock
generation algorithm employed on layer 0 has bounded skew
in the absence of faults). With this definition, the amortized
frequency of the generated high-frequency clock of node (ℓ, i)
can be expressed as

lim
k→∞

Bk

t
(k)
ℓ,i − t

(0)
ℓ,i

= B lim
k→∞

k

t
(k)
0,0 − t

(0)
0,0

= fmin
Γmin

Γavg
, (9)

which equals fmin exactly if t
(k+2)
ℓ,i − t

(k+1)
ℓ,i = t

(k+1)
ℓ,i − t

(k)
ℓ,i

for all i, ℓ, and k, i.e., the HEX clock is perfectly stable. The
“frequency loss” is determined by three factors:

1) The frequency fluctuation of the clock generation algo-
rithm at layer 0.

2) The skew between the layer 0 nodes.
3) The variance in the speed at which pulses propagate

through the grid.

The first two factors are determined by the clock generation
algorithm and thus not to attribute to HEX. We remark that
since we need to keep pulses well-separated, the first factor is

likely to dominate the second. Similarly, large pulse separation
times mitigate the influence of the third factor. If we increase
the pulse separation time and take the limit, the resulting
frequency of HEX will reflect the frequency provided by the
clock generation algorithm at layer 0 (since the influence of
skews vanishes in the limit). Hence, the frequency of the
fast clocks will be fmin multiplied by the ratio between the
frequency lower bound of the pulse generation algorithm—
neglecting any additive variations that do not depend on the
pulse separation time, in particular the skew between layer 0
nodes—and its average frequency.

These are good news, showing that a large pulse separation
time does not hurt in terms of the overall frequency at which
the system will be clocked. On the contrary, large pulse
separation times essentially ensure the maximum frequency we
can hope for! Even with fairly small pulse separation times, the
system will run at a constant fraction of the frequency fmin.
However, there is no free lunch, as we will establish now by
analyzing the fast clock skew of adjacent nodes.

Since pulses are anonymous, we interpret the generated
local fast clock Lℓ,i of node (ℓ, i) as a clock modulo B with the
initial value being 0. For simplicity, we assume that the clock
is continuous, i.e., it is real-valued from [0, B), increasing
modulo B at (possibly varying) rates from [fmin, fmax], where
fmax is its maximal frequency. The actual discrete clock read-
ing at time t then is simply ⌊Lℓ,i(t)⌋. With these definitions,

the clock value at time t ∈ [t
(k)
ℓ,i , t

(k+1)
ℓ,i ] satisfies

min{fmin(t− t
(k)
ℓ,i ), B} ≤ Lℓ,i(t) ≤ min{fmax(t− t

(k)
ℓ,i ), B},

(10)
since the clock is halted until the next pulse once it reaches
value B ≡ 0.

Observe that at times where two adjacent nodes both
locally triggered pulse k, but not pulse k+1, the worst possible
clock skew is attained if (i) the difference in the triggering
times is maximal, (ii) the clock of the node that triggered
first runs at frequency fmax until its clock halts, and (iii)
the other node’s clock runs at frequency fmin. For the skew
between two adjacent nodes in layer ℓ, we thus get at times

t ∈ [t
(k)
ℓ,i , t

(k+1)
ℓ,i ] ∩ [t

(k)
ℓ,i+1, t

(k+1)
ℓ,i+1 ] that

|Lℓ,i(t)− Lℓ,i+1(t)|

≤ B − fmin

(

B

fmax
− |t

(k)
ℓ,i − t

(k)
ℓ,i+1|

)

≤
fmax − fmin

fmax
·B + fminσ

max
ℓ = ̺B + fminσ

max
ℓ , (11)

where ̺ := (fmax − fmin)/fmax is the relative drift of the
high-speed clocks.

Now consider a time t ∈ [t
(k+1)
ℓ,i , t

(k+2)
ℓ,i ] ∩ [t

(k)
ℓ,i+1, t

(k+1)
ℓ,i+1 ],

i.e., node (ℓ, i) already triggered pulse k+1, but node (ℓ, i+1)
has not done so yet. Since node i starts its clock—which in
the worst case runs fast while the clock of node i + 1 runs
slow—at time t

(k+1)
ℓ,i again, a worst-case bound on the clock

skew (modulo B) is obtained by comparing the clocks just

before time t
(k+1)
ℓ,i+1 . However, this bound is subsumed by the

previous one, as it covers the case t = t
(k+1)
ℓ,i+1 . Finally, the case

t ∈ [t
(k)
ℓ,i , t

(k+1)
ℓ,i ] ∩ [t

(k+1)
ℓ,i+1 , t

(k+2)
ℓ,i+1 ] is symmetrical. This covers
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all cases and therefore provides a worst-case bound for the
intra-layer skew of the constructed fast clocks; replacing σmax

ℓ

by σavg
ℓ in this result yields an average-case bound.

To also derive good bounds for the inter-layer skew, more
care is necessary. Of course, we could simply replace σmax

ℓ

by σ̂max
ℓ and repeat the same analysis, but this would provide

overly conservative results as it fails to leverage the known bias
of the inter-layer skew. We will hence use a refined analysis
for slightly modified clocks to improve the results.

On average, nodes at layer ℓ trigger roughly σ̂avg
ℓ after

those at layer ℓ − 1 (recall that σ̂avg
ℓ respects the sign).

Therefore, we can compensate the resulting bias in the inter-
layer skew of the fast clocks by shifting the fast clocks
of the nodes at layer ℓ > 1 accordingly with respect to
layer ℓ − 1. Similarly, to obtain a worst-case bound, we can
consider σ̂min

ℓ and σ̂max
ℓ and apply a shift corresponding to

σ̄ℓ := (σ̂max
ℓ + σ̂min

ℓ )/2.

Let us examine the latter case here; the former can be
treated similarly. In σ̄ℓ time, a running fast clock makes
progress of at least fminσ̄ℓ. Therefore, we map the clock values
Lℓ,i(t) for all i and t to L′

ℓ,i(t) := (Lℓ,i(t) + fminσ̄ℓ)modB.
Analogous to the intra-layer skew, we now can bound

Lℓ−1,i(t)− L′
ℓ,i(t)

≤ B − fmin

(

B

fmax
− (t

(k)
ℓ,i − t

(k)
ℓ−1,i) + σ̄ℓ

)

≤
fmax − fmin

fmax
·B + fmin (σ̂

max
ℓ − σ̄ℓ)

= ̺B + fmin ·
σ̂max
ℓ − σ̂min

ℓ

2
= ̺B + fminτℓ, (12)

where τℓ := (σ̂max
ℓ − σ̂min

ℓ )/2 corresponds to σmax
ℓ . The

latter can be seen by noting that the the signed variant of
the (symmetrical, i.e., absolute value) inter-layer skew is just
−σℓ. Likewise,

L′
ℓ,i(t)− Lℓ−1,i(t)

≤ B − fmin

(

B

fmax
+ (t

(k)
ℓ,i − t

(k)
ℓ−1,i)− σ̄ℓ

)

≤
fmax − fmin

fmax
B + fmin

(

σ̄ℓ − σ̂min
ℓ

)

= ̺B + fminτℓ, (13)

which together with the bound on Lℓ−1,i(t)− L′
ℓ,i(t) implies

that |L′
ℓ,i(t) − Lℓ−1,i(t)| ≤ ̺B + fminτℓ. An analogous rea-

soning shows that also |L′
ℓ,i(t)−Lℓ−1,i+1(t)| ≤ ̺B+ fminτℓ.

Obviously, shifting all clocks in a layer by the same value
will not affect the intra-layer clock skews. Applying the clock
shifts inductively, i.e., shifting the clocks in each layer ℓ ≥ 1
by

∑ℓ−1
ℓ′=0 σ̄ℓ′ , we can bound the inter-layer skews on each pair

of consecutive layers as above. We thus can conclude with the
worst-case bounds

̺B + fminσ
max
ℓ ≤ fmin(̺Γmin + σmax

ℓ ) and (14)

̺B + fminτℓ ≤ fmin(̺Γmin + τℓ). (15)

on the intra- and inter-layer skews of the (shifted) fast clocks.
Note that they are tight for B = fminΓmin, which maximizes
the amortized frequency of the fast clocks.

It can be seen that even if ̺ is fairly large (say, 10%) and
Γmin is significantly larger than σmax

ℓ , say, up to factor 10, the

maximal clock skew is still dominated by the term fminσ
max
ℓ .

If one is willing to invest in more stable fast clock sources (e.g.,
̺ ≈ 1%), large pulse separation times are feasible without
incurring a significant impact on the skew. We stress that fmin

and fmax in our bounds are—unless the clocks are extremely
unstable—the amortized frequency upper and lower bounds
over B fast clock pulses; large skews require a consistent
difference in frequency for roughly B/fmin time. Moreover, ̺
captures the relative drift of the clocks. Any frequency change
that applies to adjacent nodes in roughly the same way (i.e.,
a system-wide change in temperature or supply voltage) will
not have noticeable effects on the skews.

D. Faults, Self-stabilization, and Γmin

So far, we neglected two key obstacles in our approach for
constructing fast clocks:

• Γmin is not known, and therefore we do not know an
appropriate choice for B.

• Due to persistent or transient faults, Γmin may be very
small or not even well-defined.

Concerning the first issue, there are basically three options:
We can rely on analytical bounds, simulation results, or
experimental data. All approaches have pros and cons; for a
final system, experimental data is the most valuable, but it is
also the most difficult and expensive to create, as one needs
a chip and a suitable apparatus for measurements first. From
[17] and bounds for the layer 0 clock generation algorithm
employed, analytical worst-case bounds can be derived. The
results from Section V provide insight into the skew distribu-
tions for an average-case setting under some fairly conservative
assumptions on the parameters.

Regarding the second issue, we clearly must exclude faulty
nodes as well as triggering time differences from the self-
stabilization period when estimating (an equivalent to) Γmin

in the general setting. Note that there is a trade-off: We can
consider a non-faulty node that experiences large skews as
incorrect, permitting the use of a less conservative bound on
Γmin; in turn, we are losing the guarantee that this node will
be able to complete each clock burst before the next pulse
arrives, even after stabilization of the HEX pulse generation.
The results from Section V give an idea on the behavior of
the system under faults. It should be noted, though, that the
specific values are highly dependent on the implementation of
the HEX nodes, the layer 0 clock generation algorithm, and
the used technology.

Once a suitable estimate Γ̃min taking the role of Γmin

has been determined, one can choose B according to B ≤
fminΓ̃min. Note that using a smaller value for B may be desir-
able in some situations, as a smaller value of B also leads to a
smaller skew. On the downside, B < fminΓ̃min is equivalent to

using a smaller value of Γ̃min, which leads to a lower amortized
frequency of the fast clocks. The resulting decrease in the
amortized frequency can of course be mitigated by increasing
the frequency of the layer 0 pulse generation algorithm, which

reduces Γ̃min, Γavg and the gap fminΓ̃min −B.

VII. CONCLUSION AND FUTURE WORK

In the work presented in this paper, we (i) implemented
the HEX clock distribution grid [17] using the UMC 90 nm
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standard cell library, (ii) performed extensive ModelSim-based
simulations to gain insight on the average-case performance of
the approach, and (iii) constructed small-skew high-frequency
fast clocks and analyzed their performance. As argued in Sec-
tion III, such clocks are a suitable basis for an efficient point-
to-point communication subsystem. While it is still a long
road to a fully-engineered solution, our results demonstrate
the potential of the envisioned clocking scheme to serve in
highly dependable, multi-synchronous GALS architectures.

Future Work. There are several vital improvements to the
presented solutions that are subject to our ongoing research.

• The communication system proposed in Section III is not
self-stabilizing, but merely pseudo-stabilizing [27]. That
is, once transient faults cease, the system is guaranteed
to eventually operate correctly, but there is no bound on
the time the recovery process takes to actually complete.
Based on the self-stabilizing fast clocks, it seems reason-
able to assume that also fully self-stabilizing communi-
cation primitives can be devised.

• The skews offered by HEX compare unfavorably to those
of less resilient solutions; in particular the gap to the
performance of standard clock distribution trees (which
cannot withstand any faults) is large. Because of the
simplicity of the HEX state machine (Figure 4), we
are positive that a HEX node can be implemented as a
transistor-level custom standard cell. This would certainly
decrease the resulting skews and pulse separation times
further, and thus result in an improved HEX performance.

• The cylindrical hexagonal grid topology assumed in this
work and [17] is convenient for analysis, but suffers from
two drawbacks: (i) providing a synchronized clock to the
entire layer 0 is difficult unless the grid is very narrow
(i.e., W is small) and (ii) “folding” a cylindrical HEX grid
onto an actual chip would result in two clock layers with
physically close-by nodes that are far from each other in
the grid. In [17], we proposed an alternative topology
resolving these issues, and the analysis in the paper
provides strong intuition that the resulting skews will
not be larger. Generalizing the analysis from [17] to the
new topology and performing corresponding simulations
is thus of high interest.
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Abstract—The reliability and security of memories are crucial consider-
ations in the modern digital system design. Traditional codes concentrate
on detecting and correcting errors of certain types, e.g., errors with small
multiplicities or byte errors, and cannot detect or correct unanticipated
errors. Thereby, they may not be sufficient to protect memories against
malicious attackers with strong fault injection capabilities and cannot cor-
rect unexpected errors with high multiplicities. The contribution of this
paper is that we construct a new reliable and secure memory architecture
based on robust Algebraic Manipulation Correction (AMC) codes. These
codes can be used for correction of random errors and for detection
of fault injection attacks. These codes can provide a guaranteed error
detection probability for all errors even if both the user defined messages
(data stored in the memory) and the error patterns are controllable by
an attacker. The presented code can correct all single-bit errors in the
information bits of the code. Moreover, these codes can be used to correct
double-bit errors with high probabilities. The construction and the error
correction procedures for the code will be described. The probability that
an error can be successfully detected and/or corrected and the hardware
overheads for the proposed memory architecture will be estimated. The
presented approach is efficient for protecting security/reliability critical
memories used to store the important information on the chip (e.g., a
secret key in a cryptographic device).

Keywords-Algebraic Manipulation Detection Code, Error Correction,
Fault Injection Attack, Hardware Security

I. INTRODUCTION

Memories are critical elements in today’s digital systems. Various
types of memories are widely used in many different reliable and
secure applications and appear in nearly all digital devices. SRAMs,
for example, are often used as caches and internal memories in em-
bedded systems. Non-volatile memories like EEPROM and Flashes
are often used in cryptographic devices to store secret informations
such as the encryption keys and passwords.

The reliability of memory is a crucial consideration for today’s
digital devices. For some designs as much as 70% of the chip area
is taken by the embedded memory [1], [2]. This large area of the
chip is especially vulnerable to single-event-upsets (SEUs) caused
by single, energetic particles like high-energy neutrons and alpha
particles. SEU temporarily alters the state of the devices and results
in soft errors. These errors are nondestructive and appear as unwanted
bit flips in memory cells and registers. Continuing scaling of device
features and performance increases the likelihood of errors, which
makes the error models more unpredictable. As the speed of the
devices becomes higher the relative size of the clock transition timing
window increases and this makes devices more sensitive to SEU [3].
Similarly, decreased voltage levels for modern technologies make bit
inversions more likely to occur [4].

The dangers of possible errors in memories resulting from SEUs
are often mitigated with the use of linear single-error-correcting,
double-error-detecting codes (SEC-DED). These codes have mini-
mum Hamming distance four and are able to correct all single bit
errors and detect all double bit errors. In the presence of multi-bit
errors, however, the reliability of systems utilizing error protection

architectures based on these codes may be questionable. For any
linear SEC-DED codes with k information bits, the number of
undetectable multi-bit errors is 2k. In addition to this, a huge number
of multi-bit errors will be miscorrected. In the case where SEU results
in multi-bit distortions with high probability, these codes may not be
sufficient to provide a high reliability. Anomalies of systems caused
by multi-bit upsets (MBU) have already been reported [5], [6].

The increase of the MBU rate in deep submicron technologies
deteriorates the situation even further. In 65nm triple-well SRAMs
with a thin cell architecture, the rate of multi-bit errors caused by
neutron induced SEU increases by a factor of ten compared to that
in 90 nm technologies nearly 55% of the errors due to neutron
radiation were multi-bit errors [7]. Although there are mechanisms
like bit interleaving [8] that can be used to minimize the error rate
contribution of multi-bit errors, whether it is enough under such
high MBU rate is still unknown. Moreover, the advantage of bit
interleaving comes at a price of more layout constraints, which may
result in larger power consumptions and longer access times. Thereby,
memory protection architectures which can provide better protection
against multi-bit errors than that based on classical linear codes are
in demand.

Memories used in secure cryptographic devices not only suffer
from random errors but are also vulnerable to errors injected by
malicious fault injection attacks. It has been shown that the attacker
can derive the secret key of the cryptographic devices thus break the
security of the whole systems by injecting faults during encryption or
decryption operations to force the devices working abnormally [9],
[10].

Most of the existing reliable and secure memory architectures are
based on linear codes, which concentrate their error detection and
correction capabilities against certain types of errors, e.g., errors with
small multiplicities [11], [12], [13]. The reliability and security of
systems protected by linear codes largely depend on the accuracy
of the expected error model. For memories used in cryptographic
devices, the error model and the number of distorted bits introduced
by the faults injected by the attacker are generally unpredictable
due to the adaptive nature and the advanced fault injection methods
available to an attacker. Thereby, the security of memories protected
by linear codes cannot be guaranteed assuming the strongest attacker
model.

As an alternative to linear codes, robust codes and their variants
based on nonlinear encoding functions were proposed in [14],
[15]. Different from linear codes, robust codes can provide nearly
equal protection against all error patterns and are more suitable for
applications where multi-bit errors are more probable or the error
model is hard to predict. One limitation of robust codes is that
these codes assume the information bits of messages or outputs
of the device-to-be-protected are uniformly distributed and are not
controllable by external forces, e.g., by an attacker during error
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injection attacks on devices. The reliability and the security of the
communication or computation channels protected by robust codes
will be largely compromised if both information bits of the messages
and the non-zero error patterns can be controlled by the attacker.

Intuitively, the limitation of robust code described above can be
efficiently eliminated by introducing randomness into the encoding
procedure of the code. Due to the fact that the random data are
independent of the user information y, they can always be uniformly
distributed. As a result, the assumption for robust codes that y is
uniformly distributed is no longer required. Moreover, since the user
has zero knowledge and no control of the random bits generated for
each encoding operation, no matter how the attacker selects y and e,
the probability that e is masked will be upper bounded by a number
determined by the size of the set of possible random numbers. A
coding technique based on adding to k information bits m random
bits and r redundant bits, which overcomes the limitation of robust
codes, is called strongly secure algebraic manipulation detection
(AMD) code [16].

However, the constructions presented in [16] usually generate
codes with a Hamming distance of 1, which cannot be used for
error correction. While the resulting AMD codes are suitable for
protecting the secure devices against fault injection attacks, in certain
circumstances they may not be able to provide enough resistance
against random transient errors introduced by the mother nature.
The contribution of this paper is as following. In this paper, we
propose new constructions of Algebraic Manipulation Correction
(AMC) codes and efficient algorithms foe decoding for these codes.
Comparing with our previous works [17], [18], [16], this code have a
Hamming distance 4 and can correct all single-bit errors. Moreover,
we describe a new error correction algorithm for the code which
can also correct all double-bit errors with high probabilities. The
proposed codes can provide a guaranteed level of security as well
as a high level of reliability to the protected device, although the
proposed scheme will require more redundancy, area and power. The
problem of separating between single bit random errors and attacks
for AMC codes is discussed in [17].

The rest part of the paper is organized as follows. The definitions
of AMD codes and AMC codes are shown in Section II. In Section
III-A, we describe the construction of the proposed AMC code
and present the error correction algorithm for correcting random
single and double errors. The hardware design and the analysis and
comparison of overheads for the proposed codes are shown in Section
IV.

II. DEFINITIONS

AMD codes are designed to provide a guaranteed level of security
even if the attacker can control both the error patterns and the input
(thus the fault-free output) of a device. Different from regular error
control codes, a codeword of an AMD code contains three parts: k-bit
user defined information y, m-bit random data x and r-bit redundancy
f(y, x).

