
PATTERNS 2012

The Fourth International Conferences on Pervasive Patterns and Applications

ISBN: 978-1-61208-221-9

July 22-27, 2012

Nice, France

PATTERNS 2012 Editors

Alfred Zimmermann, Reutlingen University, Germany

Pascal Lorenz, University of Haute Alsace, France

 1 / 74

PATTERNS 2012

Foreword

The Fourth International Conferences on Pervasive Patterns and Applications
(PATTERNS 2012), held between July 22 and 27, 2012 in Nice, France, targeted the application
of advanced patterns, at-large. In addition, to support for patterns and pattern processing,
special categories of patterns covering ubiquity, software, security, communications, discovery
and decision were considered. As a special target, the domain-oriented patterns covered a
variety of areas, from investing, dietary, forecast, to forensic and emotions. It is believed that
patterns play an important role on cognition, automation, and service computation and
orchestration areas. Antipatterns come as a normal output as needed lessons learned.

PATTERNS 2012 was aimed at technical papers presenting research and practical results,
industrial small- and large-scale systems, challenging applications, position papers addressing
the pros and cons of specific topics, such as those being discussed in the standard fora or in
industry consortia, survey papers addressing the key problems and solutions on any of the
topics, short papers on work in progress, and panel proposals.

We take here the opportunity to warmly thank all the members of the PATTERNS 2012
Technical Program Committee, as well as the numerous reviewers. The creation of such a broad
and high quality conference program would not have been possible without their involvement.
We also kindly thank all the authors who dedicated much of their time and efforts to contribute
to PATTERNS 2012. We truly believe that, thanks to all these efforts, the final conference
program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the PATTERNS 2012 organizing
committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that PATTERNS 2012 was a successful international forum for the exchange of
ideas and results between academia and industry and for the promotion of progress in the area
of pervasive patterns and applications.

We are convinced that the participants found the event useful and communications very
open. We hope Côte d’Azur provided a pleasant environment during the conference and
everyone saved some time for exploring the Mediterranean Coast.

 2 / 74

PATTERNS 2012 Chairs:

PATTERNS Advisory Chairs
Herwig Manaert, University of Antwerp, Belgium
Fritz Laux, Reutlingen University, Germany
Michal Zemlicka, Charles University - Prague, Czech Republic
Alfred Zimmermann, Reutlingen University, Germany

PATTERNS 2012 Research/Industry Chairs
Teemu Kanstren, VTT, Finland
Guenter Neumann, DFKI (Deutsches Forschungszentrum fuer Kuenstliche Intelligenz GmbH),
Germany
Markus Goldstein, DFKI (German Research Center for Artificial Intelligence GmbH), Germany
Zhenzhen Ye, iBasis, Inc., Burlington, USA
Cornelia Graf, CURE - Center for Usability Research & Engineering, Austria
René Reiners, Fraunhofer FIT - Sankt Augustin, Germany

 3 / 74

PATTERNS 2012

Committee

PATTERNS Advisory Chairs

Herwig Manaert, University of Antwerp, Belgium
Fritz Laux, Reutlingen University, Germany
Michal Zemlicka, Charles University - Prague, Czech Republic
Alfred Zimmermann, Reutlingen University, Germany

PATTERNS 2012 Research/Industry Chairs

Teemu Kanstren, VTT, Finland
Guenter Neumann, DFKI (Deutsches Forschungszentrum fuer Kuenstliche Intelligenz GmbH), Germany
Markus Goldstein, DFKI (German Research Center for Artificial Intelligence GmbH), Germany
Zhenzhen Ye, iBasis, Inc., Burlington, USA
Cornelia Graf, CURE - Center for Usability Research & Engineering, Austria
René Reiners, Fraunhofer FIT - Sankt Augustin, Germany

PATTERNS 2012 Technical Program Committee

Junia Anacleto, Federal University of Sao Carlos, Brazil
Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus
Senén Barro, University of Santiago de Compostela, Spain
Rémi Bastide, University Champollion / IHCS - IRIT, France
Bernhard Bauer, University of Augsburg, Germany
Noureddine Belkhatir , University of Grenoble, France
Hatem Ben Sta, Université de Tunis - El Manar, Tunisia
Félix Biscarri, University of Seville, Spain
Jonathan Blackledge, Loughborough University, UK
Manfred Broy, Technical University Munich, Germany
Michaela Bunke, University of Bremen, Germany João Pascoal Faria, University of Porto, Portugal

William Cheng-Chung Chu(朱正忠), Tunghai University, Taiwan
Bernard Coulette, Université de Toulouse 2, France
Karl Cox, University of Brighton, UK
Jean-Charles Créput, Université de Technologie de Belfort-Montbéliard, France
Mohamed Dahchour, National Institute of Posts and Telecommunications - Rabat, Morocco
Vincenzo Deufemia, Università di Salerno - Fisciano, Italy
Kamil Dimililer, Near East University, Cyprus
Eduardo B. Fernandez, Florida Atlantic University - Boca Raton, USA
Simon Fong, University of Macau, Macau SAR
Francesco Fontanella, Università degli Studi di Cassino e del Lazio Meridionale, Italy
Yukihisa Fujita, Central Research Laboratory / Hitachi, Ltd., Japan
Joseph Giampapa, Carnegie Mellon University, USA

 4 / 74

Harald Gjermundrod, University of Nicosia, Cyprus
Markus Goldstein, German Research Center for Artificial Intelligence (DFKI), Germany
Gustavo González, Mediapro Research - Barcelona, Spain
Pascual Gonzalez, University of Castilla - La Mancha, Spain
Cornelia Graf, Center for Usablitity / Research and Engineering - Vienna, Austria
Carmine Gravino, Università degli Studi di Salerno - Fisciano, Italy
Yann-Gaël Guéhéneuc, École Polytechnique - Montreal, Canada
Pierre Hadaya, UQAM, Canada
Brahim Hamid, IRIT-Toulouse, France
Sven Hartmann, TU-Clausthal, Germany
Christina Hochleitner, CURE, Austria
Władysław Homenda, Warsaw University of Technology, Poland
Wei-Chiang Hong, Oriental Institute of Technology, Taiwan
Chih-Cheng Hung, Southern Polytechnic State University-Marietta, USA
Shareeful Islam, University of East London, UK
Slinger Jansen (Roijackers), Utrecht University, The Netherlands
Maria João Ferreira, Universidade Portucalense - Porto, Portugal
Hermann Kaindl, TU-Wien, Austria
Abraham Kandel, University South Florida - Tampa, USA
Teemu Kanstren, VTT, Finland
Alexander Knapp, Universität Augsburg, Germany
Richard Laing, The Scott Sutherland School of Architecture and Built Environment/ Robert Gordon
University - Aberdeen, UK
Fritz Laux, Reutlingen University, Germany
Hervé Leblanc, IRIT-Toulouse, France
Gyu Myoung Lee, Institut Telecom/Telecom SudParis, France
Daniel Lemire, LICEF Research Center, Canada
Haim Levkowitz, University of Massachusetts Lowell, USA
Pericles Loucopoulos, Harokopio University of Athens, Greece / Loughborough University, UK
Herwig Manaert, University of Antwerp, Belgium
Yannis Manolopoulos, Aristotle University - Thessaloniki, Greece
Constandinos Mavromoustakis, University of Nicosia, Cyprus
Murali Medidi, Boise State University, USA
Gerrit Meixner, German Research Center for Artificial Intelligence (DFKI) - Kaiserslautern, Germany
Ivan Mistrík, Independent Consultant. Heidelberg, Germany
Paula Morais, Universiadade Portucalense - Porto, Portugal
Fernando Moreira, Universidade Portucalense, Portugal
Haralambos Mouratidis, University of East London, UK
Jean-Marc Ogier, Université de la Rochelle, France
Hichem Omrani, CEPS/INSTEAD, Luxembourg
Jerry Overton, Computer Sciences Corporation, USA
Ana Paiva, University of Porto, Portugal
João Pascoal Faria, University of Porto, Portugal
Rodrigo Paredes, Universidad de Talca, Chile
Christian Percebois, IRIT/Université de Toulouse, France
Gabriel Pereira Lopes, Universidade Nova de Lisboa, Portugal
José R. Pires Manso, University of Beira Interior, Portugal
Agostino Poggi, Università degli Studi di Parma, Italy

 5 / 74

Mar Pujol, Universidad de Alicante, Spain
Claudia Raibulet, University of Milano-Bicocca, Italy
Thurasamy Ramayah, Universiti Sains Malaysia - Penang, Malaysia
José Raúl Romero, University of Córdoba, Spain
Agostinho Rosa, Technical University of Lisbon, Portugal
Gustavo Rossi, UNLP - La Plata, Argentina
Ozgur Koray Sahingoz, Turkish Air Force Academy, Turkey
Kurt Sandkuhl, Jönköping University, Sweden
Alberto E. Schaeffer-Filho, Lancaster University, UK
Isabel Seruca, Universidade Portucalense - Porto, Portugal
Marco Spruit, Utrecht University, The Netherlands
Michael Stal, Siemens, Germany
Martin Stanton, Manchester Metropolitan University, UK
Janis Stirna, Stockholm University, Sweden
Sam Supakkul, University of Texas - Dallas, USA
Ryszard Tadeusiewicz, AGH University of Science and Technology, Poland
Dan Tamir, Texas State University - San Marcos, USA
Shanyu Tang, China University of Geosciences - Wuhan City, P. R. China
Horia-Nicolai Teodorescu, "Gheorghe Asachi" Technical University of Iasi / Romanian Academy, Romania
Alain Toinon Léger, Orange - France Telecom R&D / University St Etienne / ENS Mines - Betton, France
Mati Tombak, University of Tartu / Tallinn Technical University, Estonia
Alessandro Torrisi, Università di Catania, Italy
Theodoros Tzouramanis, University of the Aegean, Greece
Michael Gr. Vassilakopoulos, University of Central Greece - Lamia, Greece
Maria-Esther Vidal, Universidad Simón Bolívar - Caracas, Venezuela
Laurent Wendling, University Descartes (Paris 5), France
Mudasser F. Wyne, National University- San Diego, USA
Reuven Yagel, The Jerusalem College of Engineering, Israel
Zhenzhen Ye, Systems & Technology Group, IBM, USA
Alfred Zimmermann, Reutlingen University, Germany
Michal Žemlička, Charles University, Czech Republic

 6 / 74

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 7 / 74

Table of Contents

Growing Complex Software Systems: A Formal Argument for Piecemeal Growth in Software Engineering
Jerry Overton

1

Patterns in Safety Analysis
Tor Stalhane, Olawande Daramola, and Vikash Katta

7

Analyzing User Patterns to Derive Design Guidelines for Job Seeking and Recruiting Website
Yao Lu, Sandy El Helou, and Denis Gillet

11

Pattern Innovation for Architecture Diagnostics in Services Computing
Alfred Zimmermann and Rene Reiners

17

Iris Recognition: Existing Methods and Open Issues
Sajida Kalsoom and Sheikh Ziauddin

23

A Pattern-Based Architecture for Dynamically Adapting Business Processes
Mohamed Lamine Berkane, Lionel Seinturier, and Mahmoud Boufaida

29

Exploiting HCI Pattern Collections for User Interface Generation
Juergen Engel, Christian Herdin, and Christian Maertin

36

On A Type-2 Fuzzy Clustering Algorithm
Leehter Yao and Kuei-Sung Weng

45

Pattern-oriented Enterprise Architecture Management
Tobias Brunner and Alfred Zimmermann

51

Development of Graphical User Interfaces based on User Interface Patterns
Stefan Wendler, Danny Ammon, Teodora Kikova, and Ilka Philippow

57

Powered by TCPDF (www.tcpdf.org)

 1 / 1 8 / 74

Growing Complex Software Systems

A Formal Argument for Piecemeal Growth in Software Engineering

Jerry Overton
Computer Sciences Corporation (CSC)

St. Louis, Missouri, USA

joverton@csc.com

Abstract – With piecemeal growth, complex systems are

grown in a series of small steps rather than pieced together in

one large lump. Although there are many specific examples

(from agile methods) of piecemeal growth in software

engineering; we argue that prior art has yet to produce general

theoretical argument for building complex software systems

this way. In this research, we propose a formal, theoretical

argument for the general applicability of piecemeal growth to

software engineering. As part of our argument, we infer both

the requisites for piecemeal growth and some surprising

connections between piecemeal growth and existing disciplines

within software engineering.

Keywords – Piecemeal Growth; Complex Systems; Software

Engineering; Agile Methods; Software Design Pattern;

Mathematics; Formal Method; POAD Theory

I. INTRODUCTION

A. The Nature of this Research

This paper presents the results of software engineering

research. We begin with a brief discussion of the nature of

this research to establish the proper paradigm for evaluating

this work. While scientific problems are concerned with the

study of existing artifacts and phenomena (the behavior of

subatomic particles, the motions of planets, etc),

engineering problems are concerned with how to construct

new artifacts (bridges, buildings, and, in our case, software

systems) [1]. While scientific research problems have an

empirical nature, engineering (specifically software

engineering) research problems do not. It is not possible to

apply the same empirical validation methods used for

scientific research to software engineering research [1].

Software engineering research is the study of processes

by which people turn ideas into software [1]. Empirical data

collected about these processes necessarily contain social

and cultural aspects. Although empirical data may serve as

an example to clarify the concepts presented here, it cannot

objectively validate our results. Producing any such data and

determining its correspondence with our results requires

subjective interpretation.

In this paper, we advocate for the effectiveness of a

particular software engineering approach using a structured

argument. Ultimately our work is validated by whether or

not the argument we present is convincing among practicing

software engineers. To be considered convincing, the

argument will have to generate interest and credibility. It

will have to be circulated among a wider audience, polished

and refined. Parts or all of the argument must be used by

engineers to justify design processes of their own. We

consider this work to be the first step in the process – we

have recorded an argument so that it can be read, circulated,

and scrutinized. For this paper, our goal is to produce an

argument lacks identifiable errors or contradictions.

B. Piecemeal Growth and Software Engineering

Piecemeal growth is the process of building a complex

system in small steps [2]; where nothing is ever completely

torn down or erased. Additions are made, existing structures

are embellished and improved [3]. This is different from

modular design [4] where the system is composed from

individual pieces snapped together. Consider the process by

which the St. Mark’s Square in Venice (Fig. 1) was built –

the example of piecemeal growth given in [5]. The process

started in 560 A.D. with a small square basilica, where the

castle of Doge (middle right in the picture) was built. In

976 A.D., two new buildings were added to the center of the

basilica, including the tower shown in the middle of Fig. 1.

By 1532 A.D., the tower became embedded in a rectangular

building and the original basilica was extended.

1Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 9 / 74

Fig. 1: St. Mark’s Square in Venice [6].

St. Marks Square grew from a gradual sequence of

changes rather than by assembling pre-fabricated parts.

Each change mostly preserved the changes that came before.

And each change contributed to the organic order seen in

Fig. 1. Because all acts of piecemeal growth have these

characteristics in common [3]. We recognize a process as

piecemeal growth, if it:

1. Specifies a sequence of operations

2. Each operation preserves the effects of all previous

operations

3. Each operation solves part of a bigger problem

4. The sum effect of all operations solves the problem

in its entirety

We will argue in the next section that although there are

many specific examples of piecemeal growth in software

engineering, there is nothing in the prior art that proposes an

argument for the general applicability of piecemeal growth

to building software systems. There is no theoretical

argument that arbitrary, complex software systems can be

built in a manner similar to the way St. Mark’s Square was

built. The general strategy of our argument is inspired by a

technique used in mathematics – [6] argues that the Koch

curve fractal exists by showing it to be the unique

consequence of a particular equation. We argue that

piecemeal growth is generally applicable in software

engineering by showing it to be the unique consequence of a

particular software engineering approach.

The rest of this paper is as follows. In Section II, we

argue that software engineering is missing a general

argument for the applicability of piecemeal growth to

software engineering. In Section III, we introduce a system

of mathematics needed to create that argument. In Section

IV, we use our math to argue for the general applicability of

piecemeal growth. In Section V and VI, we analyze our

results and its significance.

II. STATE OF THE ART

The idea of piecemeal growth has made its way into

software engineering practice through the adoption of agile

methods [8] such as Extreme Programming (XP) [9], Scrum

[10], and Crystal [11]. Agile methods assert that complex,

well-designed software systems can be grown gradually

through a process of continuous refactoring [12]. In this

approach, software engineers do not put much emphasis on

comprehensive analysis or design. Instead, they focus on

building the highest-priority feature using the first

reasonable approach that comes to mind. They refactor the

results into a suitable design, and then repeat the process for

the next highest-priority feature. The belief is that engineers

can progress toward a solution piecemeal because

refactoring makes it possible (and inexpensive) to make

changes at any point.

Although the practice of piecemeal growth is known in

software engineering as a part of agile methods, the actual

idea of piecemeal growth is developed by prior works, such

as [12], [13] and [14] that focus specifically on the practice

of continuous refactoring. Instead of general arguments,

these works all give detailed examples of how specialized

refactoring techniques work to improve parts of a specific

system. None of them propose an argument (although the

premise is asserted) that, in general, continuous refactoring

can be used to grow arbitrarily complex software systems.

For example, in [12], continuous refactoring is used as

the basis for enabling piecemeal growth. The overall

concept is developed using an introductory example.

Although the example describes the basic idea of

refactoring, it does not describe why this idea is useful

beyond the specific example given. For the technique’s

broader application, the reader is asked to “imagine [the

example] in the context of a much larger system [12].” In

[13], continuous refactoring is asserted to be a proper basis

for piecemeal growth in software engineering. The concept

is illustrated by an example of evolving a new application

framework for a legacy system, however, there is no

argument for how to extend the techniques used in the

example to the creation of systems not described in the

example. In [14], the use of continuous refactoring for

piecemeal growth is illustrated by an example of evolving a

database for a simple financial institution. The work

describes an example starting point for such a process, but

2Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 10 / 74

the process itself – and its applicability to systems other

than what is exemplified – is asserted without further

argument.

The goal of this research is to add to the current state of

the art an argument for the general applicability of

piecemeal growth to software engineering. Our approach is

to come up with a mathematical model that characterizes the

general existence of piecemeal growth in software

engineering and a mathematical argument that piecemeal

growth follows naturally as the result of a specific

engineering approach. In the next section, we establish the

system of mathematics needed to make our argument.

III. POSE AND POAD THEORY

The arguments in the next section will be based on a

system of mathematics known as Problem-Oriented

Software Engineering (POSE) [15] and Pattern-Oriented

Analysis and Design (POAD) Theory [16]. In this section,

we provide a summary of both.

In POSE, a software engineering problem has context,

W; a requirement, R; and a solution, S. We write

to indicate that we intend to find a solution S that, given a

context of W, satisfies R. Details about an element of the

problem can be captured in a description for that element

and a description can be written in any language considered

appropriate. The problem, of designing a complex system

can be expressed in POSE as:

 (1)

where is the real-world environment for the system,

is the system itself and are the requirements the system

must meet. Equation (1) says that we can expect to satisfy

R when the system S is applied in context W.

In POSE, engineering design is represented using a

series of problem transformations. A problem

transformation is a rule where a conclusion

problem is transformed into premise

problems using

justification and a rule named , resulting in the

transformation step

. This means that is a

solution of whenever are solutions of

 . The justification collects

the evidence of adequacy of the transformation step.

Through the application of rule , problems are

transformed into other problems that may be easier to solve.

These transformations occur until we are left only with

problems that we know have a solution fit for the intended

purpose. POSE allows us to use one big-step

transformation to represent several smaller ones. The

progression of a software engineering solution described by

a series of transformations can be shown using a

development tree.

(2)

 In the tree, the initial problem forms the root and

problem transformations extend the tree upward toward the

leaves. There are four problem nodes in the tree: , , ,

and The problem transformation from to is

justified by , the transformation from to and is

justified by . The bar over indicates that is solved.

Because remains unsolved, the adequacy argument for

the tree (the conjunction of all justifications) is not

complete, and the problem remains unsolved. A complete

and fully-justified problem tree means that all leaf problems

(in this case and) have been solved.

For the sake of clarity, we will show the context,

solution, and requirement of a problem only when necessary

to understanding a given transformation. In many of the

equations in section IV, these details are omitted and only

the problem’s name is shown. In general we adopt the

practice of omitting any detail not required to support our

argument. For example, we recognize that systems

requirements often compete and designers must consider

details such as how to trace from business requirements to

system requirement to architectural choices. Although these

considerations are important in the day-to-day practice of

software engineering, they were not necessary to complete

our argument for the general applicability of piecemeal

growth in software engineering and were, thus, omitted

from representation in subsequent formal models.

 An (short for Architectural Structure) [15] is

used to represent an architecture in the solution.

An , has a name, and combines

a known structure, (of arbitrary complexity), together with

the which are elements of the solution that are yet to be

designed. Using the solution interpretation rule , we

can modify the solution as follows:

3Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 11 / 74

 (3)

Once an has been applied, we can use the

Solution Expansion transformation to expand the

problem context and refocus the problems to find the that

remain to be designed. For example, in the case where

 , we would have:

(4)

where is used to indicate that nothing is known

about that particular component. Using allows us to

isolate a particular unknown element without making

assumptions about any of the other unknown elements. The

 transformation creates a number of premise

problems. Each new premise problem requires solving and

each premise problem contributes its solution to the other

premise problems. Note that because the architecture being

expanded has already been justified, the expansion of the

architecture requires no further justification.

Software design patterns record the engineering

expertise needed to justify the substitution of a complex,

unfamiliar problems with simpler, more familiar one [17].

The basis of POAD Theory is that software engineering

design can be represented as a series of transformations

from complex engineering problems to simpler ones, with

software design patterns used to justify those

transformations:

(5)

In (5) the engineering expertise in patterns

 are used to justify the replacement

of the with the .

In the next section, we used the mathematics of POSE

and POAD Theory to argue that piecemeal growth can be

used to create arbitrary complex software systems.

IV. THE EXISTENCE OF PIECEMEAL GROWTH

A pattern tells us how to solve a problem by

introducing an architecture and components modeled as

follows:

(6)

We could apply the solution expansion rule to the

architecture introduced by , similar to what we

did in (4). But suppose, instead, we were to

study and realize that there is a way to go about

implementing the pattern’s solution by breaking it into two

problems: the problem of finding (the problem of

implementing the invariants of the pattern), and the problem

of finding (the problem of implementing the context-

specific parts of the pattern). Suppose our research

into leads us to the engineering judgment () that

there is a method for implementing the solution to the

problem as follows:

(7)

Our research into allows us to realize that we

can solve by implementing using a

combination of and . For the sake

of clarity, we combine (6) and (7) into a single pattern of

transformation.

(8)

is shortened to

(9)

In the original application of to , the

component acts as context for the component . The

solution to will operate within the context of the

solution for . This subtle relationship between

the solution to and the solution to

 will be important later in our argument.

Suppose we had a that we wanted to

solve. Suppose that we found a set of transformations

patterned after the one in (9) that we could apply in

sequence to the as follows:

(10)

4Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 12 / 74

 We know that our completed solution will be composed

of interrelated problems and patterns. The solution

to will operate within the context of . The

 is solved by finding solutions to all

leaf-level problems For short,

we can write (10) as the pattern sequence [17] :

 (11)

The sequence of (11) is a model of the analysis process

required to find a solution to the – the

patterns needed to solve the problem, the

implementation strategies that must be used for each

pattern, and the order in which each pattern and

implementation strategy must be applied.

Suppose we completed our analysis by finding solutions

to all leaf-level problems as follows.

(12)

where is part of a specific implementation of the

pattern , and is convincing justification that

is adequate to solve . Just as we did with (10), we

can (12) using the following sequence:

 (13)

Whereas (11) is a model of the analysis process needed

to find a solution to the , (13) is a model

of the design process required to realize the solution. It

describes the specific implementation needed to solve each

outstanding problem and justification for why each

implementation works. The sequence of (13) can be

interpreted as the ordered steps of piecemeal growth

required to solve the .

Recall from Section I, the criteria 1-4 for recognizing a

process as piecemeal growth. Equation (13) specifies a

sequence of operations. Each step

 in the

sequence results in – a partial solution to the

 . We know that step of (13)

preserves step because, from earlier analysis, we know that

 acts entirely in the context of . We also

know from Section III that the solution to the

 is the collection of all solutions

 … . Thus, we have completed our argument

that a piecemeal-growth solution to the

exists, and that the piecemeal-growth solution can be

characterized as the sequence of steps given by (13).

In the last section, we analyze the significance of our

efforts.

V. ANALYSIS

We showed piecemeal growth to be a consequence of

the engineering strategy of (9), and that piecemeal growth

requires the analysis process modeled in (11). We started by

looking for a solution to the . This

problem is an arbitrary software engineering problem in that

the only assumption that we made was that the

 has an arbitrarily large number of

requirements. We made a single assumption (9) about the

strategy for solving the problem and found a solution by

working through the consequences of that one assumption.

As a consequence, we satisfied the requirements of the

 with the problem-solving

transformations represented by the sequence in (13) – which

happened to properly characterize piecemeal growth. The

progression we went through is an argument that piecemeal

growth is applicable to arbitrary complex problems in

software engineering. Piecemeal growth has some very

specific characteristics (the criteria 1-4 from Section I). Yet,

by starting only with an engineering assumption made

independently of the decision to use piecemeal growth, we

were able to derive an abstract mathematical representation

that matched our characteristics of piecemeal growth.

We recognize that the formal models presented in

Sections III and IV would be easier to understand if

accompanied by a comprehensive example. However,

creating such an example is outside the scope of the current

research – our goal, here, was to record the argument in

enough detail to allow it to be circulated and scrutinized. In

future research, as the argument is polished and refined, it

will become essential to supplement the formal model with

a running example.

VI. CONCLUSIONS

In (13) acts entirely in the context of –

a relationship that can be satisfied using abstraction and

refinement [18] – note that a refinement works entirely

5Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 13 / 74

within the context of an abstraction. With this realization,

we can begin to imagine specific tactics for general

piecemeal growth: each step is a refinement of the previous

step, and an abstraction for the next.

One of the more interesting questions in piecemeal

growth is whether or not systems can be grown without the

help of up-front planning [19]. Can we solve (or begin

solving) the without first completing

some kind of detailed analysis? We know that the

progression (13) from the to its solution

required the analysis shown in (11). If we were to proceed

without up-front planning, we would have to derive the

sequence of (11) as the result of progressing along the

sequence of (13). As we implemented each of our interim

solutions, we would have to be able to derive our next

problem based on our current solution. More formally, we

would need to be able to derive from

 . Equation (10) implies that the minimum

linking them is . That is, the minimum

requisite for successful progression through the piecemeal

growth of (13) is that one must be able to derive the

step of the analysis (11) while one performs the step of

the design (13). This may be possible if one can anticipate

how to structure so that it can act as the context for

 . In other words, our argument implies that

piecemeal growth without detailed planning is possible only

if, at each step, one can successfully anticipate and

accommodate the invariants of the next.

The idea that one must be able to anticipate future

invariants suggests a potentially novel approach to

piecemeal growth and a link between piecemeal growth and

predictive analytics. Our argument suggests that all that is

really needed to proceed with each step of piecemeal growth

are the invariants of the next step. It may be possible predict

all required invariants by performing a cluster analysis [20]

on a complete set of system description documents. The

resulting clusters and their dependencies may be interpreted

as a map of the system’s invariants. It may be interesting to

explore whether or not it is practical to establish a

community of software engineers that grow (piecemeal)

complex software systems guided by architectures mined

from collections of plain-text descriptions of what users

would like the system to accomplish. For example, it may

be possible to use crowdsourcing to efficiently produce a

comprehensive set of description documents for a complex

system, predictive and visual modeling to create a reliable

map of that system’s invariants, and piecemeal growth to

build the system gradually over time using a long series of

small, inexpensive acts of systems development guided by

the derived map of invariants.

VII. REFERENCES

[1] M. Lázaro and E. Marcos. Research in Software Engineering:
Paradigms and Methods. Advanced Information Systems Engineering,

17th International Conference. Proceedings of the CAiSE 05 Workshops,

2005, pp. 517-522

[2] C. Alexander. A Timeless Way of Building. Oxford University Press,

1979.

[3] C. Alexander. The Oregon Experiment. Oxford University Press, 1975.

[4] K. Sullivan, Y. Cai, B. Hallen, and W. Griswold, The Structure and

Value of Modularity in Software Design. Proceedings, ESEC/FSE, 2001,

ACM Press, pp. 99-108

[5] C. Alexander. A Vision of A Living World. The Center for

Environmental Structure, 2005.

[6] Maps.google.com. Last Accessed: 03/15/2012

[7] H.O. Peitgen, H. Jurgens, D. Saupe. Chaos and Factals: New Frontiers

of Science. Springer, 2004.

[8] J.O. Coplien, N.B. Harrison. Organizational Patterns of Agile Software
Development. Prentice Hall, 2004.

[9] K. Beck. Extreme Programming Explained: Embrace Change, Second

Edition. Addison-Wesley, 2004.

[10] K. Schwaber, M. Beedle. Agile Software Development with SCRUM.

Prentice Hall, 2001.

[11] A. Cockburn. Agile Software Development. Addison-Wesley, 2001.

[12] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.

Refactoring: Improving the Design of Existing Code. Addison-Wesley,

2000.

[13] J. Kerievsky. Refactoring to Patterns. Addison-Wesley, 2005.

[14] S. W. Ambler, P. J. Sadalage. Refactoring Databases. Addison-

Wesley, 2006.

[15] J. G. Hall, L. Rapanotti, and M. Jackson. Problem-Oriented Software

Engineering: Solving the Package Router Control Problem. IEEE Trans.

Software Eng., 2008. doi:10.1109/TSE.2007.70769

[16] J. Overton, J. G Hall, and L. Rapanotti. A Problem-Oriented Theory of

Pattern-Oriented Analysis and Design. 2009, Computation World: Future

Computing, Service Computation, Cognitive, Adaptive, Content, Patterns,
pages 208-213, 2009.

[17] F. Buschmann, K. Henney, and D. Schmidt. Pattern-Oriented

Software Architecture: On Patterns and Pattern Languages, Volume 5.
John Wiley & Sons, West Sussex, England, 2007.

[18] D. F. D’Souza, A. C. Willis. Objects, Components, and Frameworks

with UML. Addison-Wesley, 1998.

[19] A. Dagnino, K. Smiley, H. Srikanth, A. I. Anton, and L. Williams,

Experiences in Applying Agile Software Development Practices in New
Product Development. In Proceedings of Proceedings of the Eighth

IASTED International Conference on Software Engineering and

Applications, Nov 9-11 2004 (Cambridge, MA, United States, 2004). Acta
Press, Anaheim, CA, United States.

[20] I. H. Witten, E. Frank. Data Mining Practical Machine Learning
Tools and Techniques. Elsevier, Inc. 2005.

6Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 14 / 74

Patterns in Safety Analysis

Tor Stålhane

Olawande Daramola

Vikash Katta

Department of Computer and Information Science

Norwegian University of Science and Technology

Trondheim, Norway

{stalhane, wande, vikash.katta}@idi.ntnu.no

Abstract – This work proposes the use of a pattern-based

hazard descriptions and generic failure modes, in

combination with domain ontology and Jackson's problem

frames for automating the identification of hazards. This is

an extension of our previous work in the CESAR project

where we built a tool that enables a requirements engineer to

write requirements in a semiformal notation based on

domain knowledge described as ontologies plus a set of

predefined requirement templates. Our approach will enable

automatic generation of the complete FMEA table based on

system’s requirements, pattern based hazard descriptions

and domain knowledge formalized as domain ontologies.

Keywords – safety analysis; HazId; generic hazards;

generic failure modes.

I. INTRODUCTION

The reported work is based on the work on
requirement patterns defined by E. Hull et al. [1] and
extended and improved in the CESAR project. In this
project we combined requirements patterns with domain
ontologies. This allows us to check the requirements for
e.g., consistency and completeness. The ontologies also
enabled the identification of system components such as
sensors, actuators and control units. By including a set of
generic failure modes for each component, we are able to
build a partly filled in Hazard Identification (HazId) table
based on Failure Mode and Effect Analysis (FMEA) for
the system specified by the requirements. In order to make
further progress we identified three needs: we needed (1)
to describe existing hazards in the environment where the
specified system should operate, (2) to formalize the
failure mechanisms that operate in this environment and
(3) an algorithm that could bridge that gap between the
local, generic failure modes from the FMEA and the
global, domain specific hazards.

The rest of this paper is organized as follows: in
Section II we give a short description of the two concepts
generic failure modes and generic hazards. In Section III
we discuss how to describe hazards while Section IV
discusses the use of textual templates – boilerplates – for
hazard description. In Section V we discuss possible ways
to bridge the gap between system FMEA and environment
hazards. In the last section (Section VI) we discuss how

we can combine theoretical work with industrial
experiments to validate and improve the work.

II. GENERIC DESRIPTIONS IN SAFETY ANALYSIS

The starting point of this work was the use of textual
patterns – boilerplates – for requirements, ontologies for
describing equipment and generic failure modes for each
part of the equipment to semi-automatically construct an
FMEA table. Our work on the application of boilerplates
for requirements engineering is based on the work of E.
Hull et al. [1] and further developed by the partners in the
CESAR project – see [2]. The reader should consult this
article for further information on the definition and use of
boilerplates.

To apply textual patterns in the HazId process, we have
used two concepts:

 Equipment ontology. This is used to identify the
components that are part of the equipment. This is
used for two purposes (1) to control that there are
requirements for all components of the equipment
and (2) to keep an updated ontology with the
generic failure modes for each component.

 Generic failure modes, which are already used in a
wide area of application domains – e.g. offshore
industry [3], nuclear industry [4], aerospace [5]
and automotive industry [6].

A generic failure mode is a failure mode containing a
group of more detailed, specific failure modes that all have
the same high level manifestation – e.g., all failure modes
that will lead to a motor stopping can be included in the
generic failure mode "motor stops". After having studied a
large set of published generic failure modes, we have
settled for the following:

 Actuators – no action, wrong actions

 Sensors – no info, wrong info

 Control systems – omission, commission,
incorrect, too late.

Below is a small part of the requirements written using
boilerplates and the generated part of a HazId table for a
steam boiler. For further discussion of the boilerplate
requirements and the semi-automatic generation of a
system HazId, see [7].

 <controller> shall <read> <water level> from
<water level sensor>

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 15 / 74

 If <water level exceeds TBD>, <controller> shall
<turn off> <feeding pump>

 If <water level below TBD>, <controller> shall

<turn on> <feeding pump>

TABLE I. EXAMPLE OF A GENERATED PART OF A HAZID TABLE

Element Failure mode
Risk from environment risk

assessment

controller

Omission

Commission

Incorrect

Too late

Water level

sensor

No output

Wrong output

Feeding

pump

No action

Wrong action

Generic hazards are widely used in industry e.g., the

offshore industry's generic hazards for blow-out [8] and
subsea drilling [9]. Important industrial areas like aviation
[10], chemical plants [11] and the building industry [12]
also have lists of relevant generic hazards.

III. HAZARD DESCRIPTIONS

There are several ways to describe hazards. We have
chosen an approach based on Ericson [13], which is
illustrated by the diagram in Figure 1.

Based on this diagram, a hazard description must at
least contain the three topmost components – hazardous
element, initiating mechanism and target and threat.

 Control unit => initiating mechanism, related to
the control unit’s failure modes. The control unit
receives info from the equipment under control.

 Controlled equipment => hazardous element,
related to the equipment’s failure modes. The
equipment can move to a hazardous failure mode
either due to a wrong control command or due to
an internal failure

 Target and threat => equipment’s environment,
e.g., building and personnel. These are represented
as having generic hazards.

IV.

V. BRIDGING THE GAP

Figure 1: Hazard description pattern

We see that we need two descriptions in order to
analyse an accident:

 How the equipment can harm the environment –
cause an accident. Our starting point here is a list
of generic hazards. The event sequence is as
follows: (1) the equipment is brought into a
hazardous state and (2) an event can then cause an
accident – identified by one or more of the
potential accidents contained in the list of generic
hazards.

 How the equipment can reach a hazardous state.
We need to consider how the equipment can do
this alone, e.g., based on equipment characteristics
or due to a faulty command from the controller.

Related to this, we need to consider (1) the controller's
action and what causes it, e.g., an internal error or faulty
information from equipment or from the equipment's
environment via sensors and (2) the equipment entity that
is affected, which will bring the equipment into a
hazardous state – actuators such as pumps and valves.

The challenge is how much of the accident sequence
we can describe in a generic fashion using one or more
boilerplate patterns. The sequence of events that finally
leads to an accident can also be described as a cause –
effect chain.

In order to organize our hazard description, we have
based our accident descriptions on Jackson’s problem
frames [14]. We need to map:

 Hazardous element, something that is in or can be
brought into a hazardous state.

 Initiating mechanism, something that happens to
the hazardous element or to something that might
affect the hazardous element.

 Target and threat, which is a description of a
potential accident.

The use of boilerplates to describe hazards will enable

the representation of hazards in a semi-formal way and

will thus be an improvement over the use of tables. We

believe that the use of hazard boilerplates provides a

useful mid-level in order to go from manual hazard

analysis to machine understandable hazards for automated

safety analysis. It is possible to translate hazards

expressed as free text or tables into hazard boilerplates,

and also to generate table-based hazards from a set of

hazard boilerplates.

Figure 2: Pattern for equipment under control

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 16 / 74

The use of hazard boilerplates has the following

advantages:

 It provides a unified structure and style of
describing hazard and thereby reduces ambiguity.
It also brings some consistency into the way
similar hazards are represented.

 It will engender reuse of hazard descriptions since
the semi-formal representation using boilerplates
is more amenable to automated text processing. It
creates a basis for pattern-based, structure-based,
and semantic-based reuse in hazard analysis,
which is useful in the context of product lines and
variant systems in specific domains. Several
automated safety analysis procedures for failure
detection and prediction, hazard mitigation, and
cause-effect analysis will benefit from reusable
boilerplate hazard definitions.

 Increased completeness of hazard descriptions –
ensuring that every hazard conforms to the
requirements of the Hazard Classification Matrix
used by Ericson [13] – see Figure 1.

IV. HAZARD BOILERPLATE DESCRIPTIONS

An element that is in a state where it has the potential
to cause an accident is said to be in a hazardous state. Such
an element is called a hazardous element. The element is
brought to the hazardous state by an action – e.g., an
equipment failure. This gives the following boilerplate
formulation:

<action> to <entity> in <state> can cause <hazardous
state>

A hazardous state does not necessarily lead to an
accident. Instead it might just be the first step out of
several that eventually leads to an accident. Thus, we
might need several boilerplate statements in sequence to
describe the full accident sequence.

If we stick to Ericson's model as shown in Figure 1, we
see that an initiating mechanism applied to a hazardous
element will create a threat to a target – an accident. We
will use the notation {...} to indicate an alternative and
since <action> to <entity> = <event>, we can write:

 {<action> to} <entity> in <state> can cause
<hazardous state>

 <event> {in <hazardous state>} can cause
<accident>

It is possible to have different events leading to the
same hazardous state and to have several hazardous states
leading to or enabling the same accident. When we have a
chain of events finally leading to an accident, it is also
possible to identify the event in the chain where it is most
easy to stop the process and thus prevent the accident from
happening.

Using the following steps, we can build the complete
cause - consequence chain for any controlled equipment in
any environment.

 Environment: identify all generic hazards that are
relevant for the environment under consideration,
e.g., explosion, flooding and fire.

 Controlled equipment: use the two boilerplates
"<action> to <entity> in <state> can cause
<hazardous state>" and "<event> in <hazardous
state> can cause <accident>" to describe how the
equipment can cause an accident in the relevant
environment. We start with the generic hazard and
can write "<too high pressure> to <vessel> can
cause <explosion>". When we consider the
equipment ontology we see that <too much heat>
can cause <too high pressure>.

 Control unit: The control unit can cause an
accident by sending the wrong command to the
equipment. The reason for the wrong command is
either wrong input, e.g., from a sensor, or a wrong
understanding of the current state of the
equipment, which again is based on wrong info
from the equipment.

The last step is to identify how the events leading up to
the accident can be initiated. This involves understanding
of how the controller works, i.e. the mapping from input
sensor signals to the output actuator signals. E.g., <wrong
value> to <temperature> can cause <wrong command> to
<heater>

The last step can be used to map instruments – e.g.,
sensors – to an initiating event. The necessary knowledge
can be taken from an equipment ontology where we find
that temperature is measured using a temperature sensor.
E.g., <sensor error> can cause <wrong value> to
<temperature>.

With the examples above in mind we have the
following event chain: EQ ! wrong temperature value =>
CU ! wrong command to heater => too high pressure =>
explosion. The event EQ ! wrong pressure value will have
the same consequences.

V. BRIDGING THE GAP

We now have a semi-formal description of how the
system can fail (Section II) and a semi-formal description
of the environmental hazards (Section IV). We can thus
bridge the gap between system failures and environment
accidents – consequences.

The control unit's components are identified by using
information from the control unit's requirements and from
the equipment's ontology, see fig. 3. The equipment
ontology will also contain failure modes – generic or
specialized – for each component.

Figure 3: System-under-control pattern with necessary information

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 17 / 74

If we consider the examples at the end of the previous
section, we see that the initiating event is an equipment
sensor failure. A sensor registered in the tool's ontology
base will have two generic failure modes: wrong output
and no output and the first of these failure modes can
cause an explosion.

Given that the control unit is correctly implemented,
the control unit can move the equipment into a hazardous
state in three ways:

 By acting correctly on a wrong signal from the
equipment – e.g., a faulty sensor.

 By getting to a wrong state due to a wrong signal
and then acting wrongly on a correct signal.

 By acting too late on a signal from the equipment.
Thus, the main activity for bridging the gap between

hazard descriptions and the equipment and control unit's
failures is to map generic failure modes onto the first
action in the cause – consequence chain used in the hazard
descriptions.

The typical event described in the previous section is
EQ ! wrong temperature value => CU ! wrong command
to heater => too high pressure => explosion. The local
effect is related to the CU – send wrong command, while
the global effect is the generic hazard – explosion. If we
use the standard elements in an FMEA or HazId table we
get the table shown in Table II below.

It is straight forward to include a detection strategy in
the equipment ontology description for each component,
thus extending the FMEA to a Failure Mode, Effect and
Diagnostics Analysis (FMEDA). The detection strategy
can be linked to each component or to each failure mode
depending on the granularity of the information available.
For our sensor example this could be a built-in self-test or
sensor duplication.

Building on an already existing CESAR tool, we can
add a new tool, which will enable the definition of hazards
described as boilerplates and production of a HazId table
using FMEA or FMEDA.

TABLE II. EXAMPLE OF COMPLTE HAZID TABLE

Component Failure

mode

Local effect Global

effect
p C

Temperature
sensor

No signal

Wrong

signal

Wrong

command
to heater

Explosion

VI. CONCLUSIONS AND FURTHER WORK

Our present work is based on our work in the CESAR
project where we built a tool that enables a requirements
engineer to write requirements in a semi-formal notation
based on domain knowledge and stored as boilerplates.
The equipment ontology can contain a set of generic
failure modes, which allows a tool to automatically
generate the first part of an FMEA table.

In the present work we have shown that it is also
possible to describe hazards that stems from defined

equipment failures using boilerplates and an equipment
ontology. This enables us to complete the FMEA table.
The new tool will also allow the engineers to add new
knowledge and experience, thus making the tool an
important part of the company's memory for safety
analysis.

Our next steps will be to build a tool prototype and, in
cooperation with an industrial partner, to enter a set of
hazard definitions written as boilerplates. The tool
prototype will be used in an experiment to identify strong
and weak points plus identifying new functionality that
need to be added in order to satisfy industrial users' needs.

REFERENCES

[1] E. Hull, K. Jackson, and K. Dick, (2004): “Requirements
Engineering”, Springer.

[2] O. Daramola, T. Stålhane, T. Moser, and S. Biffl (2011): “A
Conceptual Framework for Semantic Case-based Safety
Analysis”, 16th IEEE Intl. Conf. on Emerging Technologies
and Factory Automation, Toulouse France, IEEE Press

[3] SINTEF: “OREDA Offshore Reliability Data”, 5th Edition
[4] J.D. Lawrence: “Software Safety Hazard Analysis”,

NUREG/CR-6430, February, 1996.
[5] C. Seguin, “Formal Notation Suitable to Express Safety

Properties”, ESACS technical report, September 17, 2001
[6] P. Johannesen, F. Tørner, and J. Torin: “Actuator Based

Hazard Analysis for Safety Critical Systems”, Proceedings of
the 23th International Conference on Computer safety,
Reliability and security, Potsdam, Germany September 2004.

[7] T. Stålhane, S. Farfeleder, and O. Daramola: “Safety analysis
based on requirements”, Extended Halden Reactor Project
Meeting, Sandefjord, Norway, 2011

[8] H. Brant et al.: “Environmental Risk Assessment of
Exploration Drilling in Nordland IV”, DnV no. 2010-04-20

[9] J.L. Melendez: “Risk Assessmnet of Surface vs. Subsea
Blowout prevneters (BOPs) on Mobil Offshore Drilling Units
focusing on Riser Failure and the use of Subsea Shear Rams”
Texas A&M University, May 2006

[10] N. Alvares and H. Lambert: “Realistic Probability Estimates
For Destructive Overpressure Events In Heated Center Wing
Tanks Of Commercial Jet Aircraft”. 5th International
Seminar on Fire and Explosion Hazards”. Edinburgh, United
Kingdom April 23, 2007 through April 27, 2007

[11] S. Rathnayakaa, F. Khana,, and P. Amyotte: “SHIPP
methodology: Predictive accident modeling approach. Part I”
Methodology and model description”. Process Safety and
Environmental Protection 8 9 (2011) 151–164

[12] B.E. Biringer, R.V. Matalucci, and S.L. O'Connor: “Security
Risk Assessment and Management: A Professional Practice
Guide for Protecting Buildings and Infrastructures”. John
Wiley & Sons, 2007

[13] C.A. Ericson II: "Hazard Analysis Techniques for System
Safety". John Wiley & Sons, Inc., New Jersey, 2005

[14] M. A. Jackson: "Problem frames: analysing and structuring
software development problems". Addison-Wesley 2001

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 18 / 74

Analyzing User Patterns to Derive Design Guidelines for Job Seeking and
Recruiting Website

Yao Lu
École Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland
e-mail: yao.lu@epfl.ch

Denis Gillet

École Polytechnique Fédérale de Lausanne (EPFL)

Sandy El Helou
École Polytechnique Fédérale de Lausanne (EPFL)

Lausanne, Switzerland
e-mail: sandy.elhelou@epfl.ch

 Lausanne, Switzerland
 e-mail: denis.gillet@epfl.ch

Abstract—More and more competitive websites are targeting
online job seeking and recruiting. In this paper, we discuss
user pattern in an online job seeking website in Switzerland, by
analyzing user profiles and actions. Then based on our
findings, we derive design guidelines to improve both the
interface usability and the efficiency of the embedded
jobs/candidates recommender system.

Keywords-patterns; job seeking; recruiting; Web design;
recommender system;

I. INTRODUCTION
Nowadays, job seeking and recruiting websites are

becoming more and more popular [1]. These websites not
only provide a prospective platform for information
gathering but also support rich interaction features
leveraging user interests [2][3]. From a business point of
view, it is crucial to understand user patterns and make use
of them, in order to improve the provided services and
satisfy the customers [4].

Analyzing user patterns is widely used not only for
identifying group related activities but also for user behavior
prediction based on previous users [5][6]. Patterns preserve
common problem-solving knowledge to give recurring
solutions for user-friendly design [7]. Unfortunately, there
are only a few studies on online user patterns and design of
the job seeking and recruiting websites [8]. In this paper, we
analyze user profiles and interaction patterns on a job
seeking and recruiting website.

Usually, users of job seeking and recruiting websites split
into two main categories: employer and candidates. They
participate in the job seeking and recruiting process by
completing their profiles and performing different actions.
By relying on usage statistics, graphical visualization and
analysis, we derive typical user interaction and profile
patterns for both user categories. Based on the discovered
patterns, we generate design guidelines for jobs/candidates
recommender system as well as for the website’s interface.
The guidelines proposed in this paper have contributed to
increasing the number of overall visits of company,

candidates, and job profiles by 300% within the period of
one month.

The rest of the paper is organized as follows. Section 2
gives a general description of the website’s dataset. Section 3
discusses user profile and interaction patterns. Section 4
provides guidelines for designing the interface and the
embedded recommender system, based on the analyzed user
patterns and the experience with our case study.

II. DATASET INTRODUCTION
The dataset used in our case study includes more than

7,000 candidate users (40% of which have provided CVs),
320 companies, and 7,000 jobs. The time span is from May
2008 to the beginning of February 2012.

Candidates, company, and job-related statistics are given
below.

A. Candidate Statistics
• 80% of the candidates live in Switzerland.
• There are twice more male that female candidates.
• The average age is 27, and 88% of the candidates are

between 22 and 35.
• 98.5% of the candidates are university students or

graduates.

B. Company Statistics
• One in six companies is a startup.
• Most of the companies are located in Switzerland

and Germany takes up another big part.
• 320 companies cover 50 industry branches. The

biggest industry group is IT, Internet services, and
computer hardware/software. The next biggest group
is management consulting.

C. Job Statistics
• 89% of the posted jobs are hosted externally and the

rest is directly posted on the website (using
predefined forms).

• 61.7% of the jobs are located in Switzerland and
37.3% in Germany.

11Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 19 / 74

III. USER PROFILE AND INTERACTION PATTERNS
In this section we discuss user profile and interaction

patterns in our case study.

A. Input Patterns in User Profiles
Of most job seeking and recruiting websites, user profiles

are important for both employers and candidates. Taking
candidates for example, they can either input their
information online or upload CV files. Meanwhile, many
websites support users to import their profile from other
websites like LinkedIn [9].

Online profile forms contain specified fields. For
candidates, the main profile fields typically consist of
personal information (name, gender, birthday, etc.),
educational background, and work experience. For
companies and jobs, the main fields are location, industry,
description, and requirements. Data processing is usually
easier when dealing with structured and standardized profile
information, as in our case study. Profile input patterns can
be summarized as follows:

• Almost all companies and jobs have their basic
information filled, and 70% provide more details
regarding offers and requirements.

• Considering the candidates who filled their online
forms, the profile completion rate is rather
satisfying. 86% of these candidates input their
personal information (name, gender, age). Moreover,
99.7% of them input their education while only
51.4% input their work experience (probably
because most of them are graduating students). The
completion rate for the different profile fields is
illustrated in Figure 1.

• There is a preference for uploading CVs rather than
filling online forms. In our case study, the website
was supporting CV upload from November 2009 to
October 2011. During this period, 57% of the
candidate profiles were uploaded PDF files.

Figure 1. Profile completion rate per field

B. Similarity Patterns in User Profiles
On many websites, there is a recommendation list of

items similar to the one a user is visiting [10]. For example,
when a candidate is visiting a job page, similar jobs (in terms
of location, industry, description) are recommended to that
candidate. Similarly, when an employer is on a candidate’s
page, other candidates with similar profiles (in terms of
educational background, skills, work experience) are also
recommended to that employer. Figure 2 shows an example
of similar job recommendation on LinkedIn [9]. A
prerequisite to provide such features is to compute similarity
between entities of the same type.

Figure 2. Similar job recommendation in LinkedIn[9]

In this section, we discuss profile similarity patterns
illustrated using similarity graphs. Profile similarity consists
of measuring the extent to which two user profiles are similar
in terms of content. We construct similarity graphs for all
types of users. In these graphs, an edge connects two user
profiles if they have a similarity higher than a minimum
threshold. We discovered that the graph of candidates and
employers follow different patterns. We use an information
visualization tool named aiSee [11] to build and visualize
graphs of job, candidate, and company similarity. The profile
similarity measurement is shown in Figure 3.

As it is illustrated in Figure 3， there are two types of
profiles: structured and unstructured. Structured profiles
consist of several predefined fields that can be filled online
like name, age, and education. Unstructured profiles, on the
other hand, are uploaded with no standardized format (e.g.
uploaded CV files). For structured profiles, the overall
similarity consists of a linear combination of weighted field
similarity in the case of fields having predefined values and
normalized content-based similarity in the case of free text
fields. Table 1 shows the fields in candidate’s profile we
select and the weight assigned to each field. The choice of
the fields and their corresponding weights are set after
discussion with company representatives. For them, the
educational background, the university, and the degrees are
the most important fields since their target customers are
graduating students. When it comes to companies and jobs,
the industry field, geographic location, job title/position and
its requirements are important fields to consider for

12Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 20 / 74

similarity measurement [12]. When it comes to unstructured
profiles, it is difficult to extract corresponding fields. So,
when comparing two PDF files or one PDF file and one
structured profile, both are parsed into unstructured data and
LSA (Latent Semantic Analysis) is used to compute their
similarity. Both structured and unstructured profiles have
textual content (i.e. description fields in online filled forms).
In this case, we also use LSA to compute similarity. More
specifically, we call APIs provided by Salsadev [13].
Through the process described in Figure 3, we obtain
similarity of structured online profiles and unstructured
uploaded profiles.

TABLE I. SELECTED FIELDS AND WEIGHTS OF CANDIDATES’ ONLINE
PROFILES

Field Weight (%) Field Weight (%)
Gender 5 Age 10
University 10 Study Course 20
Diploma 10 Language 5
Work Experience 20 Qualification 10
Extracurricular 10 Total 100

Database

Un-
structured

Structured

Field Select

Weighted
Function

Salsadev
Similarity

PDF Server

Un-
structured

Similarity

Salsadev
Similarity

Figure 3. Similarity computation process for candidate profiles

Figure 4 displays the similarity graphs for all user types.
In these graphs, nodes represent users, and edges connect
similar users. Radial layout is used and users with higher
number of incoming edges (i.e. those having more similar
users) are located in the center. Ignoring users that have no
edges (not similar to any other user), we observe that the
graph of candidates follow patterns that are different from
other user types (jobs or companies). That is, company graph
and job graph consist of clusters of small dense graphs，
while the candidate graph consists of big radial clusters.
However, according to a preliminary evaluation, this
difference in patterns does not affect accuracy in any
significant way. The use of structured candidates’ CVs yields
more accurate results than unstructured CVs.

(a) Company similarity graph

 (b) Job similarity graph

(c) Candidate similarity graph

Figure 4. User similarity graphs

13Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 21 / 74

Reasons for the difference in similarity patterns are
discussed hereafter. In the graphs of jobs (Fig. 4a) and
companies (Fig. 4b), there are many small, dense graphs
with a small number of nodes but most of them are
connected to each other. But in candidates’ graph, there are
big, radial clusters. Splitting the candidates similarity graph
into a graph for structured candidate CVs and another graph
for unstructured CVs, still displays the same pattern. This
indicates that the patterns observed in candidate graphs are
not due to dealing with unstructured CVs. On the other hand,
a closer look at company and job graphs, shows that
company and job nodes tend to cluster by their dominant
factor. In our case, the dominant factor of company is
industry. That is because we use location, industry, and scale
to compute the similarity and, as it is described in section 2,
most of the companies are located in Switzerland. As a
result, it is the industry field that makes the difference, and
contributes the most in forming clusters of similar
companies. When it comes to jobs, the dominant factor is the
company that posts them. It is not only because the same
company usually offers jobs with similar requirements
related to the company’s industry but also because job
descriptions follow the same style and use the same set of
terms. As a result, most jobs posted by the same company
form one cluster. But when it comes to candidates, it is
difficult to label clusters in the profile similarity graph. The
main reason is that there is no dominant feature for
candidates. There are much more fields considered for
candidates than for companies (country, industry, scale) and
jobs (company, location, title, description). In addition to the
multiple fields contributing to the similarity pattern, many
candidates have more than one input for each field. For
example, they may have multiple interests, and may have
studied in more than one university. Taking the field as an
example, in our measurement, if two students have at least
one field of study in common, they are considered as similar
along this attribute. For example, if student A studies finance
and business, student B studies finance and computer
science, they are considered as similar in terms of their field
of study. So a group of nodes with multiple, overlapping
values are clustered. In contrast, companies and jobs usually
have one value in most fields.

In addition, candidate similarity is not necessarily
transitive. Let us consider a student C that has studied
computer science and graphic design. Ignoring all other
fields, C is similar to B because they both studied computer
science but C is not similar to A. It is also observed that the
nodes in the center of a radial graph tend to have multiple
backgrounds. This is due to the fact that there are more nodes
similar to them along different directions.

Based on the similarity patterns observed for profiles,
potential discussions about the user classification, pattern
improvement, and contribution to the recommendation will
produce more interesting discoveries. We summarize some
limitations exclusively relying on content-based analysis to
produce recommendations:

 Candidates tend to mention multiple interests
without the possibility to specify their order of
preference.

 Two candidates with a high similarity in their
profile may not attract employers in the same way.

 While computing profile similarity, it is impossible
to set the field weights in such a way to satisfy
every user, as all users have different priorities. For
example, some candidates focus on employers in
the same industry with their majors while other
candidates are more concerned about the location
of their jobs.

To better understand the users, and deliver personalized
jobs recommendation, it is deemed important to leverage
users interest by examining how they interact with the
website. Actions such as rating a job, liking/disliking a
company, adding a company event or a candidate profile to
one’s favorite list are useful indications of interest. In the
next section, we discuss the user interaction patterns derived
from logged user actions.

C. User Interaction Patterns
Job seeking and recruiting usually provide some social

media features like connect, like, share, and recommend to
friends. These features do not only help user discover interest
and opportunities, but can also be exploited in recommender
systems [14]. Figure 5 shows two screenshots from LinkedIn
and Xing [15]. When it comes to our case study, the possible
actions are summarized below:

• Visit
• Share
• Like/Dislike
• Rating
• Recommend to friends
• Add to favorite list (or bookmark)
• Apply (for a job)

Figure 5. Social media features in LinkedIn and Xing[9][15]

On the interface, most of the buttons to perform
interactions and express interest are located in easy-to-use
places. According to user action logs, the interactions are
sparse and the majority of the users are anonymous.
Interactions follow a long tail distribution [16]. In our case,
taking visits as an example, 20% of the users contribute to
more than 70% of performed visits. Figure 6 shows the long
tail by ranking users by the number of their page visits.
Meanwhile, majority of users are anonymous. According to
data logged between May 2011 and February 2012, on a total
of 1.4 million visits, only 2278 were contributed by logged in
users, i.e. 98.3% of the visits are anonymous. Interestingly,
from April 2011 to September 2011, the website allowed
anonymous users to bookmark candidate, job, or company
profile pages. The result was that anonymous users were
responsible for 99.7% of the actions of bookmarking.

14Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 22 / 74

Figure 6. Long tail of performed visits

IV. WEB DESIGN GUIDELINES
In this section, we provide a list of design guidelines

based on the case study, and more specifically: the analysis
of user profile, interaction patterns and the interface usability
analysis. These guidelines can help in designing usable
interfaces and job recommendation services for online job
seeking and recruiting websites. In our case for example,
applying the guidelines provided below, contributed to an
increase of 300% in the number of visits within the period of
a month:

• Users tend to be anonymous which renders pattern
analysis less personalized. So website registration
should not be difficult or time consuming. Instead,
low entry barriers should be adopted, and profiles
could be filled progressively. User interest should be
leveraged in a semi-automatic way by combining
different techniques such as content-based and
interaction-based analysis.

• Mining user interactions on the website
complements content-based profile analysis in
deriving user patterns and delivering personalized
recommendations. Social media features such as
bookmarking, liking/disliking and rating should be
used to encourage interactions and infer user interest.
Nevertheless, when it comes to job recruiting
websites, these features should be “built-in” and
should not be imported from other sites such as the
Facebook “like” button [17] or the Twitter “share”
button [18]. The main reason for that is that
candidates do not necessarily want that everyone in
their social network know that they “liked” a job.
Thus, using a Facebook button would discourage
them from expressing interest. Last but not least,
using external features prevents the website from
being able to log the corresponding user actions and
exploit them for data mining and recommendation
purposes.

• Obviously, the location of the interaction features is
essential. Bookmarking or adding to favorites is
deemed useful and widely used in many online sites
(e.g. social sites, e-commerce, job seeking sites).
Surprisingly, we had only very few records of such
features in our study. Usability analysis showed that
it was the feature’s inadequate position that

dramatically affected its usage. Instead of being
placed on the homepage, the user had to go to
settings to find his/her list of favorites. So it was
time consuming for candidates to perform extra
actions to access it in order to bookmark a company
or job page.

• Based on observed patterns, users tend to upload CV
files rather than fill online forms. Therefore,
websites should provide various ways for users to
provide their information, like online form,
uploading, and file import from other existing sites.
On the other hand, since it is easier to process
structured data, incentives for filling online forms
should be created for users.

• Content-based profile analysis is not by itself
sufficient to leverage user interests, while
interaction-based analysis has the problem of sparse
data, as reported earlier. To overcome each method’s
limitations, a hybrid job recommender system,
which combines the two techniques, should be
adopted. All data types, including structured content,
unstructured content, and recorded interactions
should be explored. Using hybrid recommendation
techniques help cope with the data sparseness and
cold start problems.

V. CONCLUSION AND FUTURE WORK
In this paper, we analyze user profile and interaction

patterns for an online job seeking and recruiting website.
Based on our user pattern analysis, we provided guidelines
for the design of the website’s interface and the embedded
recommender system. In the future, we will continue to
analyze the data from the website for further user pattern
analysis. A user study will also be conducted to assess the
impact of our design guidelines on the website’s usability
and evaluate the accuracy of the embedded job/candidate
recommender system.

References
[1] Jobvite 2011 Social Recruiting Survey. Dec. 2011.

http://recruiting.jobvite.com/
[2] P. Lops, M. D. Gemmis, G. Semeraro, F. Narducci and C.

Musto, “Leveraging the linkedin social network data for
extracting content-based users profiles,” Proceeding of the
fifth ACM conference on Recommender Systems (RecSys
‘11), ACM, Oct. 2011, pp. 293-296,
doi:10.1145/2043932.2043986

[3] N. B. Ellison, C. Steinfield, and C. Lampe, “The benefits of
Facebook “Friends”: Social Capital and College Students Use
of Online Social Network Sites,” Computer-Mediated
Communication, vol. 12, iss. 4, July. 2007, pp. 1143-1168,
doi: 10.1111/j.1083-6101.2007.00367.x.

[4] Edmond H. Wu, Michael K. Ng, Andy M. Yip, and Tony F.
Chan, “A Clustering Model for Mining Evolving Web User
Patterns in Data Stream Environment,” Proceeding of
Intelligent Data Engineering and Automated Learning
(IEDAL 2004), pp. 565-571, doi: 10.1.1.4.8132.

[5] A. Ross, C. B. Owen, and A. Vailaya, “Models for User
Access Patterns on the Web: Semantic Content versus Access
History,” Proceedings of 5th Annual World Conference on
the WWW and Internet (Webnet 2000), pp. 464-469, doi:
10.1.1.117.7275.

Users

15Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 23 / 74

[6] S. Han, A. Goker, and D. He, “Web User Search Pattern
Analysis for Modeling Query Topic Changes,” Information
Processing & Management, vol. 38, iss. 5, 2002, pp. 727-742,
doi: 10.1016/S0306-4573(01)00060-7.

[7] I. Wentzlaff, and M. Specker, “Pattern-based development of
user-friendly web applications,” Proceedings of ICWE '06
Workshop proceedings of the sixth international conference
on Web engineering, ACM, July. 2006, doi:
10.1145/1149993.1149996.

[8] B. J. Jansen, K. J. Jansen, and A. Spink, “Using the web to
look for work Implications for online job seeking and
recruiting”, Internet Research, vol. 15, iss.1, 2005, pp. 49-66,
doi: 10.1108/10662240510577068.

[9] http://www.linkedin.com/
[10] B. Sarwar, G. Karypis, J. Konstan and J. Riedl, “Item CF

Item-based Collaborative Filtering Recommendation”,
Proceedings of the 10th international conference on World
Wide Web (WWW ‘01), ACM, May 2001, pp. 285-295, doi:
10.1145/371920.372071.

[11] http://www.absint.com/aisee/

[12] S. L. Rynes, R. D. Jr. Bretz, and B. A. Gerhart, “The
Importance of Recruitment in Job Choice: A Different Way of
Looking,” Personnel Psychology, vo. 44, iss. 3, Sept. 1991,
pp. 487-521, doi: 10.1111/j.1744-6570.1991.tb02402.x.

[13] http://www.salsadev.com/
[14] R. Rafter, Keith. Bradley, and B. Smyth, “Automated

collaborative filtering applications for online recruitment
services,” Proceedings of the International Conference on
Adaptive Hypermedia and Adaptive Web-based Systems,
Springer-Verlag Press, Aug. 2000, pp. 363-368,
doi: 10.1007/3-540-44595-1_48.

[15] https://www.xing.com/
[16] A. Enders, H. Hungenberg, H Denker and S. Mauch “The

long tail of social networking. Revenue models of social
networking sites”, European Management Journal, vol. 26, iss.
3, Feb. 2008, pp. 199-211, doi: 10.1016/j.emj.2008.02.002.

[17] http://www.facebook.com/
[18] https://twitter.com/

16Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 24 / 74

Pattern Innovation for Architecture Diagnostics
in Services Computing

Alfred Zimmermann
Reutlingen University, Faculty of Informatics

Architecture Reference Lab of the
SOA Innovation Lab, Germany

alfred.zimmermann@reutlingen-university.de

René Reiners
Fraunhofer FIT

User-Centered Ubiquitous Computing
Sankt Augustin, Germany
rene.reiners@fit.fraunhofer.de

N.N. email

Abstract – Assessing the maturity of service-oriented enterprise
software architectures is a problem since the current practice
has been developed rather intuitively, providing only a sparse
and rarely validated metamodel. In preliminary research, we
have developed an original pattern language for supporting
repetitive enterprise system architecture assessments. The aim
is the evaluation and optimization of these kinds of
architectures. For this purpose, we extended base frameworks
like the Capability Maturity Model Integration and The Open
Group Architecture Framework. Since we apply a pattern
catalogue for the assessment of enterprise system architectures,
we see ourselves confronted with the problem that patterns are
traditionally derived after long experience by an expert group
of pattern authors. In our view, this may lead to a decelerated
reuse of available knowledge. Our approach intends to
integrate available knowledge from services computing and
software architects directly from the beginning of the pattern
development process. Over time, these ideas are iteratively
developed towards validated patterns by feeding back the
insights of pattern applications. This allows the early
integration of new findings and concepts into the pattern
catalogue at an early stage whereas already existing patterns
are continuously refined. In this work, we propose both, a clear
maturity framework background for the developed
architecture assessment patterns, and an early integration of
new ideas as pattern candidates within a pattern innovation
and evolution process.

Keywords – service-oriented systems; architecture maturity
framework; assessment patterns; pattern evolution.

I. INTRODUCTION
Innovation oriented companies have introduced services

computing systems to assist in closing the gap between
business and information technology and thus enabling
business opportunities for service and emerging cloud
computing paradigms in the context of novel enterprise
architecture management approaches. One of the main
problems is that until today the transparency of this
innovation change to system architectures based on services
and cloud computing in information technology is blurred.
Our approach investigates the ability of heterogeneous
enterprise services systems [1] and integrates system
architecture elements from convergent architecture methods,

technologies and related software patterns, as in [2], [3], and
[4] with evaluation methods for service-oriented enterprise
systems [5].

The SOA Innovation Lab - an innovation network of
industry leaders in Germany and Europe - investigates the
practical use of vendor platforms in a service-oriented and
cloud-computing context. For this purpose we have
researched a suitable set of architecture assessment
instruments for services computing, leveraging and
extending the Capability Maturity Model Integration
(CMMI) [6] and the Open Group Architecture Framework
(TOGAF) [7]. This set extends our previous work and
consists of ESARC - our Enterprise-Services-Architecture-
Reference-Model [8] and [9], an associated ESA-
Architecture-Maturity-Framework [1] and [8], and an ESA-
Pattern-Language [10] for supporting architecture evaluation
and optimization.

Our research explores the novel hypothesis to relevantly
support a major effort of software architects during
architecture assessments of service-oriented systems:
1. CMMI [6] is well known as a suitable basic maturity

framework to assess software processes. Nevertheless
the metamodel of CMMI can be transformed to enable
quality assessments for software architectures.

2. The idea of software patterns can consistently be applied
and extended in service-oriented architecture
assessments for capability diagnostics of service-
oriented architectures. The collected architecture
assessment patterns could be iteratively improved within
our original pattern evolution process.
We are reporting in this research paper about our current

research step to combine our previous evaluated architecture
assessment metamodel with a newly introduced community-
oriented pattern evolution process. In Section II we present
related and preliminary work concerning service-oriented
architectures and frameworks. Additionally, we present
current findings on architecture maturity assessment. Section
III gives a brief introduction to software patterns as best
practices for application and software design also providing
background information about the approach, a pattern’s
intention, structure and the combination of patterns. The
application of architecture patterns as test cases for the

17Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 25 / 74

maturity assessment of software architectures is shown in
Section IV together with the derived SOA maturity model
integration SOAMMI and results from a first practical
validation process. We explain the pattern innovation process
that is combined with the currently existing pattern catalogue
providing collaborative means for the early integration of
new concepts and their evaluation during a project’s lifetime.
Finally, we conclude in Section V on the current state and
provide an outlook on future work and directions.