Throughout the paper we denote by ⊕ the addition in GF (q), q =
2r . All the results presented in the paper can be easily generalized
to the case where q = pr (p is a prime). An AMD code V with
codewords (y, x, f(y, x)), where y ∈ GF (2k), x ∈ GF (2m) and
f(y, x) ∈ GF (2r), will be referred to as a (k,m, r) code.

Definition 2.1: (Security Kernel) [16] For any (k,m, r) error
detecting code V with the encoding function f(y, x), where y ∈
GF (2k), x ∈ GF (2m) and f(y, x) ∈ GF (2r), the security kernel
KS is the set of errors e = (ey, ex, ef ), ey ∈ GF (2k), ex ∈
GF (2m), ef ∈ GF (2r), for which there exists y such that f(y ⊕

ey, x⊕ ex)⊕ f(y, x) = ef is satisfied for all x.

KS = {e|∃y, f(y ⊕ ey, x⊕ ex)⊕ f(y, x)⊕ ef = 0,∀x}. (1)

For cryptographic devices and secure applications, non-zero errors
e in the security kernel can be used by an advanced attacker to bypass
the protection based on the error detecting code V . For any error e∗ =
(e∗y, e

∗
x, e
∗
f ) ∈ KS , e

∗ 6= 0, where 0 is all zero vector, there exists
y∗ (the protected information at the output of the device) such that
for this y∗ the error e∗ is not detected for any choice of the random
variable x (the probability of not detecting e∗ for the information y∗

is equal to 1). Thus to conduct a successful attack, it is sufficient for
the attacker to inject e∗ ∈ KS when the expected output is in the
format of (y∗, x, f(y∗, x)). An AMD code should have no errors in
the security kernel except for the all zero vector in GF (2n), where
n = k +m+ r.

Definition 2.2: [19] A (k,m, r) error detecting code is called
Algebraic Manipulation Detection (AMD) code iff KS = {0}, where
0 is the all zero vector in GF (2n), n = k +m+ r.

There are no undetectable errors (errors that are undetected with
a probability of 1) for AMD codes. For any y and any e, the error
masking probability for an AMD code V can be computed as

QV (y, e) = 2−m|{x (y, x, f(y, x)) ∈ V,
(y ⊕ ey, x⊕ ex, f(y, x)⊕ ef ) ∈ V }|, (2)

which is the fraction of random m-bit vectors x that will mask a
fixed error e for a given y. The security level of the system protected
by AMD code can be characterized by the worst case error masking
probability QV = maxy maxe 6=0QV (y, e).

The general architecture of a computational channel (device)
protected by a (k,m, r) AMD code is shown in Figure 1, where
RNG is a random number generator (either in software or hardware)
and EDN is the error detection network.

Fig. 1. Computation channel protected by a systematic (k,m, r) AMD code
(original device and the predictor may be under attack).

The definition of AMD code can be found in [20], [16]. The
existing AMD codes [20], [16] are designed for error detection and
have Hamming distances less than 3. In this paper, we will construct
Algebraic Manipulation Correction (AMC) codes that can be used
not only for error detection but also for error correction. These codes
can be used for design of reliable and secure memories where error
correction is indispensable for restoring data distorted by natural
effects such as soft errors. The formal definition of AMC codes is as
follows.

Definition 2.3: An AMD code with Hamming distance at least 3
is called an Algebraic Manipulation Correction (AMC) code.
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III. PROPOSED SINGLE-ERROR-CORRECTING AMC CODES

A. Construction of the proposed single-error-correcting AMC codes

In this Section, we will present the general construction of AMC
codes and two error correction algorithms. The first algorithm can
correct all single-bit errors and detect all double-bit errors. The
second algorithm can correct not only single-bit errors but can also
correct double-bit errors with high probabilities at the cost of higher
hardware overhead.

Theorem 3.1: Suppose
1) (x, xP ) is a codeword of (m + rH , m, 3) binary linear

Hamming code VH with rH redundant bits and distance 3,
where x ∈ GF (2m), xP ∈ GF (2rH ), P is a rH×m encoding
matrix, and

2) f(y, x) ∈ GF (2m) is a nonlinear encoding function f(y, x) =
y1x⊕y2x2⊕y3x3⊕· · ·⊕ybxb⊕xb+2 (b is odd, b+2 < 2m−1).
where y = (y1, y2, . . . , yb); yi ∈ GF (2m), (i = 1, 2, . . . , b);
x ∈ GF (2m); f(y, x) ∈ GF (2m) and all the operations are
in GF (2m); 2m − 1 is a prime number;

3) πy = y1 ⊕ y2 ⊕ y3 ⊕ · · · ⊕ yb ∈ GF (2m) is the byte-wise
parity of y;

Then the code VAMC = {(y, πy⊕x, xP, f(y, x))} is a (k,m,m+
rH) SEC Algebraic Manipulation Correction (AMC) code, with k =
bm information bits, m random bits, m+ rH redundant bits.

This code has secure kernel KVAMC = {0} with the maximum
error masking probability QVAMC = (b+ 1)(2m − 2)−1 and Ham-
ming distance 3.

We note that the proposed AMC code is a combination of
(y, x, f(y, x)) AMD code which provides for secure kernel {0}
and (x, Px) Hamming code which provides for distance 3. This
construction is similar to Vasil’ev nonlinear perfect code [21].

Remark 3.1: We may use any AMD encoding functions f(y, x)
described in [20], [16]. In general case, y ∈ GF (2k), where k = sr,
and x ∈ GF (2m), where m = tr. In this case, x = (x1, x2, . . . , xt)
and f(y, x) is a polynomial of t variables x1, . . . , xt. Thus, y will
be divided into s/t parts, each of which contains tr bits, and then
πy ∈ GF (2tr) is the byte-wise parity. The padding zeros may be
applied to y, when s is not dividable by t.

Example 3.1: Let m = 7, which is the number of random bits.
Also let the encoding function be f(y, x) = y1x ⊕ y2x2 ⊕ y3x3 ⊕
y4x

4 ⊕ y5x5 ⊕ x7, where y = (y1, y2, . . . , y5) ∈ GF (235) is the
information part, yi ∈ GF (27) for i = 1, 2, . . . , 5, x ∈ GF (27) is
the random number.

Let {(x, xP )} be the (11, 7, 3) Hamming code, where P is the
encoding matrix for the Hamming code. Since 27 − 1 is a prime
number, the code VAMC defined by Theorem 3.1 is an AMC code
with d = 3 and QVAMC = 6

27−2
= 1

21
.

Comparing to the AMD Code with k = br = 35, m = r = 7 and
nonlinear encoding function f(y, x) = y1x⊕ y2x2⊕ y3x3⊕ y4x4⊕
y5x

5 ⊕ x7, the codeword of VAMC contains 4 more redundant bits.
Remark 3.2: In a normal base Galois field [20], square operation

can be achieved by the cyclic shift. As a result, f(y, x) in Theorem
3.1 can be slightly modified to reduce its hardware complexity of
computing f(y, x) using the following encoding equation

f(y, x) = y1x⊕ y2x2 ⊕ y3x4 ⊕ · · · ⊕ ybx2
(b−1)

⊕ x2
b+1,

where y = (y1, y2, y3, . . . , yb) and yi ∈ GF (2m) (i = 1, 2, 3, . . . b);
x ∈ GF (2m); x 6= 0, 1, where 1 is all 1 vector; f(y, x) ∈ GF (2m);
and 2m − 1 is a prime number and b < m.

This code reduces the computational complexity of decoding at
the cost of higher error masking probability, which is going up to

QVAMC = 2b(2m − 2)−1.

B. Algorithm for Single Error Correction and Estimation of Proba-
bilities of Miscorrection for the Proposed Codes

A direct approach is to add codewords to an existing AMD
code some additional redundant bits to provide for error correction,
(y, x, f(y, x), P ) as an example. We will present another approach
which can detect and correct the errors in the codewords but will
requires less redundant bits.

1) Error correction algorithm for the proposed SEC-DED AMC
code: There are four parts in every codeword of the AMC code
constructed as in Theorem 3.1, namely y, πy ⊕ x, xP , and f(y, x).
For a codeword v = (v1, v2, v3, v4) of the AMC code VAMC

constructed in Theorem 3.1, there are
v1 = y = (y1, y2, y3, . . . , yb); yi ∈ GF (2m), i = 1, 2, 3, . . . , b;
v2 = πy ⊕ x; πy, x, v2 ∈ GF (2m);
v3 = xP ; xP ∈ GF (2rH );
v4 = f(y, x); v4 ∈ GF (2m);
(x, xP ) is a codeword of a linear Hamming code with distance 3

and the check matrix is H = [PT |I], where PT is the transposed
matrix of P and I is an identity matrix.

Denote the error vector by e = (e1, e2, e3, e4) and the received
message by ṽ = (ṽ1, ṽ2, ṽ3, ṽ4), where ṽi = vi ⊕ ei, i = 1, 2, 3, 4
and e1, ṽ1 ∈ GF (2bm); e2, ṽ2 ∈ GF (2m); e3, ṽ3 ∈ GF (2rH );
e4, ṽ4 ∈ GF (2m). We assume that we only need to correct the
errors in the information part v1 = y. The decoding procedure can
be divided into the following steps.

1) Calculate (ũ, ṽ3), where ũ = πṽ1 ⊕ ṽ2
2) Calculate SH = H(ũ, ṽ3)T , the syndrome for the Hamming

code.
Use SH as the input to the Hamming decoder, then obtain the
error locator ε, where ε ∈ GF (2m). Since ε is the output of
the Hamming decoder, there should be only one bit in ε which
is equal to one, and all other bits are zeros.
Let u = ũ ⊕ ε = πṽ1 ⊕ ṽ2 ⊕ ε, where u ∈ GF (2m). If
uncorrectable multi-bit errors are detected by the Hamming
decoder, then no further steps need to be performed. Otherwise,
go to the step 3.

3) Calculate SAMD as follows

SAMD = f(ỹ, u)⊕ ṽ4
= f(y ⊕ e1, x⊕ πe1 ⊕ e2 ⊕ ε)⊕ f(y, x)⊕ e4. (3)

If both SH = 0 and SAMD = 0, then there are no errors.
If only SAMD = 0, there are multiple errors. Therefore, as
long as SAMD = 0, the correction procedure is completed.
Otherwise go to the next step.

4) Compare SAMD with εuj , for all j = 1, 2, 3, . . . , b.

a) If SAMD = εuj for some j ∈ {1, 2, 3, . . . , b}, then the
jth part yj ∈ GF (2m) of information ṽ1 ∈ GF (2bm)
of the codeword is distorted and the error in that part is
ε ∈ GF (2m), which means ŷj = ỹj ⊕ ε, where ŷj ∈
GF (2m) is the corrected message.

b) Otherwise, there are multiple errors or the error is not
in the information part v1. No error correction will be
attempted.

The decision table for the proposed single error correction algo-
rithm is summarized in Table I

Example 3.2: (Single Error Correction)
Consider a proposed AMC code with b = 2, m = 3. VH is a (6, 3, 3)
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TABLE I
CORRECTION ALGORITHM DECISION TABLE FOR SEC-DED AMC

SH SAMD Decision

SH = 0 SAMD = 0 No Error
SAMD 6= 0 Double/Multiple Errors

SH 6= 0 and ∀SAMD Double/Multiple Errors
SH 6= hi

I (∀i)

SH = hi

SAMD 6= εuj Single Error in v2, v3, or v4
or SAMD = 0 Or Double/Multiple Errors
SAMD = εuj Single Error in v1
SAMD 6= 0 (Correction)

I hi (1 ≤ i ≤ m) is the ith column of the parity check matrix
H of the Hamming code. This row is only valid for non-perfect
Hamming code.

Hamming code with P =

1 1 0
1 0 1
0 1 1

.

The encoding function is f(y, x) = y1x⊕y2x2⊕x5. The codeword
is in the format of v = ((y1, y2), πy ⊕ x, xP, f(y, x)), where
y1, y2, x, xP, f(y, x) ∈ GF (23). We select z3 ⊕ z ⊕ 1 as the
generating polynomial for GF (23), with the rightmost bit being the
least significant bit.

Suppose y1 = (001), y2 = (001), x = (010). Then we have
πy ⊕ x = (001) ⊕ (001) ⊕ (010) = (010), (xP )T = (101), and
f(y, x) = (001)(010)⊕ (001)(010)2 ⊕ (010)5 = (010)⊕ (100)⊕
(111) = (001). Thus, the original codeword is v = (v1, v2, v3, v4) =
(001001, 010, 101, 001).

Suppose there is a single error e = (000010, 000, 000, 000)
in the received message. Therefore, the distorted message is ṽ =
(001011, 010, 101, 001). We have (ũ, ṽ3) = (πṽ1 ⊕ ṽ2, ṽ3) =
(000, 101).
SH = H(ũ, ṽ3)T = [PT |I](ũ, ṽ3)T = (101). After decoding

(ũ, ṽ3) using the Hamming decoder, we have ε = (010). And
u = πṽ1 ⊕ ũ ⊕ ε = (000) ⊕ (000) ⊕ (010) = (010). Then
syndrome SAMD = (001)(010) ⊕ (011)(010)2 ⊕ (010)5 = (011).
Since SAMD = εu2 = (010)(010)2 = 011, the error ε = (010) is
located at second bit of ỹ2.

The error is successfully corrected.
2) Estimations on a probability for the miscorrection: Suppose

v = (v1, v2, v3, v4), where v1 = y, v2 = πy ⊕ x, v3 = xP ,
v4 = f(y, x) is a codeword for an AMC code VAMC described
in Theorem 3.1. Let e = (e1, e2, e3, e4) be the error vector and
ṽ = {ṽ1, ṽ2, ṽ3, ṽ4} be the received (distorted) message, where
ṽi = vi ⊕ ei, i = 1, 2, 3, 4. Let e1 = (e11, e12, . . . , e1b), where
e1i ∈ GF (2m) for i ∈ {1, 2, . . . , b}. Denote the message after
correction, i.e., the output of the decoder by v̂ = (v̂1, v̂2, v̂3, v̂4),
where e1, ṽ1, v̂1 ∈ GF (2bm), e2, ṽ2, v̂2 ∈ GF (2m); e3, ṽ3,
v̂3 ∈ GF (2rH ); e4, ṽ4, v̂4 ∈ GF (2m).

We say that the error is miscorrected if c1 6= ĉ1. The miscorrection
probability can be defined as

Qmc(y, e) = |{x|v1 6= v̂1, e 6= 0}|2−m, (4)

where 2m is the number of possible values of x.
Theorem 3.2: Miscorrection Probability.
For the AMC code constructed by Theorem 3.1, the algorithm in

Section III-B1 has a miscorrection probability Qmc(y, e), at most
b(b+ 1)(2m − 2)−1, maxy;e 6=0Qmc(y, e) ≤ b(b+ 1)(2m − 2)−1.

The proof of this theorem is based on the analysis of the algorithm
presented in Section III-B for the case SH 6= 0, SH 6= hi for each i

(see Table I).
The AMC code for Theorem 3.1 can be extended to be a code with

Hamming distance 4 by adding one more overall parity bit after which
the code can correct single error and at the same time detect all double
errors without miscorrection of double errors. The error detection
and correction capabilities for the extended SEC-DED AMC code is
summarized in Table II.

TABLE II
ERROR DETECTION AND CORRECTION CAPABILITIES FOR SEC-DED

AMC CODE

Number Error Errors Errors in Errors
of errors in parity in v1 v2 and/or v3 in v4I

Single Detected Corrected DetectedII Detected
Double Detected. No miscorrection.

Multiple Detected with a probability 1−QVAMC .III

even No miscorrection.
Multiple Detected with a probability 1−Qmc.IV

odd Miscorrected with a probability Qmc.
I If errors are located only in the v4, no errors in the other parts

of codeword c, these errors will always be detected.
II Here if we assume there is only a single error, then when the

error is not in v1, it is in v2 or v3 and can be corrected.
III QVAMC is the maximum error masking probability.
QVAMC = (b+ 1)2−m

IV Qmc is the error miscorrection probability.
Qmc ≤ b(b+ 1)2−m

Remark 3.3: We note that the straightforward concatenation ap-
proach for construction of AMC codes with distance 3 based on
adding redundant bits to AMD code requires more redundancy than
codes constructed by Theorem 3.1.

For the straightforward concatenation approach (y, x, f(y, x), P ),
the redundant parts are x, f(y, x) and P , in which P is the Hamming
redundant part for (y, x, f(y, x)) as the information part. Which
means the redundant bits are 2m + plog2(mb + 2m + 1)q for the
straightforward concatenation approach. For the proposed architec-
ture, the redundant parts are π⊕x, xP and f(y, x), the redundant bits
number is 2m+plog2(m+1)q. For large b, the proposed architecture
will save much more area than the straightforward concatenation
approach.

C. Double Error Correction Algorithm and Estimations on the Prob-
ability of Miscorrection

1) Error correction algorithm: We note that the proposed AMC
codes with overall linear parity bit can be used to correct double
errors with a multiple-iteration algorithm. In this case the syndrome
SH for a Hamming code with distance 3 could be the sum of two
columns hi1 and hi2 of the check matrix H , where i1 and i2 indicate
the location of two errors.

For the proposed code, besides the syndrome for the Hamming
code, we may use the syndrome for the AMD code to verify the
location of the double error. After computing the syndrome, we can
try all pairs (i1, i2) such that hi1 +hi2 = SH and if for one of them
the corresponding AMD syndrome SAMD = 0, it indicates that the
double error is at the position i1 and i2.

We need to try all pairs of hi1 and hi2 with the same sum SH =
hi1 + hi2 . To achieve smaller number of iterations, we would like
to make the number of pairs as small as possible. For a non-prefect
Hamming code, we would like to select the check matrix H , such
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that

min
H

max
SH

|{(i1, i2)|SH = hi1 ⊕ hi2}|, (5)

where maxSH |{(i1, i2)|SH = hi1 ⊕ hi2}| indicates the maximum
possible number of iterations.

We are able to pre-compute a lookup table for a fixed H for a
Hamming code to simplify the locating of double errors for a given
SH .

Example 3.3: For a (11,7,3) shortened Hamming code with check
matrix

H =


1 0 1 0 1 0 1 0 1 0 1
1 1 0 0 1 1 0 0 1 1 0
0 0 0 0 1 1 1 1 0 0 0
1 1 1 1 0 0 0 0 0 0 0

.

we have maxSH |{(i1, i2)|SH = hi1 ⊕ hi2}| = 3.
For another (11,7,3) shortened Hamming code with check matrix

H =


0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 1 1 0
1 0 0 0 0 1 1 1 0 0 0
1 1 1 1 1 0 0 0 0 0 0

.

we have maxSH |{(i1, i2)|SH = hi1 ⊕ hi2}| = 2

Clearly, the second check matrix results in a smaller number of
iterations to find the corrected error vector.

There are five parts (with the overall linear parity bit) in every
codeword of the AMC code constructed as in Theorem 3.1, namely
y, πy ⊕ x, xP , f(y, x) and the overall parity. For a codeword v =
(v1, v2, v3, v4, v5) of the extended AMC code VAMC constructed in
Theorem 3.1, there are
v1 = y = (y1, y2, y3, . . . , yb); yi ∈ GF (2m), i = 1, 2, 3, . . . , b;
v2 = πy ⊕ x; πy, x, c2 ∈ GF (2m);
v3 = xP ; xP ∈ GF (2rH );
v4 = f(y, x); v4 ∈ GF (2m);
v5 = Π(v1, v2, v3, v4)

(x, xP ) is a codeword of a linear Hamming code with distance 3
and the check matrix is H = [PT |I], where PT is the transposed
matrix of P and I is an identity matrix. v5 is the overall linear parity
bit.

Denote the error vector by e = (e1, e2, e3, e4, e5) and received
message by ṽ = (ṽ1, ṽ2, ṽ3, ṽ4, ṽ5), where ṽi = vi ⊕ ei, i =
1, 2, 3, 4, 5 and e1, ṽ1 ∈ GF (2bm); e2, ṽ2 ∈ GF (2m); e3, ṽ3 ∈
GF (2rH ); e4, ṽ4 ∈ GF (2m); e5, ṽ5 ∈ GF (2). We assume that we
only need to correct the errors in the information part c1 = y. The
decoding procedure can be divided into the following steps.

1) if the the overall parity indicates that there are errors with even
multiplicities, go to step 2, otherwise it may be a single error.