II. ARCHITECTURE MATURITY AND ITS ASSESSMENT
The Open Group Architecture Framework (TOGAF) [7]

as the current standard for enterprise architecture provides
the basic blueprint and structure for our enterprise software
architecture domains of service-oriented enterprise systems,
as in the ESARC reference model [9]: Architecture
Governance, Architecture Management, Business &
Information Reference Architecture, Information Systems
Architecture, Technology Architecture, Operation
Architecture, Security Architecture, and Cloud Services
Architecture.

SOA is the computing paradigm that utilizes services as
fundamental flexible and interoperable building blocks for
both structuring the business and for developing applications.
SOA promotes a business-oriented architecture style as
promoted in [11] and [3]), based on best of breed technology
of context agnostic business services that are delivered by
applications in a business-focused granularity. To provide
dynamic composition of services within a worldwide
environment SOA uses a set of XML-based standards. A
main innovation introduced by SOA is that business
processes are not only modeled, but also combined services
are executed from different orchestrated services.

In recent work, we have transformed the Capability
Maturity Model Integration into a specific framework for
architecture assessments of service-oriented enterprise
systems. For this reason, we have combined CMMI with
current SOA frameworks and maturity models. We used
TOGAF and ideas related to the business and information
architecture from [12] as a basic structure for enterprise
architecture spanning all relevant levels of service-oriented
enterprise systems. In contrast to the Enterprise Architecture
Project in [12] we are focussing on standardized structures
form TOGAF [7] and extend these in our ESARC
Architecture Reference Model, as in [8] and [9], with
currently researched new additional architectural views:
Operation Architecture, Security Architecture, and Cloud
Services Architecture.

The Architecture Capability Maturity Model (ACMM)
framework, which is included in TOGAF [7], was originally
developed by the US Department of Commerce. The goal of
ACMM assessments is to enhance enterprise architectures by
identifying quantitative weak areas and to show an
improvement path for the identified gaps of the assessed
architecture. The ACMM framework consists of six maturity
levels and nine specific architecture elements, which are
ranked for each maturity level, and are deviant from the
understanding of maturity levels in CMMI.

Inaganti and Aravamudan [13] describe the following
multidimensional aspects in their SOA Maturity Model:
scope of SOA adoption, SOA maturity level to express
architecture capabilities, SOA expansion stages, SOA return
on investment, and SOA cost effectiveness and feasibility.
The scope of SOA adoption in an enterprise is differentiated
by the following levels: intra department or ad hoc adoption,
inter departmental adoption on business unit level, cross
business unit adoption, and the enterprise level, including the
SOA adoption within the entire supply chain. The SOA
maturity levels are related to CMMI, but used differently,
applying five ascending levels to express enhanced
architectural capabilities: level 1 for initial services, level 2
for architected services, level 3 for business services, level 4
for measured business services, and level 5 for optimized
business services.

Sonic [14] distinguishes five maturity levels of a SOA,
and associates them in analogy to a simplified metamodel of
CMMI with key goals and key practices. Key goals and key
practices are the reference points in the SOA maturity
assessment.

ORACLE [15] considers in their SOA Maturity Model a
loose correlation with CMMI five different maturity levels:
opportunistic, systematic, enterprise, measured,
industrialized and associates them with strategic goals and
tactical plans for implementing SOA. Additionally, the
following capabilities of a SOA are referenced with each
maturity level: Infrastructure, Architecture, Information &
Analytics, Operations, Project Execution, Finance &
Portfolios, People & Organization, and Governance.

A. The SOAMMI Framework
The aim of the SOAMMI – SOA Maturity Model

Integration - framework [1] is to provide an integral
framework to assess architectures of service-oriented
enterprise systems and to accord with a sound metamodel
approach. The previously mentioned related work elements
where developed following in contrast to SOAMMI only a
pragmatic and intuitive approach, having no explicit
metamodel and outside of common architecture standards,
like TOGAF. The metamodel for architecture evaluation
enlarges the standardized CMMI, which is originally used to
assess the quality of software processes and not the quality of
software architectures.

The SOAMMI architecture maturity framework
introduces original architecture areas and organizes them
within extended architecture domains, which are mainly
based on TOGAF. Our intention was to leave most structural
parts e.g. Maturity Levels, Capability Levels, Specific Goals
and Practices, Generic Goals and Practices - of the original
CMMI metamodel as untouched concepts. We extend these
concepts of the metamodel by reclusively connected
architecture patterns, as navigable architecture quality
patterns of a pattern language, and enlarge these by other
architecture specific structures and contents. The metamodel
of SOAMMI is illustrated in Figure 1 also revealing that it
has similarities with the original CMMI metamodel; we left
the semantics of maturity levels and capability levels the
same like in CMMI. Additionally, we added the following

18Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 26 / 74

concepts: Architecture Domain, Architecture Area,
Architecture Pattern, and replaced all the contents of related
Specific Goals, Specific Practices, and the Generic Practices,
to fit for our architecture evaluation purpose. We used
multiplicity indicators for class relations to add a basic
metamodel semantic. Not indicated multiplicities
corresponds to the default 1 cardinality or a 1..1 multiplicity.

The semantics of these maturity levels as in [1] were
adapted from [6] to conform to the architecture assessment
scope for service-oriented enterprise systems. In terms of
requirements from customer oriented domain-models and
reference use scenarios, our model has introduced in [8] five
maturity levels, which define architecture assessment criteria
for service-oriented enterprise systems and help to measure
the architecture maturity, like Initial Architecture, Managed
Architecture, Defined Architecture, Quantitatively Managed
Architecture, and Optimizing Architecture.

Figure 1: SOAMMI Metamodel – Main Concepts.

We have derived the architecture domains mainly from

TOGAF where they are used as specific architecture
subtypes and corresponding phases of the TOGAF-ADM
(Architecture Development Method). Architecture areas
cover assessable architecture artifacts and are correspondent,
but very different, parts of process areas from CMMI. To fit
our architecture assessment scope, we have defined 22
original architecture areas of the SOAMMI framework [1]
and [8], linked them to our architecture maturity levels and
ordered them in line with our specific enterprise and
software architecture domains. Each of the delimited
architecture area is accurately described in a catalog
including name of architecture area, short identification of
architecture area and a detailed description.

SOAMMI supports both the staged and continuous
representations. The same staging rules as in CMMI apply to
SOAMMI and should therefore enable the flexible adoption
of both model representations: Continuous for assessing
single architecture areas and staged for assessing the whole
architecture maturity. The assessment of capability levels
could be applied to iterate specific architecture areas or to
assess or improve a focused innovation aspect, involving one
or more architecture areas. To verify and support persistent
institutionalizations of architecture areas we introduce
architecture related generic goals and practices. All
architecture areas are affected by the same generic goals and

associated generic practices. In the following, two example
architecture areas together with their goals and practices are
presented.

B. Example of Architecture Area
Business Processes & Rules

Purpose: Structure, design, model, and represent business
value chains and business processes to support business
capabilities.
Maturity Level: 2
Specific Goals (SG) and Specific Practices (SP):
SG 1: Model Business Value Chains as Root of Business
Capabilities and Business Processes

SP 1.1 Identify business value for business operations
SP 1.2 Structure value chains
SP 1.3 Optimize business considering customer
channels and supplier networks

SG 2: Model and Optimize Business Processes
SP 2.1 Identify business activities for business
processes: system activities, user interaction activities,
and manual activities
SP 2.2 Structure business processes for business roles
and organizational units
SP 2.3 Define business workflows and business process
rules
SP 2.4 Model and represent business processes

SG 3: Model and Represent Business Control
Information

SP 3.1 Identify and represent control information for
product monitoring
SP 3.2 Identify and represent control information for
process monitoring.

III. PATTERN COLLECTIONS AND LANGUAGES
Design patterns originated as an architectural concept

introduced in the seminal book ”A Pattern Language”
written by Christopher Alexander [16]. He captured his
experience gathered over time and structured this knowledge
in smaller units as patterns describing good qualities of a real
world examples. The level of detail varied from landscape
characteristics over areas, quarters up to single parts of
houses and even rooms. Alexander structured the different
patterns by means of size. This way, patterns explaining
concepts of larger areas were explained first, connecting the
currently read pattern to descendent patterns with a higher
level of detail.

Alexander’s intention was to describe best practices and
effective design solutions in order to share design knowledge
with other people facing similar problems in a related
context. The solution proposed by a software pattern should
be generic rather than specific, such that it can be
implemented in numerous different ways. The benefit of
using patterns is that they communicate insights into
common design problems and reflect solutions that a
community of experts has developed over time.

An important quality of a pattern was the readability by
non-experts. Since every pattern was written in prose with a

19Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 27 / 74

standard vocabulary, the concepts could be understood by a
large readership that was not necessarily experts in the
domain.

This thought of structuring knowledge in patterns was
picked up in many different computer-science domains like
software design, human-computer interaction design, website
design and many others.

In particular, Gamma et al. extended the notion of
patterns into the domain of software engineering, and
constructed twenty-three classic software design patterns [2].
Since then, the concept of design patterns also became
essential in the domain of Human-Computer-Interaction
(HCI), where patterns are commonly used to describe and
preserve solutions to recurring user interface design
problems. Borchers transferred the pattern concept to
human-computer interaction design for interactive exhibits
[17]. From his point of view, especially patterns in HCI need
to bridge the gap between users with conceptual knowledge
and understanding of the problem domain and software
engineers who are deeply involved in the technical
development.

A given pattern is not always the optimal solution in
every case, but tends to work in practice and supports user
acceptance for the system. Tidwell describes the influence of
patterns in user interface design stating that each
implementation of the same pattern differs somehow in its
characteristics although it comes from the same origin [18].
Thus, patterns should be seen as description of a problem
solution as starting-point and not as fixed design rules.

A similar approach is introduced by Schümmer and
Lukosch in the domain of computer-supported collaboration
[19]. They structure their pattern language along the level of
technical complexity: The more detailed a pattern describes a
certain solution, the more technical this description becomes.
Up to a certain degree of detail, they consider all patterns as
relevant for all stakeholders. Beyond that point, the target
group changes to engineers that need to technically
implement the design suggestion.

In addition to working solutions, the description of anti-
patterns is also a valid information source for application
and interface designers. They document surprisingly failing
approaches that turn out to be ineffective or counter-
productive in practice [20]. Other collections, e.g., in UI
design, focus on pointing out repetitions of design flaws
[21]. Here, concepts that have intruded many designs but
actually lead to rejection are discussed and the reasons for
design failures are explained.

A collection of patterns, which are organized in a
directed acyclic graph structure, is referred to as a pattern
language. Elements of a pattern language are navigable
sequences of patterns. In contrast to pattern language,
pattern collections provide semi-structured clusters of
patterns that are not interconnected in a hierarchy. This is for
example the case in [2] who distinguish between structural,
creational and behavioral patterns.

IV. PATTERN INNOVATION FOR ARCHITECTURE DIAGNOSTICS
Although design patterns are mainly used to inform the

design of a system, they are also applied as test cases for

assessing software. Software architecture assessment patterns
are based on the seminal work of software patterns
originated from the work of [16].

Our pattern language for architecture assessments of
service-oriented enterprise systems provides a procedural
method framework for architecture assessment processes and
questionnaire design. This method framework of our new
introduced pattern language was inspired from [20], and
derived from the structures of the metamodel of SOAMMI as
well as from our initial pattern catalog from previous
research [10].

We have linked each specific and each generic goal
within our assessment framework to a distinct pattern of our
pattern language. We organize and represent our architecture
assessment patterns according to the following structures:
Architecture Domains, Architecture Areas, Problem
Descriptions - associated with Specific Goals, Solution
Elements that are connected to Specific Practices and
Related Patterns, which are subsequent connections of
applicable patterns within the pattern language.

Linking elements to specific practices of the SOAMMI
framework indicate solutions for architecture assessments
and improvements of service-oriented enterprise systems.
This assessment and improvement knowledge is both
verification and design knowledge, which is a procedural
knowledge based on standards, best practices, and
assessment experience for architecture assessments of
service-oriented enterprise systems. It is therefore both
concrete and specific for setting the status of service-oriented
enterprise architectures, and helps to establish an
improvement path for change. Patterns of our language show
what to assess. Our patterns aim to represent verification and
improvement knowledge to support cooperative assessments
synchronizing people in cyclic architecture assessments.

Associated with our architecture assessment pattern
language we have set up an assessment process to show how
to assess architecture capabilities. This process is based on a
questionnaire for architecture assessment workshops
providing concrete questions as in [8], answer types, and
helping to direct and standardize the related assessment
process. Additionally, we have included process methods for
workshops, result evaluations, improvement path
information for technology vendors and for application
organizations, as well as change support and innovation
monitoring instruments.

We have identified and distinguished a set of 43 patterns
as parts of a newly researched and introduced pattern
language in the context of 7 Architecture Domains and 22
Architecture Areas. Even though our architecture quality
patterns accords to the Specific Goals, the Specific Practices
and the Generic Goals from the SOAMMI framework, they
extend these structures by navigable patterns as part of an
architecture assessment language. Only this pattern structure
enables architecture quality assessors to navigate easily in
two directions to support the diagnostics and optimization
process, and to provide a clear link to questionnaire and the
related answer and result concepts. The full collection of
patterns of the architecture assessment pattern language was
derived from the SOAMMI framework (cf. Section II).

20Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 28 / 74

A. Evaluation and Findings
The practical benefits of our SOAMMI assessment

pattern language were demonstrated by the successful use as
guideline for the questionnaire design in four major
capability assessments of service-oriented vendor technology
architectures, as in [1] and [8]. Architecture assessments
need to address key challenges for companies during the
built-up and management of service-oriented architectures.

SOAMMI seems to be complex in practice. Therefore a
pragmatic simplification of the SOAMMI framework was
particularly required in counting assessment results.
Additionally, we have considered for our assessments
specific user requirements from companies using and
providing service-oriented enterprise systems.

Following these ideas, the basic structure of our
questionnaire in [8] was taken from the SOAMMI
architecture areas with one or more questions per Specific
Goal. User requirements have been consolidated and mapped
against specific goals. Wherever no user requirements could
be mapped, Specific Practices have been used to generate
questions on the level of specific goals. Through this
procedure each Specific Goal could be related to at least one
concrete question.

The assessment process takes about 3 months in total to
complete for each software technology provider. The first
step is a pre-workshop (2-3 hours) to make sure that the
architecture provider can identify the appropriate experts for
the assessment workshop itself. Then the actual assessment
workshop (4- 6 hours) is held a few weeks later, so that the
provider has enough time to identify the experts that should
participate and prepare answers. Finally, a series of follow
up workshops for specific questions (3-4 hours each) are
arranged with the system technology provider.

B. Shortcomings for Updating and Refining
The pattern catalogue that serves as a basis for our
assessments is continuously a subject of consideration with
regard to pattern refinement, pattern improvement and
catalogue extension. In parallel to the assessments, feedback
on the state of the patterns that were used during the
evaluation is gathered.

This way, we have a chance to update existing patterns or
derive variants of them. However, we cannot be sure that a
new pattern or derivation is really valid. On the other side,
the variant or new formulation can be a promising pattern
candidate and later be validated and therefore be integrated
into the pattern catalogue in order to use and benefit from it
as early as possible.

The current process, however, does not foresee the
inclusion of non- or semi-validated patterns. The validation
process of a pattern also is a time-consuming process with
much iteration. It can partially be combined with additional
SOA assessments but then still a subset of new patterns
needs to be investigated in more depth.

So, our aim is to gather the feedback, adjust our current
findings and preserve knowledge, feedback and new findings
within our catalogue.

For this reason, we aim at establishing an evolution
process that makes it possible to integrate early results into
the existing pattern catalogue. Continuous refinement and
therefore the lifelines of the pattern catalogue need to be
ensured. The requirements for such a process were already
defined in preliminary work [18] and [23]. The process itself
is described in the following section.

Traditionally, pattern collections are published after a
long period of development and validation where the
essences from design experience can be extracted. This is
mostly done by a small, closed group of design experts as
described in [24]. In the approaches presented in the previous
sections, much effort was put into the derivation and
evaluation of mature and evaluated patterns.

However, we see the problem that many findings must be
regarded earlier, at the state of an idea in order to be able to
consider many findings in a flexible pattern set. This holds
the chance to start working with patterns very early – even if
it not yet fully proven. Our process [25] wants to include
new ideas and concepts into the project’s lifecycle as early as
possible. Over time, the idea, which is directly formulated as
a pattern candidate, gets refined and evaluated.

In this scenario, it may turn out that the candidate is not a
pattern and needs to be rejected. Alternatively, after
continuous refinement and evaluation the pattern candidate
may become more mature, reaching a new state, e.g., being
“under consideration”. The counter-result is also possible: A
promising pattern idea may also turn out to lead to a bad
decision or concept. In this case, we speak of a surprisingly
failing solution. In order to avoid similar failures in the
future, we formulate this concept as an anti-pattern. This
way, the pattern gets a warning character, allowing follow-up
to directly cross out this idea and alter considerations.

V. CONCLUSION AND FUTURE WORK
In this work, we have motivated the necessity to extend

existing SOA maturity models to accord to a clear
metamodel approach due to the verified CMMI model.
Based on the related work to CMMI, which is an assessment
and improvement model for software processes but not for
architectures, we have developed suitable models for
assessments of service-oriented enterprise systems. Our
specific architecture assessment approach of the SOAMMI
framework was founded on current architecture standards
like TOGAF and architecture assessment criteria from
related work approaches.

The presented SOAMMI framework was validated in
consecutive assessment workshops with four global vendors
of service-oriented platforms and has provided transparent
results for subsequent changes of service oriented product
architectures and related processes. Our current research
extends SOAMMI to support architecture diagnostics for
complex integrated enterprise systems in the emerging
context of services and cloud computing architectures.

Our empirical validation and optimization of the
presented maturity framework is an ongoing process, which
has to be synchronized with future cyclic evaluations of SOA
platforms and their growing number of services. Extended
validations of customers of service-oriented technologies are

21Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 29 / 74

planned for the next phase of our framework research and
development.

The need for iteratively updating our assessment pattern
collection motivated us to merge the efforts done for SOA
assessment with a flexible and iterative pattern refinement
and creation process. After talking about SOA maturity and
assessment, we looked at the concept of involving many
stakeholders into the pattern creation and evolution process
and to adapt already available knowledge and findings from
the project’s domain as early as possible.

Our presented pattern-lifecycle process allows for
continuously evaluating gathered knowledge during the
project’s lifetime and makes patterns as well as pattern ideas
available during the whole development process. This way,
pattern collections can be formulated collaboratively without
needing to wait for a closed author group that shares its well-
evaluated design knowledge after a longer period of time.

Additional improvement ideas include an architecture
pattern and knowledge repository, as well as patterns for
visualization of architecture artifacts and architecture control
information, to be operable on an architecture management
cockpit. We are working at extending our pattern language to
a full canonical form in order to support fully standardized
cyclic architecture assessments for service-oriented products
and solutions. The pattern evolution process represents a new
aspect to the assembly and structuring our patterns and will
further explored in the SOA assessment domain.

ACKNOWLEDGMENT
This paper extends ideas from the SOA Innovation Lab,
which is a major research and innovation network on
Enterprise Architecture Management for Services and Cloud
Computing in Germany and Europe.

Parts of the research leading to these results has received
funding from the European Union Seventh Framework
Program (FP7/2007-2013) under grant agreement n°261817,
the BRIDGE project (www.bridgeproject.eu) under the
Security Program SEC-2010.4.2-1.

REFERENCES

[1] H. Buckow, H.-J. Groß, G. Piller, K. Prott, J. Willkomm, and A.
Zimmermann, “Analyzing the SOA Ability of Standard Software
Packages with a dedicated Architecture Maturity Framework,” in
EMISA, 2010, pp. 131-143.

[2] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides, Design
Patterns. Elements of Reusable Object-Oriented Software, 1st ed.
Amsterdam: Addison-Wesley Longman, 1994, p. 416.

[3] T. Erl, “SOA Design Patterns”, Prentice Hall. 2009.
[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal,

Pattern-Oriented Software Architecture, Volume 1: A System of
Patterns. Chichester, UK: Wiley, 1996.

[5] P. Bianco, R. Kotermanski, and P. Merson, “Evaluating a Service-
Oriented Architecture,” Engineering, no. September, pp. 1-91, 2007.

[6] CMMI-DEV-1.3 2010 “CMMI for Development, Version
1.3”, Carnegie Mellon University, Software Engineering
Institute, SEI-2010-TR-033, 2010.

[7] TOGAF “The Open Group Architecture Framework”
Version-9.1, The Open Group, 2011.

[8] A. Zimmermann, H. Buckow, H.-J. Gross, O. F. Nandico, G. Piller,
and K. Prott, “Capability Diagnostics of Enterprise Service
Architectures Using a Dedicated Software Architecture Reference
Model,” Services Computing, IEEE International Conference on, vol.
0, pp. 592-599, 2011.

[9] A. Zimmermann and G. Zimmermann, “ESARC - Enterprise Services
Architecture Reference Cube for Capability Assessments of Service-
oriented Systems”, SERVICE COMPUTATION 2011 - The Third
International Conferences on Advanced Service Computing,
September 25-30, 2011 Rome, Italy, ISBN 978-1-61208-152-6,
IARIA Proceedings of SERVICE COMPUTATION 2011, pp. 63-68.

[10] A. Zimmermann, F. Laux, and R. Reiners, “A Pattern Language for
Architecture Assessments of Service-oriented Enterprise Systems,” in
PATTERNS 2011, Third International Conferences on Pervasive
Patterns and Applications, 2011, no. c, pp. 7-12.

[11] D. Krafzig, K. Banke, and D. Slama, „Enterprise SOA”,
Prentice Hall, 2005.

[12] “Essential Architecture Project.” [Online]. Available:
http://www.enterprise-architecture.org. [Accessed: 11-Mar-2012].

[13] S. Inaganti and S. Aravamudan, “SOA Maturity Model,” BP Trends,
no. April, pp. 1-23, 2007.

[14] Sonic: “A new Service-oriented Architecture (SOA) Maturity
Model”,
http://soa.omg.org/Uploaded%20Docs/SOA/SOA_Maturity.p
df, [Accessed: 11-Mar-2012].

[15] ORACLE, “ORACLE: ‘SOA Maturity Model’.”[Online]. Available:
http://www.scribd.com/doc/2890015/oraclesoamaturitymodelcheatshe
et. [Accessed: 11-Mar-2012].

[16] C. Alexander, A Pattern Language: Towns, Buildings, Construction.
New York, New York, USA: Oxford University Press, 1977.

[17] J. Borchers, A Pattern Approach to Interaction Design, 1st ed. John
Wiley & Sons, 2001, p. 268.

[18] J. Tidwell, Designing Interfaces, 1st ed. O’Reilly Media, 2005, p.
352.

[19] T. Schümmer and S. Lukosch, Patterns for Computer-Mediated
Interaction. Chistester, West Sussex, England: John Wiley & Sons,
2007, p. 600.

[20] R. Reiners, I. Astrova, and A. Zimmermann, “Introducing new
Pattern Language Concepts and an Extended Pattern Structure for
Ubiquitous Computing Application Design Support,” in PATTERNS
2011, Third International Conferences on Pervasive Patterns and
Applications, 2011, pp. 61-66.

[21] J. Johnson, GUI bloopers 2.0: Common User Interface Design Don’ts
and DOS, vol. 2, no. October. New York, NY, USA: Morgan
Kaufmann, 2007.

[22] T. Grill and M. Blauhut, “Design Patterns Applied in a User Interface
Design (UID) Process for Safety Critical Environments (SCEs),” in
HCI and Usability for Education and Work, vol. 5298, A. Holzinger,
Ed. Springer Berlin / Heidelberg, 2008, pp. 459-474.

[23] C. R. Prause, “Reputation-based self-management of software process
artifact quality in consortium research projects,” in Proceedings of the
19th ACM SIGSOFT symposium and the 13th European conference
on Foundations of software engineering, 2011, pp. 380-383.

[24] “The BRIDGE Design Pattern Library.” [Online]. Available:
http://pattern-library.sec-bridge.eu/. [Accessed: 11-Mar-2012].

[25] R. Reiners, “A Pattern Evolution Process – From Ideas to Patterns“,
Proceeedings Informatiktage 2012 Bonn - Germany, in Lecture Notes
in Informatics, Vol. S-11, 2012, pp. 115-118.

22Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 30 / 74

Iris Recognition: Existing Methods and Open Issues
Sajida Kalsoom

Department of Computer Science
COMSATS Institute of Information Technology

Islamabad, Pakistan
Email: sajida.kalsoom@comsats.edu.pk

Sheikh Ziauddin
Department of Computer Science

COMSATS Institute of Information Technology
Islamabad, Pakistan

Email: sheikh.ziauddin@comsats.edu.pk

Abstract—Biometric authentication uses unique physical or
behavioural patterns in humans to identify individuals. Though
biometric is generally considered most reliable, stable and unique
among all entity authentication means, it is not as stable and
unique as is usually conceived. In this paper, we highlight the
issues with current state-of-the-art iris-based biometric authen-
tication systems. This survey covers the review of existing iris
recognition methods with a focus on enumerating the open issues
that must be addressed in order to be more confident in the
performance, security and privacy aspects of iris-based biometric
systems.

Keywords-Pattern recognition; biometric authentication; iris
recognition; template security

I. INTRODUCTION

With the increase in use of biometrics for human identi-
fication, control shifts to identifying the factors that affect
the performance of biometric authentication systems. Bio-
metric authentication systems use behavioural or physical
characteristics to authenticate a user. These systems have
become more reliable sources of authentication as compared
to the traditional means like passwords or hardware tokens
such as smart cards. Reliability of biometric authentication
systems lies in the fact that, unlike passwords and smart cards,
biometrics cannot easily be forged, shared, compromised or
forgotten. Biometric is considered to be highly unique among
all human population. Genetically, same identities including
twins and irises of left and right eye of the same person rep-
resent different iris patterns [8]. Another important property of
biometric is its stability [23][24][25][34]. In this paper, we will
critically analyse these claims by showing counter-examples
from other researchers’ work. These will be discussed in the
problems and open issues section in detail.

The rest of the paper is organized as follows. Section II
provides an overview of existing iris recognition methods.
Section III presents issues, problems and challenges associated
with template security and recognition performance. The paper
is concluded in Section IV.

II. IRIS RECOGNITION

Iris recognition is considered as one of the most reli-
able biometric authentication technique [9][19][35][37]. An iris
recognition system captures human eye image using a near
infrared iris sensor which passes through three steps to be
transformed into an iris template. These three steps are iris

segmentation, iris normalization and iris feature encoding.
The iris segmentation procedure segments the annular iris
region from the entire eye image. First, it finds the inner
and outer boundaries (the iris-pupil and iris-sclera boundaries)
of the iris, then it marks the region of the annular iris ring
that is not visible due to eyelids and eyelashes. The iris
normalization procedure transforms the segmented iris region
into a fixed size to cater for variations in iris sizes among
different eye images. The feature encoding procedure extracts
the most distinguishing features from normalized iris images
and typically encodes the result as a binary string.

Recognition involves either verification or identification.
Verification is one to one comparison where claim of an
identity is verified, e.g., an employee of an office. On the
contrary, identification is one to many comparison where an
identity is watched against an entire database, e.g., a criminal
surveillance system. In the verification step, the recognition
time captured image is compared with the image taken at the
enrolment time. The comparison is mostly done by calculating
the Hamming distance where a value of 0 represents a perfect
match and a value of 1 represents perfect non-match.

This paper is not primarily a survey on iris recognition
techniques, but is to identify performance and security related
issues with existing techniques. So, we will briefly describe
just a couple of representative systems, followed by a table,
reproduced from [5], providing a comparative analysis of a
number of state-of-the-art iris recognition systems.

The most famous iris biometric system is due to Daugman
[7][8]. In Daugman’s system, iris segmentation is performed
by using the following optimization:

max
(r,x0,y0)

∣∣∣∣∣Gσ(r) ∗ ∂

∂r

∮
C(s;r,x0,y0)

I(x, y)

2πr
ds

∣∣∣∣∣ ,
where r and (x0, y0) are candidates for the radius and center of
the iris, Gσ(r) is the one-dimensional Gaussian with standard
deviation σ, ∗ is the convolution operator, C(s; r, x0, y0) is the
circular closed curve with center (x0, y0) and radius r, param-
eterized by s, and I(·, ·) is the input eye image. Noise due to
eyelids occlusion is avoided by restricting ds to the nearly
vertical regions. The above optimization is performed twice
to find both iris and pupil circles. For template generation,
Daugman uses phase information of the image. After detecting
the iris boundaries and removing the irrelevant region, 2D

23Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 31 / 74

Gabor wavelets is applied on normalized iris image to the
iris template. For comparison of iris templates, Hamming
distance metric is used. Most of the subsequent work on iris
recognition, follows Daugman’s approach of using Hamming
distance for template matching

After Daugman’s iris recognition system, one of the most
important and popular systems is due to Wildes [38][39]. For
iris segmentation, Wildes first detects edges in the eye image
and then applies a circular Hough transform to find circular
pupil and iris boundaries. Much of the subsequent work on
iris segmentation follows Wildes approach where a common
variation is the usage of a coarse-to-fine strategy. For template
generation, Wildes uses Laplacian of Gaussian filter applied at
multiple scales to extract unique information from iris texture.
His system uses normalized correlation between the templates
for template matching at verification time.

As mentioned above, most of the subsequent work in iris
recognition follows the above-mentioned seminal approaches.
Most work on iris segmentation is a variation and enhancement
of Wildes’ approach, while most feature extraction schemes
are variations on Daugman’s wavelet-based approach. A very
nice detailed survey of iris recognition techniques is due to [5].
Table I (reproduced from [5]) provides a quick comparison of
recognition results for some of the important iris recognition
techniques. The interested reader is referred to [5] for a
detailed study of existing iris recognition techniques.

III. PROBLEMS AND OPEN ISSUES

We categorize issues of iris recognition systems in two
broad classes namely those related to iris template security and
those associated with iris recognition performance. Details are
as follows.

A. Iris Template Security

As biometric is an integral part of human body, loss of one’s
biometric corresponds to loss of his/her identity. Therefore,
security of biometric templates is one of the most important
concerns in any biometric authentication system. In literature,
we found four types of biometric systems which are described
below along with related issues and challenges.

1) Traditional Biometric Systems: These are the conven-
tional systems [7][25][38] which store users’ templates in clear
form to verify the identity. A template is generated at enrol-
ment time, stored in the database without encryption/hashing
and compared with the corresponding verification template
at the verification time. As the template is used and stored
in plaintext, a compromise of database has severe security
and privacy implications. There are scenarios where users
use the same biometrics for multiple applications or different
organizations share data among themselves for their users. In
such scenarios, cross-matching becomes feasible for tracking
individual users [27][30][31].

2) Biometric Key Release: These are the systems where
biometrics along with cryptographic keys are used for au-
thentication and communication [32]. The effort lies in using
biometric templates effectively to release cryptographic keys

TABLE I
COMPARISON OF THE MOST CITED IRIS RECOGNITION TECHNIQUES [5]

First Author, Year Database Size Results

Alim, 2004 Not given 96.17%

Jang, 2004 1694 images including 99.1%

160 w/glasses and

11 w/contact lenses

Krichen, 2004 700 visible-light FAR/FRR: 0%/0.57%

images

Liu, 2005 4249 images 97.08%

Ma, 2002 1088 images 99.85%, FAR/FRR:

0.1%/0.83%

Ma, 2003 2255 images 99.43%, FAR/FRR:

0.1%/0.97%

Ma, 2004 2255 images 99.60%, EER: 0.29%

Ma, 2004 2255 images 100%, EER: 0.07%

Monro, 2007 2156 CASIA images 100%

and 2955 U. of Bath

images

Proenca, 2007 800 ICE images EER: 1.03%

Rossant, 2005 149 images 100%

Rydgren, 2004 82 images 100%

Sanchez-Reillo, 2001 200+ images 98.3%, EER: 3.6%

Son, 2004 1200 images, (600 used 99.4%

for training)

Sun, 2004 2255 images 100%

Takano, 2004 Images from 10 people FAR/FRR: 0%/26%

Thornton, 2006 CMU database, 2000+ EER: 0.23%

images

Thornton, 2007 CMU database, 2000+ EER: 0.39%

images

Tisse, 2002 300+ images FAR/FRR: 0%/11%

Yu, 2006 1016 images 99.74%

in a secure manner. Modern cryptographic keys are uniformly
random and large in size, therefore it is not feasible for
users to memorize them. In biometric key release systems,
cryptographic keys are stored at some location and are released
using biometric information of the user. When user inputs
his/her biometric, cryptographic key is released for use in any
security protocol. This way, the key would be released only
to the authorized users.

Though these systems use biometric information effectively
for cryptographic key storage and release, there are certain
issues which are not addressed by these systems. First, though
these systems secure cryptographic key using biometric tem-
plate, the template itself still remains unprotected. This leads to
all security and privacy issues discussed earlier. Second, these
systems fail to provide revocability of biometric templates
meaning that if it is known that biometric template of a

24Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 32 / 74

particular user has been compromised, it is not feasible for
him/her to change his/her secret in contrast to password or
hardware token-based systems.

3) Cancelable Biometrics: Cancelable biometric systems
apply some transformation on the biometric template to secure
the template [6][21][33][42]. The idea is that, instead of
directly storing the template, a function is applied on the
template and the output of that function (transformed template)
is stored in the database. The transformation function must
be non-invertible so that a compromised transformed template
cannot be translated to the original template. The major
advantage of cancelable biometric systems is that even if the
transformed template is compromised, the original template
still remains secure. In addition, the secret can easily be
revoked by applying a different transformation to the original
template resulting in a new transformed template. Moreover,
a user can have different transformed templates for different
applications he/she is using hence making cross-matching
infeasible for any potential attacker.

Finding a suitable transformation function can be quite
tricky in cancelable biometric systems. Standard non-invertible
transformation functions (such as one-way cryptographic hash
functions) do not work with biometric data due to intra-
class variability of biometric data. Therefore, in most cases,
transformation is user-dependent, i.e., user either has to re-
member a password/pin or to carry a token which stores
the transformation parameters. This puts an extra burden on
the user and effectively converts the system into two-factor
authentication scheme. It is also desirable to observe user
specific key to check the strength of user-provided secret.

4) Biometric Key Generation: In such systems, bio-
metric template and cryptographic key are bind together
[11][14][20][22][26][41]. Cryptographic key can either be
generated directly from biometric template [14][20][22][41]
or by using standard cryptographic techniques [11][26]. In
former case, generated key is not uniform and hence may not
be strong enough for use in many cryptographic protocols. In
biometric key generation systems, neither biometric template
nor cryptographic key is stored in cleartext. Instead, a value
obtained by binding these two secrets is stored such that it
is not feasible to get any of the two secrets from this bound
value.

Though last three non-traditional systems described above
are quite effective in resolving template security related issues
in biometric recognition systems, in most cases, recognition
performance is affected. In addition, speed of these systems
is always slower as compared to conventional iris recognition
systems. Moreover, most of these systems do not perform well
with noisy iris image datasets. Due to all these issues, we can
conclude that a reliable and efficient solution to solve template
security related issues is yet to be achieved.

B. Iris Recognition Performance

An iris recognition system is considered ideal when match
and non-match distributions do not overlap each other. There
are a few factors which may lead to a significant drop in

accuracy of iris recognition systems. These are detailed as
follows.

1) Dilation: One of the important but often ignored factor
is pupil dilation. Due to dilation effects, we have varying size
of pupil, which results in decreased recognition performance.
Dilation may occur due to many factors such as drugs,
sunglasses, light illumination, etc.

Experimental studies are presented by Hollingsworth et al.
identifying the effects of pupil dilation on iris recognition
performance [15][16]. To produce dilation, they used ambient
light for controlled intervals of time. Degree of dilation was
measured by taking the fraction of pupil and iris radius. They
conducted two experiments, one to find out the effects of
dilation of same degree (between two templates to be matched)
and second with varying dilation. Their findings indicate that
1) If both images have same but high pupil dilation, this results
in lower recognition performance as compared to images
with no dilation. 2) If images have different amount of pupil
dilation, this results in further increasing of False Reject Rate
(FRR).

Effects of pupil dilation on iris recognition performance
have been studied by other researchers also [4][10][29]. Rakshit
and Monro [29] have used eye drops to achieve the effects of
dilation. For their experiments, they collected images before
and after 5, 10 and 15 minutes of instilling of drops. In
most cases, due to the instillation of drops, pupil lost its
shape and they used their shape-description method to generate
accurate normalized images. Their experiments also showed
a decrease in recognition performance due to iris dilation.
They also observed that, with the increase in time, dilation
is increased leading to an increase in FRR. Dhir et al. [10]
later extended their study with 15 subjects as compared to 11
in [29]. They found the same results namely dilation results in
poor performance and false reject rate increases with increase
in dilation which in turn increases with time after eye drops
have been administered.

Bowyer et al. [4] categorized iris images in three classes
based on amount of pupil dilation namely small, medium and
large. For experiments with varying amount of dilation, their
results show that the larger the difference in dilation ratio, the
more the chances of false non-match. For experiments with
same amount of dilation, their findings indicate that increasing
the degree of dilation, increases the false match and false non-
match.

From the above studies, it can safely be concluded that it
is not that difficult to deceive iris recognition systems which
is contrary to the popular belief in research community. Pupil
dilation not only affects the recognition performance but an
intruder can easily deceive the system by just wearing sun-
glasses or by using eye drops. Pupil dilation factor should be
incorporated in iris recognition systems to increase confidence
in recognition results.

2) Lenses: Around the world, approximately 125 million
people use contact lenses. Therefore, iris recognition systems
should be flexible enough to accommodate these large number
of people. Designers of iris recognition algorithms claim that

25Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 33 / 74

recognition performance of their systems is not affected by
the use of contact lenses[1][8][28][40]. But, recently, Baker et
al. [2] come up with a study showing that every type of lens
negatively affects iris recognition performance. They used a
dataset containing 51 subjects with contact lens and 64 without
lenses. After visual inspection of iris images, they categorized
lenses into four categories. First category includes lenses that
are visible but have no effects on the iris. Second category
includes images that result in light or dark outline around iris
and sclera. Third category includes lenses with large artefacts
on the iris that are mainly due to written logo/number or misfit
lens. Fourth category is one having subjects with hard lenses.

They conducted two experiments. First experiment com-
pares results of contact lenses and non-contact lenses subjects
while the second experiment compares results of different
categories of contact lenses. In first experiment, false reject
rate for subjects with lenses is 9.42% and 0.719% for subjects
without contact lenses. This shows that contact lenses have
a severely adverse effect on iris recognition accuracy. The
second experiment showed that second category is the one with
the lowest FRR of 3.9% whereas fourth category has highest
FRR of 45.44%. Category one and three have also shown high
false reject rates of 10.64% and 14.37%, respectively. As is
clear from results, lenses of all types affect the verification
results little or more depending on the type.

Baker et al. [3] later conducted a larger study on the
effects of lenses. They used three different systems for iris
recognition namely IrisBEE, VeriEye and CMU. They also
categorised lenses in four types. The results show that false
reject rate for subjects with lenses is much higher than that
for subject without lenses. In addition, category four of hard
lenses showed worst recognition results among all lens types
for all three iris recognition systems.

Bowyer et al. [4] conducted a similar study to evaluate
iris recognition performance among subjects wearing contact
lenses. Their findings are that false non-match score was
almost same for contact lens and non-contact lens groups while
false match score was 0.27% for non-contact lens group and
5.64% for contact lens group showing a significant drop in
recognition accuracy. From the above reported studies and
results, the effects of the contact lenses are apparent on recog-
nition performance. All types of lenses result in performance
degradation so there is need to introduce techniques that can
handle such scenarios to strengthen iris biometric systems.

3) Twins: In [17][18], Hollingworth et. al presented studies
identifying the texture similarities between irises of twins.
Their work is in contrast to the previous work which focuses
on identifying the differences between genetically same iden-
tities. To conduct their experiments, they collected the data on
twins day festival Twinburg in Ohio in August 2009.

They also collected the data from unrelated people to do
comparative analysis. At first step, they performed biometric
system testing and their findings are same as those of the old
researchers, i.e., for iris biometric system, irises of twins are
more or like similar as those belonging to unrelated people.
At the second step, they performed user testing to identify

similarities between irises of twins.
They conducted two user studies. First, where only irises

of subjects are presented to respond to the queries and second
where periocular images are displayed to the user to respond
to the queries. On the iris image experiments, the average
success score is 81.3% and for periocular queries success
score is 76.5%. Their findings indicate that there are simi-
larities between the irises of genetically same users which can
be visually identified, but current biometric systems do not
identify them. It is required to explore further and establish
techniques so that biometric systems may utilize this visual
similarity between genetically similar irises for the benefit of
performance enhancement.

4) Time Variability: Human iris is considered stable over
time [23][24][25][34]; but, a recent study by Gonzalez et al. [36]
shows results which contradict what has been demonstrated
so far. For their experimental evaluation, Gonzalez et al. used
BioSecurId [12] and BioSec [13] baseline datasets. The former
dataset consist of 254 individuals (8128 images) captured
in four different sessions and later has 200 subjects (3200
images) captured in two different sessions, both splitted by a
time span of one to four weeks. Results show that errors rate
is increased in inter-session experiments compared with the
intra-session ones. Their finding indicates that, as the lapse
time between enrolment and comparison is increased, false
accept rate remains unaffected but false reject rate is increased
up to more than twice. Bowyer et al. [4] conducted a similar
research to find the effect of time variability on recognition
performance. Their recognition results also showed that as the
time between enrolment and verification increases, false reject
rate of the system also increases though that increase is less
significant than that reported by Gonzalez et al. Although,
research results show that time variability affects verification
performance but to be more confident in extent of this effect,
more research with large datasets is desirable.

5) Cataract Surgery: In [10] Dhir et al. and [29] Rakshit
et al. identified the effects of cataract surgery on recognition
performance. In [29], they collected the images of 3 patients
before and after two weeks of cataract surgery. The results of
pre and post surgery images comparison shows that cataract
surgery does not affect recognition performance. Later on,
Dhir et al. [10] did similar experiments with 15 subjects and
found same results. Although the study is significant, but as
the dataset was not large, there is need to do more experiments
on larger datasets to explore the effects.

6) System Portability: To check system portability related
issues, Bowyer et al. [4] performed experiments on a set of iris
images acquired using different sensors namely LG 2200 and
LG 4400. Experiments show false reject rate is higher when
both images (enrolment and verification) are from different
sensors compared with the results where both images are from
the same sensor. The study is done on limited dataset and only
using IrisBEE software. There are chances that results may
be affected differently by different software and hardware. A
larger research is needed to explore effect of different sensors
on iris recognition performance.

26Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 34 / 74

IV. CONCLUSION AND FUTURE WORK

This review paper summarizes the issues and challenges
with current iris biometric systems. In particular, we discussed
security and performance related issues. We have shown that
many popular beliefs about security, reliability, stability and
performance of iris recognition systems are not correct and
need to be revisited. The issues raised in this survey should
be addressed in order to be more confident in working of
iris recognition systems. In the future, we plan to explore the
security and privacy concerns facing other biometric systems.
This could lead to a design of multi-biometric system that
overcomes the weaknesses of one by the strength of other
biometric.

REFERENCES

[1] J. Ali and A. Hassanien. An iris recognition system to enhance e-security
environment based on wavelet theory. AMO-Advanced Modeling and
Optimization, 5(2):93–104, 2003.

[2] S. Baker, A. Hentz, K. Bowyer, and P. Flynn. Contact lenses: Handle
with care for iris recognition. In International Conference on Biometrics:
Theory, Applications, and Systems (BTAS), pages 1–8, 2009.

[3] S. Baker, A. Hentz, K. Bowyer, and P. Flynn. Degradation of iris
recognition performance due to non-cosmetic prescription contact lenses.
Computer Vision and Image Understanding, 114:1030–044, 2010.

[4] K. Bowyer, S. Baker, A. Hentz, K. Hollingsworth, T. Peters, and
P. Flynn. Factors that degrade the match distribution in iris biometrics.
Identity in the Information Society, 2(3):327–343, 2009.

[5] K. Bowyer, K. Hollingsworth, and P. Flynn. Image understanding for
iris biometrics: A survey. Computer Vision and Image Understanding,
110(2):281–307, 2008.

[6] J. Bringer, H. Chabanne, and B. Kindarji. The best of both worlds:
Applying secure sketches to cancelable biometrics. Science of Computer
Programming, 74(1-2):43–51, 2008.

[7] J. Daugman. High confidence visual recognition of persons by a test
of statistical independence. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15(11):1148–1161, 1993.

[8] J. Daugman. How iris recognition works. IEEE Transactions on Circuits
and Systems for Video Technology, 14(1):21–30, 2004.

[9] S. Dhavale. Robust iris recognition based on statistical properties of
walsh hadamard transform domain. International Journal of Computer
Science, 9, 2012.

[10] L. Dhir, N. Habib, D. Monro, and S. Rakshit. Effect of cataract surgery
and pupil dilation on iris pattern recognition for personal authentication.
Eye, 24(6):1006–1010, 2009.

[11] H. Feng and C. Wah. Private key generation from on-line handwritten
signatures. Information Management & Computer Security, 10(4):159–
164, 2002.

[12] J. Fierrez, J. Galbally, J. Ortega-Garcia, M. Freire, F. Alonso-Fernandez,
D. Ramos, D. Toledano, J. Gonzalez-Rodriguez, J. Siguenza, J. Garrido-
Salas, et al. BiosecurID: a multimodal biometric database. Pattern
Analysis & Applications, 13(2):235–246, 2010.

[13] J. Fierrez, J. Ortega-Garcia, D. Toledano, and J. Gonzalez-Rodriguez.
Biosec baseline corpus: A multimodal biometric database. Pattern
Recognition, 40(4):1389–1392, 2007.

[14] F. Hao, R. Anderson, and J. Daugman. Combining cryptography with
biometrics effectively. University of Cambridge Computer Laboratory,
Tech. Rep, 2005.

[15] K. Hollingsworth, K. Bowyer, and P. Flynn. The importance of small
pupils: a study of how pupil dilation affects iris biometrics. In 2nd
IEEE International Conference on Biometrics: Theory, Applications and
Systems, 2008. BTAS 2008., pages 1–6. IEEE, 2008.

[16] K. Hollingsworth, K. Bowyer, and P. Flynn. Pupil dilation degrades iris
biometric performance. Computer Vision and Image Understanding,
113(1):150–157, 2009.

[17] K. Hollingsworth, K. Bowyer, and P. Flynn. Similarity of iris texture
between identical twins. In IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), pages
22–29. IEEE, 2010.

[18] K. Hollingsworth, K. Bowyer, S. Lagree, S. Fenker, and P. Flynn.
Genetically identical irises have texture similarity that is not detected
by iris biometrics. Computer Vision and Image Understanding, pages
1493–1502, 2011.

[19] M. Hosseini, B. Araabi, and H. Soltanian-Zadeh. Pigment melanin:
pattern for iris recognition. IEEE Transactions on Instrumentation and
Measurement, 59(4):792–804, 2010.

[20] S. Kanade, D. Camara, E. Krichen, D. Petrovska-Delacrétaz, and
B. Dorizzi. Three factor scheme for biometric-based cryptographic key
regeneration using iris. In Biometrics Symposium, 2008. BSYM’08, pages
59–64. IEEE, 2008.

[21] S. Kanade, D. Petrovska-Delacrétaz, and B. Dorizzi. Cancelable iris
biometrics and using error correcting codes to reduce variability in
biometric data. In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 120–127. IEEE, 2009.

[22] Y. Lee, K. Bae, S. Lee, K. Park, and J. Kim. Biometric key binding:
Fuzzy vault based on iris images. In 2nd International Conference on
Biometrics, pages 800–808. Springer, 2007.

[23] I. Maghiros, Y. Punie, S. Delaitre, E. Lignos, C. Rodriguez, M. Ulbrich,
and M. Cabrera. Biometrics at the frontiers: Assessing the impact on
society. Institute for Prospective Technological Studies, Technical Report
EUR, 21585, 2005.

[24] K. Miyazawa, K. Ito, T. Aoki, K. Kobayashi, and H. Nakajima. An
effective approach for iris recognition using phase-based image match-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30(10):1741–1756, 2008.

[25] D. Monro, S. Rakshit, and D. Zhang. DCT-based iris recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(4):586–
595, 2007.

[26] F. Monrose, M. Reiter, Q. Li, and S. Wetzel. Cryptographic key
generation from voice. In Security and Privacy, 2001. S&P 2001.
Proceedings. 2001 IEEE Symposium on, pages 202–213. IEEE, 2001.

[27] K. Nandakumar, A. Jain, and S. Pankanti. Fingerprint-based fuzzy vault:
Implementation and performance. IEEE Transactions on Information
Forensics and Security, 2(4):744–757, 2007.

[28] M. Negin, T. Chmielewski Jr, M. Salganicoff, U. von Seelen, P. Vene-
tainer, and G. Zhang. An iris biometric system for public and personal
use. Computer, 33(2):70–75, 2000.

[29] S. Rakshit and D. Monro. Medical conditions: Effect on iris recogni-
tion. In Multimedia Signal Processing, 2007. MMSP 2007. IEEE 9th
Workshop on, pages 357–360. IEEE, 2007.

[30] N. Ratha, S. Chikkerur, J. Connell, and R. Bolle. Generating cancelable
fingerprint templates. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 29(4):561–572, April 2007.

[31] N. Ratha, J. Connell, R. Bolle, and S. Chikkerur. Cancelable biometrics:
A case study in fingerprints. In Pattern Recognition, 2006. ICPR 2006.
18th International Conference on, volume 4, pages 370–373, 2006.

[32] O. Song, A. Teoh, and D. Ngo. Application-specific key release scheme
from biometrics. International Journal of Network Security, 6(2):127–
133, 2008.

[33] A. Teoh and C. Yuang. Cancelable biometrics realization with mul-
tispace random projections. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 37(5):1096–1106, 2007.

[34] J. Thornton, M. Savvides, and V. Kumar. A Bayesian approach to
deformed pattern matching of iris images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29(4):596–606, 2007.

[35] J. Thornton, M. Savvides, and B. Vijayakumar. Robust iris recognition
using advanced correlation techniques. Image Analysis and Recognition,
pages 1098–1105, 2005.

[36] P. Tome-Gonzalez, F. Alonso-Fernandez, and J. Ortega-Garcia. On the
effects of time variability in iris recognition. In IEEE International
Conference on Biometrics: Theory, Applications and Systems, (BTAS),
pages 1–6. IEEE, 2008.

[37] Z. Wang, Q. Han, and C. Busch. A novel iris location algorithm.
International Journal of Pattern Recognitionand Artificial Intelligence,
23(1):59, 2009.

[38] R. Wildes. Iris recognition: An emerging biometric technology. PIEEE,
85(9):1348–1363, September 1997.

[39] R. Wildes, J. Asmuth, G. Green, S. Hsu, R. Kolczynski, J. Matey, and
S. McBride. A machine-vision system for iris recognition. Machine
Vision and Applications, 9(1):1–8, 1996.

[40] G. Williams. Iris recognition technology. IEEE Aerospace and Elec-
tronic Systems Magazine, 12(4):23–29, 1997.

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 35 / 74

[41] S. Ziauddin and M. Dailey. Robust iris verification for key management.
Pattern Recognition Letters, 31(9):926–935, 2010.

[42] J. Zuo, N. Ratha, and J. Connell. Cancelable iris biometric. In Pattern
Recognition, 2008. ICPR 2008. 19th International Conference on, pages
1–4. IEEE, 2008.

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 36 / 74

A Pattern-Based Architecture for Dynamically Adapting Business Processes

Mohamed Lamine Berkane1 Lionel Seinturier2 Mahmoud Boufaida1

1 LIRE Laboratory
Mentouri University of Constantine, Algeria

{ml.berkane,mboufaida}@umc.edu.dz

2LIFL-INRIA ADAM
University of Lille, 59655 Villeneuve d’Ascq, France

Lionel.Seinturier@lifl.fr

Abstract— The need to adapt a business process in applications
has been a topic of interest in the recent years. Several
approaches offer solutions to it. But, a limitation of most
existing ones is the tight coupling of the adaptation logic with
the execution one inside the engine implementation. In
addition, they use the adaptation of business process only in
the implementation phase (at runtime). To address these
problems, we propose an architecture to develop a business
process adaptation system. This architecture introduces
modularity with an approach based on design patterns. We use
some patterns to separate the adaptation logic and the
functional one, and to address the adaptation at both the
design phase and the implementation one. We show the
feasibility of the proposed approach through the TRAP/BPEL
framework.

Keywords-Business Process; Design pattern; Abstraction
Layers; Adaptation logic.

I. INTRODUCTION

Web services have evolved as a means to integrate
processes and applications at an inter-enterprise level [17].
Several Web services can be combined to compose a new
system. This last one can be seen as a composite Web
service, which usually implements a business process.

A business process describes a sequence of tasks. Each
task represents a coherent set of activities that fulfill a
specific functionality. Tasks can be delegated to services and
may require human interaction. Most business process
languages assume that the tasks are executed in a static
context. However, business process environments are often
dynamic. For example, services can become unavailable,
unexpected faults may occur or participating partners in the
business process may not be known upfront, before some
tasks are actually executed. In these situations, it is important
to adapt a business process's behavior at run time in response
to changing requirements and environmental conditions.

Recently, various approaches have proposed to support
the dynamic business process adaptation: AO4BPEL
(Aspect-Oriented for Business Process Execution Language)
[1][2][16], VxBPEL [3], TRAP/BPEL (Transparent
Reflective Aspect Programming/Business Process Execution
Language) [4], CEVICHE (Complex EVent processIng for
Context-adaptive processes in pervasive and Heterogeneous
Environments) [5], MASC (Manageable and Adaptable
Service Compositions) [6], DYNAMO (Dynamic

Monitoring) [7], MVC (Model-View-Controller) [15].
However, most of these approaches do not treat changes at
the design phase, and focus on run-time adaptation in terms
of process instances. In addition to this, the current lack of
reusable adaptation expertise can be leveraged from one
adaptation system to another further exacerbates the
problem.

In this paper, we present a pattern-based architecture for
designing the adaptation system of business process. In our
architecture, the system is designed in a modular way based
on design patterns [8][9][10][12]. These patterns offer
flexible solutions to common system development problems
[12]. They express solutions of a known and recurrent
problem in a particular context. Some of these patterns are
used to specify the components of the adaptation systems.
These components are: monitoring, decision-making, and
reconfiguration [9][10]. Monitoring enables an adaptation
system to aware the bussines process and detect conditions
warranting reconfiguration, decision-making determines
what set of monitored conditions should trigger a specific
reconfiguration response, and reconfiguration enables an
adaptation system to change the bussines process in order to
fulfill the business requirements. Based on design patterns,
our architecture supports the design of the adaptation system
in four levels: the requirement layer, the functional layer, the
logical layer and technical one. These abstraction layers are
ordered hierarchically starting with (very abstract) high
layers and leading to (very concrete) low layers. Each
abstraction layer provides concepts for representation of the
adaptation information, which is specific for each
development phase. During the transition from a higher layer
to a more concrete layer, the model information is enriched.

The rest of this paper is organized as follows: Section 2
presents some of the related work, Section 3 presents the
proposed architecture and shows how it is realized using
patterns; in Section 4, we use a case study to demonstrate the
feasibility of our architecture through the TRAP/BPEL
framework, and Section 5 concludes and discusses some
future work.

II. RELATED WORK

This section overviews selected efforts conducted by
researchers to facilitate the development of dynamically
adapting business process system.

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 37 / 74

Adaptation and patterns: Ramirez and Cheng [8][9][10]
presented several patterns for developing adaptive systems.
These patterns are classified into three key elements of
adaptive systems: monitoring, decision-making, and
reconfiguration. The authors do not offer an approach to use
these patterns. Beside, these patterns are generic; they can be
used in adaptive systems as the multi-agent systems, network
applications and information systems. In our case, we use
some of these patterns to define aspects which are relevant
for running the business process.

Gomaa et al. [14][19] proposed some patterns to specify
the dynamic behavior of software architectures
(master/slave, centralized, server/client, and decentralized
architectures). These patterns are helpful to the developers
implementing dynamically adaptation systems. Moreover,
these approaches support only some kinds of software
architectures, and the proposed patterns are specific to these
architectures.

The GoF (Gang of Four) patterns [12] are the most
popular and widely used in the designed system, and also are
used in the abstract level. However, these patterns do not
provide a solution to the adaptation problems. But, we use
some of these patterns, to identify objects of the business
process adaptation system at a high level of abstraction.

Adaptation and business process: Charfi et al. [16]
presented a plug-in based architecture for self-adaptive
processes that uses AO4BPEL [1]. Each plug-in has two
types of Aspects: the monitoring Aspects that will check the
system to observe when an adaptation is needed and the
adaptation Aspects that will handle the situations detected by
the monitoring Aspects. Yet, this approach supports only two
kinds of components (Aspects) to adapt the business process.
However, this approach defines the adaption logic at run
time, while in our approach, the adaption logic is defined
both at design-time and at runtime. In addition, our approach
defines three components to separate the functional logic
from the adaptive one. This makes our approach more
modular.

Koning et al. [3] presented a language, called VxBPEL.
They extended the BPEL language to add new elements like
VariationPoint and Variant to capture variability in a service-
based system. The first element specifies the places where
the process can be adapted, and the second define the
alternative steps of the process that can be used. This
approach defines the adaptive logic both at design-time and
at runtime. Yet this approach defines a new language to
support the adaptation, and extends an existing engine to
support VxBPEL language. In our case we use the standard
BPEL, and we keep the known process engine.

The work which is closer to our proposal is the one
presented in [15]. The authors present a framework based on
the Model-View-Controller (MVC) pattern to support the
adaptation of BPEL processes in a dynamic and modular
way. In this framework, a workflow process is designed as a
template, where the tasks can be specified in an abstract
level. Concrete implementations of the tasks, modeled as
aspects, are then selected from a library according to policy-
based adaptation logic. However, this approach uses the

pattern notion (MVC) to support the adaptation of business
processes, while in our approach, we use the pattern (MDR)
to develop the adaptation system of business process. This
makes our approach more generic.

Hermosillo et al. [5] present CEVICHE, a framework
that combines Complex Event Processing (CEP) and Aspect
Oriented Programming (AOP) to support dynamically
adaptable business processes. The adaptation logic is defined
as aspects (reconfiguration component), and adaptation
situations are specified by CEP rules (monitoring
component). However, the decision- making is not specified
as component in this framework. It is integrate into the
defined aspects.

Xiao et al. [18] propose a constraint-based framework for
supporting dynamic business process adaptation. In this
framework, process adaptations are performed in a modular
way based on process fragments. Process fragments are
standalone fragments of processes that can be reused across
multiple processes. This approach separates between the
functional logic and the adaptive one by using the process
fragments. However, this framework presents the adaptation
only at run-time; in addition it cannot apply changes to living
process instances. When new process schemas are
(re)generated, only new process instances will be created
according to the new process schemas.

III. A LAYER-BASED ARCHITECTURAL MODEL FOR

BUSINESS PROCESS ADAPTATION

In this section, we present a pattern-based architecture
that permits the design of adaptation systems in a dynamic
and modular way. This architecture is composed of four
layers: the requirement layer, the functional layer, the logical
layer, and the technical one. Each layer contains three
components (except requirement level): monitoring,
decision-making, and reconfiguration. These three
components will be refined in three layers. The starting point
is the requirement layer which is a set of requirements for a
behavior of the adaptation system. These requirements can
have different forms, for example the form of a textual
documentation or a collection of Use Cases. Secondly, the
functional layer provides the definition of the adaptation
system’s interfaces with business process. Thirdly, the
logical layer provides an architectural view of the system by
partitioning it into logical communicating components. It
defines the total behavior of the system. Lastly, the technical
layer represents the lowest level of abstraction. It focuses on
aspects relevant for running the business process. This
architecture can provide an appropriate level of abstraction to
describe dynamic change in a business process, such as the
use of components, rather than at the algorithmic level
(Figure 2). In the proposed architecture, we focus on the
functional, logical and technical layers.

A. Requirement Layer

The proposed approach imposes a clear separation of
concerns between functional and adaptation requirements.
The adaptation requirements are concerned with
understanding how a system may either make a transition

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 38 / 74

between satisfying different functional requirements
depending on context, or continue to satisfy the same
functional requirements in the face of changing context.
Hence, the adaptation requirements are intimately related to,
and derived from, the functional requirements. These
requirements can have different forms, for example the form
of a textual documentation or a collection of Use Cases.

B. Functional Layer

In this layer, we provide the main functions of our
adaptation system. It comprises the definition of its
interfaces with business processes. Our adaptation system
contains three main functions: monitoring, decision-making,
and reconfiguration; and also two interfaces: to monitor and
to reconfigure the business process. These functions can be
seen as components, which communicate between them to
adapt a business process's behavior in response to changing
requirements and environmental conditions.

C. Logical Layer

In this layer, we refine the adaptation system presented in
the previous sub-section. It defines three components
specified by the functional level: monitoring, decision-
making, and reconfiguration. In addition, there are two
relationships: one between monitoring and decision-making,
and the second between decision-making and
reconfiguration, as shown in Figure 3. The logical
components can be obtained as the combination of sub-
components (objects) with respect to the dependencies
between them. In this level, we use the GoF design patterns
[12] to model the components and the sub-components.
These patterns were chosen because they define the abstract
concepts of adaptation (such as different strategies of
adaptation defined by “Strategy” pattern).

The first component is the monitoring. The main
objective of monitoring component is to enable an adaptation
system to observe business process and environmental
conditions that may warrant reconfiguration. To monitor the
business process in the logical layer, we use the Observer
pattern [12], which uses Observer and Subject objects. The
Observer object collects the information about the business
process and its environment, and the subject object is used to
represent any component that needs to perform monitoring in
business process. This last object defines the detection
conditions to specify the conditions that may warrant
reconfiguration (Figure 1). When a detection condition is
detected, the subject objects notifies the observer objects,
which in turn notifies the corresponding decision-making
component.

The first relationship between monitoring component and
decision-making one is defined to permit the interactions
between the objects defined in the first component and the
objects defined in the second one. We can have multiple
interactions between the objects defined in these
components. An object of the monitoring component can
communicate with multiple objects of the decisions making
component. Thus, an object of decision-making component
may receive several messages from objects of the monitoring
component. To carry the number of interaction between

these two types of objects, it becomes necessary to define an
intermediate object that manages these interactions. The
'Mediator' pattern [12] responds in a good way to this
situation. By applying this pattern, the monitoring and the
decision-making components can be evolving independently.

Figure 1. Monitoring Component in the logical layer

The second component (Decision-making) is the most
important in the proposed architecture. The main objective of
decision-making component is to determine when and how
to reconfigure a business process in response to monitoring
information. In this component, we define a family of
algorithms. These one leverage a knowledge repository that
associates specific monitoring scenarios with series of
reconfiguration instructions. To define these algorithms, we
use the ‘Strategy’ pattern [12]; this one creates a set of
algorithms defined in the objects. Applying this pattern
separates the functional logic from the decision-making one,
thus clustering the set of reconfiguration responses for
distinct events.

The second relationship between decision-making
component and reconfiguration one is similar to the
relationship between monitoring component and decision-
making one, unless it manages the interactions between the
objects of decision-making component and the objects of the
reconfiguration one.

The last component (Reconfiguration) specifies in detail
the actions defined in the algorithms of decision-making
component. In this component, we use the ‘Bridge’ pattern
[12] to separate between the algorithms (Abstraction) and the
reconfiguration instructions (Implementor). In this pattern,
we specify two kinds of objects: the Abstraction, and the
Implementor. By applying this pattern, we can extend the
Abstraction and the Implementor hierarchies independently.

D. Technical layer

This layer defines the aspects relevant for running the
adaptation system. This layer also explains how the process
adaptation is realized. Thereby, we use the design patterns
defined for developing dynamically adaptation systems

31Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 39 / 74

[8][9][10]. These patterns were chosen because they use the
platform-independent models to represent the adaptation
solution.

A business process executes a series of activities in a
sequence. It can be designed to show the sequence of service
invocation. A Web Service is one of many types of services
that a process can invoke. In general, the Web services are
distributed application components that are externally
available, and each Web service provides an interface that
can be used to exchange the required information with
business processes. In the monitoring component of this
layer, we use the sensor factory pattern [8][9]; this pattern
may be used when components (Web services) are
distributed and each component (Web service) provides an
interface that can be probed for the required information. In
this pattern, a ‘SimpleSensor’ object can be used to sensor
the component that needs to be monitored in business
process. It replaces the Observer object of the ‘Observer’
pattern. In addition the methods 'Attach' and 'Detach' of
‘ConcreteSubject' of Observer pattern were realized by
'SensorFactory', 'ResourceManager' and 'Registry' objects.
The first object manages the addition and the removal of
sensors in the business process, and the Clients interact with
this object in order to gain access to a sensor. The second
object determines if an existing sensor can be shared with
one or more clients, and also, determines if the business
process has enough resources to deploy a new sensor. The
last object is responsible for tracking deployed sensors across
the business process.

In the first relationship between monitoring component
and decision-making one, we use the ‘Content-based
Routing’ pattern [8][10]. This pattern should be applied
when multiple clients require access to the same monitoring
information. In our case, may be multiple monitoring
components need access to the same decision-making
component.

In the logical layer, we have used the strategy pattern to
define a family of algorithms for decision-making
components. In the technical layer, we use a ‘Case-based
Reasoning‘pattern [8][10] to select the specific
reconfigurations, and show how the reconfigurations can be
executed at run time. The ‘Case-based Reasoning’ pattern
can be applied when runtime scenarios that require
reconfiguration can be reliably identified. The important
objects of this pattern are: ‘Trigger’, ‘Inference Engine’,
‘Decision’, and ‘Fixed Rules’. The ‘Trigger’ object contains
relevant information about what caused the adaptation
request. It should at least provide information about the error
source, and the type of error observed. The ‘Inference
Engine’ object is responsible for applying a set of ‘Rules’ to
produce an action in the form of a ‘Decision’. The ‘Decision’
object represents a reconfiguration plan that will yield the
desired behavior in the system. The ‘Fixed Rules’ object
contains a collection of ‘Rules’ that guide the ‘Inference
Engine’ in producing a ‘Decision’. These ‘Fixed Rules’
replace the strategy objects of the ‘Strategy’ pattern.

The second relationship between decision-making
component and reconfiguration one is specified by the
‘Divide and Conquer’ pattern [8][10][20]. This pattern

avoids potential business process inconsistencies, because
the business process may require applying multiple
reconfigurations in succession. The ‘Divide and Conquer’
pattern decomposes a complex reconfiguration into simpler
reconfigurations, and it determines dependency relations
between different reconfigurations. The ‘Divide-and-
Conquer’ strategy is employed in many complex algorithms.
With this strategy, a problem is solved by splitting it into a
number of smaller sub-problems, solving them
independently, and merging the sub-solutions into a solution
for the whole problem. Conceptually, this pattern follows a
straightforward approach. One task splits the problem, then
forks new tasks to compute the sub-problems, waits until the
sub-problems are computed, and then joins with the subtasks
to merge the results.

The reconfiguration component uses two kinds of
patterns ‘Component Insertion’ and ‘Component Removal’
[8][10]. In our case, we insert and remove the web service.
For example, ‘Component Insertion’ pattern can be used to
safely insert a new component (web service) at run time. The
important objects of this pattern are: ‘Adaptation Driver’,
‘Change Manager’, ‘Reconfiguration Plan’, and
‘Reconfiguration Rules’. The first object is responsible for
ensuring that incoming Client requests are queued for further
processing. The second object provides support for loading
and unloading Components (web services) and their
interconnections. The third object stores the specific
sequence of instructions for reconfiguring the system at run
time. This object replaces the ‘Abstraction’ object of the
‘Bridge’ pattern. The last object contains rules and
instructions for specifying how basic reconfiguration
operations are carried out in system. Some basic
reconfiguration operations include Component insertion,
removal, and swapping. This object replaces the
‘Implementor’ object of the ‘Bridge’ pattern.

IV. A CASE STUDY:”TRAP/BPEL FRAMEWORK”

In this section, a case study is used to demonstrate the
feasibility of our approach. For this case, we have selected
the TRAP/BPEL framework [4][13]. In our paper, we focus
on an architectural approach not because the TRAP/BPEL
framework is uninteresting or less promising, but we argue
that the architectural level shows how the adaptation system
components of this framework are separated and generality
deals with the challenges posed. TRAP/BPEL is a
framework that adds the autonomic behavior into existing
BPEL processes. It aims to make an aggregate web service
continue its function even after one or more of its constituent
Web services have failed, and also adds the autonomic
behavior to BPEL processes by using a generic proxy as an
indirection layer to interact with the partner services.
The generic proxy has a standard interface and works for all
partner services of one or more adapt-ready BPEL processes.
A recovery policy is used in the proxy to dictate the
adaptation behavior for each monitored service [4]. This
generic proxy can be reused for any BPEL processes.
Therefore, it is possible to provide a common autonomic
behavior to a set of services. Furthermore, an adapt-ready

32Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 40 / 74

process monitors the behavior of Web service partners and
tries to tolerate their failure by forwarding the failed request
to its generic proxy, which in turn will find an equivalent
service to substitute the failed one [4].