2) calculate (ũ, ṽ3), where ũ = πṽ1 ⊕ ṽ2
3) calculate SH = H(ũ, ṽ3)T , the syndrome for the Hamming

code.
4) use SH as the input to a lookup table, then we can obtain some

pairs of error locators εi1 , and εi2where εi1 , εi2 ∈ GF (2m),
for some i1 and i2, such that SH = hi1 ⊕ hi2 , where hi1 and
hi2 are the ith1 and ith2 column respectively of the Hamming
check matrix H .
εi1 (as well as εi2 ) is an m-bit vector with 1 in the only ith1
(or ith2 ) bit and 0 in all other bits.
Let u = ũ ⊕ εi1 ⊕ εi2 = πṽ1 ⊕ ṽ2 ⊕ εi1 ⊕ εi2 , where u ∈
GF (2m).
If there are no such pairs in the look-up table, then no further
steps need to be performed. The error is not correctable by this
algorithm. Otherwise, go to the step 5.

5) calculate SAMD as follows

SAMD = f(ỹ, u)⊕ ṽ4
= f(y ⊕ e1, x⊕ πe1 ⊕ e2 ⊕ εi1 ⊕ εi2)⊕ f(y, x)⊕ e4.

(6)

If both SH = 0 and SAMD = 0, then there are no errors.
Therefore, as long as SAMD = 0, the correction procedure is
completed. Otherwise go to the next step.

6) Compare SAMD with εi1u
j1 ⊕ εi2u

j2 , for all j1, j2 ∈
{1, 2, 3, . . . , b}. If

SAMD = εi1u
i1 ⊕ εi2u

j2 (7)

for some j1, j2 ∈ {1, 2, 3, . . . , b}, then the yj1 , yj2 ∈ GF (2m)
of information ṽ1 ∈ GF (2bm) of the codeword are distorted
and the error in those parts are εi1 , εi2 ∈ GF (2m) respectively.
That means ŷj1 = ỹj1 ⊕ εi1 , and ŷj2 = ỹj2 ⊕ εi2 ,where
ŷj1 , ŷj2 ∈ GF (2m) are the corrected messages.

7) If no j1, j2 are found, go back to step 4, try another pair εi1 , εi2
for the same SH .

8) If no εi1 , εi2 satisfy (7), then the errors are not correctable for
this algorithm.

Example 3.4: Consider an extended proposed AMC code
with b = 2, m = 7. VH is a (11, 7, 3) Hamming code with

H =


0 1 0 1 1 0 1 1 0 0 0
0 1 1 0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0 0 1 0
1 1 1 1 0 0 0 0 0 0 1

.

The encoding function is f(y, x) = y1x⊕y2x2⊕x5. The codeword
is in the format of v = ((y1, y2), πy⊕x, xP, f(y, x), πv), where y1,
y2, x, f(y, x) ∈ GF (27), xP ∈ GF (24) and πv is the overall parity.
We select z7⊕z3⊕1 as the generating polynomial for GF (27), with
the rightmost bit being the least significant bit.

Suppose y1 = (0000110), y2 = (0000011), x = (0000010).
Then we have πy ⊕ x = (0000110) ⊕ (0000011) ⊕ (0000010) =
(0000111), xP = (0110), and f(y, x) = (0000110)(0000010) ⊕
(0000011)(0000010)2 ⊕ (0000010)5 = (0100000).

Thus, the original codeword is v = (v1, v2, v3, v4, v5) =
((0000110, 0000011), 0000111, 0110, 0100000, 1). Suppose there is
a double error e = ((0000001, 0001000), 0000000, 0000, 0000000)
in the received message. Therefore, the distorted message is
ṽ = ((0000111, 0001011), 0000111, 0110, 0100000, 1). We have
(ũ, ṽ3) = (πṽ1 ⊕ ṽ2, ṽ3) = (0001011, 0110). SH = H(ũ, ṽ3)T =
[PT |I](ũ, ṽ3)T = (0101)T . The overall pairty shows that there is an
error with a number of erroneous bits being even.

Since the rightmost bit is the least significant bit, we have the
following lookup table for error locations.

SH i1 i2

0101
1 4
2 7

Then let i1 = 1 and i2 = 4, then εi1 = (0000001) and εi2 =
(0001000). We have u = ũ⊕ εi1 ⊕ εi2 = (0000010), and SAMD =
ṽ4 ⊕ f(ṽ1, u) = (0100010). Let j1 = 1 and j2 = 2, we have
εi1u

j1 ⊕ εi2uj2 = (0000001)(0000010)⊕ (0001000)(0000100) =
(0100010).

Therefore we know that the error εi1 locates at y1 and εi2 locates
at y2. Actually, since u = (0000010), if i1 = 1 and i2 = 4, then
SAMD = (0100010) = εi1u

j1 + εi1u
j1 only if j1 = 1 and j2 =

2. If i1 = 2, i2 = 7, then εi1u
j1 + εi1u

j1 = ε2u
j1 + ε7u

j2 6=
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SAMD = (0100010) for any j1, j2. The corrected message is v̂ =
((0000110, 0000011), 0000111, 0110, 0100000, 1).

In this example, we need at least 7 clock cycles to find the double
error for the best case. Correspondingly, we will need 2 + 17∗ (14 +
3) = 291 cycles to locate the double error for the worst case.

2) Estimations on the probability of miscorrection: In this section
we estimate the upper bound for the probability that any error is
miscorrected into a double error in the information part.

Theorem 3.3: For the algorithm of double error correction pre-
sented in Section III-C, the miscorrection probability Qmc for any
given pair e and y will be Qmc ≤ (2m − 2)−1max(b2np(b +
1), 0.5b(b− 1)m(b+ 1)).

The estimated Qmc gives the upper bound for the miscorrection
probability. Note that, a double error in the information part may be
also miscorrected into another double error in the information part
with the same miscorrection probability.

Example 3.5: (Miscorrection Probability) For an extended pro-
posed AMC code with b = 2, m = 7, the check matrix for
the (11, 7, 3) Hamming code is the same as in Example 3.4. The
encoding function is f(y, x) = y1x⊕ y2x2 ⊕ x5, we have np = 2.
Since b2np(b+2) = 32 > 0.5b(b−1)m(b+2) = 28, the maximum
miscorrection probability is Qmc = (b2np(b+2))(2m−2)−1 = 32

126

for a given error e and a given information part y.
We conducted simulation experiments to estimate the probabilities

of miscorrecting one double error into another one for m = 2, b = 2
and H as defined above with np = 3. All possible combinations of
y and e are tested to see the number of random numbers x such that
the errors are miscorrected.

The real miscorrection probability is Qmc = 10
126
≈ 0.08, which is

smaller than the estimated miscorrection probability is Qmc = 32
126

.
Example 3.6: For an extended proposed AMC code with b = 4,

m = 17, the check matrix for the (22, 17, 3) Hamming code H =
[22, 21, · · · , 2, 1], and encoding function f(y, x) = y1x⊕y2x2⊕x5,
we have np = 6.

Since b2np(b + 2) = 576 ≤ 0.5b(b − 1)m(b + 2) = 612, the
maximum miscorrection probability is Qmc = (0.5b(b − 1)m(b +
2))(2m− 2)−1 = 612

217−2
for a given error e and a given information

part y.
A simulation was conducted to test the real miscorrection prob-

ability for a double error in the information part is miscorrected
into another double error in the information part. 10, 000 random
combinations of y and e have been tested to see the number of random
numbers x such that the errors are miscorrected.

The evaluated miscorrection probability is Qmc = 131
217−2

≈ 0.001,
which is again much smaller than the estimated miscorrection proba-
bility Qmc = 612

217−2
. We also note this miscorrection probability for

double errors is small and converges to 0 very fast as the number
of random bits m grows, thus the proposed code may be used for
double-error-correction.

We note that compared with the direct construction
(y, x, f(y, x), P ), the proposed architecture can protect the
f(y, x) at the same time while requires less redundant bits.

IV. HARDWARE DESIGN OF RELIABLE AND SECURE MEMORIES

BASED ON THE PROPOSED AMC CODES

A. Hardware implementation

Figure 2 presents the architecture for memories protected by the
proposed code in Theorem 3.1. In cryptographic applications, the m
random digits can be generated by a random number generator (RNG)
which is already integrated in most of the modern cryptographic de-
vices. During a WRITE operation, the encoder loads the information

bits and the random bits, then generates the redundant bits which are
saved in the redundant memory block. The redundant bits are split
into two parts, the linear part (πy⊕ x, xP ) which contains m+ rH
bits and the nonlinear part f(y, x) which contains m bits. During
a READ operation, the Error Correcting Network block computes
the syndrome of the retrieved data and executes the error correction
algorithm. If uncorrectable errors occur, ERR will be asserted and no
correction will be attempted.

Fig. 2. Memory protected by the proposed code (the memory, redundant
memory and the encoder may be under attack).

The encoder for the proposed code is presented in Figure 3. The
Πv is the overall parity check of the system. The inputs to the encoder
are the information bits y and the random number x. The encoder
for the proposed AMC code contains the Hamming encoder and the
AMD encoder to calculate f(y, x). The AMD encoder requires b
Galois field multipliers for GF (2m) to calculate the products of y
and xi and additional circuits to generate xi.

The proposed code with distance 4 is a SEC-DED code, and only
single error in the information part will be corrected. So if there
are multiple errors or the single-bit error is not in the information
part, the decoder sends the uncorrected messages to the output ports,
and set the error flag (ERR). (ERR should be asserted iff there are
uncorrectable errors.) The error flag signal will be used for the error
handling, which is discussed in previous part of this paper. If there are
even number errors, i.e., the overall parity bit c5 is zero, no correction
will be attempted.

To calculate the products between yi and xi in f(y, x), for i ∈
{1, 2, . . . , b}, b multipliers in GF (2m) are required. The computation
of εui requires another b multipliers. We note that multipliers can be
reused to reduce the area complexity at the cost of a larger decoding
latency as more clock cycles are required. However, due to the reused
hardware, a finite state machine should be introduced. If we do not
reuse the multipliers, the architecture could be pipelined.
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Fig. 3. Encoder without overall parity check bit for the proposed code

B. Comparison of the secure SEC-DED memories based on proposed
codes with memories based on the known codes

In this section we compare the security levels in terms of the
numbers of undetectable errors, sizes of security kernels and mis-
correction probabilities, for the proposed codes VAMC of distance
4 with additional overall check parity to the known nonlinear SEC-
DED robust codes (extended Vasil’ev and extended Phelps) presented
in [22]. The hardware overheads in terms of area, power and latency
for encoders and decoders of different codes are also compared in
this section. Transmission rates are also compared. All codes have
distance 4. All the robust codes compared are (39, 32, 4) codes [22].

For the proposed code, the number of information bits k = bm =
35, the number of random bits is m = 7, the degree of f(y, x) is
b = 5, the Hamming code used is a (11, 7, 3) Hamming code. Overall
parity is added to achieve Hamming distance four.

There are 35+7+7 = 49 bits for the AMD part of the codes. The
Hamming code used for error correction part is a (55, 49, 3) code.
Overall parity is also added to achieve Hamming distance four.

TABLE III
SIZES OF DETECTION KERNELS AND SECURITY KERNELS AND

MISCORRECTION PROBABILITIES FOR DIFFERENT CODES

Codes |KD|I |KV |II Qmc
III

Extended Hamming IV 232 32(232 − 1) 1
Extended Vasil’ev IV 26 ≈ 12(232 − 1) 0.5
Extended Phelps IV 227 32(227 − 1) 1/16

Proposed code 0 0 30/126
I |KD| is the number of undetectable errors (size of detec-

tion kernel)
II |KV | is the size of security kernel
III Qmc is the miscorrection probability
IV Data are obtained from [22]

Table III compares the sizes of detection kernels, i.e., the number of
undetected errors, the sizes of security kernels and the miscorrection
probability for the Hamming code, robust codes from [22], and the
extended proposed code VAMC with above parameters. It follows

from the table that the proposed code is the best one providing good
security for the strong attack model, as the code has zero size of
the security kernel. The miscorrection probability for the proposed
code is slightly worse than for the extended Phelps code, but it is
still better than for the extended Vasil’ev code [22] and the Hamming
code. Moreover, our code has no errors which are always undetected
or miscorrected.

The encoder and the decoder for the proposed codes have been
modelled in Verilog and synthesized in Cadence Encounter RTL
Compiler with the Nangate 45nm Opencell library version v2009 07.
The designs were placed and routed using Cadence Encounter. The
latencies, the area overhead and the power consumptions of the
encoders and the decoders were estimated using Concurrent Current
Source (CCS) model under typical operation condition assuming a
supply voltage of 1.1V and a temperature of 25 Celsius degree. The
synthesis results for the encoder and decoder are shown in Table IV
and Table V respectively. Those results were all obtained based on
same simulation condition.

TABLE IV
SYNTHESIS RESULTS FOR ENCODERS

Architectures
Latency Area Power

(ns) (um2) (mW )
Extended Hamming I 0.290 282.2 0.2898
Extended Vasil’ev I 0.367 296.1 0.2916
Extended Phelps I 0.429 383.0 0.4728

Proposed code
1.000 2246.6 3.444

(smaller latency)
Proposed code

1.860 1573.9 1.044
(lower power)

I Data for the robust codes and the extended Ham-
ming code are obtained from [22]

From Table IV, we can see that comparing to the extended Phelps
code, the extended AMC code with distance four requires at least
161% increase in the latency. When optimizing the area and power,
the latency increases to 433% of Extended Phelps Code encoder.
The encoder of the extended proposed code also requires at least
310% more area and 121% more power than the encoder of the
Extended Phelps code. This is the cost required to provide for the
strong security.

We implemented the decoders for the proposed SEC-DED AMC
codes with three profiles. One emphasizes the overall latency, another
forces on the clock speed, and the third one requires the smallest area
as well as power. To achieve the fastest clock speed, the decoder is
pipelined. From Table V, we see that the smallest clock cycle of
the decoder of our code is 1.096 ns, which is 64% more than the
extended Phelps code, while 130% more area and 370% more power
are used. On the other hand, sacrificing the clock speed, the decoder
requires only 58% more area and 30% more power than the extended
Phelps code. With 80% more area and 120% more power, we note
that we can achieve the smallest overall latency, which is 1.971 ns.

From the results presented in this section one can see that the
proposed AMC codes provide for better security (see Table III) but
require larger overhead in latency, area and power (see Table III and
Table II) than the known SEC codes (Hamming, Vasil’ev and Phelps).

C. Case studies for the proposed code

Figure 4 shows the transmission rate for different numbers of
information bits for the extended Hamming code which is the same
as the extended robust codes from [22] and the proposed SEC-DED
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TABLE V
SYNTHESIS RESULTS FOR DECODERS

Architectures
Latency Area Power

(ns) (um2) (mW )
Extended Hamming I 0.538 620.3 0.7119
Extended Vasil’ev I 0.652 763.2 0.8340
Extended Phelps I 0.670 1799.8 1.774

Proposed code
1.971 3272.9 4.056

(smaller latency)
Proposed code

1.096×2II 4215.6 8.49
(faster clock)

Proposed code
2.000×2II 2846.7 2.312

(lower power)
Double error correction

0.917 11669.7 4.402
for Proposed Code

I Data for the robust codes and the extended Hamming code
are obtained from [22]

II ”×2” means there are two pipeline stages and the number
in front indicates the clock speed.

AMC codes with distance 4 with three different parameter sets. One
code uses m = 7 random bits, and (11,7,3) Hamming code. For
another proposed code, we use m = 17 random bits and (22,17,3)
Hamming code. The third proposed code use m = 19 random bits
and (24,19,3) Hamming code. (We need that 2m−1 will be a prime.)
The degree b of nonlinear function of the proposed codes varies with
the number of information bits.

Fig. 4. Memory Overhead

The proposed codes require more redundant bits than the extended
Hamming code, however as the number of information bits increases,
the transmission rate of the proposed codes dramatically increases,
since the number of redundant bits for the proposed codes depends
on only m and does not depend on the number of information bits
k = bm as b increases. As k goes to infinity, the transmission rate
of the proposed codes approaches one.

In order to decrease the probability for the missing, we can increase
the number of random bits m. Moreover, in order to obtain a reason-
able transmission rate, the degree b of the nonlinear function f(y, x)
should also be increased. Since QVAMC = (b+ 1)(2m − 2)−1, the
denominator increases exponentially with m, while the numerator
increase linearly with b.

In the remainder of this section we consider the problem of the
optimal selection of parameters m and b for a given number k of
information bits for the proposed codes.

With the same m, as b increases, additional multipliers are required
for f(y, x) and the complexity for the encoder and the decoder
are increasing. Additionally, an increase in the length k of the
information part will result in an increase of the probability of
multiple-bit random errors, which diminishes utility of SEC-DED
codes. Therefore when choosing the parameters of the code, we
should balance the transmission rate and the encoder and decoder’s
hardware complexities, security and reliability demands.

We propose the codes balancing these secure and reliable demands,
with parameters listed in Table VI.

TABLE VI
PARAMETERS FOR THE PROPOSED CODES

k m m+ rH b QVAMC Qmc

68 17 22 4 6(217 − 2)−1 30(217 − 2)−1

136 17 22 8 10(217 − 2)−1 90(217 − 2)−1

204 17 22 12 14(217 − 2)−1 182(217 − 2)−1

272 17 22 16 18(217 − 2)−1 306(217 − 2)−1

76 19 24 4 6(219 − 2)−1 30(219 − 2)−1

133 19 24 7 8(219 − 2)−1 56(219 − 2)−1

209 19 24 11 12(219 − 2)−1 132(219 − 2)−1

266 19 24 14 16(219 − 2)−1 240(219 − 2)−1

The hardware overhead for the encoders and the decoders for those
SEC-DED codes are shown in Table VII and Table VIII respectively,
under the same simulation condition as in Section IV-B. Note that the
architectures here are not pipelined. (The pipelined version may use
faster clock.) And we do not use the Horner scheme to implement
the AMD encoding functions in order to achieve a smaller overall
latency. We may also sacrifice the area and power to achieve a smaller
latency.

TABLE VII
ENCODER OVERHEAD FOR THE PROPOSED CODES

Parameters of the codes
Latency Area Power

(ns) (um2) (mW )
m=17, b=4 2.623 5495 1.509
m=17, b=8 4.375 11375.2 3.968
m=17, b=12 4.403 16709.6 7.145
m=17, b=16 4.799 23578.8 11.23
m=19, b=4 3.181 7013.6 2.522
m=19, b=7 4.914 13788.1 6.052
m=19, b=11 4.945 20253.5 10.898
m=19, b=14 5.419 28587.9 17.128

Additionally, we note that the data output from the memory can
be directly forwarded to other parts of the system, before the decoder
generates its outputs. When errors are detected or corrected by the
decoder, the processor can be stalled and the data can be re-fetched
from the decoder. In this case, when no errors occur, the decoder
does not affect the performance of the system in term of the latency.
We may take advantage of this when our code is used for a memory,
when the random access is frequently required.

V. CONCLUSIONS

In this paper, we show a reliable and secure memory architecture
based on robust algebraic manipulation correction (AMC) codes.
We describe the constructions of robust AMC codes, estimate their
parameters (error detection and/or correction probabilities, etc) and
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TABLE VIII
DECODER OVERHEAD FOR THE PROPOSED CODES

Parameters of the codes
Latency Area Power

(ns) (um2) (mW )
m=17, b=4 5.421 9040 1.761
m=17, b=8 7.455 17376 4.411

m=17, b=12 7.594 26389 7.487
m=17, b=16 8.127 35446 11.25
m=19, b=4 6.051 10500 2.372
m=19, b=7 6.666 19609 5.072

m=19, b=11 7.565 30568 9.68
m=19, b=14 8.886 38363 12.18

present the robust error correction algorithm for these codes. For
the presented codes any error for any user defined message can be
detected with a probability exponentially converging to one. Any
repeating error (error with a high laziness) can be corrected with
a probability converging to one as PR or the number of redundant
bits r grows. The area, power consumption and the latency for
the encoder and the syndrome computation circuit are studied. The
described architecture is suitable for the protection of the most
security/reliability critical part (which is usually a small portion of
the system) of the memory in many applications, where the error
model is unpredictable (e.g., memories in cryptographic devices that
may suffer from fault injection attacks) or the multi-bit error rate is
high or difficult to estimate (e.g., nano-scale memories).
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Abstract—Robust and partially robust codes are used in
cryptographic devices for detecting active side channel attacks
on the hardware. The codes are usually designed for uniformly
distributed codewords. In practice, however, there are codewords
that are much more likely to appear than others. This paper
addresses the question of how good are existing robust codesin
this context. The worst case scenario is analyzed and a method
that allows the designer to avoid this scenario with a relatively
low cost is presented.

Index Terms—Robust codes; security; undetected error proba-
bility; puncturing; fault analysis attacks; non-uniform distribution;

I. I NTRODUCTION

The security of cryptographic devices is threatened by
fault injection attacks on the hardware. By injecting faults
an adversary can obtain secret or private information that is
stored in the device. Modern fault injection techniques allow
an adversary to introduce faults at any physical point of the
circuitry. A fault can flip bits, stuck a gate at a certain value,
or change data on wires [2], [8], [10]. In turn, an attack can be
mathematically modeled as an additive (i.e., symmetric) error
that distorts the correct output of that circuit. Unlike random
errors, i.e., errors caused by nature, an error induced by an
adversary can be of any multiplicity.

Fault injection attacks can be detected with relatively high
probability by security-oriented codes. It is convenient to
classify fault injection attacks by their strength; In weak
attacks the adversarycannot control which codeword will
appear at the output of the circuitry, while instrong attacks, he
can determine the outputs by choosing the inputs.A schematic
architecture, which provides robustness against weak attacks
is shown in Fig. 1; Its equivalent mathematical model is shown
in Fig. 2.

Codes for detecting weak attacks, e.g., [1], [3]–[6], [11],
are usually designed under the assumption that the codewords
are equally likely to occur. However, when the source of the
information is a computation channel, i.e., a combinatorial
logic or a sequential machine, this assumption is almost
always violated. Indeed, the distribution of vectors applied
at run-time to the inputs of the combinational portion of a
sequential machine is highly skewed due to the fact that some
state transitions are more common than others and that some
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Fig. 1. A schematic architecture of a circuit component protected by
a systematic security-oriented code. The shaded area is accessible to the
attacker.
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Fig. 2. Mathematical model of a circuit component protectedby a systematic
security-oriented code.

input combinations are invalid and hence cannot occur. The
distribution of the outputs of arithmetic modules is also highly
non-uniform. For example, it is more likely to have a ’0’ at the
output of a multiplier than other values. In arithmetic modules
and in sequential state machines, the probability of havinga
certain output can be easily computed. A judicious attacker
can use this information to choose an error that is hardly (if
ever) detected.

This paper addresses two questions: a) how good are the
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known robust codes, and in particular the Quadratic-Sum
codes and codes derived from the cubic code, against an
adversary that knows the distribution of the codewords, and
b) is it possible to reduce the error masking probability of the
code without adding more redundancy?

The remaining of the paper is organized as follows. Sec-
tion II briefly describes security oriented codes and presents
the Punctured-Cubic and the Quadratic-Sum codes. Section
III analyzes the worst case scenario. Section IV introduces
methods to avoid this scenario by mapping the set of most
probable words to a predefined set. An upper bound on the
error masking probability when using this mapping is also
presented. Section V concludes the paper.

II. PRELIMINARIES - SECURITY ORIENTED CODES

A binary codeC(n, k) is a subset of size2k of an n-
dimensional binary vector spaceFn

2 , (F2 = GF (2)). In
conventional coding theory, codes are designed to provide
reliability againstrandom errors, i.e., errors of low multiplic-
ity. The codes are therefore characterized by their rate (i.e.,
k/n), the minimal distance between the codewords, and the
undetected (random) error probability. All these parameters
are determined by the chosen code; They are indifferent to
the encoding scheme.

In cases where the reliability of the system is the main
concern, asystematic code, that is, a code in which the
information word is embedded in the codeword in its original
form, has an advantage over non-systematic codes since it
simplifies the decoding procedure and usually has a lower
implementation cost. However, in security oriented coding,
the most important property of a code is its robustness, i.e its
ability to provide immunity against weak attacks. As we show
next, when some codewords are more probable to appear than
others, the encoding (i.e., the mapping between an information
word m ∈ F

k
2 to a codewordc ∈ F

n
2 ) plays a crucial role in

determining the robustness of a code.

A. Definition of robustness

Let C be a code and denote byp(c) is the probability that
the codewordc ∈ C will be used. The robustness ofC is
measured in terms of its undetected error probability, which
is also referred to as theerror masking probability. The error
masking probability is the probability,Q(e), that a given error
e ∈ F

n
2 will map a codeword onto another codeword, i.e.,

Q(e) ≡
∑

c∈C

p(c)δ(c⊕ e) (1)

whereδ(z) is the characteristic function of the code,δ(z) = 1
if z ∈ C and it equals0 otherwise.

When the adversary induces an errore one of the following
three scenarios may happen:

1) The error will always be detected (Q(e) = 0). The set
of errors of this type is denoted byEa.

2) The error will never be detected (Q(e) = 1). Errors that
are never detected form a group. The group, denoted by
Kd, is called the Kernel of the code.

Fig. 3. The errore1 ∈ Ea is always detected sinceC ∩ {e1 ⊕ C} = ∅.
The errore2 ∈ Kd is never detected sinceC = {e2 ⊕C}, ande3 is detected
with probability Q(e3) = |C ∩ {e3 ⊕ C}|/|C|.

3) The error will be detected with probability0 < 1 −
Q(e) < 1. That is, there exists at least one codeword that
detects the error, and there exists at least one codewords
that masks it.

The three scenarios are illustrated in Fig. 3.

Definition 1 (Robust and partially robust codes): Robust
codesare codes for which the dimension ofKd equals zero,
that is, no attack is masked.Partially robust codes are codes
for which the dimension ofKd is greater than zero but less
thank.

B. The error masking equation

Let C(n, k) be a binary systematic code of lengthn = k+
r and size2k. A codewordc ∈ C(n, k) has two parts: an
information part denoted byx and a redundancy partw, which
is a function ofx. Each part can be referred to as an element
of a finite field or as a vector over a finite field. For example,
the information partx can be considered as a binary vector
in k-dimensional spaceFk

2 ; It can be also referred to as an
element of the finite fieldF2k = GF (2k). For example, the
expressionPx3 whereP is a r× k matrix, has to be read as:
refer tox as an element inF2k and computex3, then refer to
the result as a vector inFk

2 and multiply it by the matrixP ,
the outcome of this operation is an element inF2r .

Let c = (x,w) ∈ C be a codeword, wherew = w(x). Let
e = (ex, ew) be a nonzero error vector,ex ∈ F2k , ew ∈ F2r .
An error is undetected (masked) by the codewordc if c⊕e ∈ C.
Equivalently,e is masked byc if

w(x ⊕ ex) = w(x) ⊕ ew. (2)

Equation (2) is called theerror masking equationfor
systematic codes. The number of solutions (x’s) to (2) and
the probability of each determineQ(e). Namely, letX(e) be
the set ofx’s that satisfy this equation,

X(e) = {x|c(x) ⊕ e ∈ C}. (3)

Then,
Q(e) =

∑

x∈X(e)

p(x), (4)

wherep(x) is the probability of the codewordc = (x,w), i.e.,
p(x) = p(c).
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The error masking probabilities ofC and error masking
probabilities of a coset ofC are identical. Therefore, without
loss of generality, we assume that0 = (0, 0) ∈ C. Conse-
quently,

Property 1: If 0 ∈ X(e), thene ∈ C.

The error masking probability for uniformly distributed
codewords is lower bounded by [6],

Q(e) ≥ max(2/2k, 2k/2n). (5)

Codes that achieve this bound are calledoptimum codes.

C. The Punctured-Cubic code and the Quadratic-Sum code

In this paper, we analyze two robust codes, the Punctured-
Cubic (PC) code derived from the cubic(x, x3) code by
deleting some redundancy bits, and the Quadratic-Sum (QS)
code. Both codes are robustsystematiccodes of rate higher
than one-half [1], [4], [7]. Moreover, both codes are optimum
or close to optimum.

Construction 1 (Punctured-Cubic code [1]):
Let P be a binaryr × k matrix of rankr ≤ k. The code

C = {(x,w) : x ∈ F2k , w = Px3 ∈ F2r} (6)

is called a Punctured CubicC(k + r, k) code.

The error masking equation of the PC code is

P (x⊕ ex)
3 = Px3 ⊕ ew. (7)

Construction 2 (Quadratic-Sum code [4]):
Let k = 2sr andx = (x1, x2, · · ·x2s), wherexi ∈ F2r for
1 ≤ i ≤ 2s. The code

C = {(x,w) : x ∈ F2k , w = x1x2 ⊕ · · · ⊕ x2s−1x2s ∈ F2r}
(8)

is called a Quadratic-SumC(k + r, k) code.

The error masking equation for the QS code is
s

∑

i=1

(x2i−1 ⊕ ex,2i−1)(x2i ⊕ ex,2i) =

s
∑

i=1

x2i−1x2i ⊕ ew.

(9)

D. The robustness of the PC and QS codes under uniform
distribution

If the codewords are uniformly distributed, then each code-
word may appear on the output with probability of1/|C|. The
worst case error masking probability under uniform distribu-
tion of the codewords is denoted byQmc. The subscriptmc
stands for maximal correlation, since in this case

Q(e) =
R(e)

R(0)
, (10)

and,

Qmc =
maxe6=0 R(e)

R(0)
, (11)
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Fig. 4. A mathematical model of a computation channel protected by a
one-to-one mappingϕ followed by a systematic error detecting codeC.

whereR is the autocorrelation function ofδ, that is,

R(e) =
∑

z∈F
n

2

δ(z)δ(z ⊕ e). (12)

The error masking probabilities of the PC and QS codes are
the following:

Theorem 1 ( [7]): Let C be a PC code defined by a binary
r× k matrix P of rank r > 1, Then the kernel of the code is
of dimension0. For odd values ofk, Qmc = 2−r+1. For even
values ofk, there existP matrices for whichQmc = 2−r.

Theorem 2 ( [4]): Let C be a QS code. Then the kernel of
the code is of dimension0. For k = 2sr, the error masking
probability isQmc = 2−r.

III. T HE WORST CASE SCENARIO

Consider a computation channel that produces each cycle
an output vectorm ∈ F

k
2 . Let ϕ be a one to one mapping

betweenm and an information wordx, i.e., x = ϕ(m). To
provide immunity, each cycle a codewordc = (x,w(x)) is
generated from the information wordx (as shown in Fig. 4).
The probability that a codewordc(x) = c(ϕ(m)) is used
equals to the probability that the outputm is produced, that
is,

p(c) = p(x) = p(m). (13)

Since for a given code,X(e) is fixed, and

Q(e) =
∑

x∈X(e)

p(x) =
∑

m, ϕ(m)∈X(e)

p(m), (14)

the error masking probability under non-uniform distribution
of the outputs depends solely onϕ.

The following lemma provides a lower bound on the error
masking probability when the worstϕ is used. In the next
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section we show that if one uses aϕ that maps the most
probable vectorsm to a predefinedsetS, s/he can reduce the
error masking probabilities.

Without loss of generality assume that

1 ≥ p(m1) ≥ p(m2) ≥ · · · ≥ p(m2k) ≥ 0 (15)

and
2k
∑

i=1

p(mi) = 1. (16)

Consider the mappingxi = mi. For this mapping we have,

1 ≥ p(x1) ≥ p(x2) ≥ · · · ≥ p(x2k) ≥ 0. (17)

Denote byP (S) the accumulated probability
∑

xi∈S p(xi) and
assume that there is a setS ⊆ F

k
2 for which P (C \ S) is

negligible. In the worst case scenario there exists an errore
such that eitherS ⊆ X(e) or X(e) ⊂ S. Namely,

Lemma 1:The worst case error masking probability,Qwc,
is lower bounded by

Qwc ≥











P (S) |S| ≤ Qmc2
k

Qmc2
k

|S| P (S) otherwise
(18)

Example 1:Let k = 3 and r = 1. The eight codewords
of the corresponding PC code (represented by their integer
values) are

(0, 0), (1, 0), (2, 0), (3, 1), (4, 1), (5, 1), (6, 1), (7, 0). (19)

Table I shows theX(e) of each error vector.

TABLE I
THE ERROR VECTORS AND THEIR MASKING CODEWORDS

e |X(e)| X(e)
(0,0) 8 all x’s
(0,1) 0 -
(1,0) 4 0,1,4,5
(1,1) 4 2,3,6,7
(2,0) 4 0,2,4,6
(2,1) 4 1,3,5,7
(3,0) 4 1,2,5,6
(3,1) 4 0,3,4,7
(4,0) 0 -
(4,1) 8 all x’s
(5,0) 4 2,3,6,7
(5,1) 4 0,1,4,5
(6,0) 4 1,3,5,7
(6,1) 4 0,2,4,6
(7,0) 4 0,3,4,7
(7,1) 4 1,2,5,6

The rows of the table are written in pairs. In each pair, one
error vector is a codeword and the second is a non-codeword.
By Prop. 1, an error vector whoseX(e) contains the all-zero
word, is a codeword. It is clear from the table that the code
is partially robust since the non-zero error(4, 1) is masked
by all codewords. However, all the remaining error vectors
are either always detected or they are masked by half of the
codewords. Therefore, for uniformly distributed codewords,

Qmc(e) = 0.5. Although this paper deals with robust codes, to
simplify the presentation, we assume that the adversary cannot
induce the error(4, 1). This assumption allows us to use the
C(4, 3) partially robust PC code.

Assume now that them’s are not uniformly distributed,

p(m) =







(1− ǫ)/5 m ∈ {2, 3, 4, 6, 7}

ǫ/3 otherwise
(20)

If no mapping is used (i.e.,xi = mi), then a judicious at-
tacker would apply the error(5, 0) whose corresponding error
masking probability is the maximal,Q((5, 0)) = 4

5 (1 − ǫ).
However, a Gray code can reduce the worst case error masking
probability. A Gray code mapsm = (mk−1, . . .m0) to x =
(xk−1, . . . x0) as follows:xi = mi+1⊕mi for i = 0, . . . k−1
where mk = 0. In our case, the highly probablem’s are
mapped to the setS = {2, 3, 4, 5, 6}, and the worst case error
masking probability becomes35 (1 − ǫ). As we show next, no
better mapping can be found.

IV. CONSTRUCTIVE UPPER BOUNDS ON THE ERROR

MASKING PROBABILITY

For uniformly distributed codewords, the error masking
probability of the PC and the QS codes is upper bounded
by Qmc. Therefore, any error vector is masked by at most
2kQmc codewords. Consequently, if the size ofS, is greater
than2kQmc, then any error will be detected with probability
of at least

1− 2kQmc

|S| P (S) > 0. (21)

Obviously, if the size ofS is smaller than that, the probability
that the error will be masked increases. In what follows we
discuss the case where

|S| ≤ min
e6=0

|X(e)|, (22)

and present mappings for which any nonzero error will never
be masked.

A. Sufficient conditions forQ < 1

In cases where|S| = 2, no mapping can help; An adversary
who knows the two most probable outputs, saym1 andm2,
and the mappingϕ may choose an error

e = c(ϕ(m1))⊕ c(ϕ(m2)), (23)

for which Q(e) ≥ P (S) = 1− ǫ.
The following theorem suggests a lower bound on the size

of S for which there exists a mapping that can reduceQ(e).

Theorem 3:Let C be a PC or a QS code. Then, there exists
at least one setS of sizes,

k + 1

−log2(Qmc)
+ 1 ≤ s ≤ min(2kQmc, 2

k−2), (24)

such thatS \X(e) 6= φ for all non-zeroe.
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Example 2:Let k = 16 and r = 4. Assume that twenty
vectors (out of the216) may appear with probability1− ǫ at
the output of the device to be protected. Since there exists an
error for whichmin(|X(e)|) = 212, and 20 << 212, in the
worst case scenario the error will not be noticed. For a PC
code we have,

16 + 1

4− 1
+ 1 ≤ |S| = 20 ≤ min(213, 216−2). (25)

therefore, by Theorem 3, there exist a subsetS of twenty
vectors such that any error is detected with probability of at
least 1−ǫ

20 .
Although Th. 3 states that it is possible to find a set that

can detect any error, it does not provide an efficient way to
do so. In the following sections we introduce two mappings,
i.e., two sets, for which any non-zero error can be detected.

B. Generalized Hamming ball mapping

We define a generalized Hamming ball as follows:
Definition 2: Let V = {vi}ui=1 ⊂ F

k
2 be an arbitrary set

of u, u ≤ k, linearly independent vectors. A generalized
Hamming ballB(u,w) ⊆ F

k
2 is a set (or a coset of a set)

that consists of the vectors
{

u
∑

i=1

aivi | a = (au, . . . a1) ∈ F
u
2 , wtH(a) ≤ w

}

(26)

wherewtH(a) stands for the Hamming weight ofa.

Theorem 4:Let C be a PC or a QS code. LetS ⊆ B(u,w)

whereu ≥ k + log2(Qmc) + 1 andw is the smallest integer
such that

∑w

j=0

(

u
j

)

≥ |S|. Then, the codeC can detect all the
nonzero errors with probability greater or equal to

|S| −
∑w

j=0

(

k+log2(Qmc)
j

)

|S| . (27)

The proof of Theorem 4 follows directly from the fact that
the PC code and the QS code have the following property:

Theorem 5:Let C be a PC or a QS code. Then,X(e) is a
subspace iffe belongs toC and a coset otherwise.

Corollary 1: The minimal size of a set that can detect any
non-zero errore with Q(e) > 0 is greater than two and less
or equal tok + log2(Qmc) + 2.

Example 3:Let k = 16 and r = 4. Assume that650
output vectors (out of the216 possible combinations) occur
with probability of 1− ǫ. Since for a PC code,

|X(e)| ≥ 2k−r = 212 > 650, (28)

in the worst case scenario, there may be an error that will
be masked with probability greater than1 − ǫ. However, for
w = 3 andu = 16 we have

|B(16,3)| =
3

∑

j=0

(

16

j

)

= 697. (29)
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Fig. 5. The probability that a random mapping for a QS code with k = 6
and r = 3 will provide a maximal error masking probability smaller than
Q(e) for ten probability distributions having|S| = 7. The red dots denote
Q(e) achieved by Const. 3

Therefore, by mapping these650 m’s to a setS ⊂ B(16,3) that
consists of binary vectors of Hamming weight less or equal
to three, one can reduce the error masking probability to

Q(e) ≤ |S ∩X(e)|
|S| ≤

∑3
j=0

(

k−r+1
j

)

|S| = 0.58. (30)

Note that if|S| > k, then the size ofS∩X(e) decreases as
the number of linearly independent vectorsu increases. More-
over, as|S| increases, the requiredw increases. The following
construction, presented in [9], is not optimal, however, since it
uses binary vectors of weight one, it is simple to implement.

Construction 3 ( [9]): Let p(m1) ≥ p(m2) ≥ · · · ≥
p(m2k) Assign to eachmi a binary vectorxi such that the
Hamming weight ofxi is smaller or equal to the Hamming
weight of xj for all i < j.

Note that if, for example,k = 6, r = 3 and |S| = 7 with
the probability distribution

p(m) =

{

1−ǫ
|S| 0 ≤ m ≤ 6

ǫ
2k−|S|

m > 6
, (31)

then there exist other mappings, which achieve smallerQ(e)’s
than [9]:

S = {0, 1, 2, 4, 8, 16, 32} [9] → Q(e) ≤ 0.5714,
S = {0, 10, 21, 27, 50, 55, 62} → Q(e) ≤ 0.4286.

(32)
Although the mapping in [9] is not optimal, it is much
better than a random mapping. Fig. 5 shows, for ten different
probability distributions having|S| = 7, the probability that
a random mapping will provide a maximal error masking
probability smaller thanQ(e). The red dots in the figure denote
the error masking probabilityQ(e) achieved by the suggested
mapping. Refer only to thex-coordinate of the dots. They-
coordinate has no meaning, the star is placed on the graph just
for convenience. On average this mapping hasQ(e) = 0.39.
The probability that a random mapping will provide error
masking probability smaller than that is0.18.
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C. Robust-code based mapping

The following theorem states that if the elements ofS are
the codewords of a robust code, then a nonzero error is never
masked.