The main components of this framework are: adapt-ready
process and generic proxy. The first one represents the
monitoring component, and the second specifies in both the
decision-making and the reconfiguration components (Figure
4 (a)).

In the monitoring component of the logical layer, we use
the ‘Observer’ pattern to specify the adapt-ready process.
This process (Observer object) monitors the behavior of Web
service partners (Subject object). If one of the partner
services fails (Detection condition) then the adapt-ready
process forwards the failed request to its proxy. The proxy is
generated specifically for this adapt-ready process and
provides the same port types as those of the monitored Web
services. This port is the mediator (Mediator object) between
the adapt-ready process and the generic proxy. In addition,
the generic proxy can provide behavior either common to all
adapt-ready BPEL processes or specific to each monitored
invocation using some high level policies. It may take one of
the following actions according to the policy: invoke the
service being recommended in the policy; find and invoke
another service to substitute for the monitored service, or
retry the invocation of the monitored service in the event of
its failure. These three policies are considered as the different
strategies (of ‘Strategy’ pattern) of decision-making
component. The 'Bridge' pattern is responsible for the
management of the policies (Abstraction object); it
concretizes the actions defined in the policies (Implementor
object). In this framework, there is not a mediator between
decision-making component and reconfiguration one,
because the proxy plays two roles at the same time (Figure 4
(b)).

In the technical layer, the TRAP/BPEL framework needs
to incorporate some generic hooks (sensors of ‘Sensor
Factory’ pattern) at sensitive joinpoints in the BPEL process
(i.e., the invoke instructions). These joinpoints are points in
the execution path of the program at which adaptation code
can be introduced at run time. The operations and
input/output variables of the proxy are the same as those of
the monitored invocations. When more than one service is
monitored within a BPEL process, the interface for the
specific proxy is an aggregation of all the interfaces of the
monitored Web services; this situation is specified by
‘Content-based Routing’ pattern. This last one defines an
architecture (many-to-one) that gathers data from the
different web services (one or more adapt-ready BPEL
processes (multiple monitoring components)) and
distributes it to the specific proxy (one decision-making
component).

The proxy uses ‘Case-based Reasoning’ pattern to
specify the behavior of decision-making component in the
technical layer. This proxy (Inference Engine object) checks
all the intercepted invocations (Trigger object) and tries to
match these invocations with the specified policies (Fixed
Rules object). If it finds a policy for that invocation, the

proxy behaves accordingly to that, it selects one of three
actions (Rule object); otherwise it follows its default
behavior (Figure 4 (c)).

We use the ‘Component Insertion’ pattern to define the
behavior of reconfiguration component. This pattern inserts
a new web service (i.e. invoke a new web service). In the
generic proxy, we cannot establish the relationship between
decision-making component and reconfiguration one
because it defines the behavior of two components
(decision-making and reconfiguration) in one component.

Our Pattern-Based Architecture approach has several
advantages over a framework-oriented approach (like
TRAP/BPEL, AO4BPEL, CHEVICHE, etc) at developing
dynamically adapting business processes. The design
patterns provide general models that need to be instantiated
and customized before they are implemented. Since models
operate at a higher-level of abstraction than frameworks,
they impose fewer initial constraints upon the system being
developed. In addition, with our design pattern approach,
developers select only those adaptation mechanisms their
application will require. In contrast, adaptation-oriented
frameworks provide infrastructure to perform the adaptation
tasks for a wide range of applications; the overall
infrastructure is needed for the adaptive application, even if
not all the features are needed or used.

V. CONCLUSION AND FUTURE WORK

In this paper, we have presented a pattern-based
architecture for designing the adaptation system of business
processes. The proposed architecture is composed of four
layers: the requirement layer, the functional layer, the logical
layer, and the technical one. Then, in each layer, we defined
three components: monitoring, decision-making, and
reconfiguration. Finally, in each component, and for each
layer, we use patterns to facilitate the reuse of adaptation
expertise. These patterns separate the adaptation logic from
the functional one. This separation of concerns facilitates the
reuse of adaptation designs across multiple adaptation
systems.

In the future, we will try to propose a hybrid approach
that allows the use of the various adaptation components
(monitoring, decision-making, and reconfiguration) of the
different adaptation approaches (like AO4BPEL, CEVICHE,
etc).

REFERENCES

[1] A. Charfi and M. Mezini. “Aspect-oriented web service
composition with AO4BPEL”. In Proceedings of the 2nd
European Conference on Web Services (ECOWS), volume
3250 of LNCS, pp. 168–182. Springer, September 2004.

[2] A. Charfi, B. Schmeling, A. Heizenreder, and M. Mezini.
“Reliable, secure, and transacted web service compositions
with ao4bpel”. In Proceedings of the 4th IEEE European
Conference on Web Services(ECOWS), December 2006.

[3] M. Koning, C.-a. Sun, M. Sinnema, and P. Avgeriou,
“Vxbpel:Supporting variability for web services in bpel,” Inf.
Softw.Technol., vol. 51, no. 2, pp. 258–269, 2009.

33Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 41 / 74

[4] O. Ezenwoye, S. Sadjadi, “TRAP/BPEL: A Framework for
Dynamic Adaptation of Composite Services”, Tech. Rep.
FIU-SCIS-2006-06-02, School of Computing and Information
Sciences, Florida International University, 2006.

[5] G. Hermosillo, L. Seinturier, L. Duchien, “Using Complex
Event Processing for Dynamic Business Process Adaptation”
in Proceedings of the 7th IEEE 2010 International Conference
on Services Computing (SCC 2010), Miami, Florida : United
States, 2010.

[6] A. Erradi, V. Tosic, and P. Maheshwari. “Masc - .netbased
middleware for adaptive composite web services”. In ICWS
International Conference on Web Services, pages 727–734.
IEEE Computer Society, 2007.

[7] L. Baresi and S.Guinea. “Dynamo and self-healing bpel
compositions”. In ICSE COMPANION ’07 : Companion to
the proceedings of the 29th International Conference on
Software Engineering, pages 69–70, Washington, DC, USA,
2007. IEEE Computer Society, 2007.

[8] A. J. Ramirez. Design patterns for developing dynamically
adaptive systems. Master's thesis, Michigan State University,
East Lansing, MI 48823, 2008.

[9] A. J. Ramirez and B. H. C. Cheng. “Developing and applying
design patterns for dynamically adaptive systems”. In 6th
IEEE International Conference on Autonomic Computing,
ICAC ’09 Barcelona, Spain, 2009.

[10] A. J. Ramirez and B. H. C. Cheng. “Developing and applying
design patterns for dynamically adaptive systems”. In 5th
International Workshop on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS'10, Cape
Town, South Africa, May, 2010.

[11] A. Campetelli, M. Feilkas, M. Fritzsche, A. Harhurin, J.
Hartmann, M. Hermannsdorfer, F. Holzl, S. Merenda, D.
Ratiu, B. Schatz, and W. Schwitzer. “Model-based
development – motivation and mission statement of
workpackage zp-ap 1”. Technical report, Technische
Universität München, 2009.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. “Design
Patterns: Elements of Reusable Object-Oriented Software”.
Addison-Wesley Professional, 1995.

[13] F. Baligand “Une Approche Déclarative pour la Gestion de la
Qualité de Service dans les Compositions de Services “,
Doctorate’thesis l’Ecole des Mines de Paris, 2008.

[14] H. Gomaa and M. Hussein. “Software reconfiguration
patterns for dynamic evolution of software architectures“. In
WICSA’04: Proceedings of the Fourth Working IEEE/IFIP
Conference on Software Architecture, page 79, Washington,
DC, USA, 2004.

[15] K. Geebelen, E. Kulikowski, E. Truyen and W. Joosen “A
MVC Framework for Policy-Based Adaptation of Workflow
Processes: A Case Study On Confidentiality” In 2010 IEEE
International Conference on Web Services, 2010.

[16] A. Charfi, T. Dinkelaker, and M. Mezini, “A Plug-in
Architecture for Self-Adaptive Web Service Compositions”,
in the Proceedings of IEEE International Conference on Web
Services (ICWS’09), pp. 35- 42, 2009.

[17] M. Little, Transactions and web services, Communications of
the ACM 46 (10) (2003) 49–54, 2003.

[18] Z. Xiao, D. Cao, C. You and H. Mei,”Towards a Constraint-
based Framework for Dynamic Business Process Adaptation”
In 2011 IEEE International Conference on Services
Computing, 2011.

[19] H. Gomaa “Pattern-based Software Design and Adaptation“.
In PATTERNS 2011: Proceedings of the Third International
Conferences on Pervasive Patterns and Applications, page 90-
95, Roma, Italy, 2011.

[20] G. Mattson Timoth, A. Sanders Beverly, L. Massingill Berna.
« Patterns for Parallel Programming ». Addison-Wesley
Professional, 2004.

Figure 2. Overview of the proposed architecture

34Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 42 / 74

Figure 3. Representation of the logical layer

Figure 4. TRAP/BPEL framework in three layers

35Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 43 / 74

Exploiting HCI Pattern Collections for User Interface Generation
How well do Existing Pattern Definitions support Automated UI Construction?

Juergen Engel, Christian Herdin, Christian Maertin
Faculty of Computer Science

Augsburg University of Applied Sciences
An der Hochschule 1

86161 Augsburg, Germany
[Juergen.Engel | Christian.Herdin | Christian.Maertin]@hs-augsburg.de

Abstract—In the field of human-computer interaction various
pattern languages and pattern collections have evolved during
the last years. They include patterns for domain-independent
and domain-specific graphical user interface design,
interaction design, interactive application structure and
navigation, design for usability, and design for user experience.
However, the description and specification structure and
attributes vary between existing pattern languages. In order to
unify the various approaches and make them exploitable for
automated graphical user interface construction, we have
mapped the information structure of the different pattern
collections to the pattern language markup language. By
adding some additional attributes, the resulting pattern
specifications can be used for facilitating and automating the
development process for real world interactive applications,
e.g., for knowledge sharing systems.

Keywords – HCI patterns; pattern language; standardized
pattern definition; pattern attributes; pattern relations; user
interface generation.

I. INTRODUCTION

Human-computer interaction (HCI) patterns, pattern
languages, and pattern collections recently have gained much
influence in the field of model-based user interface
development approaches (MBUID) [2]. HCI pattern
languages and their various types of user interfaces related
patterns provide abstract, semi-abstract and/or concrete
modeling information for the (semi-)automatic construction
of domain-specific, highly-usable, adaptable, and accessible
user interfaces, e.g. for web-based and mobile applications.
In order to simplify the selection of useful pattern types for a
specific development project, ways for hierarchically
structuring such languages and grouping their patterns by
specific inter-pattern-relationships have been proposed [14].
Also, tools for visually defining patterns and their attributes,
for browsing pattern hierarchies and exploiting the selected
patterns for automated user interface generation purposes
have been introduced [9].

Most available and popular pattern collections, however,
as useful for the developer as they may be, still consist of
rather unrelated pattern sets. Neither do such collections
provide hierarchical or content-based relationships between
similar or aggregated patterns, nor do pattern definitions

provide attributes for using the structural, contextual and
content information provided by a pattern for exploiting the
pattern description for automated user interface generation.

Nevertheless, the pattern collections discussed in the
following sections provide valuable information for
structuring and designing the user interfaces and the navi-
gation paths between the interaction objects of various types
of interactive applications. Patterns from different collections
should therefore be easily combinable within the target
model of an interactive application. The patterns should be
accessible from tool environments, browsers, and generators.
In order to reach this rather practical goal, standardization
efforts for reaching a common HCI pattern definition
approach are necessary.

In the following section, several major standard HCI
pattern collections are introduced and compared. Section III
discusses the PLML approach for standardizing pattern
definitions used in HCI and discusses several extensions to
PLML. Section IV examines whether the PLML pattern
description approach can be used for specifying real world
interactive applications, e.g., for knowledge sharing systems.
Finally, Section V presents concepts and specification
extensions for HCI pattern definitions that can be used for
automated user interface construction and generation.

II. ANALYSIS OF PREVALENT PATTERN COLLECTIONS

During the last decades, various HCI pattern collections
have been developed, introduced and published providing
valuable and reusable design know-how. Among others there
are Jenifer Tidwell’s Designing Interfaces, Patterns for
Effective Interaction Design [15], Martijn van Welie’s
Patterns in Interaction Design [17], Douglas van Duyne’s
The Design of Sites, patterns for Creating Winning Web Sites
[6], Todd Coram’s and Jim Lee’s A Pattern Language for
User Interface Design [3], Yahoo! Design Pattern Library of
Yahoo! Inc. [18], or the community-driven UX and UI
pattern library Quince operated by Infragistics [11].

Besides our own general and domain-specific pattern
languages used for facilitating the design of knowledge
sharing systems and portable mobile applications [8, 12], we
predominantly have utilized patterns from Tidwell [15], van
Welie [17], and van Duyne [6] in our previous work. Due to
that fact we have analyzed and evaluated these three pattern

36Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 44 / 74

collections in detail to assess their suitability to be used in
automated and semi-automated user interface generation
process steps respectively.

A. Pattern Collection by Jenifer Tidwell

The pattern collection by Jenifer Tidwell is one of the
most extensive pattern libraries and consists of 125 patterns
organized in 11 categories from “What users do” to “Make it
look good”. Compared to the previous version the over-
worked pattern collection described in the second edition of
her book [15] is extended by three additional categories.
Many patterns have been revised and several new patterns
have been introduced. A digest is available on the Internet
[16].

TABLE I. TIDWELL PATTERN COLLECTION ORGANIZATION

Tidwell pattern collection organization

Category # Patterns

What users do 14

Safe exploration; Instant gratification;
Satisficing; Changes in midstream;
Deferred choices; Incremental
construction; Habituation; Microbreaks;
Spatial memory; Prospective memory;
Streamlined repetition; Keyboard only;
Other people’s advice; Personal
recommendations

Organizing the
content

10

Feature, search and browse; News stream;
Picture manager; Dashboard; Canvas plus
palette; Wizard; Settings editor;
Alternative views; Many workspaces;
Multi-level help

Getting around 13

Clear entry points; Menu page; Pyramid;
Modal panel; Deep-linked state; Escape
hatch; Fat menus; Sitemap footer; Sign-in
tools; Sequence map; Breadcrumbs;
Annotated scrollbar; Animated transition

Organizing the
page

13

Visual framework; Center stage; Grid of
equals; Titled sections; Module tabs;
Accordion; Collapsible panels; Movable
panels; Right/left alignment; Diagonal
balance; Responsive disclosure;
Responsive enabling; Liquid layout

Lists of things 12

Two-panel selector; One-window
drilldown; List inlay; Thumbnail grid,
Carousel; Row striping; Pagination; Jump
to item; Alphabet scroller; Cascading lists;
Tree table; New-item row

Doing things 11

Button groups; Hover tools; Action panel;
Prominent “done” button; Smart menu
items; Preview; Progress indicator;
Cancelability; Multi-level undo; Command
history; Macros

Showing complex
data

11

Overview plus detail; Datatips; Data
spotlight; Dynamic queries; Data brushing;
Local zooming; Sortable table; Radial
table; Multi-Y graph; Small multiples;
Treemap

Getting input from
users

11

Forgiving format; Structured format; Fill-
in-the-blanks; Input hints; Input prompt;
Password strength meter; Autocompletion;
Dropdown chooser; List builder; Good
defaults; Same-page error messages

Tidwell pattern collection organization

Category # Patterns

Using social
media

12

Editiorial mix; Personal voices; Repost and
comment; Conversation starters; Inverted
nano-pyramid; Timing strategy;
Specialized streams; Social links; Sharing
widget; News box; Content leaderboard;
Recent chatter

Going mobile 11

Vertical stack; Filmstrip; Touch tools;
Bottom navigation; Thumbnail-and-text
list; Infinite list; Generous borders; Text
clear button; Loading indicators; Richly
connected apps; Streamlined branding

Make it look
good

7

Deep background; Few hues, many values;
Corner treatments; Borders that echo fonts;
Hairlines; Contrasting font weights; Skins
and themes

In the following, we consider the fully-fledged suite of
patterns [15]. In Table I, an overview of the diverse pattern
categories is given. In addition, it is shown how many and
which patterns are assigned to the particular groups.

The actual pattern definitions consist of the eight attri-
butes “Name”, “Figure”, “What”, “Use when”, “Why”,
“How”, “Examples”, and “In other libraries”. Brief
descriptions of these attributes are provided in Table II.

TABLE II. TIDWELL PATTERN DEFINITIONS

Tidwell pattern definitions

Attribute Brief description

Name Name of the pattern

Figure
Meaningful example of pattern application,
i.e. a screen shot

What Brief description of the pattern

Use when
Information about the problem to be solved
and the context of application

Why
Information about why one should use this
particular pattern

How How to use the particular pattern

Examples
Instances of application of the particular
pattern

In other libraries
Links to other pattern collections where the
selfsame pattern can be found

The Tidwell pattern collection draws a bow over a huge
variety of possible fields of applications. The patterns are
well-illustrated and described in detail. For all patterns,
several meaningful examples of pattern instantiations are
included. Descriptive category names support the user when
browsing the catalog and help to locate individual patterns.
Information about relations between the patterns are
occasionally included in the “How” and “Why” attributes.
References to the same or very similar patterns in other
collections are provided via the “In other libraries” attribute.

B. Pattern Collection by Martijn van Welie

The pattern library of Martijn van Welie is available in
the Internet [17]. It comes with 131 patterns grouped in the

37Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 45 / 74

three main categories which are again divided into a total of
15 sub categories.

Table III shows the organization of the main category
“User needs”, while Table IV illustrates “Application needs”
and Table V “Context of design”.

TABLE III. MAIN CATEGORY “USER NEEDS”

Organization of pattern category “User needs”

Category # Patterns

Navigating around 25

Accordion; Headerless menu;
Breadcrumbs; Directory navigation;
Doormat navigation; Double tab
navigation; Faceted navigation; Fly-out
menu; Home link; Icon menu; Main
navigation; Map navigator; Meta
navigation; Minesweeping; Panning
navigator; Overlay menu; Repeated menu;
Retractable menu; Scrolling menu;
Shortcut box; Split navigation; Teaser
menu; To-the-top link; Trail menu;
Navigation tree

Basic interactions 7
Action button; Guided tour, Paging;
Pulldown button; Slideshow; Stepping;
Wizard

Searching 13

Advanced search; Autocomplete;
Frequently asked questions (FAQ); Help
wizard; Search box; Search area; Search
results; Search tips; Site index; Site map;
Footer sitemap; Tag cloud; Topic pages

Dealing with data 14

Carrousel; Table filter; Collapsible panels;
Detail on demand; Collector; Inplace
replacement; List builder; List entry view;
Overview by detail; Parts selector; Tabs;
Table sorter; Thumbnail; View

Personalizing 3 Customizable window; Login; Registration

Shopping 9

Booking; Product comparison; Product
advisor; Product configurator; Purchase
process; Shopping cart; Store locator;
Testimonials; Virtual product display

Making choices 5
Country selector; Date selector; Language
selector; Poll; Rating

Giving input 3 Comment box; Constraint input; Form

Miscelleaneous 5
Footer bar; Hotlist; News box; News
ticker; Send-a-friend link

TABLE IV. MAIN CATEGORY “A PPLICATION NEEDS”

Organization of pattern category “Application needs”

Category # Patterns

Drawing attention 8

Captcha; Center stage; Color coded
section; Premium content lock; Grid-based
layout; Liquid layout; Outgoing links;
Alternating row colors

Feedback 2 Input error message; Processing page

Simplifying
interaction

2 Enlarged clickarea; Font enlarger

TABLE V. MAIN CATEGORY “CONTEXT OF DESIGN”

Organization of pattern category “Context of design”

Category # Patterns

Site types 14

Web-based application; Artist site;
Automotive site; Branded promotion site;
Campaign site; E-commerce site;
Community site; Corporate site;
Multinational site; Museum site;
Personalized ‘my’ site; News site; Portal
site; Travel site

Experiences 8

Community building; Information
management; Fun; Information seeking;
Learning; Assistance; Shopping; Story
telling

Page types 13

Article page; Blog page; Case study;
Contact page; Event calendar; Forum;
Guest book; Help page; Homepage;
Newsletter; Printer-friendly page; Product
page; Tutorial

The pattern definitions contain the nine attributes
“Name”, “Problem”, “Solution”, “Use when”, “How”,
“Why”, “More examples”, “Literature”, and “Comments”.
Brief descriptions of these attributes are provided in
Table VI.

TABLE VI. VAN WELIE PATTERN DEFINITIONS

van Welie pattern definitions

Attribute Brief description

Name Name of the pattern

Problem Decription of the problem to be solved

Solution
Description of the intended solution of the
problem

Use when Information of the context of application

How Information about how to apply the pattern

Why
Information about why one should use this
particular pattern

More examples
Instances of application of the particular
pattern

Literature Links to background literature

Comments Comments from users of the pattern

In contrast to the renewed Tidwell collection the patterns,
in the van Welie pattern library have not been revised during
the last four years. According to an entry on the Internet page
[17], the last change was performed in September 2007.

The two-tiered categorization supports the user in terms
of searching and finding appropriate patterns. Collection-
internal relationships between patterns are occasionally
included in the attributes “Use when”, “How”, and “Why”.
References to other pattern catalogues do not exist. A
potentially valuable resource of information is the attribute
“Comments”, which contains annotations that pattern users
have left on van Welie’s website.

38Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 46 / 74

C. Pattern Collection of Douglas K. van Duyne

The pattern collection of Douglas van Duyne consists of
107 web-related patterns separated in 13 categories from
“Site genres” to “The mobile web” [6]. All patterns are also
published in the internet [7] but in a shortened and therefore
less exhaustive manner.

Again, we consider the fully-fledged patterns library as
published in [6]. Table VII provides an overview of how
many and which patterns are available and how they are
classified.

The pattern definitions consist of the seven attributes
“Pattern ID”, “Name”, “Figure”, “Background”, “Problem”,
“Solution”, and “Other patterns to consider”. Brief
explanations are provided in Table VIII.

The target audience of the pattern collection is the web
designer community. This is already indicated by the
category names. The actual pattern descriptions are extensive
and detailed. Very positive is the treatment of collection-
internal dependencies and relation between patterns which
are explicitly listed and accentuated in terms of font color.
References to external pattern collection are not included.

TABLE VII. VAN DUYNE PATTERN COLLECTION ORGANIZATION

van Duyne pattern collection organization

Category # Patterns

Site genres 12

Personal e-commerce; News mosaics;
Community conference; Self-service
government; Nonprofits as networks of
help; Grassroots information sites;
Valuable company sites; Educational
forums; Stimulating arts and
entertainment; Web apps that work;
Enabling intranets; Blogs

Creating a
navigation
framework

9

Multiple ways to navigate; Browsable
content; Hierarchical organization; Task-
based organization; Alphabetical
organization; Chronological organization;
Popularity-based organization; Category
pages; Site accessibility

Creating a
powerful
homepage

2
Homepage portal; Up-front value
proposition

Writing and
managing content

11

Page templates; Content modules;
Headlines and blurbs; Personalized
content; Message boards; Writing for
search engines; Inverted-pyramid writing
style; Printable pages; Distinctive HTML
titles; Internationalized and localized
content; Style sheets

Building trust and
credibility

9

Site branding; E-mail subscriptions; Fair
information practices; Privacy policy;
About us; Secure connections; E-mail
notifications; Privacy preferences;
Preventing phishing scams

Basic e-commerce 9

Quick-flow checkout; Clean product
details; Shopping cart; Quick address
selection; Quick shipping method
selection; Payment method; Order
summary; Order confirmation and thank-
you; Easy returns

Advanced
e-commerce

7

Featured products; Cross-selling and up-
selling; Personalized recommendations;
Recommendation community; Multiple
destinations; Gift giving; Order tracking

van Duyne pattern collection organization

Category # Patterns

and history

Helping
customers to
complete tasks

13

Process funnel; Sign-in/new account;
Guest account; Account management;
Persistent customer sessions; Floating
windows; Frequently asked questions;
Context-sensitive help; Direct
manipulation; Clear forms; Predictive
input; Drill-down options; Progress bar

Designing
effective page
layouts

6

Grid layout; Above the fold; Clear first
reads; Expanding screen width; Fixed
screen width; Consistent sidebars of related
content

Making site
search fast and
relevant

3
Search action module; Straightforward
search forms; Organized search results

Making
navigation easy

17

Unified browsing hierarchy; Navigation
bar; Tab rows; Action buttons; High-
visibility action buttons; Location bread
crumbs; Embedded links; External links;
Descriptive, longer link names; Obvious
links; Familiar language; Preventing
errors; Meaningful error messages; Page
not found; Permalinks; Jump menus; Site
map

Speeding up your
site

6
Low number of files; Fast-loading images;
Separate tables; HTML power; Reusable
images; Fast-loading content

The mobile web 3
Mobile screen sizing; Mobile input
controls; Location-based services

TABLE VIII. VAN DUYNE PATTERN DEFINITIONS

van Duyne pattern definitions

Attribute Brief description

Pattern ID Unique identifier of the pattern

Name Name of the pattern

Figure
Meaningful example of pattern application,
i.e. a screen shot

Background Information of the context of application

Problem Decription of the problem to be solved

Solution
Description of the intended solution of the
problem

Other patterns to
consider

List of patterns which correlate with the
particular pattern.

III. PLML: A STANDARDIZATION APPROACH FOR HCI
PATTERN-DEFINITION

Like most of the available pattern collections, the three
libraries described above lack a common organizational
structure in order to facilitate appropriate and convenient
pattern retrieval and selection. Manageability aspects of
various existing UI pattern catalogues are discussed and
compared in [3].

Another significant obstacle is that the authors describe
their patterns in different and inconsistent styles. This makes
it hard or even impossible to search, select and reference

39Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 47 / 74

patterns across pattern collections. Hence, in a workshop
[10] held within the scope of the CHI 2003 conference the
attendees aimed for unification of pattern descriptions and
guidance for the authors. As a result, the Pattern Language
Markup Language (PLML) has been constituted and
documented [10].

Version PLML v1.1 specifies that the documentation of a
certain pattern should consist of the following elements: a
pattern identifier, name, alias, illustration, descriptions of the
respective problem, context and solution, forces, synopsis,
diagram, evidence, confidence, literature, implementation,
related patterns, pattern links, and management information
[10]. Brief descriptions of these elements are provided in
Table IX.

A. Extensions and changes to PLML

Over the years, PLML continued to develop and new
extensions were added in order to adapt PLML to developing
trends and needs of authors and users.

TABLE IX. PLML ATTRIBUTES

PLML pattern description elements

Element Brief description

Pattern ID Unique pattern identifier

Name Name of the pattern

Alias Alternative names; also known as

Illustration Good example of instantiation of the pattern

Problem Description of the problem to be solved

Context Situations in which the pattern can be applied

Forces
Description of forces in the environment that
the use of the pattern will resolve

Solution Description of how to resolve the problem

Synopsis Summary of the pattern description

Diagram Schematical visualization of the pattern

Evidence
 Example
 Rationale

Verification that it is in fact a pattern by
 at least three known uses of the pattern
 discussion and any principled reasons

Confidence
Rating of how likely the pattern provides an
invariant solution for the given problem

Literature References to related documents or papers

Implementation
Code fragments or details of technical
realization

Related-patterns Relationship to other patterns

Pattern-Link
 Type
 Pattern ID
 Collection ID
 Label

Catenation of patterns
 kind of relationship
 identifier of related pattern
 identifier of pattern collection
 name of the pattern link

Management
 Author
 Credits
 Creation-date
 Last-modified
 Revision-number

Authorship and change management
 name of the pattern author
 Merits
 date of pattern compilation
 date of last change
 version of the pattern definition

B. PLML version 1.2

An extension to PLML was suggested by Deng et al. [4].
New in this version 1.2 is an improved pattern- and
attributes-description. This change allows for the attributes
<chance-log> and <force> to be used by the pattern
management tool MUIP.

C. PLMLx

The first published extension to PLML is PLMLx, the
Extended Pattern Language Markup Language by Bienhaus
[1]. The extension allows for better support of search
functionality and classification of the patterns. The additional
attributes that were added or modified are shown in Table X.

TABLE X. ADDITIONAL OR MODIFIED PATTERN DESCRIPTION
ELEMENTS FROM THE PLMLX

Additional or modified PLMLx pattern description el ements

Element Brief description

<organisation>
Meta information about the category,
classification and the collection. A pattern can
be part of different collections

<resulting context>

Describes the context in which we find
ourselves when we applied the pattern. By
applying a pattern it can create new problems
that must be solved again.

<acknowledgments>

Acknowledgment for each who contributed
significantly to the develeopment of the
pattern or the techniques desription. If the
pattern has been through a “shepherding
process” or "writer's workshop", significant
contibutors are candidates for the
acknowledgment.

<management>

Added two new Subtaks copyright and license.
The <last modified>-Tag from the origninal
PLML<management>-Tag was deleted. The
data from the last chance and the pertinent
pattern name were integrated in the <revisions-
number>-Tag

<example> and
<rationale>

<example> and <rationale> are now separate
tags. In the original PLML 1.1.2 they are
Subtasks of the tag <evidence>.

The extensions and modifications in PLMLx make sense,
because the <organization>-Tag helps to give a better
overview of the different patterns from separate collections.
However, an attribute that would be helpful for describing
relationships and hierarchy between patterns or pattern
catalogs is not included in PLMLx.

D. XPLML

Another extension to PLML is XPLML that is especially
appropriate for human-computer interaction (HCI) design
and for networking. XPLML describes the patterns and their
relationship to each other with the help of Open Source
standards such as XML, RDF and OWL [13].

The XPLML-Framework is a summary of specifications
and tools to formalize HCI Patterns. The framework is
intended to close the gap between the textual specification of
patterns and their application in software. The conversion of

40Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 48 / 74

an existing design pattern to XPLML does not work
automatically.

The implementation of the XPLML framework is based
on the following seven modules [13]:

- Unified HCI Pattern Form
- Semantic Metadata
- Semantic Relations among Patterns
- Atomic Particles of HCI Design Patterns
- Requirements engineering in HCI community
- Survey of HCI Design Pattern Management Tools
- Specification Documentation

XPLML is based on PLML, but adds components (e.g.,

Metadata) not in the HCI pattern form. The new components
were added outside in a separate form. This is a good
approach to define the relationships between patterns and
collections.

The problem is that XPLML uses the older and not
enhanced PLML backbone for pattern description. In
addition, many pattern collections are not available in an
appropriate specification and need to be translated separately
for the use in XPLML. An automatic translation is not
possible.

Furthermore, there neither exists a detailed description of
the individual components of the framework, nor a release
version until today.

IV. COMPARISON OF PATTERN DEFINITIONS

For all three discussed pattern collections the particular
pattern definition attributes can be mapped almost entirely to
corresponding PLML 1.1 elements. In some cases pattern
attributes show 1:1 relationships to particular PLML
elements, while not rarely exist equivocal correlations, i.e.
1:n, n:1, or n:m. We identified just one single pattern
attribute within van Welie’s pattern library that has no
appropriate counterpart in PLML, i.e., the “Comments”
attribute. Contrariwise four PLML elements are totally
unconsidered, i.e., <alias>, <forces>, <confidence>, and
<management>. Content that maps to the <implementation>
PLML element is solely provided by van Duyne patterns.

Within the Tidwell pattern collection the “Use when”
attribute provides information that partly maps to both, the
<problem> and the <context> PLML elements. On the other
hand the “What” and “How” attributes provide content that
fits into <solution>. Data from the “In other libraries”
attribute relates to the PLML element <literature>.
However, not all Tidwell patterns feature this type of
information. The <pattern-link> PLML element is
completely disregarded.

Van Welie’s patterns keep information within the
“Solution” and “How” attributes that maps to the <solution>
PLML element. Moreover the “How” attribute occasionally
delivers figures or sketches that refer to <diagram> in
PLML. Likewise the “Literature” attribute is not specified
within every pattern definition. Information that maps to the
<related-patterns> PLML element is provided by the “Use
when”, “How”, and “Why” attributes albeit <pattern-link>
data is missing.

Patterns within the van Duyne collection possess a
<pattern ID> type property which consists of a capital letter
indicating the particular pattern category and a consecutive
number. The PLML <context> is split over the
“Background” and “Problem” attributes. Notably,
“Problem” is a very rich attribute whose content maps to
various PLML elements, i.e., <problem>, <context>,
<evidence>, <implementation>, and <related-patterns>.
PLML <pattern-link> data is merely rudimentary available.
Notably, the <type> specification of the pattern links are
provided not at all.

The complete comparison of the pattern attributes of the
discussed pattern collections and their mappings to PLML
elements is consolidated in Table XI.

TABLE XI. PATTERN DEFINITION COMPARISON

Comparison of pattern attributes

PLML 1.1 Tidwell van Welie van Duyne

<pattern ID> - -

pattern
category +
consecutive

number

<name> “Name” “Name” “Name”

<alias> - - -

<illustration> “Figure”
included in
“Solution”

“Figure”

<problem>
included in
“Use when”

“Problem” “Problem”

<context>
included in
“Use when”

“Use when”

partly in
“Background”
and partly in
“Problem”

<forces> - - -

<solution>
“What” and

“How”
“Solution”
and “How”

“Solution”

<synopsis> - - -

<diagram> -
occasionally

in “How”
included in
“Solution”

<evidence>

 <example>

 <rationale>

yes

“Examples”

“Why”

yes

“More
examples”

“Why”

to some extent

included in
“Problem”

-

<confidence> - - -

<literature>

occasionally
included
“In other
libraries”

occasionally
available in
“Literature”

-

<implementation> - -
occasionally
included in
“Problem”

<related-patterns>

occasionally
included in
“Why” and

“How”

occasionally
included in

“Use when”,
“How”, and

“Why”

“Other
patterns to

consider”, and
contained in

“Problem” and
partly in

“Background”
<pattern-link>
 <type>
 <pattern ID>
 <collection ID>

- -

rudimentary

“Pattern ID”

41Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 49 / 74

Comparison of pattern attributes

PLML 1.1 Tidwell van Welie van Duyne

 <label>

<management> - - -

- - “Comments” -

V. DOES PLML MEET OUR DEMANDS?

In this section, we would like to approach this question
on the basis of an application in the area of knowledge
sharing systems, which has been developed in the context of
the project p.i.t.c.h. (pattern-based interactive tools for
improved communication habits in knowledge transfers)
[12]. It was conducted by the Automation in Usability
Engineering group (AUE) at Augsburg University of
Applied Sciences in cooperation with two medium-sized
enterprises with engineering and production background and
several partners from communication sciences and the
knowledge management domain.