Theorem 6:Let C be a PC or a QS code of dimensionk,
r redundancy bits, and error masking probabilityQmc. Let S
be a robust code of lengtĥn = k, dimensionk̂ = u and error
masking probabilityQ̂mc. Then, the error masking probability
of C is

Q(e) ≤
√

2Q̂mcQmc2k−u. (33)

Corollary 2: Let C be a PC or a QS code of dimension
k, r redundancy bits, and error masking probabilityQmc. Let
S be a subset of a robust code of lengthk, dimensionu =
⌈log2(|S|)⌉ and error masking probabilitŷQmc. Then,

Q(e) ≤

√

Qmc2k(Q̂mc2u + 1)

|S| . (34)

Corollary 3: Let C be a PC or a QS code of dimensionk,
r redundancy bits. LetS be a QS code of dimensionu and
k − u redundancy bits. Then we have,

Q(e) ≤
√

2 · 2−(k−u) · 2−r+1 · 2k−u ≤ 2
−r+2

2 . (35)

Example 4:As before, letk = 16, r = 4 and assume that
400 output vectors may appear with probability1 − ǫ. Here
again, in the worst case scenario we haveQ(e) ≥ 1−ǫ. Define
S to be a subset of aC(n̂ = k = 16, k̂ = u = 9, r̂ = k−u = 5)
PC code withQ̂mc = 2−5+1. Then,

Q(e) ≤
√
2 · 2−4 · 2−3 · 25 = 0.707. (36)

Note that in this case, the construction suggested in Th. 4
providesQ(e) ≤ 378

400 = 0.945.

The following example shows the relation between the
three upper bounds on the error masking probability when
a mapping is applied.

Example 5 (Concluding example):Consider a PC code of
dimensionk = 16 and r = 4 redundancy bits. Assume that
the |S| most probable words are mapped to a setS, and that

p(x) =

{

1−ǫ
|S| x ∈ S

ǫ
2k−|S|

x /∈ S
. (37)

The efficiency of the mapping, i.e., the error masking
probabilities that can be achieved by using the suggested
mappings, is shown in Fig. 6.

The X-axis is the size of S and the Y -axis is
maxe6=0(Q(e)). The black line represents a lower bound on
worst case scenario (Lemma 1). The other lines represent
upper bounds onQ(e). The red line is the bound presented in
Theorem 4, the blue line is the bound presented in Theorem
3, and the green line is the bound in Corollary 2.
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Fig. 6. Error masking probability of punctured cubic code with k = 16 and
r = 4 as a function of|S|.

V. CONCLUSIONS

The Punctured-Cubic code and the Quadratic-Sum code are
systematic robust codes designed for uniformly distributed
codewords. The codes can detect any error with non-zero
probability regardless its multiplicity. In cases where the
codewords are not equally likely to appear, the performance
of the codes degrades significantly and the robustness may
vanish. The paper addresses this problem. It is shown that by
mapping the most probable data patterns to a predefined set
before the encoding, it is possible to significantly reduce the
error masking probability and maintain the robustness of the
codes.
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Abstract—In the current industrial practice, there is an in-
creasing demand for an effective communication infrastructure
to interconnect several heterogeneous systems. The effectiveness
of the adopted communication infrastructure is defined in terms
of the provided reliability and timeliness despite manifestations of
failures within the network. Current approaches do not address
both these aspects [7], but one aspect is generally assured at the
expense of the other. Our driving idea is to take the best solution
to achieve reliability and to improve its achievable performance
so as to guarantee timely deliveries. Specifically, we propose
to introduce determinism within the gossiping approach and to
combine push and pull schemes. We have experimentally assessed
such solutions through simulations, so as to find which is the one
that best achieves both reliability and timeliness.

Index Terms—Publish/Subscribe Middleware; Reliable Event
Notification; Gossiping

I. INTRODUCTION

Current software systems are characterized by a progressive
increase in their scale and by a high demand for cooperation
among their constituents, so as to adopt a “system of systems”
perspective. The current literature is rich in practical examples
of this novel generation of large-scale systems. The most
demanding challenge that they have to face is to be able
to interconnect several heterogeneous components in a large-
scale setting, where the system is not limited within rack
cabinets but spans over different distinct geographical sites
and administrative domains. Therefore, the key component in
these systems is the middleware solution adopted to enable
the communication among their distributed components. Due
to the required cooperation, the communication patterns that
we can infer by analyzing the data flows within these systems
do not consist of a naive request-respond communication style,
where there is a client invoking a service upon a server and
waiting for the result of such invocation. In most cases, we
find a publish/subscribe communication style [1], where one,
or even more, publisher asynchronously provides data to a set
of interested subscribers.

The applications running on top of these systems present
very strict non-functional requirements, e.g., applications run-
ning on top of Grid or Cloud Computing typically can be
assumed as business-critical, while the ones running on top of
LCCI are mission-critical. Such application-level requirements
are translated down to the middleware level in a set of
proper constraints on the offered Quality-of-Service (QoS) in
terms of reliability and timeliness. When considering large-
scale systems, it is not practical to deploy a dedicated and

proprietary network among interacting components. Therefore,
communication can be only realized by means of the avail-
able IP-based network infrastructures, such as the Internet.
However, such networks are typically affected by routing
phenomena and failures that compromise the correctness of the
packet delivery [2], which have a negative impact on the QoS
experienced by users. Therefore, the adopted middleware has
to be equipped with proper reliability enforcement methods to
face such failures. In addition, the time to deliver information
matters, since a message delivered too late can be useless or
even dangerous for the system. Current approaches are not able
to provide both reliability and timeliness, since recovering data
dropped by the network typically implies some performance
fluctuations. For a concrete example, a well-known approach
called Gossiping [3] provides a high degree of reliability,
while exhibiting a considerable worsening in performance. On
the contrary, a distributed coding approach, called Network
Coding [4], can present a more stable and predictable latency,
while offering lower reliability guarantees.

Our driving idea is to select the best available solution to
provide a high degree of reliability and to propose suitable
methods to reduce its performance deficiency, so as to meet
both reliability and timeliness. In a previous preliminary and
theoretical work [5], we have shown that it is possible to
combine the two mentioned approaches to obtain the best from
both, i.e., high reliability with no severe performance penalty.
Such an intuition has been further proved by an experimental
campaign in [6]. This previous work presents a significant
flaw: the random nature of gossiping causes a high number of
un-needed messages being exchanged among the nodes. This
implies both a considerable traffic load on the network, which
can cause congestion phenomena, and a non-optimal recovery
time of lost data by wasting gossip messages sent towards
nodes that do not require them. Our solution is to limit such
random behaviour by forcing the protocol to prefer gossiping
only with the nodes requiring a recovery action.

This paper is structured as follows. Section II provides
a background on the current literature and describes our
approach in combining coding and gossiping by highlighting
open issues that we left untreated in our previous works.
Section III presents our solution to introduce determinism,
and Section IV proves the quality of our approach by means
of simulations run in OMNET++. Last, we conclude with
Section V, where we present the lessons learned with this
work and its possible future evolution.
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II. BACKGROUND

As analyzed in details in [7], there are several approaches
available in the current literature that can be used to pro-
vide reliability by tolerating data losses. On one side, we
have approaches based on temporal redundancy, which use
retransmissions to recover dropped messages. While, on the
other side we have the one based on spatial redundancy, which
send additional information along with application data. This
applied redundancy is used to reconstruct the lost information
without requiring any retransmission.

The best known example of a reactive approach for multi-
casting in large-scale systems is Gossiping [3]: a node stores a
received message in a buffer with a size b, and forwards it for
a limited number of times fin (called fanin) to a randomly-
selected set of nodes of size fout (called fanout). Many vari-
ants of gossiping algorithms exist, which can be categorized
as follows. In the Push Approaches, when a node receives a
new message, it is immediately retransmitted to the randomly-
selected nodes (i.e., fanin is constant and implicitly equal to
1). On the other hand, in Pull Approaches, after a proper
timeout t expires, nodes periodically send a list of recently-
received messages. If a lost message is detected by comparing
the received list with the history of messages received by
the given node, then a retransmission of the lost message
is requested. As we have experimentally shown in [6], these
reactive solutions achieve a high degree of reliability. However,
this gain is obtained at the cost of a reduced performance and
timeliness, since latency exhibits severe fluctuations due to
the high number of retransmissions needed to recover from
consecutive losses, quite frequent in the current Internet [2].

A concrete example of a proactive approach is represented
by Network Coding [4], which allows the generation of
redundant information from the content of the application
packets as a set of the linearly independent combinations. The
benefit of proactive approaches is to reduce the performance
worsening caused by the use of a reliability enforcement
method. However, they offer a lower reliability degree since,
if the redundancy degree is not properly set, data can be
irremediably lost.

In [6], we have taken the gossip protocol, and enhanced it by
introducing coding in two precise points of its algorithm: when
data is transmitted disseminated among the members of a given
group, and when data is gossiped to the randomly-selected
nodes, i.e., coding generates new packets both at the push
delivery and at the pull-based retransmission. We have proved
that a proper combination of gossip and coding is able to
realize an optimal trade-off between reliability and timeliness
with limited overhead worsening. Since the nodes receiving a
gossip message are randomly chosen, there is a non-negligible
probability that gossip messages may reach nodes that do not
need them. To demonstrate this we have defined an utility
function, namely U , and indicate a gossip message as useful if
it is able to detect and recover a data loss. For a push gossip, U
is the number of push messages that have allowed to recover
a loss over the total number of received push messages per
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Fig. 1. Utility of the Gossip approaches from simulations in [6]

each node. For a pull gossip, U is the number of push calls
that have triggered a retransmission over the total number of
received pull calls per each node. In Fig. 1, we see that U has
a low value, which further decreases when fout is increased.
This implies that a considerable part of the traffic generated by
a gossip scheme is unneeded and optimizable, leaving space
for improvements.

III. DETERMINISM IN GOSSIPING

We believe that the efficiency of gossip schemes in terms of
performance and overhead can be improved by selecting nodes
in a more deterministic manner. We refer to this approach as
Polarized Gossiping, where node selection is not random, but
based on a proper criterion. This solution is already present
within the current literature, for example in [8] to reduce the
overhead of gossiping in large-scale networks by allowing
nodes to only gossip with other affine nodes, where node
affinity is decided on the base of proximity or workload
and information update frequency. However, our intention
is different: we aim to speed up the recovery of lost data
by preferring nodes with a high probability that the gossip
message will be useful, so as to reduce the overall number of
attempts to fully recover lost data.

We define as optimal node selection the approach to forward
push messages only to those nodes for which such messages
are useful. In the case of the push gossip, after the reception of
a given event, a node will gossip with nodes still waiting for
packets related to that event. Similarly, after the expiration of
the timeout, a node will send a pull call message to the nodes
that are still missing one, or even more, of the notifications
contained in that pull call. Such a selection approach is not
feasible in a large-scale system, since it requires complete
knowledge of all the received notifications by each node within
the system, which is not easily obtainable in most of the
cases. Therefore, we propose proper heuristics for the node
selection. Specifically, the driving idea is to assign a weight
to each candidate to receive a gossip message, and those with
the highest weights are selected for gossip. In particular, we
describe two different methods for calculating such weights:
in the first case, the weight is assigned based on the estimated
overlay link status, expressed in terms of loss patterns; while
in the second the weight assignment is based on the position
of nodes within the tree. We conclude with several possible
selection criteria based on the weights assigned to the nodes.
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A. Labeling Nodes within the Multicast Tree

Our approaches for deterministic node selection require the
knowledge of the topology within the multicast tree. This is
typically a troublesome issue to be addressed in large-scale
systems. However, we propose a method to handle it in a
distributed and easy manner by assigning labels to each node.
Specifically, each node has a label Φ of length l, where l is
the level of that node in the tree. Each label is composed by
l digits belonging to an m-ary alphabet, i.e., a digit assumes
a value in the range [0;m− 1]. This label is assigned by the
parent of the node: for each child in the tree, the parent adds
a new progressive digit as the most significant one, while the
root has Φ = null. Labels are available to all the nodes thanks
to a proper peer sampling service.

B. Weight Based on Loss Patterns

We assume that the links among nodes are not reliable,
and exhibit a loss pattern characterized by the Packet Loss
Rate (PLR), which is the probability of losing a packet. In
particular, the adopted network model is the Gilbert-Elliott [9],
one of the most-commonly applied in performance evaluation
studies due to its analytical simplicity and the provided good
results. PLRx is continuously monitored by each node x over
the overlay link that connects itself with its parent, e.g., using
the approach in [10], and disseminated towards the other nodes
of the same group at the beginning, e.g., after the node joins
the group, and when there is a change in their value.

Such information on the link quality represents a valuable
element for computing the weights for selecting nodes during
a gossip round. Specifically, a given node x uses the PLRx

and the PLR estimated along the path between the root and its
parent to compute the probability that it looses a packet along
that path. We indicate this value with px, while qx = 1−px is
the probability of node x receiving a certain packet. Node x
maintains information about all nodes along the path toward
the root in a list called ancestors (easily computable in an
iterative manner: when a node joins the tree, its parent passes
to it its ancestor list). If the level of x in the tree is n, then the
ancestors list contains n entries z0, z1, ..., zn, where i indicates
the level of a node in the tree and z0 is the root and zn is the
node x itself. For each node zi in this list, there is an associated
packet loss rate PLRzi

of the overlay link that connects zi

with its parent zi−1 (clearly, the packet loss rate associated to
zn is PLRx, being zn = x). Thus, the probability for node x
of receiving a packet is the following one:

qx =

nY
i=1

(1− PLRzi) (1)

Such a value is continuously kept updated with the current
value of PLRzi

; if a node x communicates a change in its
measured PLR, every node has to recompute its qx, and
relative weight, if the ancestors list contains the node x.

Based on these considerations, we define a formula that
allows a node to assign weights to other nodes by considering
the probability that those nodes have to lose packets. In the
following, we describe how this formula is obtained for the

previously introduced gossip strategies; then, we show how it
can be easily modified for a given push/pull gossip strategy.
The basic idea of this approach is that a node that receives a
packet forwards it to the nodes that have a higher probability
of having lost that packet. Thus, we denote with X the event
“node x received the packet”, with Y the event “node y
received the packet” and with Y the event “node y did not
receive the packet”. Then, a node x that has to forward a
received packet assigns to a node y a weight based on the
following probability:

wxy = Pr{Y |X} (2)

Such a value is influenced by the relative position of x
and y in the tree. Let us consider x and y being on two
completely different subtrees, i.e., they share no common
overlay links. Because we are assuming independent loss
patterns, the probabilities of losing a packet at nodes x and y
are totally uncorrelated. Thus, given two nodes x and y on two
completely different branches of the tree, Equation 2 becomes:

Pr{Y |X} = Pr{Y } = py (3)

If the node y is a predecessor of x, which is easily
determined by comparing their labels, then obviously

Pr{Y |X} = Pr{Y } = 0 (4)

Let us now consider nodes x and y in the same subtree.
x has to find in the ancestors list the highest level ancestor
h in common with y (it could be y itself if they are in the
same branch of the tree. By indicating with n and l the level
of y and h respectively, the probability of y having missed
a packet knowing that x has received that packet depends on
the probability of the packet having been lost during the path
from h to y:

Pr{Y |X} =
Pr{Y ,X}
Pr{X} = 1−

nY
i=l+1

(1− PLRzi) (5)

It is easy to see that Equation 5 reduces to Equation 3
when the nodes x and y are on two completely different
subtrees, the root of the tree being the highest level common
ancestor (the root has l = 0). Indeed, in this case we have that∏n

i=l+1 PLRi = px. Thus, the final formula used by node x
to assign a weight wxy to node y includes the contributions
4 and 5:

wxy =


0 if y is predecessor of x

1−
Qn

i=l+1(1− PLRzi) otherwise
(6)

C. Weight Based on a Heuristic Approach

The previously described approach requires nodes to es-
timate the overlay link loss probability and to maintain ad-
ditional information about the network conditions of their
ancestors up to the root. In a large-scale system, it would
generate a high network traffic, in addition to the scalability
and consistency issues to maintain and update network status
information. Thus, we also propose a heuristic approach to
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assign weights that imposes no additional burden on system
nodes since it is only based on the topological information
extracted from the labels of the nodes. Specifically, this
information takes into account the level of a node in the tree,
referred to as the horizontal cut, and the subtree it belongs to,
referred to as the vertical cut. strategies.

The assignment of wxy is based on two considerations. The
first one is the Horizontal cut: nodes in a lower level are more
useful because they are closer to the source. In fact, nodes
at the bottom of the tree are expected to experience a higher
number of lost packets. The second one is the Vertical cut:
nodes in different subtrees are more useful because, with a
high probability, they experience a different loss pattern. The
higher is the level of the root of the subtree that contains
the two nodes, the more useful is their interaction for a
gossip procedure. These considerations are orthogonal and can
combined to assign a weight to all the nodes. Let us consider
two nodes x and y, with labels Φx and Φy and label sizes sΦx

and sΦy
respectively (remember that they represent their level

in the tree). In addition, let us define ρ(x,y) the length of the
common suffix of Φx and Φy . The formula used by node x
to assign a weight to node y based on the Horizontal cut is

wh
xy = 1− sΦx

sΦx + sΦy

, (7)

while the assignment based on the Vertical cut is as follows:

wv
xy = 1−

ρ(x,y)

sΦx

. (8)

The rationales behind these formulas are the following ones.
With respect to the Horizontal cut, Equation 7 contains a
formula in the form of f(x) = 1−c/(c+d), with c a constant.
Given the two nodes x and y, with x that assigns a weight to
y, c = sΦx and d = sΦy , this formula is such that the value of
f(x) reduces when the variable x decreases. wh(x, y) assumes
a lower value when both sΦx

is high and sΦy
is low, i.e., when

node x is further from the root and, on the contrary, node y is
closer to the source of the information. In this way, node x has
a benefit when it contacts node y for a recovery attempt. With
respect to the Vertical cut, Equation 8 represents the fraction
of overlay paths not in common between the two nodes x
and y. The higher is the value, the higher is the level of their
common ancestor. When wv(x, y) = 1, the common ancestor
is the root, i.e., the nodes are on two completely different
branches of the tree.

The total weight that node x assigns to node y is simply
the product of the two previous equations:

wxy = wh
xy · wv

xy. (9)

D. Polarized Gossip

Thanks to the introduced concepts of weighted selection,
we can formulate two new gossiping schemes. Weighted
Deterministic Polarized Gossip (WDPG) selects the nodes
among the ones with the highest weights. Weighted Random
Polarized Gossip (WRPG) specifies that the nodes with the
highest weights have the highest probability of being selected.
We have noticed that all the nodes with the highest weights

are placed at the bottom of the tree, so nodes at the higher
levels may less frequently receive gossip messages. This can
reduce the loss-tolerant capability of the polarized gossiping;
therefore, we have designed two other schemes for a better
distribution of gossip messages. In Polarized Gossip with
Window (PGW), all the nodes follow the same criterion of
WDPG, while certain nodes at the bottom of the tree (whose
percentage is an algorithm parameter called window) do not
select the nodes with the highest weights, but with the weights
closest to the highest one. With PGW, we allow certain nodes
to send gossip messages to nodes in other parts of the tree and
not only at the bottom. Pull+Push Polarized Gossip (3PG)
combines push and pull gossip schemes by using a push-
based WDPG joint-ly with a pull-based WDPG, where during
the pull rounds nodes are selected by considering the lowest
weights and not the highest ones. Such an approach has also
a window, which indicates the nodes that are not able to
commence a push round. This is meant to reduce the overhead
that characterizes the push gossip.

IV. SIMULATION STUDY

The scope of this section is to present experimental re-
sults that (i) study the impact of different node selection
criteria on the quality of gossiping, and (ii) investigate the
effect on the polarized gossiping when coding is used. To
achieve this aim, we implemented our solution by using the
OMNET++ (www.omnetpp.org) simulator, and decided not to
use any real wide-area networks, such as PlanetLab, due to
the uncontrollable loss patterns that make the obtained results
non reproducible [11]. The workload has been taken from
the requirements of the SESAR project, representative of a
real critical large-scale system. Specifically, the exchanged
messages have a size of 23 KB, the publication rate is one
message per second and the total number of nodes is 40
(i.e., the number of ATM entities involved in the first phase
of the project). The network behaviour has 50 ms as link
delay, and 0.02 as PLR, based on a measurement campaign
described in [11], with message losses not independent as
proved by [2]. We have assumed that the coding and decoding
time are respectively equal to 5ms and 10ms. We have also
considered the block size equal to 1472 bytes, so that an event
is fragmented in 16 blocks. We have published 1000 events
per each experiment, executed each experiment three times
and reported the average.

The metrics evaluated in our study are the following. First,
the Success rate is the ratio between the number of the received
events and the number of the published ones, and this is
referred to as the reliability of the publish/subscribe service.
If the success rate is 1 (i.e., complete reliability), then all
the published events have been correctly received by all the
subscribers. Second, the Performance is expressed as the mean
latency, which is a measure of how fast the given dissemination
algorithm is able to deliver notifications, and the standard devi-
ation of the latency, which indicates the possible performance
fluctuations due to the applied fault-tolerance mechanisms,
highlighting the timing penalties that can compromise the
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Fig. 2. Quality of the gossip scheme without and with coding.

timeliness requirement. Last, the Overhead is the ratio between
the total number of datagrams exchanged during an experiment
and the number of datagrams generated by the publisher. This
is a measure of the traffic load that the dissemination strategy
imposes on the network, and should be kept as low as possible,
in order to avoid any congestion.

A. Polarized Gossiping

Let us compare the success rate achievable with random
selection and the one with the introduced deterministic node
selection schemes. A first consideration we can make is that
the topology-based selection allows us to obtain a higher mean
success rate than the QoS-based one. A second consideration
is that polarized gossip, both WDPG and WRPG, allows us
to have a lower mean success rate. The reason behind these
two considerations is related to the fact that the topology-based
heuristics and WDPG imply a strong focus on the nodes at the
bottom of the tree, and losses in the higher levels of the tree
are more troublesome to be recovered since they are selected
less frequently. Such a focus on the nodes at the lower levels
is less tight when applying a weighted random selection or if
weights are computed with topology information, so that the
gossip messages are more distributed, even if the nodes at the

bottom still receive more gossip messages.
Let us consider the two schemes we have designed to deal

with such issue. Fig. 2(b) shows that the windowing scheme
in PGW is able to lower the required fout; but it is not able to
bring a considerable improvement than the cases with random
selection. On the other hand, 3PG represents a better solution,
thanks to its ability to forward pull calls towards the higher
part of the multicast tree. From Fig. 2(c), we can notice that the
fout required by 3PG to obtain a complete reliability is lower
than the one with a random selection. Moreover, lowering the
window size implies a reduction of the obtainable success rate
and a worsening of the convergence to a complete reliability.

Fig. 2(d) shows the experienced overhead for the gossip
approaches with two bars: the first illustrates the overhead
with a fout equal to 2; while the second has the overhead
when complete reliability is achieved. Generally speaking,
there is a difference between these two bars, meaning that
increasing fout implies a growth of the experienced overhead.
With the only exception being 3PG, the other node selection
schemes do not present a lower overhead than the gossip
with random selection, since their needed fanout is higher. As
depicted in Fig. 2(d), lowering the window size allows us to
have a lower overhead (even if the needed fanout is higher),
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considerably below that experienced with random selection,
as shown in Fig. 2(d): at complete reliability, the overhead of
3PG with a window size of 0.25 is about half of the one with
a random push (but is double than the one of random pull).

Let us consider the performance of the gossip schemes.
Also, in this case we have two bars as in the previous
one; however, in this case the second bar is always lower
than the first, indicating that an increase of fout brings a
decrease in performance. Generally speaking, deterministic
selection exhibits a performance below that achieved with
random selection. However, such an improvement is nullified
by the high number of fout needed to have a complete
reliability. Only 3PG is able to achieve a good performance. In
particular, the increase of the window size in 3PG lowers the
measured performance both in average and standard deviation
(as depicted in Fig. 2(e) and Fig. 2(f)). So, with a window
size of 1, we have that 3PG is very close to the performance
of the random push gossip.

B. Polarized Gossiping with Coding

Coding can improve the quality of the polarized gossip
approaches by exhibiting two kinds of benefits. First, when
applied during dissemination it can help nodes closer to the
root to recover lost events, which is not facilitated by the
proposed deterministic selection modes. Second, when applied
during gossiping it can speed up the event recovery by reduc-
ing the number of needed retransmissions. For these reasons,
we have re-executed some of the experiments presented in
the previous subsection by applying coding with a redundancy
between 1 and 4 (we have considered only the topology-based
weights, since coding has similar effects also on the QoS-
based ones). For all the approaches, we have experienced a
reduction of the value of fout needed for complete reliability,
as illustrated in Fig. 2(g). When random selection is applied,
coding is able to reduce the needed fout by about 25%. As
expected, the improvement is more remarkable in the case of
WRPG and PGW, since it is around 40%. 3PG has the same
trend as random pull gossip. In Fig. 2(i), we can see a limited
improvement of the overhead: the improvements for push
gossip in terms of a lower fout are nullified by the overhead
introduced by coding. Fig. 2(h) shows an improvement of the
experienced performance, even with the delay introduced by
performing coding and decoding.

V. CONCLUSIONS AND FUTURE WORK

The random selection of nodes in gossip schemes implies
a low utility of the exchanged messages, causing some inef-
ficiencies in terms of experienced latency and overhead. As
depicted in Fig. 3, the random push has a higher loss-tolerant
capability than random pull since it requires a lower fout for
complete reliability. This is achieved with a high overhead and
a low performance costs, as opposite to random pull. We have
proposed an improvement by presenting several schemes to
realize what we called a polarized gossip. In particular, we
have shown the pros and cons of such approaches. We have
learnt that the best solution when determinism is introduced
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Fig. 3. Schematic comparison.

in gossiping is to combine the push and pull approaches. As
summarized in Fig. 3, such an approach has the highest loss-
tolerant capability, and an optimal trade-off between over-
head and performance. Deterministic approaches are further
improved when coding is applied.
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Abstract—Mission Critical Systems (MCS) require continuous 

operation since a failure might cause economic or human 

losses. Autonomous Decentralized Service Oriented 

Architecture (ADSOA) is a proposal to design and develop 

MCS in which the system functionality is divided into service 

units in order to provide functional reliability and load 

balancing; on the other hand, it offers high availability 

through distributed replicas. A fault detection technology has 

been proposed for ADSOA. In this technology, an operational 

service level degradation can be detected autonomously by the 

service units at a point in which the continuity of the service 

may be compromised. However, this technology is limited 

because it requires human supervision for recovery. In this 

paper, we propose an autonomous recovering technology, 

which detects and instructs to service units to be gradually 

cloned in order to recover the operational service level. A 

prototype has been developed in order to verify the feasibility 

of this technology. 

Keywords-Service continuity; fault tolerance; service-

oriented architecture; autonomous decentralized systems; fault 

detection; fault recovery 

I.  INTRODUCTION AND MOTIVATION 

In the presence of a failure, most of the conventional 
systems implement reactive fault detection and recover 
mechanisms either automatically or manually. In both cases, 
the aim is to switch to a redundant or standby computer 
server upon the failure or abnormal termination of the 
previously active system. In some cases, the Mean Time to 
Recovery (MTTR) [15] of these technologies may represent 
a low risk for the service that the system offers. However, 
since a failure in MCS may provoke fatal consequences, it is 
important to reduce the MTTR to a value near to zero 

In this paper, we briefly present ADSOA [4][5][6], which 
has been proposed as a service-oriented architecture for 
designing MCS, and it has been mainly utilized in financial 
sector applications.  This architecture provides high 
functional reliability since it is possible to distribute and 
replicate the functionality of a system in specialized service 
units. One of the main technologies of ADSOA, called 
Loosely Coupled Delivery Transaction and Synchronization 
Technology [6], allows the system to detect when the 
provision of a service has reached a point in which the 
continuity of the service may be compromised and it sends a 
signal alarm to a monitor. This approach may represent a risk 

for a MCS since it depends on human intervention for taking 
the necessary actions to repair the system. 

This has motivated this paper which presents a 
technology to autonomously detect and recover gradually all 
the unit services required for the operational service level in 
ADSOA. This technology is based on a cloning mechanism 
that is activated once the operational service level has been 
compromised due to some failed services units. We describe 
the protocol and algorithms that the healthy services units 
utilize in this cloning mechanism and show how they 
coordinate among them in order to avoid a massive creation 
of replicas. We developed a prototype in order to illustrate 
this approach. 

The rest of this paper is organized as follows: In Section 
II, we show the related work. In Section III, we give a view 
of ADSOA concept and architecture. In Section IV, we 
present the proposed technology. In Section V, we show a 
prototype, and finally, in Section VI, the conclusion and 
future work. 

II. RELATED WORK 

Cloning technologies have been widely used in different 

technological areas for providing high reliability to the 

system in which it is applied. In Optical Burst Switching 

(OBS) Networks, burst cloning has been proposed as a 

proactive loss recovery mechanism that attempts to prevent 

burst loss by sending two copies of the same burst, if the first 

copy is lost, the second copy may still be able to reach the 

destination [9][10]. When designing cloning technologies 

one relevant issue that has to be considered is the resource 

utilization by the new clones. In this sense, in OBS Networks 

some technologies have been proposed for optimizing such 

resource utilization and maintaining a QoS [11][12]. In Multi 

Agents Systems (MAS), a frequently proposed solution to 

avoid performance bottlenecks due to insufficient resources 

is cloning an agent and migrate it to remote hosts [13][14].  
Our approach is also comparable to the existing work on 

cloning technologies in terms of concept and objectives but 
applied to a novel service-oriented architecture for MCS.  
The main contribution of the proposed cloning technology 
are the protocol and algorithms that services units utilize to 
detect some failures in the service provision and the way 
they coordinate themselves to recover gradually the 
operation of  that damaged part of the system. 
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III. AUTONOMOUS DECENTRALIZED SERVICE ORIENTED 

ARCHITECTURE 

A. ADSOA Concept 

A proposal used to implement MCS in financial sector is 
ADSOA [4][5][6], it provides load balancing and 
functionality, high availability and service-oriented 
modeling. ADSOA is based on Autonomous Decentralized 
Systems (ADS) [1][2][3] and Service Oriented Architecture 
(SOA)[7][8].  

ADS is based in the concept of analogizing living things. 
The living body is built of numerous cells, each growing up 
independently, maintaining by body metabolism, and going 
on living. Depending on concept of perceiving the system 
that it is consisted by autonomous controllability and 
autonomous coordinability, ADS technology achieves fault 
tolerance, on-line maintenance and on-line expansion of the 
computer system. On the other hand, SOA offers a system 
modeling oriented to services and allows composition and 
reusability. ADSOA is the combination of SOA concept with 
ADS characteristics. 

The ADSOA conceptual model, shown in Figure 1, is 
composed of autonomous entities that offers or requests 
services via messages. Each entity is formed by several 
instances fully independent. Each instance has the same 
functionality that its entity represents. A subsystem can be 
formed by a group of entities and in the same sense a 
business may be formed by a group of subsystems. This is 
similar to a living organism where an instance is like a cell, a 
subsystem could be an organ and the business is like a living 
organism. 

In order to model a MCS using ADSOA, it is necessary 
to have a service-oriented thinking. At the beginning the 
system architect identifies the businesses involved in the 
process and then models the sub-systems in a business 
according to their responsibility. Finally, entities are 
modeled according to their atomic functionality. This 
modeling will allow to the system to grow, evolve, do 
composition and reuse the components. The next phase is to 
develop the services entities. 

All the systems immersed in ADSOA are able to 
configure according to physical resources and criticality 
level. To offer high service availability, it is necessary to 
have a distributed environment and put on replicated entities. 
On the other hand, for load balancing it is necessary to divide 
the functionality in the entities, in such a way that the work 
be split without a coordinator. The challenge is to provide 
auto-coordination and auto-control to the system. In this 
sense, the Autonomous Processing Entity (APE) was 
proposed; it implements the communication protocol, 
manages the control instance messages and the services 
execution. Also, it is possible to define in each service 
(offered or requested) of the APE its criticality. All these 
elements form a technology denominated “Loosely Coupling 
Synchronization and Transactional Delivery Technology”. 

 

 
Figure 1.  ADSOA Conceptual Model 

B. Loosely Coupling Synchronization and Transactional 

Delivery Technology 

In this technology, we define the concept of transaction 

in the scenario in which an entity requests a service to 

another and requires knowing if it has been received. The 

requesting entity must maintain this request in pending 

processing state until it receives an acknowledgement from 

receiving entity. Also, we define sequential order in the 

sense that the entity requester must receive a minimum 

number of acknowledgments from receiving entities in order 

to send the next service request, for example, a X+1 request 

should not be sent until it receives the minimum number of 

acknowledgments of the X request. 

The service request information structure should include 

the following elements: Content Code, Foliated Structure 

and Request Information. 
The Content Code specifies the content and defines the 
requested service. 

The foliated structure identifies the transaction. This 

structure is based on: 

1. requester id, 

2. specialized task id for that request (Pivot), 

3. a sequence number, 

4. a generated id based on the original request 

information (event number) and 

5. a dynamic and unique id for the instance of the 

entity (instprintid). 

With these elements the identification of 

acknowledgments received by the entity is guaranteed. We 

can also ensure the sequence of multiple requests, as shown 

in Figure 2. 

If an instance receives a service request with a sequence 

number greater than expected, then by the principle of 

sequential order, knows that another instance of its entity 

will have the missing messages. In this case, the receiver 

instance asks to his entity the missed messages, that is, the 

other instances of the same entity. This idea is represented 

in Figure 3. 
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Figure 2.  Sequentiality and Transactionality 

 

 
Figure 3.  Synchronization with other Instances 

On the other hand, if an entity receives several times the 

same service request, this can be distinguished by the 

instprintid if this request belongs to the same requester 

instance or from a different instance of the same entity. 

According to this, the receiver entity can determine whether 

requests received are in accordance with the minimum 

number of requests that the requester entity are required to 

send, as shown in Figure 4. 

 

 
Figure 4.  Receiving Multiple Requests from an Entity 

In resume, the communication among the elements and 
its instances is based on an asynchronous and event-driven 

message protocol. This technology detects if an entity does 
not provide the service level required. It occurs when an 
instance sends a service request to an entity and each entity 
instance receives it and send back an acknowledge message, 
then sender registers how many acknowledges have received 
and evaluates if it covers the criticality level, if it is not 
proper, the sender repeats the sending process. E.g. consider 
a service with a criticality level equals to 3, its means that 
this business requires at least three distributed instances; 
when another instance requests a service to them, it expects 
at least three acknowledges to satisfy the criticality level, if it 
is not satisfied the entity will send the request of service 
again. When the sender detects that the maximum number of 
retries has reached, it triggers the alert process, which 
consists in sending an alert message that could be processed 
by a monitor element. This monitor alerts ADSOA 
infrastructure managers to perform the necessary activities 
and recover service continuity (creating new instances 
required to reach the criticality level). Unfortunately, this 
goes against MCS’s principles since manual intervention is 
required thereby MTTR becomes dependent on operator’s 
reaction. 

In the next section, we present a technology that allows 
ADSOA subsystems to autonomously detect and recover for 
a failure in a replicated entity by cloning one by one an 
operational entity until the system reaches the criticality level 
required. 

IV. SELF-RECOVERY TECHNOLOGY IN DISTRIBUTED 

SERVICE-ORIENTED MISSION CRITICAL SYSTEMS FOR 

FAULT-TOLERANCE 

This technology is created to allow an MSC that uses an 
ADSOA infrastructure to self-recover automatically. This 
basic operation is to use the current self-monitoring scheme 
and instead of sending alerts to the operator when the service 
level is not appropriate, it instructs one entity of the degraded 
group to clone itself (functionality and state). An important 
challenge in the cloning process is to avoid the generation of 
multiple indiscriminate copies, which in a living organism 
would be a cancer. To ensure the healthy recovery, the entity 
selected to recover the system, generates a cloning-key with 
information of the times it has been cloned, its id, its 
instprintid and the requested entity id; this information is 
introduced into the algorithm to generate the cloning-key, 
that will be unique to only one cloning process between this 
entity and the requested id. 

In this architecture, all the entities offer and request 
services, one of this services is the recovering by cloning an 
entity. In self-recovering technology at least two entities are 
involved; to explain the protocol let’s imagine a group of 
entities (“A subsystem”), which request a service to other 
group of entities (“B subsystem”). In Figure 5, “A 
subsystem” is requesting a service to “B subsystem”, the 
message exchange is carried out in compliance with ADSOA 
Loosely Coupling Synchronization and Transaction Delivery 
Technology, with the number of acknowledgments needed to 
ensure that the level of service is appropriate for. In this 
example, the “A subsystem”, requires 3 acknowledgments by 
“B subsystem”, and the “B subsystem” needs 2 service 
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requests by “A subsystem”; when the number of 
acknowledgments is complying, “B subsystem” attends “A 
subsystem”.  

 

 
Figure 5.  Normal Operation Cycle 

If the number of the entities of the “B subsystem” is 
decreased because of a failure in the process or the server, 
the “A entities” detects that the service level is not 
complying within “B subsystem”, since the minimum 
number of acknowledgments, 3 for this example, cannot be 
reached within a specific period of time. Thus, the “A 
entities” starts the recovery mechanism instead of sending 
alerts.  

Figure 6 shows the first steps in the recovery protocol. 
Firstly, the “A subsystem“ receives the acknowledgments 
from “B subsystem”. Secondly, based in the lowest “B”’s 
instprintid all the “A entities” select one healthy entity, 
which will be responsible for cloning itself. Thirdly, all the 
“A entities” request the "Auto-Cloning Service (reqidclon)", 
with the instprintid of the “B entity” selected for auto-
cloning. In this example the “Bi entity” will be the 
responsible for cloning itself; although the “Bn entity” 
received the same request, only the “Bi entity” will clone. 
Fourthly, when the “Bi entity” receives the reqidclon request, 
it generates a cloning-key and sends both this cloning–key 
and its instprintid as a “Send the key (sendkey)” request 
service message. By sending its instprintid it can be ensured 
that the “A subsystem” will instruct to only the selected “B 
entity” to continue with the cloning process. Fifthly, when 
the “A subsystem” receives the sendkey service request, it 
takes the cloning-key in the message and sends it by the 
“Automatic recovery (autrecov)” request service message to 
the “B subsystem”, it also attaches to this message the 
instprintid selected in the second step of this protocol. 

 

 
Figure 6.  Start up the cloning mechanism 

Figure 7 shows the final step of the protocol. When the 
“B subsystem” receives the autrecov request service 
message, as it occurs in the third step of this protocol, only 

the “Bi entity” will attend it, since its instprintid is in the 
received service message. “Bi entity” will validate if the 
cloning-key in the message is still valid and if so it will make 
a cloning of itself. During this process, “Bi entity” will close 
all the communication with outside and generate a new 
element in the same state like itself; once the cloning process 
is finished, it will open the communication again. Otherwise, 
if the cloning-key is not longer valid because the cloning 
process has already been completed, the message is ignored. 
It is important to notice, that the others “A entities” also send 
this final request service message, but only the first message 
which reaches “Bi entity” will be processed.  

 

 
Figure 7.  Cloning phase 

In this sense, this technology will autonomously maintain 
the operational service level without human intervention. 

V. PROTOTYPE 

A prototype which implements this technology has been 

developed, as shown in Figure 8. This prototype consists of 

two subsystems with one entity each one, the Requester 

subsystem/entity, which is shown in blue color, and the 

Counter subsystem/entity, which is shown in orange color. 

The Requester demands a service to the Counter for 

providing a number which later it will be displayed in its 

screen. When the Counter receives this service request, it 

will increase by one the previous sent number and send it 

into a service request message to the Requester. For this 

example, the service level operation was set to 1 to the 

Requester and 3 to the Counter; it means that there will be 

only 1 instance of the Requester and 3 instances of the 

Counter. On the other hand, the Requester will send its next 

service request only if it receives from the Counter instances 

3 acknowledges for the current request. In order to simulate 

a failure in a Counter instance, a PAUSE button has been 

implemented. 

 

 

Figure 8.  Normal Operation Cycle I (Prototype) 
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In Figure 9, it is shown that when the entity 

“2124777859” is stopped, the cloning-mechanism detects 

such failure and selects entity “1313675445” to repair the 

system. The reqidclon service request message is sent from 

the Requester to the Counter with instprintid “1313675445”. 

This entity generates the cloning-key and then it sends the 

sendkey service request message to the Requester.  

 

 
Figure 9.  Start up the cloning mechanism (Prototype) 

In Figure 10, the final part of the mechanism is shown. 

The Requester processes the sendkey service request 

message and sends to the selected entity the autrecov service 

request message. The “1313675445” entity starts the 

cloning process; firstly it closes the communication with 

outside, then it clones itself, and when the entity 

“191232582” is started, the “1313675445” entity finally 

opens the communication. In this sense, the system has 

repaired autonomously the damaged part and it can continue 

its normal operation. 