As an introductory example, Figure 1 shows a screenshot
of the search function of the p.i.t.c.h. application. The red
rectangles indicate the essential patterns which have been
used to design the search capabilities.

Figure 1. Screenshot of the p.i.t.c.h. Search Functionality.

Figure 2 gives an overview of the intrinsic pattern
hierarchy of the p.i.t.c.h. search dialogue. Root element is
the “p.i.t.c.h. Search” pattern which contains three further
patterns, i.e., “Site Branding” [6], “Action Button” [17], and
“Search Results” [17]. “Site Branding” in turn contains the
two patterns “Icon Menu” [17] and “Search Box” [17],
which finally relates to the “Autocomplete” pattern [17].
The other branches of the tree are constructed in analogous
manner. The capital letters in the lower right corners of the
boxes indicate from which pattern collection the particular
pattern has been retrieved. The arrows represent the
respective relationships between the patterns.

Such relationships are domain-independent and can be
exploited for guiding structural and layout-related decisions

during the automated pattern-based construction of the
interactive application.

As yet, we have identified different relation types
including “contains”, “invokes”, “employs”, and “is-similar-
to” relationships. Certainly there are respective inverse
relations, i.e., “is-contained-by”, “is-invoked-by”, and “is-
employed-by”.

Figure 2. Excerpt of the Pattern Hierarchy of the p.i.t.c.h. Search

Functionality.

A “contains” relationship implies that one pattern is
integral part of another while “invoke”, respectively “is-
invoked-by” means that a pattern is activated owing to an
event that happened within the correlated pattern. The
“employs” relation means that the parent pattern avails itself
of a functionality provided by the child pattern. Finally, “is-
similar-to” predicates that the related patterns are either
identical or can be utilized alternatively.

As outlined in Section I, we intend to use PLML-style
pattern definitions that allow for (semi-)automated
processing and UI construction purposes. Besides the fact
that the “implementation” element is not yet adequately
structured and specified, PLML shows various shortcomings
concerning the given options to model the previously
described pattern relationships.

Automated pattern processing requires for distinguishing
two fundamental types of pattern links. On one hand, there
are permanent links to other patterns, which can be regarded
as “hard-coded” and generally, will not change for a long
period of time, e.g., a “is-similar-to” relationship to the
identical pattern within a different pattern collection. If a
permanent link is to be changed it would lead to a new
revision of the pattern. As soon as a respective parent
pattern is applied, all child patterns referenced by permanent
links are also applied automatically.

On the other hand, there is a need for defining temporary
pattern relationships when the pattern is applied respectively
the pattern hierarchy is constructed. For instance, the
“Autocomplete” pattern occurs twice within Figure 2. In
both cases, it is a matter of the selfsame pattern, but one time
it has an “is-employed-by” relationship with the “Search

42Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 50 / 74

Box” pattern while the other time it indeed correlates in the
same manner, but to a different pattern, i.e., “Advanced
Search”. In order to meet these requirements, we defined
two child elements belonging to the PLML <related-
patterns>, i.e., <permanent-links> and <temporary-links>.

In addition, PLML incorporates information about the
pattern revision number within the <management> element.
It is a flaw that the data is not used in the <pattern-link>
element which allows for referencing other patterns, but not
certain revisions of that particular pattern. This can be
resolved by simply adding a child element to <pattern-link>,
i.e., <revision>. Since an individual pattern may, of course,
possess multiple relationships to other patterns, we propose
to specify another child element <linkID>.

The described changes to PLML are illustrated in
Figure 3. Please, note that the given <permanent-link> is not
included within the graph in Figure 2.

…
<name>Search Box</name>
<problem>
The users need to find an item or specific
information.
</problem>
<solution>
Offer search functionality consisting of a search
label, a keyword field, a filter if applicable and
a "go" button. Pressing the return key has the
same function as selecting the "go" button.
</solution>
<related patterns>
 <permanent-links>
 <pattern-link>
 <linkID>W00037PL001</linkID>
 <revision>1.0</revision>
 <type>is similar to</type>
 <patternID>D00079</patternID>
 <collectionID>van Duyne</collectionID>
 <label>search action module</label>
 </pattern-link>
 </permanent-links>
 <temporary-links>
 <pattern-link>
 <linkID>W037TL001</linkID>
 <revision>1.3</revision>
 <type>employs</type>
 <patternID>W00034</patternID>
 <collectionID>van Welie</collectionID>
 <label>Autocomplete</label>
 </pattern-link>
 </temporary-links>
</related patterns>
…

Figure 3. Fragment of PLML-like Definition of Search Box Pattern.

As already described above, a pattern might occur more
that one time in a pattern hierarchy. This means that this
particular pattern is applied several times or, in other words,
multiple instances of the pattern do exist. In this sense,
PLML merely specifies the <patternID> element which is
not suitable for distinguishing two or more instances of the
same pattern. Therefore, we suggest to introduce a new
element named <UID> with two child elements, i.e.,
<patternID> and <instanceID>. In addition, the <pattern-
link> element has to be extended, respectively.

Figure 4 provides a pattern definition fragment that
illustrates all proposed PLML changes required for better
support of automatic pattern processing. This example
specifies the “Advanced Search” pattern in the context of the
pattern hierarchy displayed in Figure 2.

…
<UID>
 <patternID>W00033</patternID>
 <instanceID>0001</instanceID>
</UID>
<name>Advanced Search</name>
<illustration>
Please refer to Figure 1
</illustration>
<problem>
Users need to find a specific item in a large
collection of items.
</problem>
<solution>
Offer a special advanced search function with
extended term matching, scoping and output
options.
</solution>
<related-patterns>
 <permanent-links>
 </permanent-links>
 <temporary-links>
 <pattern-link>
 <linkID>W00033TL001</linkID>
 <type>employs</type>
 <patternID>W00078</patternID>
 <revision>1.0</revision>
 <instanceID>0001</instanceID>
 <collectionID>van Welie</collectionID>
 <label>Constraint Input</label>
 </pattern-link>
 <pattern-link>
 <linkID>W00033TL002</linkID>
 <type>contains</type>
 <patternID>W00073</patternID>
 <revision>1.1</revision>
 >instanceID>0001</instanceID>
 <collectionID>van Welie</collectionID>
 <label>Date Selector</label>
 </pattern-link>
 <pattern-link>
 <linkID>W00033TL003</linkID>
 <type>employs</type>
 <patternID>W00034</patternID>
 <revision>1.0</revision>
 <instanceID>0002</instanceID>
 <collectionID>van Welie</collectionID>
 <label>Autocomplete</label>
 </pattern-link>
 <pattern-link>
 <linkID>W00026TL004</linkID>
 <type>contains</type>
 <patternID>W00026</patternID>
 <revision>1.0</revision>
 <instanceID>0002</instanceID>
 <collectionID>van Welie</collectionID>
 <label>Action Button</label>
 </pattern-link>
 </temporary-links>
</related patterns>
…

Figure 4. Fragment of PLML-like Definition of Advanced Search Pattern.

43Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 51 / 74

VI. CONCLUSION

In this paper, we have analyzed three prevalent pattern
collections in detail. Subsequently, we have discussed
whether and how pattern definitions of these collections
could be mapped into a PLML-compliant description format.
We have identified some shortcomings of PLML in terms of
suitability for automated pattern processing and we have
proposed some changes and extensions in order to overcome
these obstacles.

In our current research, we put our emphasis on the
<implementation> element of PLML and target our efforts to
enriching pattern definitions with code and model fragments
and other valuable design resources.

REFERENCES

[1] Bienhaus, D.: PLMLx Doc., available at

http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html
Retrieved on February 3, 2012.

[2] Breiner, K. et al. (eds.): Proceedings of the 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS ´10), June 20, 2010, Berlin,
Germany, ACM Int. Conf. Proc. Series, 2010

[3] Coram, T. and Lee J.: “A Pattern Language for User Interface
Design”, available at
http://www.maplefish.com/todd/papers/Experiences.html
Retrieved on March 13, 2012

[4] Deng, J., Kemp E., and Todd E.G. (Hg.): Focusing on a
standard pattern form: the development and evaluation of
MUIP: Proceedings of the 6th ACM SIGCHI New Zealand
chapter’s international conference on Computer-human
interaction: design centered HCI, 2006

[5] Deng, J., Kemp E., and Todd E.G.: Managing UI Pattern
Collections. Proc. CHINZ ´05, Auckland, New Zealand,
ACM Press, pp. 31-38, 2005.

[6] van Duyne, D., Landay J., and Hong J.: “The Design of Sites,
Patterns for Creating Winning Websites”, 2nd Edition,
Prentice Hall International, ISBN 0-13-134555-9, 2006

[7] van Duyne, D., Landay J., and Hong J.: “The Design of Sites,
Patterns for Creating Winning Websites”, available at
http://www.designofsites.com/home/
Retrieved on March 13, 2012

[8] Engel, J., Märtin C., and Forbrig P.: HCI Patterns as a Means
to Transform Interactive User Interfaces to Diverse Contexts
of Use, in: J.A. Jacko (Ed.): Human-Computer Interaction,
Part I, HCII 2011, LNCS 6761, Springer-Verlag Berlin
Heidelberg pp. 204-213, 2011

[9] Engel, J., Märtin C., and Forbrig P.: Tool-support for Pattern-
based Generation of User Interfaces, in [1], pp. 24-27, 2010

[10] Fincher, S. et al.: Perspectives on HCI Patterns: Concepts and
Tools (Introducing PLML), CHI ‘03 Workshop Report, 2003

[11] Infragistics, Inc., “Quince”, available at
http://quince.infragistics.com
Retrieved on March 13, 2012

[12] Kaelber, C. and Märtin C.: From Structural Analysis to
Scenarios and Patterns for Knowledge Sharing Applications,
in: J.A. Jacko (Ed.): Human-Computer Interaction, Part I,
HCII 2011, LNCS 6761, Springer-Verlag Berlin Heidelberg,
pp. 258-267, 2011

[13] Kruschitz, C.: XPLML - A HCI Pattern Formalizing and
Unifying Approach, Proceedings of CHI EA, 2009

[14] Märtin, C. and Roski A.: Structurally Supported Design of
HCI Pattern Languages, Jacko, J. (Ed.) Human-Computer
Interaction, Part I, HCII ‘07, Springer LNCS 4550 (2007), pp.
1159-1167, 2007

[15] Tidwell, J.: “Designing Interfaces, Patterns for Effective
Interaction Design”, 2nd Edition, O’Reilly Media Inc.,
ISBN 978-1-449-37970-4, 2011

[16] Tidwell, J.: “Designing Interfaces, Patterns for Effective
Interaction Design”, available at
http://www.designinginterfaces.com
Retrieved on March 13, 2012

[17] van Welie, M.: “Patterns in Interaction Design”, available at
http://www.welie.com
Retrieved on March 13, 2012

[18] Yahoo! Inc.: “Yahoo! Design Pattern Library”, available at
http://developer.yahoo.com/ypatterns/
Retrieved on March 13, 2012

44Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 52 / 74

On A Type-2 Fuzzy Clustering Algorithm

Leehter Yao and Kuei-Sung Weng
Dept. of Electrical Engineering

National Taipei University of Technology
Taipei, Taiwan

e-mail: ltyao@ntut.edu.tw; gsweng@mail.nihs.tp.edu.tw

Abstract—A Type-2 fuzzy clustering algoritm that integreates
Type-2 fuzzy sets with Gustafson-Kessel algorithm is proposed
in this paper. The proposed Type-2 Gustafson-Kessel
algorithm (T2GKA) is essentially a combination of
probabilistic and possibilistic clustering schemes. It will be
shown that the T2GKA is less susceptive to noise than the
Type-1 GKA. The T2GKA ignores the inlier and outlier
interruptions. The clustering results show the robustness of the
proposed T2GKA since a reasonable amount of noise data does
not affect its clustering performance. A drawback of the
conventional GKA is that it can only find clusters of
approximately equal volume. To overcome this difficulty, this
work uses an algorithm called The Directed Evaluation
Ellipsoid Cluster Volume (DEECV) to effectively evaluate the
proper ellipsoid volume. The proposed T2GKA is essentially a
DEECV based learning algorithm integrated with T2GKA.
The experimental results show that the T2GKA can learn
suitable sized cluster volume along with a varying dataset
structure volume.

Keywords-ellipsoids; probabilistic; possibilistic; fuzzy c-
means; Gustafson-Kessel algorithm; Type-2 fuzzy clustering

I. INTRODUCTION

Clustering shows powerful capabilities to determine a
finite number of clusters for partitioning a dataset. Hruschka
et al. [1] proposed a survey of evolutionary algorithms for
clustering, we can see the clustering area profile by focusing
more on those topics that have received more importance in
the literature. Based on the partition-based concepts, the
fuzzy clustering algorithm can be classified into probabilistic
fuzzy clustering and possibilistic fuzzy clustering. The fuzzy
c-means (FCM) algorithm proposed by Bezdek [2] is a
widely used and efficient clustering method for clustering
and classification. Because FCM employs the Euclidean
norm to measure dissimilarity, it inherently imposes a
spheroid onto the clusters regardless of the actual data
distribution. In [3] and [4], Gustafson and Kessel proposed
the G-K algorithm (GKA) using an adaptive distance norm
based on the cluster center and data point covariance
matrices to measure dissimilarity. Because the distance
norm employed in the GKA is in the Mahalanobis norm
form, GKA can be considered as utilizing ellipsoids to
cluster prototype data points. However, GKA assumes fixed

ellipsoid volumes before iteratively calculating the cluster
centers.

FCM and GKA are probabilistic fuzzy clustering
approaches. In a noise environment, the probabilistic fuzzy
clustering will force noise to belong to one or more clusters,
therefore seriously influencing the main dataset structure. To
relieve the probabilistic clustering drawbacks, Krishnapuram
and Keller proposed a possibilistic fuzzy clustering called the
Possibilistic c-means (PCM) [5-6]. The possibilistic fuzzy
clustering can evaluate a datum to a cluster depending only
on the distance of the datum to that cluster, but not on its
distance to other clusters. The possibilistic fuzzy clustering
can alleviate the noise influence, but it is very sensitive to
initialization, sometimes generating coincident clusters.

To avoid the various FCM and PCM problems, Pal et al.
proposed a new model called the possibilistic fuzzy c-means
(PFCM) model [7]. The PFCM is a hybridization of the
PCM and FCM models. The PFCM solves the noise
sensitivity defect of FCM and overcomes the coincident
clusters problem of PCM. However, the PFCM model has
four parameters that must be learned. For an uncertain
environment how to search for the best four parameters is
difficult. All aforementioned fuzzy clustering methods have
membership values called Type-1 membership values. In a
real application domain, the prototype data may have many
uncertain factors. Owing to the Type-1 fuzzy sets, their
membership functions are crisp and they cannot directly
model the uncertainties. On the other hand, the Type-2
membership functions are fuzzy, and they can appropriately
model the uncertainties.

The Type-2 fuzzy set concept was introduced by Zadeh
[8]. The advances of the Type-2 fuzzy sets and systems [9]
are largely attributed to their three-dimensional membership
function to handle more uncertainties in real application
problems. Recent researches [10-13] have shown that the
uncertainty in fuzzy systems can be captured with Type-2
fuzzy sets. In [14], the interval Type-2 fuzzy set was
incorporated into the FCM to observe the effect of managing
uncertainty from the two fuzzifiers. Type-2 fuzzy sets have
been used to manage the uncertainties in various domains
where the performance of Type-1 fuzzy sets is not
satisfactory. For instance, [15-17] used the Type-2 fuzzy set
for handling uncertainty in pattern recognition. Zarandi et al.

45Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 53 / 74

[18] presented a systematic Type-2 fuzzy expert system for
diagnosing human brain tumors.

When clustering methods are combined with Type-2
fuzzy sets the prototype data can be clustered more properly
and accurately. We extend the Type-1 membership values to
Type-2 by assigning a possibilistic-membership function to
each Type-1 membership value. The possibility theory,
introduced by Zadeh [19] appears as a mathematical
counterpart of probability theory that deals with uncertainty
using fuzzy sets. The Type-2 membership values are
obtained by taking the difference between each Type-2
membership function area with the corresponding Type-1
membership value. In this paper we use the unbounded
normal distributions Gaussian function as the secondary
membership function [20-21].

Using the aforementioned cencepts we combined
probabilistic and possibilistic methods to build Type-2 fuzzy
sets. We present a Type-2 GKA (T2GKA) that is an
extension of the conventional GKA. The membership values
for each prototype datum are extended as Type-2 fuzzy
memberships by assigning a membership grade to the Type-
1 memberships. The higher the membership value for a
prototype datum, the larger the prototype datum contribution
possesses in determining the cluster center location. The
experimental results show that the T2GKA was less
susceptible to noise than the Type-1 GKA.

To overcome the T2GKA’s inability to determine
appropriate ellipsoid size, a Directed Evaluation Ellipsoid
Cluster Volume (DEECV) scheme is proposed in this paper,
so that the proper cluster volume can be directly evaluated
instead of each cluster using equal cluster volume in the
clustering learning. The Mahalanobis norm inducing matrix
determinant is utilized in this paper to measure the ellipsoid
size [22, 23]. The DEECV is developed to intelligently
estimate the proper ellipsoid size value. With the proper
ellipsoid size value determined by the proposed DEECV, the
learning efficiency can be further improved. The proposed
T2GKA is essentially a DEECV based learning algorithm
integrated with T2GKA.

II. COMBINED PROBABILISTIC AND
POSSIBILISTIC TO BUILD TYPE-2 FUZZY SET

We focus on providing a Type-2 fuzzy set model to avoid
uncertain outliers affecting the clustering learning results.
We explain how to build the Type-2 fuzzy sets based on the
following concept. For every prototype data point, the
ordered set of memberships to each of the clusters

{ }1, , cµ µ… spans a c-dimensional space. Sets of specific

membership values in this space are represented as points.
The possibility distribution transform of the Type-1
probability distribution on unbounded normal distributions
Gaussian function around the Type-1 membership value. For
each given point, the possibilistic type membership value
indicates the strength of the attribution to any cluster
independent from the rest. Figure 1 shows that two points x1
and x2 have the same Type-1 membership value but have
different possibility values.

Figure 1. The points have the same membership value but have different
possibility values

The idea in building Type-2 fuzzy sets is based simply on
the fact that, for the same Type-1 membership value, the
secondary membership function should make the larger
possibility value more than the smaller possibility value. The
secondary membership function based on the competitive
learning theory proposed here originates from the rival-
penalized competitive learning (RPCL) in [24]. The basic
idea of RPCL is that, for each input, the winner unit is
modified to adapt to the input and its rival is delearned using
a smaller learning rate, so, RPCL rewards the winner and
punishes the rival. A Type-2 fuzzy set is defined as an object
�A which has the following form:
� { }, , ()AA u t ξ≡ i , (1)

where ()Aξ i is an unbounded normal distributions Gaussian
function representing the secondary membership function of

the element (,), , () [0,1]Au t u ξ∈ ∈U i in �A . We set the Type-
1 membership value and Type-2 membership value relation
as following equations:

max(())Au u ξ= × i , (2)

()At u ξ= × i , (3)

where u represents the primary membership value and t
represents the Type-2 membership value. The ()Aξ i is an
unbounded normal distribution Gaussian function
representing the secondary membership function:

2
1

() exp
2A

a bξ
σ
− = −  

 
i . (4)

Under the aforementioned concepts, reducing the Type-2
fuzzy sets involves complicated operations. We use the
input/output data points xk, k =1…N, set as the possibility
value, pik as the unbounded normal distribution Gaussian
function standard deviation, σ and the (1)ikp − denotes the
distance between pik to the central unbounded normal
distribution Gaussian function, then design the secondary

membership function
21

0.5 ()ik

ik

p

pe
−

− ×
.

The confidence intervals for varying possibilistic values
pik built around the same prototype datum xik with

46Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 54 / 74

membership value µik are nested. A unimodal numerical
possibility distribution may also be viewed as a nested set of
confidence intervals. The unbounded normal distribution
Gaussian function’s confidence intervals are 2σ and have a
95% confidence level. For example, the Type-1 membership
value 0.5µ = , has a secondary membership function with
different possibility values as shown in Fig. 2.

The Type-2 membership values can be obtained using the
following equation;

2
11

2 ,
ik

ik

p

p
ik ik A ik ikt t eµ ξ µ

 −
− ×  

 = × ⇒ = × (5)

where tik (µik) denotes the Type-2(1) memberships, pik
denotes the membership degrees for one datum resembling
the possibility of its being a member of the corresponding
cluster. For example, for the Type-1 membership
value 0.5µ = , the following evaluations process interprets
that Type-2 fuzzy sets evaluate their secondary membership
values with different possibility values. The prototype data
points xk, k =1,…,N, have Type-1 membership value

0.5ikµ = and possibility value 1.0ikp = then the Type-2
membership values 0.5ikt = are obtained using (5). For the

same Type-1 membership value 0.5ikµ = , and possibility

value 0.1ikp = we obtain the Type-2 membership values as

1.2884 018 0ikt e= − ≅ .
We know that in our design the secondary membership

function, for the same Type-1 membership value, a larger
possibility value can make the Type-1 membership value
larger than the smaller possibility value does. Using the
aforementioned concepts, we combined the probability and
possibility membership values and propose the Type-2
Gustafson-Kessel Algorithm (T2GKA).

III. THE TYPE-2 G-K ALGORITHM (T2GKA):

To overcome the drawback of the GK algorithm, it is
used to find only clusters of approximately equal volumes. In
this paper an algorithm called The Directed Evaluation
Ellipsoid Cluster Volume (DEECV) is proposed to
effectively evaluate the proper ellipsoid volume. The
proposed T2GKA is essentially a DEECV based learning
algorithm integrated with T2GKA.

Figure 2. The secondary membership function with the different possibility
values

A. The Type-2 G-K Algorithm (T2GKA):

Based on the prototype data points xk, k =1,…,N, given
the random initial Type-1 fuzzy partition matrix (0) (0)=U T ,
T2GKA is to learn the Type-2 fuzzy partition matrix T, the
coordinates of all cluster centers V and the norm inducing
matrix Ai by minimizing , i = 1,…, c

()2 i
1 1 1

1 1

() ()

(1),

c N c
m

T GKA ik i i
i k i

N c

k ik
k i

J t

t

ω ρ

γ

= = =

= =

= + −

+ −

∑∑ ∑

∑ ∑

i

2
ikAT,V, A D A

 (6)

where ikt has the same meaning of membership and
constraints as FCM. The distance between the k-th prototype
data point and the i-th cluster center is defined as the
Mahalanobis norm:

1/2(() ()) .T= − −
iikA k i i k iD x v A x v

(7)

For the i-th cluster, the ellipsoid φi(·) is defined as
() () ()T

iφ = − − =i i ix x v A x v 1 , i =1,…, c. (8)

Since the volume of φi(·) is inversely proportional to the
determinant of Ai, det(Ai) is thus utilized as a measure of the
ellipsoid volume for T2GKA. If the determinant of Ai is
given as ρi, Ai is constrained by

det(Ai) = ρi, ρi > 0, i = 1,…, c. (9)

The optimization in (T,V,A) can be solved using
differentiations as follows:

()
1

1det 1, , ,n
i i i i i cρ −= =  A F F … (10)

() ()()
()

N m T

k 1
i N m

k 1

.
ik k i k i

ik

t x v x v

t

=

=

− −
= ∑

∑
F (11)

To avoid the covariance matrix being singular in the
iterative process, a scaled identity matrix is added to the
covariance matrix, i.e.,

1
(1-) det() n

i iκ κ= + 0F F F I, (12)

where κ ∈[0,1] is a tuning factor with a small value and F0 is
the whole data set covariance matrix with fixed value. The
coordinate of each cluster center as well as the membership
element in the partition matrix can be updated using the
following equations:

()
()

1

1

,

mN

ikk
mN

ikk

t

t

=

=

=
∑
∑

k
i

x
v (13)

12 (1)

1

,1 ;1 .

m
c

ik
j

t i c k N

−−

=

  
  = ≤ ≤ ≤ ≤
     

∑ i

i

ikA

jkA

D

D
 (14)

47Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 55 / 74

For each given point, the possibilistic type membership
value, indicating the strength of the attribution to any cluster,
is independent from the rest. We calculate the possibilistic
type membership value simultaneously using

1

(1)

1
.

1

ik

m

i

p

ε

−

=
 

+   
 

i

2
ikAD

 (15)

We determine the reasonable number of εi by computing

1

1

N
m
ik

k
i N

m
ik

k

t
K

t
ε =

=

=
∑

∑

i

2
ikAD

, (16)

usually K=1 is chosen. For each given point, using the
possibilistic type membership value, the Type-2 membership
values can be updated using equation (5).

B. The Directed Evaluation Ellipsoid Cluster Volume
(DEECV)

Without knowing the prototype data point distribution
range a priori, a tentative value ρa is first assigned to every
parameter, ρi, i = 1,…, c. With ρi = ρa, i = 1,…, c, T2GKA is

applied to calculate the tentative ellipsoid ˆ
iφ with center ̂ iv ,

the covariance matrix ̂iF , and the norm inducing matrix̂iA ,
i = 1,…, c. Denote Bi as the set of data points belonging to

the cluster corresponding tôiφ and i
jx as the j-th data point

belonging to Bi. Let ˆ ix be the data point with the largest

Mahalanobis distance ˆiL among all data points in Bi, i.e.

ˆ
ˆ ˆ)

iB

Argmax(
∈

= −
i i
j

i i
j i A

x

x x v (17)

and
ˆ

ˆ ˆ)
i

i
B

L max(
∈

= −
i

ij

i
j i Ax

x v , (18)

where ˆ
iA

i denotes the Mahalanobis norm with the norm

inducing matrixˆ
iA as in (7). According to (7) and (10),

1/ 1ˆ ˆ ˆˆ ˆ ˆ ˆ() (det()) () .T n
a iLρ − =i i

i i i ix - v F F x - v (19)

It is thus obvious that if the initialization process
appropriately adjusts the initial ellipsoid volumes so that the
farthest data point ̂ix with the largest Mahalanobis norm is
right on the initialized ellipsoid, all of the ellipsoid volumes
will be scaled to the range of solutions. As shown in (8), the
data points on the ellipsoids have a Mahalanobis distance of

1. Divide ˆ
iL at both sides of (19),

1/ 1ˆ ˆˆ ˆ ˆ ˆ() (det()) () 1.
ˆ

T na

n
iL

ρ − =i i
i i i ix - v F F x - v (20)

Therefore, the appropriate initial volume for the i-th
ellipsoid leading to the result that all data points are included
by the ellipsoid with tentative value ρa can thus be defined as:

_ ˆ
a

i initial n
iL

ρρ = , i = 1,…, c. (21)

It is worth noting that if ̂ ix is an outlier for the cluster

corresponding tô iφ , ˆ
iL will be unreasonably large. This

results in an inaccurate initial ellipsoid volume ρi according
to (21). For the data points with too much noise, an outlier
detection scheme is required to determine the outliers and
filter them out before applying the directed initialization. Let

id be the average Mahalanobis distance among all data
points belonging to Bi, then

ˆ
1

ˆ

,

iB

j
i

i

d
B

=

−
=
∑

i

i
j i A

x v

 (22)

where iB denotes the number of data points in Bi. For all

data points in Bi, the farthest data point and its maximum
Mahalanobis distance can be respectively determined using
(17) and (18). Removing the outliers affects the clustering
learning results. With a predetermined threshold γ, any data
point ix belonging to the i-th cluster and its possibility

membership value ikP is larger than a predetermined

threshold possibility membership valueikP α≥ (in this paper,
we set 0.1α =), satisfies the following criterion:

ˆ
ˆ

id
γ

−
≥i

i
i A

x v
 (23)

is considered as an outlier and can be removed from Bi. The
outlier detection scheme, as shown in (22) and (23), is
recursively applied to every cluster of data points until no
outlier has been detected. After filtering out the outliers in
every cluster, the accuracy of calculating proper ellipsoid
volume according to (21) for T2GKA’s directed evaluation
can be greatly improved.

IV. COMPUTER SIMULATIONS

We used the following computational conditions for all
datasets: 1. The termination tolerance 0.000001ε = , the

iikAD for the FCM, FCMPCM, and PFCM is the Euclidean

norm. 2. The
iikAD for the GK and T2GKA is the

Mahalanobis norm. 3. The number of c clusters c is 7 for
7cluster. 4. c is 5 for 5 same-circle and sinusoidal sets. 5. c
is 2 for all other datasets.
Example 1: The artificial 2-dimensional datasets X400 and
X550 are designed. The X400 is a mixture of two 2-variate

normal distributions with mean vectors
5.0

6.0

 
 
 

 and
5.0

12.0

 
 
 

.

Each cluster has 200 points, while X550 is an augmented
version of X400 with an additional 150 points uniformly
distributed over [] []0,15 0,11× . For data set X400 the

clustering results in Table I show that the terminal centroids
learned by all five algorithms produce good centroids.

48Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 56 / 74

When we cluster dataset X550, we hope that the 150 noise
points can be ignored and the cluster center will be found
closer to the true centroids Vtrue. From Table I, we can see
that all five algorithms clustered the dataset X550 terminal
centroids. Because PCM is very sensitive to initialization and
it sometimes generates coincident clusters, we utilized the
FCM clustering results to initialize PCM. The other four
clustering methods ran the algorithm directly. To make a
rough assessment of how each method accounted for inliers

and outliers, we estimated 2

A true AE = −V V , where A denotes

FCM, FCMPCM, PFCM, GK, and T2GKA. The
EFCM=0.4173, EFCMPCM=0.0001, EPFCM=0.3714 (a=1, b=0.1,
m=2, η=2), EPFCM=0.1699 (a=1, b=1, m=2, η=2),
EGKA=0.4825, and ET2GKA=0.0066. The T2GKA clustering
results with the proper cluster volumes for the datasets X550
are shown in Fig. 3. We compared the five clustering
method’s EA values, the EFCMPCM value is smaller than that in
other methods, but its membership values are independent of
the other clusters. We cannot depend on the membership
values to classify the data points belonging to which cluster.
Except for the EFCMPCM, the ET2GKA value is smaller than that
in other methods. The clustering results show the robustness
of the proposed T2GKA because a reasonable amount of
noise data does not affect its clustering performance.
Example 2: To verify that the proposed method can accord
the prototype dataset structure to learn the proper cluster
centers, 5 same-circles were designed with each cluster
containing 300 prototype data points. The dataset 5 same-
circle is a mixture of two 2-variate normal distributions with

mean vectors
0.0

3.0

 
 
 

,
5.0

3.0

 
 
 

,
0.0

3.0

 
 − 

,
5.0

3.0

 
 − 

, and
2.5

0.0

 
 
 

.

The T2GKA clustered results with the proper clusters centers
for the 5 same-circle datasets are shown in Fig. 4. For the 5
same-circle datasets, the EFCM=0.0042, EFCMPCM=0.0003,
EPFCM=0.0039 (a=1, b=0.1, m=2, η=2), EPFCM=12.2009 (a=1,
b=1, m=2, η=2), EGKA=0.0036, and ET2GKA=0.0026. We
compared the five clustering method’s EA values. Except for
the EFCMPCM, the ET2GKA value is smaller than that in other
methods. The clustering results show the robustness of the
proposed T2GKA because a reasonable amount of noise data
does not affect its clustering performance.
Example 3: To verify that the proposed method can accord
the prototype dataset structure to learn the proper cluster
volumes, 2 artificial datasets named 7cluster and sinusoidal
were designed. There are 700 and 200 prototype data points
in the 7cluster and sinusoidal datasets, respectively. There
are 700 prototype data points in the 7cluster datasets
clustered into 7 clusters with different sizes and orientations.
Each cluster contains 100 prototype data points. The 7cluster
dataset is a mixture of two 2-variate distributions with
varying deviation, its mean vectors

are
5.0

1.0

 
 
 

,
1.0

5.0

 
 
 

,
1.0

1.0

 
 
 

,
5.0

5.0

 
 
 

,
2.0

2.0

 
 − 

,
2.0

2.0

− 
 
 

, and
4.5

3.0

 
 
 

.

The prototype data points in the dataset sinusoidal are
generated by 4 2 3

2 1 110 0 001x sin(. x)x ε−= + , where

[]1 0 100x ,∈ and 0 25Normal(,)ε ∼ is a normally

distributed random noise. The T2GKA clustered results with
the proper clusters volumes for the 7cluster and sinusoidal
datasets are shown in Figs. 5 and 6, respectively. The
proposed T2GKA is essentially a DEECV based learning
algorithm integrated with the T2GKA. The experimental
results show that the T2GKA can learn suitable sized cluster
volume along with dataset varying structure volume.

TABLE I. THE TERMINAL CENTROIDS LEARNED BY FCM, FCMPCM, PFCM,
GK, AND T2GKA IN THE DATASETS X400 AND X550, EXAMPLE 1

Clustering
Algorithm

Data sets

X400 (centroid) X550 (centroid)

x1 x2 x1 x2

FCM: m=2
4.9794 5.9531 5.5711 5.4143
4.9407 12.0593 5.1885 11.6395

FCMPCM: η=2η=2η=2η=2
5.0017 6.0094 5.0076 6.0091
4.9973 12.0102 4.9968 12.0103

PFCM: a=1, b=1,
m=2, ηηηη=2

4.9843 5.9746 5.3716 5.7308
4.9566 12.0506 5.1281 11.6642

PFCM: a=1,
b=0.1, m=2, ηηηη=2

4.9800 5.9558 5.5410 5.4604
4.9427 12.0582 5.1804 11.6445

GKA: m=2
4.9782 5.9538 5.1064 5.4443
4.9397 12.0568 5.5502 11.4151

T2GKA: m=2
5.0048 6.0239 5.0137 5.9593
5.0097 12.0837 4.9743 12.1031

Figure 3. The T2GKA clustering results with the proper clusters volumes

for the dataset X550, Example 1

-2 0 2 4 6 8

-4

-3

-2

-1

0

1

2

3

4

x1

x2

Figure 4. Clustering results using 5 ellipsoids for the prototype data points

in the dataset 5samecircle, Example 2

49Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 57 / 74

Figure 5. Clustering results using 7 ellipsoids for the prototype data points in
the dataset 7cluster, Example 3

Figure 6. Clustering results using 5 ellipsoids for the prototype data points in
the dataset sinusoidal, Example 3

V. CONCLUSIONS

This paper presented an efficient combined probabilistic
and possibilistic method for building Type-2 fuzzy sets.
Utilizing this concept we presented a Type-2 GKA (T2GKA)
that is an extension of the conventional GKA. The
experimental results showed that the T2GKA was less
susceptible to noise than the Type-1 GKA. The clustering
results showed the robustness of the proposed T2GKA
because a reasonable amount of noise data does not affect its
clustering performance.