 

 
Figure 10.  Normal Operation Cycle II (Prototype) 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we briefly presented ADSOA, which has 
been proposed as a service-oriented architecture for 
designing MCS, which has been mainly utilized in financial 
sector applications. We have proposed a cloning mechanism 
to recover quickly and efficiently the operational service 
level when a decrease on it is detected. We have built a 
prototype to verify the feasibility of this technology.   

Besides the ongoing development efforts to complete the 

cloning prototype implementation, future work in this area 

focuses on get some metrics about resource utilization, 

network partition and multiple clones’ coexistence. We will 

also compare the proposed technology with others such as 

those mentioned in Section II. 
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Abstract— In recent years, the use of component-based systems 
has become increasingly large in the daily life such as domestic 
applications. In addition, the diversity and the dynamic 
components that can build them make this type of system very 
awareness. For this reason, the assurance of dependability and 
safety execution are required in order to propose a better 
system performance and the best user satisfaction by providing 
services continuity which consequently leads to reliability. That 
is really a challenge problem. Our goal in this paper is to 
propose an adaptation mechanism, based on the mirror 
services, to make such a system more efficient, and thus, more 
and more operational, even the existence of faults in it. To this 
end, the fault tolerance is a good solution.  So, the contribution 
in this paper is based on a set of algorithms that will be 
employed by a set of local agents controllers and one global 
agent controller. 

Keywords-dependability;  agent; fault detection; fault 
tolerance.  

I.  INTRODUCTION 

Multi component system is composed of many different 
components, each of which is an individual system. The 
complete system has a set of fixed functionalities. Every 
component may have a varied composition and 
implementation. As an example, we find the domestic 
applications, which use a computer component in the home 
environments. In this space, the wireless communication 
between the components and the sensors devices are 
generally used.  So, that system is very awareness and 
dysfunction error localization is a delicate task. Indeed, an 
abnormal execution in this kind of system can be caused by 
the failure of any component, which can imperatively causes 
a dysfunction of the overall system. So, it is indispensable to 
detect such situation before the crash of the overall system. 
One way to insure dependability of systems is to allow 
continuity of execution in the case of fault occurrence, which 
is the aim of this paper. A promising technique to do this; is 
the fault tolerance, which is defined as the ability of system 
to continue normal operation despite the presence of faults.  

Our fault detection mechanism [1] focuses on the use of a 
global controller and a set of local controllers, which aims 
first to detect the fault whatever its nature then applies the 
algorithms to support it automatically, and adapt the 
execution to the suitable context. In this paper, our goal is to 
enhance the mechanism with the use of both the agents and 
the replication advantages. The replication is considered as 
one of the basic tools in a fault tolerance technique [2]. 

Moreover, the agent technology has been largely used 
and gives an interesting proposition to various problems such 
as e-commerce, distributed computing telecommunication 
networks services, monitoring and notification [3], etc. They 
provide several advantages, in the dependability area, the 
fact that an agent [4]: 

• Has the  ability to communicate 
• Can migrate from a defective component to another 

in order to continue its execution, by the weak or 
the strong mobility characteristics.  

• Can keep track of the execution follow. 
• Can be duplicated and cloned as needed, or killed 

for example in a case of its failure  
• Uses of low-cost and a low-power requirements 

when it is executed on an equipment 
• Etc. 

Also we find that the interaction agent-agent is 
exclusively via message-passing communication and the 
asynchronous message-passing have good scalability 
characteristics. 

The remainder of the paper is devoted to the details of 
our agents based fault detection mechanism. Section 2 gives 
a state of the art of the fault detection techniques. Section3 
presents an overview of faults’ types that may affect the 
normal function. Section 4 details all the algorithms that 
handle the detected faults. Finally, a conclusion achieves this 
paper. 

II. RELATED WORK 

Fault tolerance is an indispensable characteristic required 
by different types of computer systems and specifically 
distributed systems. The latter can fail due to the failure of its 
components; why researchers are still trying to find a way to 
ensure dependability by fault tolerance. In some studies, [5, 
6] the authors propose a service migration from one 
component to another to ensure a permanent presence of 
service despite it is being required; this can be insured 
through three mechanisms, the first is used to manage the 
context of interaction among the system components; the 
second is employed to specify the rules according to the 
current context and the changes that may occur, and the third 
one identifies the migrated service. This approach has some 
disadvantages:  

• It is only applied in a context where all components of 
the system have the same architecture on which 
mobile service can migrate.  
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• Regardless to the state of the component the service 
should automatically migrate (even if the component 
was in a good state). So, unnecessary transmissions 
can be realized. In addition this technique is 
ineffective in case of a sudden fault (there is no fault 
detection) [5]. 

 There are also some mathematical methods for fault 
detection. For example, in [7,8] the approach is rule-based. It 
requires first a definition of a fault model that categorizes the 
occurred fault as short, constant or noise, then based on the 
standard deviation between the later model and the current 
system state a fault can be detected. These methods [7][8]  
require a  knowledge on the domain to identify the faults’ 
type and a careful specification of the standard deviation 
threshold.  

The method used in [9] also requires the definition of the 
types of faults that can occur in order to detect them on run-
time. Some other software techniques [10][11][12] add a set 
of instructions to control the flow of execution, and thus 
detect the existence of fault by comparing for example a 
duplicated variables values with the variables themselves 
[12]. Generally, these techniques rely on external equipment 
to handle the fault that will certainly cause a significant 
perturbation treatment.  

Some techniques incorporate exceptional behaviors 
during the entire development of fault tolerant distributed 
systems implemented within component [13]. Other model 
introduced in [14][15], specify the normal and exceptional 
behaviors of system components; so while exceptional 
responses, errors are detected.  

In spite of the number of solutions to insure fault 
tolerance, the fault problems’ detection and support persist 
and not treated definitely. On the other side, the requirement 
of safety running of systems and the availability of delivered 
services is very required. 

III.  THE FAULTS’S CATEGORIES 

An error is the manifestation of a fault in the system, and 
a failure is the manifestation of an error on the provided 
service by the system [16]. The fault type plays a very 
important role if we want to get a fault tolerance. Moreover, 
faults can be categorized according to several criteria, like 
the degree of severity, degree of permanence and their 
nature.  

The based component systems are considered as context-
aware systems because a communication context varies from 
one moment to another. So, in order to classify faults, we 
exploit, in this section, the following definition of context [1] 
“Context is any internal or external information, related to 
an entity, could be used and have an impact on the future 
state of the application. This information can be linked to 
one or more entities. The latter, regardless of their nature 
(hardware / software / human), can trigger events that affect 
the global state system. To this end, the occurrence of a fault 
causes certainly an immediate dysfunction to the global 
system” . 

So, we suggest classify the faults on the base of the 
faults’s sources, their manifestations and their persistence. 
One component in a component-based system may announce 

a dysfunction on behalf of another component, if the latter 
did not satisfy the needed request.  
Also, failures can be a result of an improper use of the 
system by the user or due to: 

• Software errors: that can be an arbitrary deviations 
related to the code, 

• Materials errors: that can be the shutdown of a 
component or its internal constituents, or  

• Transmission errors: such as the omission of 
sending or receiving messages or even to malicious 
attack (citing as an example an injection of a code 
into the system, by a malicious user, can cause a 
deviation of the normal execution flow).  

In Table 1, the source of the fault is related to the element 
of context.  The persistence of a fault means its duration; it 
may be transient or permanent. A permanent fault is a fault 
which requires a software maintenance or human 
intervention. 

TABLE I.  THE FAULTS’  CATEGORIES 

Elements of 
context 

Categories of faults 
external fault  internal Fault 

Entity Hardware  
/ user 

An error of 
interaction (such 
as error 
identification, or 
an input mistake 
...) 

 
 
/ 

(transient / 
permanent) fault 

Hardware  
 
 
 
/ 

− Error referencing of 
an internal 
component 
(processor, 
memory…) 
− internal hardware 
failure 
permanent fault 

Software/ 
user 

An entry outside 
the domain 
specification of 
the application 

 
 
/ 

(transient/ 
permanent) fault 

Software  
/ 

Design fault in the 
application itself 
permanent fault 

Temporal aspects 
(date, time) 

Fault in 
scheduling and 
synchronization of 
messages among 
system 
components 

− the local Clock is 
not synchronized  
− physical error 

due to a transmission 
problem 

transient fault (transient/ 
permanent) fault 

Location Localization 
problem of 
neighboring 
entities (effect of 
fog in the 
environment) 

Fault in the  physical 
controllers of  
component 

transient fault  permanent fault 
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After the presentation of the proposed faults’ categories, 
the next section details our proposition that aims to describe 
how the presented kind of faults are detected and supported. 

IV.  THE DETAILS OF OUR PROPOSITION 

Dependability of our system is associated with the 
dependability of its components. It can be provided by 
insuring the availability of the exchanged events and services 
among the system components (each component will be 
called entity “ei”) (Figure 1).  

 
 
 
 

 
Figure 1.   the dynamic exchange of events in the system. 

To ensure a high dependability of the system and its 
entities, we focus, as it is explained in the introduction, on 
the advantages of agents as well as the replication. To this 
end, some tools (local and the global agents controllers (see 
the next sub section)) and the next constraints must be set: 
• Each entity (ei) proposes a set of services OS (ei) that 

can be provided in the form of quadruplet:  
OS (ei)={(s0, child(s0), c0 , a0),(s1, child (s1), 
c1,a1),(s2, child (s2), c2,a2)…} where child (si) are all 
sub-services managed by the service "si" ,” ci” and “ai” 
denote respectively the cost and the availability of the 
service (the latter takes the value available or busy). 
These quadruplets are sent to the global agent controller 
by the entity.  

• For each connection of an entity (ei) to the system, two 
tasks will be performed: 

• An entity sends its request. 
• Upon receiving the entire answers, the entity 

defines all the functional dependencies D (ei) and sent 
them to the global agent controller. The Functional 
dependencies D (ei) are defined by a set of pairs, as an 
example (D (ei) = {(ej, sk) ...} where sk is the delivered 
service by ej to ei. 

• Each exchanged message must be double signed 
(through an hash function) by both the entity and its 
agent controller that helps in the control task of the local 
agent controller operation itself. So, if an agent 
controller does not sign its message a “Raise not-
signed” event will be reported. 

• A duplicated global agent controller is set and updated 
periodically in order to take the control task if the 
principal global agent controller fails. 

• Each agent is supported by an entity and it (the agent) 
will be killed if this entity fails or disconnects; except 
the global agent controller and its cloned agent 
(duplicated agent) which will migrate, if the entities 
where the agents are running fail.    

A. The global agent controller 

The global controller is seen as an agent. It provides a set 
of functionalities: 

• Manages the faults’ detection and, 
• Takes charge the occurrence of faults. 

 So, switch the kind of the received event the agent 
performs the suitable action. To do this, the global agent 
controller (Gac) must has a set of information in database 
knowledge. That contains an entry for each entity composed 
of (see, table 2): 

• the identity of the entity noted ei, 
• its state as a set of pairs (ss, state) where each pair 

represents a name “ss” and the state (that can has 
the value “good” or “bad” ) of every its provided 
service. 

• a description of the list of the offered services of the 
current entity and all its functional dependencies 

• The execution state “ESi” which represents the 
status of the executing operation, on the entity, 
which is periodically updated. 

TABLE II.  THE REPRESENTATION OF THE INFORMATION THAT 
CHARACTERIZES AN ENTITY AT GAC. 

The 
entity  

state offered Service  Dependence Execution 
state 

e1 (s1, good) 
(s2, bad)… 

(s1, child (s1), c1, 
a1) … 

(e2, s4) 
…… 

ES1 

 
1)  The global agent Controller as a manager of a fault 

detection 
The operations of the global agent controller are detailed 

through a set of algorithms (see Figure 2), some of them 
used to manage events flowing through the system, as the 
indication of a fault of an entity ei: 

• By its local agent controller (see Figure 2,  
instruction 10) or, 

• By another local agent controller (other than its own 
agent controller) (see Figure 2, instruction 15).  

  Upon receipt of the entire functional dependencies of a 
given entity (ei) the global agent controller exploits them to 
update the availability of services (instruction 9 in Figure.2) 
from “available” to “busy”. 
The other types of events are detailing in the next algorithm: 

 

1 Input: event  

2 Begin 
3 Repeat 
4 case (event) of: 
5 nw_elt: 
6 Creat and send the local agent controller Laci   

7 Load _DB (ei) 
8 D(ei): 
9  Update availability (D (ei))  

10 alert (Laci   , ei,ss) : 
11 P� takecharge(ei,ss) 

12 Send fault (ei, Gac,ss) to every element of P 

13 For every controller element of (P) do: Research (E,S) 

14 For every controller element of (P) do: Send Mirror 

(Gac, em, em) 

15 alert (Laci  , ej,ss) or good_state(Lacj ,ej,ss) : 
16 Check_state (ej,ss), 

17  Raise not-signed (i): preparing and send a new Laci 

18Until (false) 
19End 

Figure 2.  the global agent Controller algorithm. 

 
ei ej Events 

44Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-301-8

DEPEND 2013 : The Sixth International Conference on Dependability

                            53 / 62



− Terminology 
nw_elt: means that a new entity is connected to the 

overall system.  
Research (E, S): allow proposing a set of mirror services 

(ms) to the entity affected by the fault.  
Load _DB (ei): adds to the database an entry contains the 

information concerning the entity (ei) (state (ei), D (ei) ...) 
(see Table 2).  

Extract_state (ej, ss): This function enables the 
recuperation of the service state ss (ej) from the database (see 
Table 2).  

Raise not-signed (i): this event means that there is a 
dysfunction on the Laci, so a substitution of the defective 
Lac must be done. Therefore, the new agent takes the needed 
information like (the most recent value of the execution state 
ESi) and continues the control of its entity. 

Check_state (ej,ss) is a verification function (see Figure 3) 
for testing the entity state. 
All the other instructions will be carefully explained in their 
appropriate context. 

 
Figure 3.  Check_state function. 

Rv (Gac, ej, ss) is a verification request sent by the global 
agent controller to (ej) in order to test its state. 

 
2) The agent global Controller as a responsible of the  

fault tolerance 
Upon the confirmation of the detection of a fault the global 
agent controller performs the two following tasks to support 
the fault: 
• Declares the entity (ei) as partially defective, in service 

s, by following the algorithm in Figure 4, which may 
indicate the fault of the service provided by an entity to 
all its dependencies (see Figure 2 instruction 11and 12; 
Figure 3 instruction 12 and 13): 

 

 
Figure 4.  Algorithm of the takecharge function. 

NE: indicates the number of entities in the system 
The procedure update_state aims to update the operational 
state, by “ bad”, of the defective service “s” and its child(s). 
 
• The second sub-task of the global controller is to make 

sure the continuity of system and the service deliverance 
by following  the algorithm (in Figure 5) that aims to 
research the similar services (see Figure 2, Instruction 
13; Figure 3, Instruction 14) 

(es, ec, ae) : corresponds to the elected service 
 

 
Figure 5.  The function Research 

1 Input : (ei, s) 

2 Output : list of pair P of (entity e, service s) 

3 Begin  

4     ae �  busy// the availability of service 

5   State e�  bad // the operational state of service  

6    es�s 
7     ss�es  

8     ec�max (c)        
9     elect�i 

10  For j=1 to NE do  
11  if ((ss = es) and (ae =available)  

          and (sc <= ec) and ( state s = good))  then  
12   (es, ec, ae) �  (ss, sc, ae)  
13   elect� j       

14  End if  
15   (ss, sc, ae) �  extract an offered services from the table  

16    State e �  state (ss) 
 17  End For  
18    if (State e = bad) then 
19     return (Φ , Φ ) 
20    else 
21     return (e elect , es) 
22    End if 
23 End 

 

1 Input : entity : ej, service ss 

2 Output: state of ej 

3 Begin 

4  State ( ej,ss) �Extract_state (ej,ss);  

5    if (state (ej,ss) =bad) then  

6     send fault (ej,Gac,ss) to Laci  

7   else  

8    send Rv (Gac,ej,ss) to Lacj 

9      if (Rep (ej,ss)) then 
10    send good_state (Gac, ej,ss) to  Laci  

11  else  
12   P� takecharge(ei,ss) 

13  send fault (ej, Gac,ss) to every element of P 

14  For every element of (P) do research (E,S) 

15  For every element of (P) do Send Mirror(Gac, em, em) 

16    End if 

17   End if  
18End 

1 Input : (ei, s) 
2 Output : list of pair P of (entity e, service s) 
3 Begin  
4       For j=1 to NE do  
5 repeat 
6  Dt(ej)� D(ej) 
7 (en,sn) �  extract an element from  Dt(ej) 
8 if (en = ei) and sn belong to {s} U {child (s)} then  
9  insert P(ej,sn) 
10  update_state (ei,s) 
11  End if  
12  until Dt(ej)= Φ 
13     End For  
14  return (p) 
15 End 
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B. The local agent controller  

To insure our control a set of a local controllers have 
been used; these controllers are seen as a local agents noted 
(Lac), one for each entity. Our suggestion of implementing 
an agent controller is based on the idea of self-testing, which 
allows individual control of each entity. This local controller 
executes a set of tasks that allows it to control the operational 
state of the entity. Faults are declared if an entity deviates 
from this normal operation: 
• the entity sends and saves a simple request (RS (ei, ej, 

ss), (save (RS (ei, ej, ss) )), waiting for answers (waiting 
(RP (ej, ss))) (see Figure 6 instructions 7 thru 9), and a 
possible definition of functional dependencies (see 
Figure 6  instructions 7 thru 9), 

So, the abnormal functional of an entity is represented as 
events sent by the agent. Such as sending an alert (alert 
(Laci, ej, ss)) if an entity ej has promised the entity ei to 
ensure the service ss and it has not responded, or if it 
returned a wrong result. Indeed, each controller provides the 
following tasks: 
1) Keeping track of execution in order to capture the 

execution state, this will be used in a fault recovery (see 
Figure 6, instruction 42).  

2) Receiving the external events coming into the entity ei. 
In this case an external event can be: 

• a simple request from an entity ej (Figure 6, instruction 
5); 

• a negative feedback from the Lacj, the controller of an 
entity ej, that is resulting from an eventual previous 
interaction with the entity ei; 

• An inquiry concerning the entity ei, or an information 
failure of an entity ej if ei depends functionally from the 
defective entity ej (this event is raised by the global 
agent controller) (Figure 6, instruction 10…); 

3) Informing the failure of its entity ei (see Figure 6, 
instruction 18, 22,…); in the case of a no-response to the 
periodical test of inspection performed by the agent 
controller Laci itself,  

The clarification of the terminology used in the next 
algorithms (in Figure 6 and Figure 7) is explained bellow: 

RS (ei, ej,ss): it is a simple request send by ei to ej 
requesting the service ss. 

RP(ei,ss/Gac): it is an answer for a request sent by the 
entity (ei) (or Gac). 

Fault (ej, Gac,ss): it indicates a failure of an entity ej, at 
the service ss, reported by the global agent controller. 

Rep (ei,ss): this is a Boolean function. It represents the 
answer or not of ei to the local test relating to the service ss, 
triggered by the local agent controller Laci . 

Check_ local _state (ei,ss, t): it is a function that 
represents the local test triggered after a time t. This function 
has a value 0 if the service ss of the entity ei did not answer, 
and 1 otherwise (see Figure 9). 

Time: it represents the duration between two periodical 
tests. 

Alert  (Laci , ei,ss): It denotes a failure of a service ss of 
the entity ei reported by the agent controller  Laci . 

good_state (Laci , ei,ss): it is an event emanated from 
the local agent controller  Laci. It shows that the service ss of 
it entity ei is in a good state. 

good_state (Gac, ei,ss) it is an event emanated from the 
global controller. It shows that the entity ei is in correct state. 

fd (ej,ss): denotes a promise from the entity ej to perform 
the service ss (functional dependency in the service ss). 

Verify _Rq (ei, ej,ss): the role of this function is to check 
if a request emitted by an entity ei is being processed by an 
entity ej or not. 

 Save (RS(ei ,ej,ss)) : its role is to save the request (sends 
by the entity (ei)) that will be processed by the entity (ej) 

Wait (RP(ej,ss)): it aims to start the control of the 
duration of the response of an entity ej to the ei request’s. 
Mirror (Gac, em, sm): indicating the elected service mirror 
“ sm” and the identity of the entity that provides them. In 
order to ensure the continuity of operation of the overall 
system. 
 

 

1 Input:  even t; 
2 Begin 
3 Repeat 
4   case (event) of: 
5     RS(ej ,ei ,ss) : 
6    save (RS(ei,e j,ss)) ; 
7  Send fd((e i,ss) to Lacj  
8  Treat   (R S(ei, ej,ss )) ; 
9 send (R P(ei ,ss)) ;  
10 fau lt (e j ,Gac) OR alert(Lacj, e j,ss )  :   
11        If  (Verify_Rq (ei , e j,ss)) then 
12  C ancel   (R S(ei ,ej,ss )) 
13       el se 
14  s tate (ej )�  bad 
15      End if   
16 aler t (L acj, e i,ss): 
17      if  (st ate (ei,s s)=bad) then 
18 send  alert (Laci  ,ei ,ss) to Gac  
19 send  alert(Laci  ,ei ,ss) to Lacj  
20      el se 
21     if ((check_ local _ state (e i,ss,0))=0) then 
22 send  alert(Laci, ei  , ss) to Gac 
23 send  alert(Laci  ,ei ,ss) to Lacj  
24     el se 
25 send good_state(Laci  ,e i,ss) to Lacj   
26 send good_state(Laci ,e i,ss) to Gac 
27    End if  
28    End if  
29  fd (ej,ss): 
30 update dependence D (ei) 
31  Send D(ei) to Gac       
32  good_sta te(Lacj , ej,ss) and not RP(ej,ss): 
33  send RS(ei,ej,ss) to  Lacj 
34 good_sta te(Gac,  ej,ss) and not RP(ej,ss): 
35  send RS(ei,ej,ss) to  Lacj 
36 save (RS(ei ,ej,ss)) ; 
37  wait (RP(ej, ss));  
38 Mirror (Gac, em , em ) 
39  send RS(ei,em,sm) to  Cm 
40   save (RS(ei ,em,ss)) ; 
41   wait  (RP(mj,ss));  
42  cont inue the execut ion  from the current state 
43 good_sta te(Lacj,ej,ss) and not RP(Gac): 
44   send RS(ei ,ej,ss) to  Lacj 
45  raise degraded mode  
46 activate the d upl icated Gac  
47  until  (fa lse) 
48End; 

 
Figure 6.  The agent local controller algorithm. 
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The periodical test is performed by the execution of the 
“check_ local _ state” function (see Figure 7) that will be 
performed by the local agent controller, every a given time t 
or in any other necessary moment like in the case of the 
instruction 21 in Figure 6. 

 

 
Figure 7.   The function check_ local _state. 

This last function (Figure 7) is used by the agent Lac(i) to 
control the operational state of entity ei and all its offered 
services. 

V. CONCLUSION 
 

This paper contains an effective contribution in fault 
tolerance area applied to component-based systems. First, 
some faults’ categories have been established by giving an 
overview of the errors’ types, then this paper describes our 
reflection to insure a high dependability by a fault tolerance, 
which is based on a global agent controller and a set of local 
agents controllers. Diverse situations (theoretical scenario) 
have been treated: (1) even a fault, insuring the continuity of 
delivering services, in a right way, by exploiting the agent 
ability of keeping tack to capture the recent execution 
context. (2) Insuring continuity of control even a dysfunction 
at the global agent controller itself or at one or more local 
agent controllers, through the use of the following features: 
the replication and the migration ability, etc. In order to 
validate the proposed mechanism, a simulation of a domestic 
application is on the way with the purpose of giving some 
statistics; and improving our theoretical. We have chosen an 
application for monitoring a patient at home, on which we 
have selected a set of adequate components, some 
components are strongly coupled and other are not, to inject 
faults and test how the system react, etc. 
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1 Input: entity ei,ss, time t; 
2 Begin 
3 if  (not (Rep (ei))) then 
4  state (ei,ss)� bad 
5  send  alert(Ci  ,ei,ss) to Gac 
6  t�time 
7  Return (0) 
8 else 
9  state (ei)� good  
10  t�time 
11  Return (1) 
12 End if 
13End 
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Abstract—Fault Trees (FTs) have been a popular tool used
in the industry and academia to model safety related failure
scenarios of systems. However, since FTs are incapable of mod-
eling certain type of scenarios involving stochastic dependency,
timing and sequencing properties, they need to be extended or
modified to handle such scenarios. A State/Event Fault Tree
(SEFT) is one such tool for developing and analyzing systems with
dynamic behavior involving sequencing, timing and priorities of
events that cannot be modeled by ordinary fault trees. SEFTs
encompass dynamic behavior in the form of state charts for
constituent components of a system where failure propagation
between components is made possible by outports and inports.
Conceptually, SEFTs borrow the notion of components from
Component Fault Trees (CFTs). CFTs are nothing but fault
trees which encompass boolean logic related to failure within
the corresponding component boundaries. The ESSaRel tool was
initially built to model CFTs. In this paper, we describe our
experiences with the implementation of an editor for SEFTs by
extending the ESSaRel tool. We describe the concepts behind the
design decisions of the tool and the challenges that were addressed
in order to reduce the burden on the user to develop ’correct’
SEFTs. We also give some insights and tips for engineers who
would like to use SEFTs as modeling correct SEFTs requires a
good understanding of the semantics of its modeling elements.

Keywords—Fault trees, Reliability tool, Safety tool, State/Event
Fault Tress, ESSaRel

I. INTRODUCTION

Fault Trees (FTs) are an established method for conducting
safety analysis of systems due to their ability to provide both
qualitative and quantitative analysis results. They are able to
capture those combinations of events that lead to a compromise
in safety of systems which might not have been captured by
other safety techniques. With the advent of component-based
development, it became important to be able to create models
for individual components, which can be combined to create
a system model. However FTs have no notion of components,
a functional/structural change made to one component implies
that the entire FT has to be reconstructed, or at least it has to
be ensured that there is no need to make further changes to the
FT after making changes to the corresponding part of the FT.
This can be a time consuming task considering that FTs can
run into several pages depending on the size of the system.
Component Fault Trees (CFTs) [1] combat this problem very
elegantly by introducing component boundaries around failures

and gates where failure propagation between components is
facilitated using outports and inports. This makes it very easy
to identify where the changes in the CFT has to be made while
the rest of the CFT remains unchanged. Although one can
easily modify existing CFTs and combine CFTs for constituent
components to obtain a CFT for the whole system, they are just
an extension of FTs and still have the inherent shortcomings
of the fault trees’ inabilities to model timing and sequencing
of failure events. Also, there is no difference between states
which refer to a persistent condition of a component and an
event which refers to an occurrence without a temporal expan-
sion. State/Event Fault Trees(SEFTs) [2] go one step further
by extending CFTs to include the above mentioned features
by introducing state-charts in components. These state-charts
capture failure related behavior of components. Events and
states can influence and be influenced by the behavior of
other components through ports. SEFTs offer a wide range
of gates that render it a powerful tool to model a variety of
safety scenarios. Furthermore, any other specialized gate can
be modeled by the user as a component that can be reused
whenever it is required. Please note that unlike gates in a FT,
which are capable of only enclosing boolean logic, gates in
SEFTs can be thought of as components with an internal state-
chart of their own which are capable of modeling sequencing,
timing and memory. ESSaRel (Embedded Systems Safety and
Reliability Analyzer) is a tool that was initially designed to
provide an editor to model and analyze CFTs. It was then later
extended to enable modeling and analysis of SEFTs. SEFTs
have to be transformed to extended Deterministic Stochastic
Petri Nets (eDSPNs) in order to be analyzed. The extended
version of ESSaRel provides an editor for modeling SEFTs
and also implements the translation algorithm that converts an
SEFT to an eDSPN in a format compatible with the TimeNET
tool [3], which can be used to analyze the translated petri nets.

SEFTs, although powerful, require a thorough understand-
ing for their proper usage. In this paper, we describe how
ESSaRel assists a user in creating SEFTs without syntactic
errors. We describe our experiences of extending ESSaRel for
modeling SEFTs. We also provide pointers regarding how to
use SEFTs in the real world in order to create meaningful and
semantically correct models.
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Fig. 1: Event Inlet and Outlet
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Fig. 2: State Outlet

II. MODELING ELEMENTS OF SEFTS

In this section, we describe the modeling elements of
SEFTs, their semantics and constraints associated with them.
We first list out the modeling elements defined in [2] for SEFTs
and then describe the modeling elements that we added to
SEFTs to be able to create them using a tool. The conceptual
modeling elements are:

(a) Component which encompasses the behavior of the mod-
eled component in the form of state charts.

(b) State charts that contain state changes facilitated via
events. States and events are connected using temporal
connections which are represented by arrows with unfilled
arrowheads.

(c) Inports and Outports that allow propagation of failures
in and out of components. These ports are further typed
as ’state’ or ’event’ ports which are connected to other
elements in the state chart or gates by causal connections
represented by arrows with filled arrowheads.

(d) Gates are connected to one or more inputs leading to
an output that combine states and events using boolean
logic, priorities and may have parameters such as delays
associated with them. As mentioned earlier, gates in SEFTs
are not just boolean gates like the ones used in traditional
FTs, but have internal state charts associated with them.

(e) Once an SEFT interface consisting of outports and inports
has been created for a component type, it can be instanti-
ated in other components of which it is a part. This can be
done by dragging and dropping a component or by creating
a proxy from the palette and then choosing the component
type in the ESSaReL tool. Both methods result in creation
of a component instance with its interface consisting of
the inports and outports which we refer to as Proxy State
Inlets/Outlets and Proxy Event Inlets/Outlets.

In addition to the above mentioned elements, we add a few
modeling elements to the tool which are described below:

(a) Event inlet and Event outlet for triggered or triggering

action of events (Fig. 1).
(b) State outlet for connecting outgoing causal edges from

states (Fig.2).

A state does not have a state inlet as states cannot be triggered
from other components, only events can be triggered which can
cause the corresponding state transitions.

III. DESIGN DECISIONS FOR ESSAREL

As the use of Component Fault Trees increased in the
industry and in research, it became clear that the first version
of the tool [4] needed to be rewritten. The reason for this was
that the existing version was not flexible enough. With the
increasing use of CFTs in the academic/research field, new
ideas were implemented in different tools and there was need
to integrate ESSaRel with these other tools. For example, CFTs
created in different front-ends such as Magicdraw [5] needed
to be analyzed using ESSaRel. Also multiple back-ends such
as Fault Tree+ and Zusim could be used for analysing CFTs.
To address this issue, there is a common data model was
introduced for both CFTs and SEFTs on which ESSaRel is
based. This serves as an intermediate model between ESSaRel
and other tools. In addition, for SEFTs, there is a common
data model for DSPNs as well so that once an SEFT is
translated to a DSPN, different backends capable of analysing
DSPNs can be used. Fig. 3, 4 and 5 show a fire alarm system
described in [4] modeled in the new version of ESSaRel. In the
repository explorer of Fig. 3, we can see the three components:
FireScenario (which represents the system under study), Fire-
AlarmUnit and Watchdog. The FireAlarmUnit was modeled
just once (Fig.3) but instantiated twice as FireAlarmUnit1 and
FireAlarmUnit2 in the FireScenario component. Watchdog has
been modeled (Fig.4) and instantiated once in FireScenario, its
outport has been connected to inports of both instances of the
FireAlarmUnit.

One can notice that there are no outports or inports in the
palette in Fig.3. This is because the canvas that is visible is
that of the realization of the FireAlarmUnit. There is another
canvas for the interface (which has not been shown) whose
palette contains the inports and outports. Once a port is
added or deleted from the interface, ESSaRel automatically
synchronizes the interface and the realization by making the
corresponding change in the realization. This ensures consis-
tency by making sure that the only way to add or remove ports
in the realization is by modifying the interface. The reason for
this kind of separation between the interface and realization
is to allow a user to have the flexibility to choose between
different realizations for a component. For example, the values
at the outports of a component may come from an underlying
SEFT or a MATLAB/Simulink model. The realizations for the
Watchdog and the FireAlarmUnit are shown in Fig. 4 and 5
respectively.

In the remainder of this section, we describe the design
features of the tool to make it easier for users to create
syntactically correct SEFTs. Tables I and II below show the
constraints associated with causal and temporal connections
respectively. We have omitted those modeling elements that
cannot be sources on the first column and those that cannot
be targets on the first row in order to reduce the size of
the tables. The entries with a check mark (!) indicate the
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Fig. 3: Fire Scenario modeled in ESSaRel

valid connections and entries with a cross mark (%) are
prohibited. We can see that there are a large number of rules
for connecting modeling elements which increase the chances
for a user to unknowingly create wrong connections. ESSaRel
prevents such errors by inhibiting the creation of prohibited
connections.

It may be useful for users to note that only outgoing
causal edges are allowed for states through state outlets, but
states cannot have incoming causal edges. States can occur
only by the triggering of a preceding event connected to the
state through a temporal connection. This implies that states
cannot be ’propagated’; only events can facilitate propagation
by triggering events in other components. States, on the other
hand can act as guards for an event so that the event can only
be triggered when the guarding state is true. As mentioned in
the previous section, this is the reason why a state does not
have a state inlet.

From Table 2 for temporal connections, we can see that a
state can only be connected to events and vice-versa, i.e., there
is a strict alternation between states and events connected by
temporal edges. A state can have two or more outgoing and
incoming edges, but an event can have only one incoming and
one outgoing edge.

Apart from the above constraints, the tool ensures that
there is not more than one incoming causal edge for a target.
This is necessary to ensure that there is no ambiguity in the
cause of an event or state. The tool also ensures prevention
of shallow cycles where a component references itself by
preventing proxies of a component to be created in its own
realization.

IV. PRACTICAL MODELING TIPS FOR USERS

Often, it can be confusing for users as to which is a good
way to model a given scenario as the same scenario can be
represented in multiple ways. For example, let us consider
a situation where an intermediate failure can be represented
as either the output of n-state-AND gate or as the output of
the History-AND gate for events. In such a situation, it is
important to understand well the difference between states and
events. States have a persistent nature, but a component is also
capable of changing its state. On the other hand, events do not
have any temporal expansion and once they occur, the only
way to record their occurrence is through the use of a History-
AND gate. Therefore, in a situation where we want to model
a scenario where two or more components are required to be
present in a certain state for an event to occur, we can use
the n-state-AND gate and when we want to model a scenario
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Fig. 4: Realization for Watchdog

where the occurrence of some events cause an intermediate
event even when the components may no longer be in the
states resulting from those events, we can use a History-AND
gate.

As another example, let us consider the situation for
modeling state chart interaction in SEFTs where there are two
possibilities. The components can interact with each other via
state ports or event ports. As input ports both possibilities have
to be connected to events, either as a triggered event or as a
guard function of a state. But we are of the opinion that the
event based communication is better because triggered events
are much more intuitive compared to guard functions. It is
indeed possible to transform every state based communication
into an event based one by using a Flip-Flop gate. To do this,
the ’Set’ port of a Flip-Flop gate has to be connected to all
incoming transient arcs of the state and the Reset port with all
outgoing arcs. But it is not advisable to do so unless necessary
as the complexity of the transformed state-chart (into Petri Nets
for analysis) increases and the advantages of a more intuitive
SEFT are nullified. In this case a state-based communication
is preferable.

A. Nomenclature Scheme for SEFTs

SEFTs, like fault trees, are constructed by humans who
may give arbitrary names to failure ports. This may lead
to miscalculations during quantitative or qualitative analysis.
More information on consequences of wrong or ambiguous
nomenclature has been documented in [6], [7], [8], [9]. Here,
the authors recommend the use of two fields to construct FT
event names:

(a) Component Name, which is the fully qualified name of the
component given by the system decomposition hierarchy.

(b) Failure Mode, which describes the nature of the failure.

But since SEFTs are specialized FTs, the above two fields
are not sufficient for unambiguous nomenclature of its events.
Hence, to ensure unambiguity, we recommend to users to
construct names with the following two additional fields along
with the ones mentioned above:

(a) Environment Condition, which depends on the context in
which the component is deployed.

(b) System Condition, which depends on the configuration
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Fig. 5: Realization for Fire Alarm Unit

peculiar to the component itself. This field is useful to
distinguish between two or more events that are sources
for temporal edges leading to a common target state.

These fields help to distinguish names of failure modes of the
same component the working conditions, which depends on the
context of deployment and the configuration of the component.
For more information on the description and usage of the above
fields, users are suggested to read [10].

B. Analysis

This subsection explains the evaluation functions of
TimeNET. SEFTs can be component-wise translated into
eDSPNs. This operation transforms events into transitions
and states into places where the initial state is expressed as
the initial marking of the resulting net. Deterministic and
exponentially distributed events can directly transfer into the
equivalent Petri Net transitions. For triggered events, however,
a pattern exists to connect different Petri Nets with each other.
According to the gate dictionary [4], for every gate an equiva-
lent eDSPN is available. By the usage of these transformation

functions, a Petri Net can easily be built out of every SEFT.
In addition to normal DSPNs, eDSPNs support probabilistic
values as well as priorities to avoid conflicting situations. The
probabilistic functions specify a value which stands for the
likelihood that a transition fires after its activation. Further it
provides textual elements such as the so called performance
measures. These measures represent the asked questions such
as "What is the probability for a certain marking of a specific
place?" A special grammar has to be used for defining the
measures which can be found in [3]. An example of such a
performance measure for the probability that place P1 contains
more than one token is P{#1>1}.

In TimeNET, there are different evaluation methods for
the analyzing these performance measures. The categories
are divided into (1) analysis and (2) simulation techniques.
To run an evaluation, at least one performance measure has
to be specified. The first evaluation category gives an exact
numerical result by computation of the reachability graph.
Therefore, the reachability graph has to be finite. In case
of a transformed SEFT this precondition is always fulfilled
because all converted Petri Nets are bounded. This type of
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TABLE I: Constraints for Causal Connections

XXXXXXXSource
Target Proxy State

Outport
Proxy Event

Outport
State
Inport

Event
Inport

Event
Inlet

Gate State
Inlet

Gate Event
Inlet

Proxy State Inport ! % ! % ! ! %

Proxy Event Inport % ! % ! ! % !

State Outport ! % ! % ! ! %

Event Outport % ! % ! ! % !

Event Outlet % ! % ! % % %

Gate State Outlet ! % ! % % ! %

Gate Event Outlet % ! % ! ! % !

TABLE II: Constraints for Temporal Connections
XXXXXXXSource

Target State Event

State % !(incoming edges = 1)
Event !(outgoing edges = 1) %

evaluation technique can be further subdivided into transient
and stationary analysis, also called steady-state analysis. The
transient evaluation can analyze the net from the point of
initial marking during a given time period. The result can
be shown as a curve which represents the defined measure
for the complete interval or as a point which represents the
measure only at the end of the interval. Steady-state evaluation
is able to find a result without specifying such a time period.
It could be seen as a transient analysis with an infinite
time period. For getting a steady-state result it is necessary
that the eDSPN is designed without deadlocks. This means
that the reachability graph may not have any nodes where
no transition is enabled. An additional precondition for the
analysis of eDSPNs in TimeNET is the existence of at most
one deterministic transition. If this precondition is fulfilled then
these evaluation methods can be used to calculate the result
for the measures depending on the required time period (finite
or infinite).

The second category of evaluation techniques is the sim-
ulation methods. These methods estimate the measures by
the use of a modified Monte Carlo simulation and can also
subdivided into a stationary and a transient method. Because of
the inaccuracy, simulation should only be used if there is more
than one deterministic transition in the eDSPN. Apart from
that, simulation methods need to fulfill the same preconditions
as analysis methods. More information can be found in [3].

V. CONCLUSION AND FUTURE WORK

ESSaRel has been designed to be a user-friendly tool that
aids engineers to create syntactically correct SEFT models.
Based on our experience, we have also described some aspects
of SEFTs to provide tips to a user to build semantically
correct SEFT models. It is possible to perform quantitative
analysis on SEFTs, but it is not possible to perform qualitative
analysis on SEFTs as not much research has been carried out
with respect to this aspect. We intend to integrate qualitative

analysis such as minimal cut set generation. We would like
to integrate mechanisms for qualitative analysis when they
become available. In the future, we would like to extend
the functionality of ESSaRel to be able to directly display
analysis results for SEFTs directly in ESSaRel without having
to manually run the TimeNET tool.
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