The DEECV is proposed to effectively evaluate proper
ellipsoid volume. The proposed T2GKA is essentially a
DEECV-based learning algorithm integrated with T2GKA.
The experimental results showed that the T2GKA can learn
suitable sized clusters volume along with varying dataset
structure volume.

REFERENCES
[1] E. R. Hruschka, R. J. G. B. Campello, A. A. Freitas and A. C.

P. L. F. de Carvalho, “A Survey of Evolutionary Algorithm
for Clustering,” IEEE Trans. Syst., Man, Cybern., pt. C, vol.
39, no. 2, pp.133-155, March 2009.

[2] J. Bezdek, Pattern Recognition with Fuzzy Objective
Function, Plenum Press, New York, 1981.

[3] D. E. Gustafson and W. C. Kessel, “Fuzzy clustering with a
fuzzy covariance matrix,” in Proc. IEEE Conf. Decision
Contr., San Diego, CA, pp. 761-766, 1979.

[4] R. Babuška, Fuzzy modeling for control, Kluwer Academic
Publishers: Massachusetts, 1998.

[5] R. Krishnapuram and J. Keller, “A possibilistic approach to
clustering,” IEEE Trans. Fuzzy Sys., vol. 1, no. 2, pp. 98-110,
May 1993.

[6] R. Krishnapuram and J. Keller, “The possibilistic c-Means
algorithm: Insights and recommendations,” IEEE Trans.
Fuzzy Sys., vol. 4, no. 3, pp. 385-393, August 1996.

[7] N. R. Pal, K. Pal, J. M. Keller and J. C. Bezdek, “A
Possibilistic Fuzzy c-Means Clustering Algorithm,” IEEE
Trans. Fuzzy Sys., vol. 13, no. 4, pp. 517-530, August 2005.

[8] L. A. Zadeh, “The concept of a linguistic variable and its
application to approximate reasoning-I,” Inform. Sci., vol. 8,
no. 3, pp. 199-249, 1975.

[9] J. Mendel, “Advances in Type-2 fuzzy sets and systems,”
Inform. Sci., vol. 177, pp. 84-110, 2007.

[10] N. N. Karnik, J. M. Mendel and Q. Liang, “Type-2 fuzzy
logic systems,” IEEE Trans. Fuzzy Sys., vol. 7, no. 6, pp.
643-658, December 1999.

[11] Q. Liang and J. M. Mendel, “Interval Type-2 fuzzy logic
systems: theory and design,” IEEE Trans. Fuzzy Syst., vol. 8,
no. 5, pp. 535-550, October 2000.

[12] J. M. Mendel, Uncertain Rule-Based Fuzzy Logic Systems:
Introduction and New Directions, Upper Saddle River, NJ:
Prentice-Hall, 2001.

[13] S. Coupland and R. John, “Geometric Type-1 and Type-2
fuzzy logic systems,” IEEE Trans. Fuzzy Sys., vol. 15, no. 1,
pp. 3-15, February 2007.

[14] C. Hwang and F. C. H. Rhee, “Uncertain Fuzzy Clustering:
Interval Type-2 Fuzzy Approach to C-Means,” IEEE Trans.
Fuzzy Sys., vol. 15, no. 1, pp. 107-120, February 2007.

[15] H. B. Mitchell, “Pattern recognition using type-II fuzzy sets,”
Inform. Sci., vol. 170, pp. 409-418, 2005.

[16] J. Zeng and Z. Q. Liu, “Type-2 Fuzzy Sets for Pattern
Recognition: The State-of-the-Art,” Journal of Uncertain
Systems, vol. 1, no. 3, pp. 163-177, 2007.

[17] J. Zeng, L. Xie and Z. Q. Liu, “Type-2 fuzzy Gaussian
mixture models,” Pattern Recognition, vol. 41, pp. 3636-3643,
2008.

[18] M. H. Fazel Zarandi, M. Zarinbal and M. Izadi, “Systematic
image processing for diagnosing brain tumors: A Type-II
fuzzy expert system approach,” Applied Soft Computing, vol.
11, pp. 285-294, January 2011.

[19] L. A. Zadeh, “Fuzzy Sets as a Basis for a Theory of
Possibility,” Fuzzy Sets and Systems, vol. 1, no. 1, pp. 3–28,
1978.

[20] D. Dubois, L. Foulloy, G. Mauris and H. Prade, “Probability-
possibility transformations, triangular fuzzy sets and
probabilistic inequalities,” Reliab. Comput., vol. 10, no. 4, pp.
273-297, 2004.

[21] G. Mauris, “Expression of Measurement Uncertainty in a
Very Limited Knowledge Context: A Probability Theory-
Based Approach,” IEEE Trans. Instr. Measu., vol. 56, no. 3,
pp. 731-735, June 2007.

[22] L. Yao, “Nonparametric learning of decision regions via the
genetic algorithm,” IEEE Trans. System, Man, and
Cybernetics, vol. 26, no. 2, pp. 313-321, April 1996.

[23] L. Vandenberghe, S. Boyd and S. P. Wu, “determinant
maximization with linear matrix inequality constraints,” J.
SIAM, vol. 19, no. 2, pp. 499-533, 1998.

[24] L. Xu, A. Krzyak and E. Oja, “Rival penalized competitive
learning for clustering analysis, RBF net, and curve
detection,” IEEE Trans. Neural Netw., vol. 4, no. 4, pp. 636-
649, July 1993.

50Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 58 / 74

Pattern-oriented Enterprise Architecture Management

Tobias Brunner
Reutlingen University, Faculty of Informatics

Architecture Reference Lab of the
SOA Innovation Lab, Germany

tobias1.brunner@student.reutlingen-university.de

Alfred Zimmermann
Reutlingen University, Faculty of Informatics

Architecture Reference Lab of the
SOA Innovation Lab, Germany

alfred.zimmermann@reutlingen-university.de

Abstract – Current Enterprise Architecture Frameworks are
limited in their ability of providing reference architectures and
architecture development methods to assist for developing
comprehensive, guided and fully-fledged enterprise
architectures. The outcome is that in the majority of cases
present architecture modeling approaches are rarely validated,
have sparse reference and meta-models as well as general and
limited statements for building and designing a comprehensive
enterprise architecture. Furthermore these frameworks do not
include recent approaches for developing enterprise
architectures, like cloud computing, service-orientation and
broad security reference architectures. This is a real problem
of Enterprise Architecture Frameworks and their process
models for designing and developing wide-ranging enterprise
architectures. The Enterprise Services Architecture Reference
Cube (ESARC) defines a integral framework for enterprise
architecture artifacts with their main relationships. Our new
idea and contribution is to extend existing architecture
frameworks and their development methods with a new
pattern-oriented Architecture Development Method approach.
Based on our research on the ESARC architecture framework
we have leveraged a new pattern-oriented Architecture
Development Method and have extracted a coherent set of
enterprise architecture patterns.

Keywords – Enterprise Architecture Management; Enterprise-
Services-Architecture-Reference-Cube; ESARC; Pattern-
oriented Architecture Development Method; Core-Pattern-
Catalog; Architecture Framework.

I. INTRODUCTION
Individual software solutions, legacy applications, and

different infrastructure components lead to high costs and
limited ability to respond quickly to new business
requirements. Many companies start initiatives of Enterprise
Architecture Management (EAM) and use Enterprise
Architecture (EA) Frameworks like The Open Group
Architecture Framework (TOGAF) [2, 3] to address these
problems. But present Enterprise Architecture Frameworks
are limited in their modeling approaches. These approaches
are historically grown and do not cover current standards.
New topics like cloud computing, service-orientation and
especially the security aspect for enterprise architectures are
not considered. In addition to these problems most of the
EA-frameworks do not provide or provide an insufficient

guided development method for building useful and suitable
enterprise architectures.

The Enterprise Services Architecture Reference Cube
(ESARC) [1] is a new Enterprise Architecture Framework
derived from TOGAF and present standards like essential
[4], the service model of ITIL [5] and from resources for
service-oriented computing [6, 7, 8]. The current release of
the ESARC is an original abstract architecture reference
model, provides a integral approach for designing,
developing, monitoring, evaluation and optimization of
enterprise architectures over eight abstract Reference
Architectures. Due to the new enterprise framework ESARC
the hypothesis of this research integrates the idea to develop
a new pattern-oriented [9] Architecture Development
Method (ADM) [10] based on the TOGAF-Architecture
Development Method [11] and the ITIL service-oriented-
lifecycle and provides a relevant basis for high enterprise
architecture innovation impacts for practice.

Based on the ESARC, the new Enterprise Architecture
Development Method provides a process to create and
manage enterprise architectures and integrates different
patterns for a full iteration over the eight ESARC Reference
Architectures and predefines basic architectural work
products and artifacts. The whole development method and
all integrated patterns are derived from current Enterprise
Architecture Frameworks, process models and best practices
from the Enterprise Architecture Management environment.

The aim of this research is to provide a core-pattern-
catalog for a structured and guided development of enterprise
architectures. Enterprise architects can expand the pattern-
catalog for their own needs and requirements. The existing
core-pattern-catalog comprises 26 patterns for developing
essential artifacts of enterprise architectures.

Section II sets the base of our pattern approach by
describing the ESARC – Enterprise Services Architecture
Reference Cube. In Section III, we describe our new original
pattern-oriented Architecture Development Method as a
procedural framework. This architecture method mostly
consists of two different types of patterns: “Architecture
Development Method Patterns” represented in Section III
and “Reference Architecture Development Patterns”
embodied in Section IV. Section V describes the “Pattern
Evolution Process” for the developed core-pattern-catalog.
The conclusion in Section VI summarizes major
achievements of this paper.

51Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 59 / 74

II. ENTERPRISE SERVICES ARCHITECTURE REFERENCE
MODEL

ESARC – the Enterprise Services Architecture Reference
Cube – is an abstract architecture reference model, which
provides an integral view for main interweaved architecture
types, and is derived primarily from state of art architecture
frameworks. ESARC defines main architecture classification
categories and abstracts from a concrete business scenario or
technologies. The Open Group Architecture Framework
(TOGAF) is the current standard for enterprise architecture
and provides the basic blueprint and structure for our
extended service-oriented enterprise software architecture
domains like: Architecture Governance, Architecture
Management, Business & Information Architecture,
Information Systems Architecture, Technology Architecture,
Operation Architecture, Security Architecture, and the Cloud
Services Architecture.

The ESARC – Enterprise Services Architecture
Reference Cube as seeded by [1], in Figure 1, unifies a set of
close related reference models for essential architecture
domains. The ESARC description in this section is
fundamentally based on our previous research and extends
this with our current presented pattern approach in a
manageable and more procedural way. ESARC provides a
coherent aid for examination, comparison, classification and
quality ratings of specific architecture categories.

Figure 1. ESARC - Enterprise Software Architecture Reference Cube.

The Architecture Governance and Management
framework provides the organizational context for the
following main types of enterprise software architectures like
Business & Information Architecture, the Information
Systems Architecture, and the Technology Architecture.

Architecture Governance defines and maintains the
Architecture Governance cycle. The Architecture
Governance cycle sets the abstract governance frame for
concrete architecture management activities within the
enterprise or a product line development and specializes the
more abstract Deming Cycle, as in [12], to the following
management activities: plan, define, enable, measure, and
control (see Section V. Reference Architecture Development
Patterns with the Governance Cycle Pattern).

The second aim of Architecture Governance is to set
rules for architecture compliance with internal and external
standards. In addition policies for governance and decision
definition are set to allow a standardized and efficient
process for architecture decisions within the enterprise
architecture organization. Enterprise and software architects
are acting on a sophisticated connection path coming from
business and IT strategy to the architecture landscape
realization for interrelated business domains, applications
and technologies. Architecture Governance has to set rules
for the empowerment of people, defining the structures and
procedures of an Architecture Governance Board, and setting
rules for communication (see Section V. Reference
Architecture Development Patterns with the Governance
Board Pattern). With specifications from Architecture
Governance we define main ESARC Architecture
Management procedures for service-oriented enterprise
software architectures: service strategy and life cycle
management, service security, risk management, quality
insurance for services, service testing, and service
monitoring and control. Main management aspects include
as well the metamodel-based management of service
contracts and registries, and the reuse management of
services in the enterprise.

The ESARC – Business & Information Reference
Architecture defines the link between the enterprise business
strategy and the results of supporting strategic initiatives
through information systems. The Business & Information
Reference Architecture provides a single source and
comprehensive repository of knowledge, from which
concrete corporate initiatives will evolve and link. This
knowledge is model based and defines an integrated
enterprise model of the business, which includes the
organization and business processes. The Business &
Information Reference Architecture sets the base for the
business IT alignment. Important concepts of Business &
Information Reference Architecture are: business and
information strategy, the organization, and main business
requirements for information systems like key business
processes, business rules, business products, services, and
related business control information.

The ESARC – Information Systems Reference
Architecture provides an abstract blueprint of the individual
solution architecture for application systems to be deployed
and individually customized. The ESARC – Information
Systems Reference Architecture contains the main
application specific service types and defines their
relationship by a layer model of building services. The core
functionality of domain services is linked with application
interaction capabilities and with the business processes of the
customer’s organization.

The ESARC – Technology Reference Architecture
describes the logical software and hardware capabilities that
are required to support the deployment of business, data, and
application services. This includes IT infrastructure,
middleware, networks, communications, processing, and
standards. The layers of the ESARC – Technology Reference
Architecture and the layers of the ESARC – Information
Systems Reference Architecture correspond to each other.

52Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 60 / 74

III. ARCHITECTURE DEVELOPMENT METHOD PATTERNS
At this point it should be noted that the various Reference

Architectures of the ESARC are strongly connected with
each other. Therefore, the individual areas of Reference
Architectures have to be developed in coordination with each
other. All individual Reference Architectures will be
developed in terms of their interdependence.

The pattern-oriented Architecture Development Method
offers an entry point and a navigable process for iteration
through the eight ESARC Reference Architectures. The
whole Architecture Development Method is based on
canonical structured patterns (Name, Classification, Problem,
Solution, and Description) for the iteration through and for
developing and designing architecture artifacts within the
eight ESARC Reference Architectures.

The “Architecture Development Method (ADM) Pattern”
is based on [11] and describes the pattern-oriented Enterprise
Architecture Development Method. This pattern represents a
procedural method (see Figure 2) for iterating through the
eight Reference Architectures of the ESARC [1].

In addition, we derived from the “Architecture
Development Method (ADM) Pattern” an iteration-loop (See
Figure 3) by describing five subsequent patterns for iteration
within each of the eight Reference Architectures of ESARC.

The aim is a core-pattern-catalog with architecture
patterns for developing, structure- and designing integral
enterprise architectures. Every enterprise architect can
update, expand and enlarge the core-catalog with new
patterns for its own needs and requirements.

The novelty of our new-presented pattern approach for
Enterprise Architecture Management is its close fit with the
integral classification framework from our previous research
of ESARC and our specific coarse-granular EAM-process.
Pattern approaches for Enterprise Architecture Management
from the state of art are more visualization oriented and
therefore more detailed, but lacking the overall integration in
a more complex EAM-process.

Architecture Development Method Pattern
How can it be realized to set up an Architecture
Development Method for developing a holistic enterprise
architecture based on the ESARC?

Classification: Architecture Development Method
Problem: The absence of structured and concrete

behavior guidelines for developing enterprise architectures
ends up in complexity.

Besides these problems, the ESARC has eight highly
aligned Reference Architectures they have to be developed
in a structured, organized and controlled way.

Solution: An enterprise architect gets a structured way to
iterate through the ESARC to build up integral enterprise
information architectures. Enterprise architects should use
practical guidelines for every Reference Architecture and
descriptions for specified outcomes. The Architecture
Development Method should be used as a support guideline
and be adaptable for every enterprise.

Description: The Architecture Development Method
maps the service-lifecycle of ITIL to a structured architecture
development process based on the eight ESARC Reference
Architectures. The “Architecture Development Method
Pattern” is represented in Figure 2.

Figure 2. ESARC – Architecture Development Method Pattern.

The “Architecture Development Method Pattern”
describes a structured and guided process to iterate through
the ESARC and build up an enterprise architecture. The next
step shows a further development of the already mentioned
“Architecture Development Method Pattern”.

The enhancement is a uniform iteration-loop for each
step within the eight Reference Architectures of the ESARC.

The iteration-loop is derived from the Deming Cycle [12]
respectively the PDCA-Cycle and it also contains artifacts
from TOGAF/ADM and the service-oriented lifecycle of
ITIL. The iteration-loop defines a structured development
cycle for every step within the “ADM-Pattern”. The
combination of the “Architecture Development Method
Pattern” with the mentioned iteration-loop is represented in
Figure 3.

Figure 3. ESARC – Architecture Optimization Pattern.

53Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 61 / 74

The newly added iteration-loop relates to the eight
Reference Architectures and contains five different steps for
developing each of the Reference Architectures of ESARC
consistently in the same way, but with a different particular
focus.

For each step within the iteration-loop a pattern exists:
1) Architecture Capture & Analysis Pattern
2) Architecture Design Pattern
3) Architecture Roadmap Pattern
4) Architecture Implementation & Transition

Pattern
5) Architecture Monitoring & Continual

Improvement Pattern
In conclusion, the Architecture Development Method is

defined by the “Architecture Development Method Pattern”,
as a recommended development sequence for the various
Reference Architectures of the ESARC. Furthermore there is
an iteration-loop defined by five patterns to build each of the
eight ESARC Reference Architectures.

Within the Architecture Development Method the
enterprise architect has to determine first the scope of
Reference Architectures. Each of the Reference Architecture
can have a different scope and maturity level, because the
developed and recommended sequence of development in
the architecture method is an iterative one. The maturity of
the enterprise architectures and their outcomes will increase
cyclically.

In this section, we have seen a procedural, pattern-based
Architecture Development Method for iterating through the
eight Reference Architectures of the ESARC by the
“Architecture Development Method Pattern”. In addition
there was defined an extended iteration-loop for developing
and designing architecture artifacts for each of the eight
reference architectures of the ESARC.

IV. REFERENCE ARCHITECTURE DEVELOPMENT
PATTERNS

This section provides patterns for developing
entities/artifacts for each Reference Architecture of the
ESARC. The following mentioned patterns are designing
and developing concrete architecture artifacts, so they are
categorized as “Reference Architecture Patterns” (RA-
Patterns). Currently, patterns are available for four Reference
Architectures of the ESARC. Patterns available for building
and designing the:

• Governance Reference Architecture
• Management Reference Architecture
• Business & Information Reference Architecture
• Cloud Services Reference Architecture
Following is shown a scenario of the core-pattern-

catalog. There are RA-Patterns to develop, manage, evaluate
and redesign the mentioned reference architectures. Two
RA-Patterns (Governance Board Pattern, Governance
Cycle Pattern) refer to the “Governance Reference
Architecture” one RA-Pattern (Service Lifecycle Pattern)
refers to the “Management Reference Architecture” and the
last RA-Pattern that is shown in this paper (Cloud Service
Model Pattern) refers to the “Cloud Services Reference

Architecture”. The following mentioned patterns show a
small but typical part of the core-pattern-catalog.

Governance Board Pattern
How can it be ensured that important command and control
tasks are addressed within an enterprise?

Classification: Reference Architecture - Governance
Problem: If command, control and other governance

tasks are not transferred from one central location, chaos will
result. It is important to form a central governance steering-
position.

Solution: A Governance Board must be set up. The
Governance Board owns all command and control functions
within the enterprise and has all necessary rights and abilities
to fully perform these activities. The board may transfer
rights and delegate tasks to subsequent instances.

Description: A Governance Board should be created in
each company. A Governance Board should fulfill the
following tasks:

• Defining a clear mission/vision to lead and
strategically align the company.

• Acquisition of corporate assets.
• Definition of corporate programs, tasks and services.
• All business opportunities and chances have to be

analyzed and a strategic has to be created on the
existing results and resources.

• Monitoring and compliance of legal and financial
requirements. This includes the monitoring of the
budget and providing the investments.

• Review of financial statements.
• Development of appropriate risk management

practices and activities. Risk factors must be
recognized and protected in the company.

• Determine individuals for leadership positions (e.g.
the position of the CEO).

Governance in a company is not about implementation of
tasks or requirements. Rather it is about monitoring, that the
requirements be done and completed.

Governance Cycle Pattern
How can fundamental control- and management processes
be implemented uniformly in an enterprise?

Classification: Reference Architecture - Governance
Problem: Companies are formed by complex structures

and exchange relationships. A procedure to accomplish all
enterprise command and control tasks is necessary.

Solution: The aim of the Governance Cycle is a fixed-
cyclical approach for planning, defining, evaluating,
measuring and controlling of all control, governance and
management measures that established by the Governance
Board.

Description: The Governance Cycle comprises the
following architecture processes:

• Plan: The Governance Board schedules all necessary
control and management tasks.

54Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 62 / 74

• Define: All tasks must be planned in detail. Actors
and roles must be defined to be responsible for
implementing and achieving planned goals.

• Enable: The Governance Board communicates all
the objectives and tasks to the responsible persons,
they ensure and guarantee that all objectives and
tasks going to be reached and implemented.

• Measure: It is important that the progress of
implementation, the ability of the actors and the
success or failure of the goals and tasks will be
measurable through appropriate performance
indicators.

• Control: If the defined control and management
functions are measurable, it is possible to recognized
error-sources and potential for new development-
possibilities. The results can be converted into a new
governance cycle plan.

Service Lifecycle Pattern
How can the development of enterprise-wide services be
targeted, standardized, successfully used and implemented?

Classification: Reference Architecture - Management
Problem: If external and internal services are developed

without any structured and specified orientation to a
consistent approach, there can be no assurance that the
developed services are without redundancy and that they are
goal-oriented and following the suggested strategy plan.

Solution: ITIL describes a continuous improvement
process which is called the service-oriented lifecycle. Based
on the strategic direction of the company (Service Strategy)
the services are being developed (Service Design) and
transferred to the operating mode (Service Transition). Then,
the services are operated and so they are available for the
overlying business processes (Service Operation). These
phases are surrounded by a continuous improvement process
(Continual Service Improvement) [5].

Description: The detailed description of the service
lifecycle can be read in the five publications [13, 14, 15, 16,
17] of ITIL.
- Service Strategy - Service Design - Service Transition
- Service Operation - Continual Service Improvement

These five core documents form and detail the phases of
an iterative and multidimensional service-oriented lifecycle
for the company's existing- or to be created services.

RA - Cloud Service Model Pattern
How can enterprise-resources be represented as services
(*aaS) in a cloud-environment?

Classification: Reference Architecture – Cloud Services
Problem: Due to the currently and not adequate existing

service-models (IaaS, PaaS, SaaS) is it not possible to
represent a whole and extensive architecture within an
enterprise.

Solution: The previously existing service models must
be expanded. The service models must be based on the
enterprise structures. These services within all different
levels of an enterprise architecture, have to be transferred

and mapped into a wide range of enterprise service-models
(*aaS) in the cloud-environment.

Description: The below illustrated subdivision of
different services-models (*aaS) illustrates a potential way to
structure and represent all enterprise resources and artifacts
in a cloud-environment.

Examples of current discussed cloud services can be
found in [18]: Testing-as-a-Service, Management-as-a-
Service, Governance-as-a-Service, Application-as-a-Service,
Process-as-a-Service, Information-as-a-Service, Database-as-
a-Service, Storage-as-a-Service, Infrastructure-as-a-Service,
Platform-as-a-Service, Integration-as-a-Service, Security-as-
a-Service, Software-as-a-Service. Further *-as-a-Services are
likely to follow.

In the section above, we described the so called
“Reference Architecture Patterns” (RA-Patterns). These
patterns provide design models and important artifacts which
have to be fundamentally addressed by developing all eight
Reference Architectures. These patterns can be used in the
“design”-phase within the “Architecture Development
Method Pattern” and its iteration-loop (see Section III,
Architecture Development Method Patterns).

V. PATTERN EVOLUTION PROCESS
The partially described core-pattern-catalog in the

sections before can be centrally accessed via a web-
application. The pattern-catalog can be used, enlarged,
evaluated and new patterns can be easily added in a
predefined canonical structure.

One continuative idea is to open the current pattern-
catalog to a wide range of interested stakeholders and
involve them to the pattern creation and evolution process
and to adapt already available knowledge and findings from
the project’s domain as early as possible. For that possibility
has to be an implementation of a well-defined Pattern
Evolution Process within the core pattern catalog.

René Reiners [19] already introduced a Pattern Evolution
Process and in our vision that evolution process will be
merged with the established Architecture Development
Method. Reiners introduced the notion of a pattern’s state
that is used to track the development of a pattern over time.
The current implementation provides the following pattern
status information:

• Just created patterns were recently submitted as a
non-validated idea.

• Under consideration means that the pattern looks
promising but needs further evaluation.

• Pattern candidate states that the pattern is close to
being approved.

• Approved finalizes the pattern review process and
settles the pattern as a design pattern.

The pattern-lifecycle process allows for continuously
evaluating the design knowledge gathered during the
project’s lifetime and makes patterns as well as pattern ideas
available during the whole development process. Successful
findings or surprisingly failing results will be communicated
as anti-patterns. In addition patterns can originate both from
the project itself and from external sources.

55Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 63 / 74

Reiners [19] distinguishes three different categories:
• Derived from project: The pattern derives directly

from the work within the project and will
automatically be assigned the state under
consideration. The pattern will be reviewed, perhaps
re-worked and finally validated through an approval
process by a validator.

• Adapted to project: The pattern originates from
external sources, but has been adapted for use in the
context of the project.

• External: The pattern exists in other pattern
collections (e.g., a standard UI pattern) and is
implemented in the current project’s products and
services.

With this background, the pattern-oriented Architecture
Development Method can be developed in a comprehensive,
structured and extensive knowledge-based manner.

VI. CONCLUSION
The research approach provides an innovative and so far

not available Architecture Development Method, which is
based on the our EA-Framework ESARC. Our new
introduced Architecture Development Method relies on
current standards for IT Enterprise Architectures like the
TOGAF-Architecture Development Method, the service-
oriented lifecycle of ITIL and the Deming Cycle.

We note that the entire Architecture Development
Method is based on canonical structured patterns which form
a basic core-pattern-catalog. The vision that is pursued with
the pattern-based Architecture Development Method and the
core pattern catalog is a constantly growing catalog.
Enterprise architects can use the core catalog adapt them for
their own needs and requirements and expand the catalog
with new self-developed canonical structured architecture
patterns.

The whole pattern catalog is public and can be centrally
accessed, increased and evaluated via a web-application. The
core pattern catalog was applied in a research assessment
workshop with students, researchers and professors. That
provided new transparent results for subsequent changes on
the Architecture Development Method, the patterns and the
related processes. The results of these assessments need to be
interpreted in the context of company specific strategies and
use cases.

The outcome of our research is a first cut of a new core-
pattern-catalog for the guided development and architecture
modeling. Additional future work has to consider additional
patterns, because the current pattern catalog does not contain
“Reference Architecture Patterns” for all reference
architectures of ESARC.

An additional improvement idea deals with patterns for
visualization of architecture artifacts and architecture control
information to be operable on an architecture management
cockpit. To improve semantic-based navigation within the
complex space of EAM-visualization and service-oriented
enterprise architecture management we are currently
working on ontology models [20] for the ESARC – The
Enterprise Services Architecture Reference Cube.

ACKNOWLEDGMENT
Our paper extends current work from the SOA

Innovation Lab (www.soa-lab.de) Germany, which is a
major business innovation network of service-oriented
software technology and application companies.

REFERENCES
[1] A. Zimmermann and G. Zimmermann, “ESARC - Enterprise

Services Architecture Reference Cube for Capability
Assessments of Service-oriented Systems., ” The Third
International Conferences on Advanced Service Computing,
Rome, Italy, ISBN 978-1-61208-152-6, IARIA Proceedings
of SERVICE COMPUTATION 2011, pp. 63-68, 25-30
September 2011.

[2] T. O. Group, “The Open Group Architecture Framework
Version 9.1, ” 2009. [Online]. Available:
http://www.opengroup.org/togaf/. [Accessed 24 February
2012].

[3] P. R. Harrison and T. O. Group, “TOGAF 9 Foundation Study
Guide”, Wilco, Amersfoort: Van Haren Publishing, 2009.

[4] Essential, “Essential Architecture Project”, [Online].
Available: http://www.enterprise-architecture.org. [Accessed
19 June 2011].

[5] OGC, Office of Governance Commerce, “Introduction to
ITIL”, UK London: Van Haren Publishing, 2005.

[6] C. MacKenzie, K. Laskey, F. McCabe, P. Brown and R.
Metz, “OASIS “Reference Model dor Service Oriented
Architecture” 1.0, OASIS Standard,” 12 October 2006.

[7] J. Estefan, K. Laskey, F. McCabe and D. Thomton, “OASIS
Reference Architecture for Service Oriented Architecture"
Version 1.0, OASIS Committee Draft 02,” 14 October 2009.

[8] J. Estefan, K. Laskey, F. McCabe and D. Thomton, “OASIS
Reference Architecture for Service Oriented Architecture”
Version 1.0, OASIS Public Review Draft 1,” 23 April 2008.

[9] T. Erl, “SOA Design Patterns”, Boston: PRENTICE HALL /
Pearson Education, Inc, 2009.

[10] T. Brunner, “Ein patternbasiertes Vorgehensmodell für den
Enterprise Services Architecture Reference Cube,” Masetr-
Thesis, Reutlingen University, 2012.

[11] The Open Group, “The Open Group Architecture
Development Method (ADM),” [Online]. Available:
http://pubs.opengroup.org/architecture/togaf8-
doc/arch/chap03.html. [Accessed 24 February 2012].

[12] W. E. Deming, “Out of the Crisis”, Massachusetts:
Massachusetts Institute of Technology, 1982.

[13] M. Iqbal and M. Nieves, “ITIL® V3 Service Strategy”, The
Stationery Office , 2007.

[14] C. Rudd and V. Lloyd, “Service Design”, The Stationery
Office , 2007.

[15] S. Lacy and I. Macfarlane, “Service Transition”, The
Stationery Office , 2007.

[16] O. o. G. Commerce, “Service Operation”, The Stationery
Office, 2007.

[17] G. Spalding, “Continual Service Improvement”, The
Stationery Office, 2007.

[18] D. S. Linthicum, “Cloud Computing and SOA Convergence in
Your Enterprise,” 2009.

[19] R. Reiners, “A Pattern Evolution Process – From Ideas to Patterns“,
Proceeedings Informatiktage 2012 Bonn - Germany, in Lecture Notes
in Informatics, Vol. S-11,, pp. 115-118, 2012.

[20] S. Bourscheidt, T. Breuer, T. Brunner, B. Fetler and G. Fogel,
“ESARC - Referenzmodell und Ontologie für Enterprise
Architecture Management”, Hochschule Reutlingen, Fakultät
Informatik, Reutlingen, February 2012.

56Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 64 / 74

Development of Graphical User Interfaces based on User Interface Patterns

Stefan Wendler, Danny Ammon, Teodora Kikova, Ilka Philippow
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

{stefan.wendler, danny.ammon, teodora.kikova, ilka.philippow}@tu-ilmenau.de

Abstract — This paper addresses the research concerning
possibilities for reducing the effort of adapting graphical user
interfaces to requirements of individual customers. User
interface patterns are promising artifacts for improvements in
this regard. The details of graphical user interface
transformations from user interface patterns into executable
interface code are considered. We describe how reuse and
automation within user interface transformation steps can be
established. For this purpose, formal descriptions of user
interface patterns are necessary. Today, however, most user
interface patterns exist only in a verbal or graphical form of
description. We use XML-based user interface description
languages like UIML and UsiXML for the specification of user
interface patterns. We experimentally investigated and
analyzed strengths and weaknesses of two transformation
approaches which were built on different software patterns. As
a result, we show that formal user interface patterns can be
transformed into executable interfaces, and that they assist in
raising effectiveness and efficiency of the development process
of a GUI system. Finally, we developed suggestions on how to
apply these positive effects of user interface patterns for the
development of pattern-based graphical user interfaces.

Keywords — graphical user interface; model driven software
development; user interface patterns; UIML; UsiXML

I. INTRODUCTION
Interactive systems. Interactive systems demand for a

fast and efficient development of their graphical user
interface (GUI), as well as its adaption to changing
requirements throughout the software life cycle. In this
paper, e-shops serve as a representative of these interactive
systems. Currently, they are a fundamental asset of modern
e-commerce business models. In many cases, such systems
are offered as standard software, which allows several
customization options after installation. In this context, they
are differentiated into the application kernel and a GUI
system.

The application kernel software architecture relies on
well-proven and, partially, self-developed software patterns.
Thus, it offers a consistent structure with defined and
differentiated types of system elements. This has a positive
effect on the understanding of the modular functional
structures as well as their modification options.

Limited customizability of GUIs. Contrary to the
application kernel, the customization of the GUI is possible
only with rather high efforts. An important reason is that
software patterns do not cover all aspects needed for GUIs.

These patterns have been commonly applied for GUIs [1][2]
but in most cases they are limited to functional and control
related aspects [3]. The visual and interactive components of
the GUI are not supported by software patterns yet.
Furthermore, the reuse of GUI components, e.g., layout,
navigation structures, choice of user interface controls (UI-
Controls) and type of interaction, is only sparsely supported
by current methods and tools. For each project with its
varying context, those potentially reusable entities have to be
implemented and customized anew leading to high efforts.

 Moreover, the functional range of standard software
does not allow a comprehensive customization of its GUI
system. The GUI requirements are very customer-specific. In
this regard, the customers want to apply the functionality of
the standard software in their individual work processes
along with customized dialogs. However, due to the
characteristics of standard software, only basic variants or
standard GUIs can be offered. So far, combinations of
components of the application architecture with a GUI are
too versatile for a customizable standard product.

UIPs. We propose an approach to this problem through
the deployment of User Interface Patterns (UIPs). These
patterns offer well-proven solutions for GUI designs [4],
which embody a high quality of usability [5]. So far, UIPs
have not been considered as source code artifacts, in contrast
to software patterns. Current UIPs and their compilations
mostly reside on an informal level of description [6].

A. Objectives
In this paper we show that formal UIPs can assist in

raising effectiveness and efficiency of the development
process of a GUI system. For a start, we describe, from a
theoretical point of view, how reuse and automation within
GUI transformation steps can be established by the
deployment of UIPs. On the basis of formal UIPs, we discuss
the possibilities of transformations into executable GUIs. For
this purpose, two different transformation approaches have
been experimentally investigated. These approaches will be
assessed facing two different GUI dialogs. As a result, we
develop suggestions, how the positive effects of UIPs for the
development of GUIs can be applied. Finally, influences
resulting from the use of UIPs in the development process
are discussed.

B. Structure of the Paper
In Section II, state of the art and related work are

presented and assessed according to our objectives. The
theoretical influences of UIPs on the development process

57Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 65 / 74

for GUIs are elaborated in Section III. Subsequently, Section
IV presents our two approaches for the transformation of
formal UIPs into source code. The findings of Sections III
and IV are summarized in Section V. Finally, our
conclusions and future research options are presented in
Section VI.

II. RELATED WORK

A. GUI Development Process and Model Transformations
Abstract GUI development model. The specification

and development of GUI systems remains a challenge. To
discuss the activities and potentials of UIPs independently
from specific software development processes and
requirement models, we refer to a generic model concept. In
reference [7], the common steps of a GUI development
process are elaborated. To master the complexity that occurs
when deriving GUI specifications from requirement models,
Ludolph proposes four model layers and corresponding
transformations built on each other. Three of them, being
relevant in our context, are depicted in Figure 1.

Legend

Essential
Model

User
Model

Relationships Objects Tasks Use Cases

User
Interface

Relationships Objects Operations Task Tree User Scenarios

Windows Views UI-Controls Interactions Layout

Platform
Guidelines

Models of Human
Perception and Behavior

Graphic
Guidelines

Metaphor

Transformation Derivation Transformation Tools
Figure 1. Model transformations in the GUI development process based

on [7]

Essential model. By the essential model, all functional
requirements and their structures are described. This
information constitutes the core of the specification which is
necessary for the development of the application kernel.
Examples for respective artifacts are use cases, domain
models and the specification of tasks or functional
decompositions. These domain-specific requirements are
abstracted from realization technology and thus from the
GUI system [7]. Consequently, a GUI specification must be
established to bridge the information gap between
requirements and a GUI system.

User model. A first step in the direction of GUI
specification is prepared by the user model. With this model
the domain-specific information of the essential model is
picked up and enhanced by so-called metaphors. They
symbolize generic combinations of actions and suitable tools,
which represent interactions with a GUI. Examples of
metaphors would be indexes, catalogues, help wizards or
table filters. The principal action performed by these

examples is a search for objects, accompanied by the varying
functionality embodied by the respective metaphor.

The tasks of the essential model have to be refined and
structured in task trees. For each task of a certain refinement
stage, metaphors are assigned, which will guide the GUI
design for this part of the process. In the same manner, use
cases can be supplemented with these new elements in their
sequences to describe user scenarios.

User interface. This model is used for establishing the
actual GUI specification. Through the three parts rough
layout, interaction design and detailed design [7], the
appearance and behavior of the GUI system are concretized.
The aim is to set up a suitable mapping between the elements
of the user model and views, windows, as well as UI-
Controls of the user interface. For the metaphors chosen
before, graphical representations are now to be developed.
The objects to be displayed, their attributes and the relations
between them are represented by views. Subsequently, the
views are arranged in windows according to the activities of
the user scenarios, or alternatively to the structure of the
more detailed task trees. In these steps, there are often
alternatives which are influenced by style guides or the used
GUI library and especially by the provided UI-Controls. At
the same time, generic interaction patterns are applied as
transformation tools which also have an impact on the choice
of UI-Controls.

Conclusion. Model transformations as stated by Ludolph
show a detailed account of relevant model elements for the
GUI specification. However, the occurring transformations
are carried out manually. Besides that, no automation and
only few options for reuse are mentioned.

B. UIP Definition and Types
Current research has been discussing patterns and

especially User Interface Patterns (UIPs) for a longer period
[8][9][6]. A UIP is defined as a universal and reusable
solution for common interaction and visual structures of
GUIs. UIPs are distinguished between two types:

Descriptive UIPs. Primarily, UIPs are provided by
means of verbal and graphical descriptions. In this context,
UIPs are commonly specified following a scheme similar to
the one used for design patterns [10]. Reference [11]
proposes a specialized language for UIPs and [6] shows its
detailed sections. The verbal descriptions mainly serve for
pure specification purposes and solely fulfill an
informational function for the GUI developer. Being a
guideline in this manner, they provide templates, points of
variability and sketched examples for GUI elements. These
UIPs named as descriptive UIPs [6] are informal. With their
application, a developer receives aid when specifying a GUI,
as he is able to express and hence operationalize usability
requirements with UIPs. However, these informal patterns
still have to be implemented manually.

UIP-Libraries. UIP libraries such as [12], [13] and [14]
provide numerous examples for descriptive UIPs. Based on
the presented categories, conceptions about possible UIP
hierarchies and their collaborations can be imagined.

Formal UIPs. Rarely, generative UIPs [6] are presented.
In contrast to descriptive UIPs, they feature a machine-

58Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 66 / 74

readable form and are regarded as formal UIPs accordingly.
Frequently, the formal format constitutes of a graphic
notation, e.g., UML [8]. The formal UIPs are of great
importance since they can be used within development
environments, especially for automated transformations to
certain GUI-implementations.

C. Formalization of UIPs
In order to permit the processing of descriptive UIPs,

they have to be converted to formal UIPs. Possible means for
this step can be provided by formal languages applied for
specifying GUIs. These languages, however, have been
designed for the specification of certain GUIs and were not
intended for a pattern-based approach. Until now, there is no
specialized language available for formalizing UIPs.

UsiXML and UIML. In our prior work, an extensive
investigation on formal GUI specification languages and
their applicability for UIPs was conducted. Intentionally the
XML-based languages UsiXML [15] and UIML [16] were
developed for specifying a GUI independently from
technology and platform specifics. However, such languages
may be applicable for UIPs since they offer elements like
templates (UIML) and abstract as well as concrete models
(UsiXML). Moreover, both have been developed further for
a long period of time. Thus, the languages have reached a
high maturity level.

IDEALXML. For efficient development environments
tools are necessary that facilitate formal specifications of
UIPs with regard to language definitions and rules. A
widespread tool concept for UsiXML is presented with
IDEALXML [6]. By using the various models defined by
UsiXML, many aspects of a GUI and additionally the
applied domain model of the application kernel are included
in the specification. As a result, a detailed and
comprehensive XML specification for the GUI is created.
Many aspects of the user model from [7] are already
included. However, it is not mentioned how UIPs are being
expressed in models such as the „abstract user interface
model“ (AUIM) [6] as reusable patterns or an hierarchy of
these and consequently transformed to the „concrete user
interface model“ (CUIM) [6].Furthermore, it has to be
questioned, how a formal specification on the basis of
UsiXML can be used for processing by code generators or
other tools of a development environment.

D. GUI-Generators
Besides the formal specification of GUIs system concepts

and frameworks exist which are able to generate complete
GUI applications based on a partly specification of the
application kernel. As representatives Naked Objects [17]
and JANUS [18] can be mentioned. Both rely on an object-
oriented domain model which has to be a part of the
application kernel. Based on the information provided by this
model, standard dialogs are being generated with appropriate
UI-Controls for the respective tasks. For instance, in order to
generate an object editor for entities like product or
customer, certain text fields, lists or date pickers are selected
as UI-Controls which match the domain data types of the
selected domain object for editing.

In contrast to IDEALXML, which enables the extensive
modeling of the GUI, GUI-generators may generate
executable GUI code but they lack such a broad
informational basis. Therefore, GUI-generators possess two
essential weaknesses:

Limited functionality. The information for generating
the GUI is restricted to a domain model and previously
determined dialog templates along with their UI-Controls.
Hence, their applicability is limited to operations and
relations of single domain objects. When multiple and
differing domain objects do play a role in complex user
scenarios [7], the generators can no longer provide suitable
dialogs for the GUI application. Moreover, extensive
interaction flows require hierarchical decisions, which have
to be realized, e. g., by using wizard dialogs. In this situation,
GUI generators cannot be applied as well. The connection
between dialogs and superordinate interaction design still has
to be implemented manually.

Uniform visuals. A further weakness is related to the
visual GUI design. Each dialog created by generators is
based on the same template for the GUI-design. Solely the
contents which are derived from the application kernel are
variable. Both layout and possible interactions are fixed in
order to permit the automatic generation. The uniformity and
its corresponding usability have been criticized for Naked
Objects [19]. Assuming the best case, the information for
GUI design is founded on established UIPs and possesses
their accepted usability for certain tasks. Nevertheless, the
generated dialogs look very similar and there is no option to
select or change the UIPs incorporated in the GUI design.

III. INFLUENCE OF UIPS ON GUI-TRANSFORMATIONS

A. GUI Customization of Standard Software
On the basis of the customization of GUIs for standard

software and the model transformations described in Section
II.A the theoretical influences of UIPs are now considered.

EShop standard software fulfils the functional
requirements of a multitude of users at the same time.
Therefore, these systems share a well-defined essential
model that specifies their functional range and has many
commonalities along existing installations. Standard software
implements the essential model through different
components of the application kernel as shown in Figure 2.
Each installation consists of a configuration for the
application kernel which includes many already available
and little custom components in most cases. In this context,
the User Interface acts as a compositional layer that
combines Core and Custom Services together with suitable
dialogs for the user.

Individual GUIs for eShops. Concerning eShops, the
visual design of the GUI is of special relevance since the
user interface is defined as a major product feature that
differentiates the competitors on the market. Hence, the
needs of customers and users are vitally important in order to
provide them with the suitable individual dialogs. In this
regard, the proportions of components related to the whole
system are symbolized by their size in Figure 2. In
comparison to the Custom Components of the application

59Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 67 / 74

kernel the Custom Dialogs represent the greater part of the
User Interface and the customization accordingly. Along
with the customization of the application kernel there is a
high demand for an easy and vast adaptability of the GUI.

cmp Customizing

Application Kernel

Core Components Custom
Components

User Interface

Core Dialogs Custom Dialogs

Core Services Custom Services

Essential Model

User Model

«call»
«call»

«call»

Figure 2. Components for the customization of standard software

Moreover, the customization of the GUI system is
needed, as elements of the essential model tend to be very
specific after extensive customization or maintenance
processes. Thus, the standard user model as well as the user
interface can no longer be used for the customized services.
In this case, models have to be developed from scratch and
after this, a suitable solution for the GUI has to be
implemented.

Usability. The development of GUIs is caught in a field
of tension between an efficient design and an easy but
extensive customization. High budgets for the emerging
efforts have to be planned. Additional efforts are needed for
important non-functional requirements such as high usability
and uniformity in interaction concepts and an eased learning
curve during the customization process of GUIs. For
realizing these requirements, extensive style guides and
corresponding user interface models often need to be
developed prior to the manual adaption of the GUI. These
specifications will quickly lose their validity as soon as the
GUI-framework and essential functions of the application
kernel change.

B. Model Aspects of UIPs
With the aid of UIPs the time-consuming process of GUI

development and customizing can be increased in efficiency.
To prove this statement, the influences of UIPs on the
common model transformations from Section II.A are
examined in the next step. In Section III.C potentials for
improvements are derived from these influences.

Metaphors and UIPs. Metaphors act as the sole
transformation tool between essential model and user model.
Since they lack visual appearances as well as concrete
interactions, the mapping of metaphors to the elements of the

essential model is very demanding. Metaphors will not be
visualized by GUI sketches prior to the transformation of the
user model.

Since UIPs are defined more extensively and concrete,
they can be applied as a transformation tool instead of using
metaphors. Descriptive UIPs feature a pattern-like
description scheme that is provided in the catalogues in [12]
and [13], for example. Thus, they offer much more
information as well as assessments which can inspire the
GUI specification. In addition, descriptive UIPs do already
possess visual designs that may be exemplary, or in the
worst-case, abstract.

With the user model, operations on objects have to be
specified. The metaphors do not provide enough hints for
this step. In contrast, UIPs are definitely clearer concerning
these operations because they group UI-Controls according
to their tasks and do operationalize them in this way.
Interaction designs and appropriate visuals are presented
along with UIPs. These aspects would have to be defined by
oneself using only the metaphor.

When UIPs are used in place of metaphors for
formalization, these new entities can be integrated in the
tools for specifications. Concerning UsiXML, UIPs could
describe the AUIM. Task-Trees are already present in
UsiXML, so this concept of specification partly follows the
modeling concepts in [7] and thus may be generically
applicable.

User model and UIPs. With regard to the user model,
the numerous modeling steps no longer need to be performed
with the introduction of UIPs. Instead, it is sufficient to
derive the tasks from the use cases within the essential model
and allocate UIPs for these. Detailed task-trees no longer
have to be created since UIPs already contain these
operations within their interaction design. Interactions can
already be specified in formal UIPs, and later this
information can directly be used for parts of the presentation
control of views or windows. As a result, an extensive user
scenario also is obsolete, as it was originally needed for
deriving the more detailed task-tree. Now it is sufficient to
lay emphasis on expressing the features of UIPs and their
connection to the tasks defined by the essential model. The
objects are also represented within the UIPs in an abstract
way. With the aid of placeholders for certain domain data
types adaptable views for object data can already be prepared
in formal UIPs. Finally, much of the afore-mentioned
information of the user model now will be explicitly or
implicitly provided by completely specified UIPs.

User interface and UIPs. UIPs provide the following
information for the user interface: Layout and interaction of
the GUI will be described by a composition of a hierarchy of
UIPs that is settled on the level of views and windows. When
creating the UIP-hierarchy, a prior categorization is helpful
which features the distinction between relationship, object
and task related UIPs. This eases the mapping to the
corresponding model entities.

For interactions, the originally applied Models of Human
Perception and Behavior from Figure 1 are no longer
explicitly needed since they are implicitly incorporated in the
interaction designs of the UIPs. In this context, suitable types

60Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 68 / 74

of UI-Controls are already determined by UIPs.
Nevertheless, a complete and concrete GUI-design will not
be provided by UIPs since the number and contents of UI-
Controls depend on the context and have to be specified by
the developer with parameters accordingly. In the same way
Platform and Graphic Guidelines act as essential policies to
adapt the UIPs to the available GUI-framework and its
available UI-Controls.

Conclusion. We explained that UIPs might cover most
parts of the user model as well as numerous aspects of the
user interface. By using UIPs in the modeling process, these
specification contents can be compiled based on the
respective context without actually performing the two
transformations from Figure 1 explicitly. Basically, the
transformation to the target platform remains as depicted in
Figure 3.

Legend

Essential
Model Relationships Objects Tasks Use Cases

User
Interface Windows Views UI-Controls Interactions Layout

Platform
Guidelines

Graphic
Guidelines

Transformation Derivation Transformation Tools

User Interface Patterns

Figure 3. GUI transformations with the aid of UIPs and automation

C. Potentials of UIPs for Improvements
In this section, the potentials of UIPs related to the GUI

development process are summarized from a theoretical
perspective. The implications resulting from the application
of UIPs in experimental transformations are presented in
Section IV.

Reuse. By means of UIPs the transformational gap
between essential model and user interface can be bridged
more easily since reuse will be enhanced significantly.
Thereby UIPs are not the starting point of model
transformations; they rather serve as a medium for
conducting needed information for the transformations. The
information originally included in the user model and parts
of the user interface are now extracted from the selection and
composition of UIPs.

Layout and interaction of windows as well as the
interaction paradigm of many parts of the GUI can be
determined by a single UIP configuration on a high level in
hierarchy. This superordinate GUI design can be inherited by
a number of single dialogs without the need for deciding
about these aspects for each dialog in particular.

Many interaction designs can be derived from initial
thoughts about GUI design for the most important use cases
and their corresponding tasks. When a first UIP
configuration has been created, the realization of the Graphic
and Platform Guidelines therein can be adopted for other
UIP-applications since the target platform is the same for
each dialog of a system. Especially when user scenarios
overlap, meaning they partly use the same views or windows
as well as object data, UIPs enable a high grade of reuse. UIP

assignments, already established for other tasks, can be
reused with the appropriate changes. eShops tend to use
many application components together although they offer
them by different dialogs as illustrated in Figure 2 UIPs can
contribute to a higher level of reuse in this context.
Depending on the possible mapping between application
kernel components and UIP-hierarchy, new dialogs can be
formed by combining the views of certain services which are
determined by their assigned UIPs.

Reuse and usability. Besides reuse, UIPs assure multiple
non-functional requirements. As proven solutions for GUI
designs their essential function is to enable a high usability
by the application of best-practices. In this context, they
facilitate the adherence of style guides by means of their
hierarchical composition.

Technically independent essential model. It is a
common goal to keep elements of the essential model free or
abstract from technical issues. Following this way, the
essential model has no reference to the GUI specification.
Therefore, it is not subject to changes related to new
requirements which the user may incorporate for the GUI
during the lifecycle of the system. User preferences often
tend to change in terms of the visuals and interactions of the
GUI. Concerning use cases, this rule is elaborated in [20]
and [21]. Technical aspects and in particular the GUI
specification are addressed in separate models such as user
model and user interface according to [7]. After changes,
these models have to be kept consistent what results in high
efforts. For instance, a new or modified step within a use
case scenario has to be considered in the corresponding user
scenario, too.

By assigning UIPs to elements of the essential model,
explicit user models and the prior checking of consistency
between these models both become obsolete. Instead, user
models will be created dynamically as well as implicitly by
an actual configuration of UIPs and essential model
mapping. A technical transformation to the source code of
the GUI that relies on the concrete appearances of the UIPs
remains as shown in Figure 3. By modeling assignments
between UIP and task or between UIP and object, the
number of UI-Controls, the hierarchy and layout of UIPs,
sufficient structured information on the GUI system is
provided. Subsequently, a generator will be able to compile
the GUI suited for the chosen target platform. These
theoretical influences enable an increased independence from
the technical infrastructure since the generator can be
supplied with an appropriate configuration to instantiate the
UIPs compatible to the target platform and its specifics.

Modular structuring of windows and views. Common
to software patterns, UIPs reside on different model
hierarchies. Dialog navigation, frame and detailed layout of a
dialog can be characterized by separate UIPs. The views of a
window can be structured by different UIPs on varying
hierarchy levels. In this way, a modular structure of dialogs
is enabled. In addition, versatile combinations, adaptability
and extensibility of building blocks of a GUI will be
promoted.

61Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 69 / 74

IV. EXPERIMENTAL APPLICATION OF UIPS IN GUI-
MODEL-TRANSFORMATIONS

Up to now there have been no reports about experiences
in the practical application of formal UIPs. The particular
steps to be performed for a model-to-code-transformation
and the shape as well as the outline of a formalization of
UIPs have to be examined in detail. In order to gain further
insights about UIPs, they have been experimentally applied
by two different prototypes. Similar to the probing of
software patterns, selected UIPs were instantiated for simple
example dialogs. These are illustrated in Figure 4.

Figure 4. Example dialogs used for prototypes

On the one hand, the examples consisted of a view fixed
in shape that contained the UIP „Main Navigation“ [12] on
the upper part. On the other hand, the lower part shows two
variants for a view whose visuals are dependent on the input
of the user. Thereby, the UIP „Advanced Search“ [12] was
applied. This UIP demands for a complex presentation
control and is characteristic for eShops. Depending on the
choice of the user, the view and interactions are altered. The
search criteria can be changed, deleted and added as depicted
in Figure 4 by two variants. Both example dialogs should
have been realized by formalized UIPs and one prototype.

A. Generation at Design Time
Scope. Firstly, generating code for the GUI based on

previously specified UIPs was probed. In general, the
possibility to generate an executable GUI with the aid of
UIPs had to be proven. The UIPs had to be completely
defined at design time. Testing of the prototype had to be
conducted after the GUI system was fully generated.

Approach. Foremost, the simple UIP Main Navigation
was realized. This informally specified UIP was formalized
after a language for formalization had been chosen. By
means of a self developed generator, a model-to-code-
transformation was performed to create an executable dialog.
Subsequently, the complete GUI system was started without
any manual adaptions to the code.

Choice of formalization language. A comparative study
of UIML and UsiXML was conducted.

Regarding the structure of a GUI-specification, UsiXML
proposes numerous models in order to separate the different
information concerns domain objects, tasks and user
interface. Not all the models were mandatory in terms of the
example because no explicit essential model was given. On
the contrary, UIML operates with few sections within one
XML-document. This is because the UIML format was
easier to handle and learn with respect to the simple
example.

According to UI-Controls, UsiXML defines precisely
which types of UI-Controls are available and what properties
they can possess. An additional mapping model would have
to be created in order to assign these elements to the entities
of the target platform. In contrast, with UIML and its peer-
section this mapping can easily be specified. The mapping to
the GUI-framework can be altered afterwards without the
need for changing the already defined UIPs. Moreover,
UIML offers a more flexible definition of UI-Controls since
custom UI-Controls can be declared in the structure-section
as well as their properties in the style-section [22]. In
addition, UIML provides templates for integration and reuse
of already defined UIPs in other UIP formalizations.

Concerning layout, UsiXML uses special language
elements to set up a GridBagLayout. UIML offers two
variants: Firstly, it is possible to use containers as structuring
elements along with their properties. The containers have
information attached that governs the arrangement of their
constituent parts. Secondly, UIML provides special tags that
are committed for layout definition. UIML has a more
flexible solution by defining layouts with containers that can
be nested arbitrarily.

Related to behavior, both languages define own
constructs. Nevertheless, complex behavior is difficult to
master without clear guidelines for both. Concerning the
examples, the behavior was limited to the technical
presentation control within a view.

Choice of UIML. We decided to apply UIML for the
example dialogs. Firstly, UIML is more compact in structure
and enables a higher flexibility for shaping the formalization.
Secondly, many of the language elements and models from
UsiXML were not actually needed for the UIP „Main
Navigation“. Thirdly, even the „Advanced Search“ example
could not profit from the vast language range of UsiXML
since all possible variants for search criteria could not have
been formalized. At least UIML offered the possibility to
rely on templates in order to define all possible lines of
search criteria composed of simple UIPs. UsiXML turned
out to be too complex for these simple UIPs. In addition, it
was not clear whether UsiXML permits the reuse of already
specified UIPs.

Realization of „Main Navigation“. Java Swing was
chosen as target platform. For the peer-section we decided to
map the elements of „Main Navigation“ to horizontal
JButtons instead of tabs. In the formalization the mandatory
parameters for number, order and naming of UI-Controls
were specified. As result, the UIP was described concretely.
The architecture was structured following the MVC-pattern
[1]. The sections of UIML were assigned to components like
in Figure 5.

62Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 70 / 74

cmp Generator architecture

UIML Document
<structure>

<style>

<behavior>

<content>

Generator Tool

Parser Java Code
Generator

GUI-System

Model

View

Dialog Controller

UI-Controls

EventListener

Constructor
«trace»

«trace»

«trace»

«trace»

«derive»

«use»

«use»

Figure 5. Architecture applied for code generation

 Structure and style were processed within the object
declarations (UI-Controls) of the View and its constructor.
Based on the behavior-section, EventListeners were
generated acting as presentation controllers. For the Model
the content-section was assigned. Hence, the UIP “Main
Navigation” formalized with UIML was transformed to
source code.

Realization of „Advanced Search“. Even by using the
UIML templates, this complex dialog could not be realized
by a generation at design time. It was not possible to
instantiate the formalized UIPs that were depending on the
choice of attributes at runtime.

Results. The prototype primarily was intended to prove
feasibility. This is because we chose a simple architecture
and did not incorporate a Dialog Controller for controlling
the flow of dialogs. The control was restricted to the scope of
the UI-Controls of the respective UIP. Thus, the behavior
only covered simple actions like the deactivation of UI-
Controls or changing the text of a label. Complex decisions
during the interaction process like the further processing of
input data and the navigation control amongst dialogs could
not be implemented. A corresponding superordinate control
could have been realized through a UIP-hierarchy in
combination with appropriate guidelines for the
formalization of control information. Despite the simplicity
of the prototype, the following insights could be gathered:

Informal UIPs could be converted to formal UIPs by
using UIML as a formal language. There was the need to
define certain guidelines for this initial step. The layout of
the example was specified by using containers for the main
window and their properties. As a result, the UI-Controls
were arranged according to these presets. Nested containers
and complex layouts have not yet been used for the
experiment in this way. The style also was described
concretely within the UIML-document as well as the number
and order of UI-Controls. The mapping of a formal UIP to a
software pattern was simply performed by the scheme in
Figure 5.

Concerning the example Advanced Search, only fixed
variants or a default choice of criteria could have been
formalized. The generator could have created static GUIs
accordingly without realizing the actual dynamics of this
particular UIP.

B. Generation at Runtime
Scope. The dynamic dialog Advanced Search could not

be realized by the first approach. Thus, a solution had to be
found that enables the instantiation of UIPs at runtime.
Thereby, it was of importance to keep the platform
independency of the UIML specification. The formal UIPs
had to be processed directly during runtime without binding
them to a certain GUI-framework.

Approach. Since the Advanced Search UIP was very
versatile and could not be formalized with all its variants, the
layout of the dialogs was fragmented. By the means of a
superordinate UIP the framing layout of the view was
specified in a fixed manner at design time. In detail, the
headline, labels and the three-column structure of the view
appropriate to a table with the rows of search criteria were
defined.

The mandatory but unknown parameters that determine
the current choice of criteria and UIPs had to be processed at
runtime. Accordingly, a software pattern had to be chosen
that is able to instantiate UIP representations along with their
behavior. This pattern had to act similarly to the builder
design pattern [10] which enables the creation and
configuration of complex aggregates. In [23] a suitable
software pattern was described which is explained shortly
and illustrated in Figure 6:
cmp VUI

GUI
Framework

Virtual User
Interface

DialogApplication
Kernel

EventListener

WidgetBuilder

«call»

«use»

«use»«call»

Figure 6. Virtual user interface architecture derived from [23]

Quasar VUI. The Virtual User Interface (VUI) of
Quasar (quality software architecture) follows the intention
of programming dialogs in a generic way. This means that
the dialog and its events are implemented via the technical
independent, abstract interfaces WidgetBuilder and
EventListener rather than using certain interfaces and objects
of a GUI-framework directly. By means of this concept, the
GUI-framework is interchangeable without affecting existing
dialog implementations. Solely the component Virtual User
Interface (VUI) depends on technological changes. Upon
such changes, its interfaces would have to be re-
implemented. By using the interface WidgetBuilder, a dialog
dynamically can adapt its view at runtime. For instance, the
Dialog delegates the VUI to create and configure a new
window containing certain UI-Controls. The VUI notifies the
Dialog via the interface EventListener when events have
been induced by UI-Controls. Both interfaces have to be
standardized for a GUI system of a certain domain in order
to enable the reuse of reoccurring functionality such as the
building of views and association of UI-Controls with events

63Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 71 / 74

without regarding the certain technology or platform
specifics being used.

VUI for UIPs. The concept, the VUI is based on, can be
adapted to the requirements of the UIP Advanced Search.
The idea is to instantiate complete view components with
UIP definitions besides simple UI-Controls. The Dialog is
implemented by using generic interfaces which enable the
instantiation of UIPs, changing their layout and their
association with events. In Figure 7 our refinement of the
original VUI is presented.

The VUI for UIPs is based on our previously described
generator solution. Each possible variation of UI-Controls
matching the attributes of the domain objects for Advanced
Search has been formalized before. Hence, the rows of the
dialog were visualized by different UIPs. Concerning the
formal UIPs, the proper implementations for the chosen
GUI-framework were generated as stated in Section IV.A.
The previously mentioned generator was integrated in the
component UIP Implementations. These implementations of
UIPs located within VUI are based on the interfaces and
objects of the GUI-framework. In analogy to the UI-Controls
already implemented in the GUI-framework, the available
UIP instances were provided via the interface UIPBuilder
and could be positioned with certain parameters.
cmp VUI UIPs

GUI
Framework

UI-Creation

API-Events

Virtual User
Interface

Dialog

Formal UIPs

UIPBuilder

ViewEvent

Application
Kernel

ViewData
Style
Data

Logical
View

Dialog
Controller

DialogEvents

Model

DialogData

StyleDefinition

Technical
View

UIP
Implementations

Observer

«use»

«call»

«call»

«use»
«call»

«use»

«use»

«call»

«use»

«call»

«use»

«use»

«trace»

«use»

Figure 7. Virtual user interface architecture for UIPs

The VUI builds the view or a complete window as
requested by the Logical View. Furthermore, the VUI
provides information about the current composition and the
layout of the Dialog. This information can be used by the
Logical View for parameters to adapt the current view by
delegating the VUI respectively. The Dialog coordinates the
structuring of the view with the component Logical View and
implements the application specific control in the Dialog
Controller as well as dialog data in the Model.

Initially, events are reported to the VUI via API-Events.
The VUI only forwards relevant events to the Logical View.
When the respective event is only related to properties of a
UI-Control or a UIP instance, it is directly processed by the
Logical View which delegates the VUI when necessary. If the
Logical View cannot process the particular event on its own,
it will be forwarded to the Dialog Controller. For instance,
this occurs when the user presses the button Search and a

new view with the search results has to be loaded. The
Dialog Controller collects the search criteria via the interface
ViewData and sends an appropriate query to the Application
Kernel. The result of the query will be stored as dialog data
in the Model.

Results. For realizing Advanced Search with UIPs, a
complex architecture had to be invented. Details like the
connection of UIP instances to the Dialog data model as well
as the automation potentials of the Dialog Controller could
not be investigated extensively, yet.

The UIPs had to be specified in a concrete manner like in
Section IV.A. The prototype was not mature enough to
handle abstract UIP specifications. The style of the UI-
Controls was also described concretely, so the control of
style by a component of the VUI, as depicted in Figure 7, has
not yet been realized.

Through the VUI, the versatile combinations of Advanced
Search could be realized according to the example at
runtime. The VUI constitutes of a component-oriented
structure related to the software categories of Quasar [24].
Accordingly, it possesses its virtues like the division of
application and technology, separation of concerns and
encapsulation by interfaces. Despite its challenging
complexity, a flexible and maintainable architecture for
dynamic GUI systems has been created.

V. DISCUSSION
The theoretical reflection of the influence UIPs have on

GUI transformations and the results of our experimental
prototypes led us to the following findings.

A. Formalization of UIPs
Reflection of results. By experimentally probing the

model-to-code-transformation of formal UIPs, we came to
the conclusion that the generation of a GUI is not the
complicated part of the process. Instead, the formalization
and the occurring options in this step lead to the main
problem. Primarily, the preconditions to benefit from the
positive influences of the UIPs on the GUI development
process have to be established by the formalization:

The generator solution was well suited for stereotype and
statically defined UIML contents. In this context, layout,
number and order as well as style of UIPs have been
specified concretely. This led us to a static solution that can
be applied at design time. But the UIP Advanced Search
could not be realized by following this approach.

Parameters for UIPs. In order to overcome this static
solution, a parameterization of formal UIPs has to be
considered. Via parameters the number, order, ID, layout and
style of UI-Controls within UIPs specifications have to be
determined to provide a more flexible solution. Especially
the number and order of UI-Controls have to be abstractly
specified in the first place. In this way UIPs will be kept
applicable for varying contexts. In place of a concrete
declaration of style for each UIP, a global style template has
to be kept in mind. By using this template, dialogs could be
created with uniform visuals and deviations are avoided. For
this purpose, the VUI incorporated the Style Data
component. It is intended to configure the visuals of UIP

64Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 72 / 74

instances and UI-Controls globally. The configuration is
used for the instantiation of these entities by the Technical
View. Consequently, style information from single UIP
specifications could be avoided and the UIPs would receive a
more universal format.

B. Generation at Design Time
In principle, complex UIPs or UIP-hierarchies can be

realized with the generation at design time. The easiest cases
are elementary or invariant UIPs like calendar, fixed forms
or message windows. These examples can be generated with
ease since they do not need parameters besides a data model.
For UIPs, which require parameters such as hierarchical UIP
structures, an additional transformation is needed prior to the
generation of source code:

Transformation of abstract UIPs. Firstly, the UIP is
abstractly specified along with all parameter declarations
needed and placeholders for nested UIPs. Subsequently,
these parameters have to be specified via a context model
which adapts the UIP to a certain application. Based on the
abstract UIP specification and the context model, a model-to-
model-transformation is performed in order to generate
concrete UIP specifications like they were used in our
examples. In this state all required information is available
for the generation of the GUI system. The described model-
to-code-transformation can be performed as a follow-up step.
It has to be examined whether a suitable format is given to
realize this approach, by means of UsiXML or IDEALXML
and their models AUIM and CUIM.

C. Generation at Runtime
Regarding the UIP Advanced Search, it is clear that a

large gap has to be bridged between the essential model and
the user interface. A use case which demands for such
dynamic UIPs hides a whole variety of different GUI-
designs. Consequently, one static user interface cannot
always be established for the elements of the essential model.
However, even for these dynamic GUIs UIPs can serve as
media to enable reuse of numerous aspects directly by
generation along with a composition at runtime. The
combined application of both our approaches can provide a
feasible solution. Concerning the example from Figure 4, the
previously generated layouts actually were reused for the
Advanced Search window and the views of search criteria.
By instantiation of matching UIPs, even the interactions
respectively the presentation control was reused as well.

Generation of dialogs. As shown with our example, the
current VUI is capable of the instantiation and composition
of single parts of a certain Logical View. The generation of
complete Logical Views on the basis of formal UIPs and
their hierarchy could possibly be realized with the VUI
architecture. The model describing the Logical View has to
refer to the standardized interfaces of the VUI and a common
UIP catalog. To formally specify the UIPs to be used in this
environment, only UIML currently seems to be suitable.
Firstly, an analysis of the required and reused elementary
UIPs as well as the relevant UI-Controls has to be conducted
in order to populate the basic level in the hierarchy of UIPs.
Next, these UIPs have to be formalized with UIML along

with their required data types and invariant behavior that acts
as a basis for presentation control within the VUI.
Furthermore, the interaction and layout within the Logical
View have to be specified using UIML as well. This is
because UIML already offers templates that can be
parameterized and thus used for the composition of several
UIP-documents into one master document establishing a UIP
of higher level. Concerning UsiXML, one dialog can only be
specified by a single AUIM respective CUIM document.

To complete the Dialog, meaning Dialog Controller and
Model, relevant information on tasks and data objects has to
be incorporated into a formal model. The research on the
collaboration between adaptable UIPs and these logical
aspects has just begun.

D. Limitations through the Application of UIPs
Individualization. Using UIPs instead of time-

consuming manual transformations, a compromise is being
contracted: A full individualization of the GUI is not
possible with UIPs since the customizing is conducted within
the limits of available and formalized UIPs. The UIPs can
embody a further building block of standard software.
Customization will be facilitated by defined parameters and
automation.

Metamodels. The application of UIPs demands for clear
guidelines for modeling of the essential model which result
in a second limitation. The rules for this model need to
define stereotype element types and their delimitations. The
definition of the essential model is governed by a metamodel
in the best case. Based on the metamodel, the elements can
be defined uniformly and as stereotypes. For instance, it will
be defined what types and refinements of tasks, domain
objects and domain data types do exist in order to assign
them homogenously to certain UIP categories. This concept
is essential for the proposal of suitable UIPs for the partly
automated development of GUI systems. The proposing
system needs to work in two ways: On the one hand, the GUI
developer asks for a suitable selection of UIPs for a certain
part of the essential model at design time. On the other hand,
users need to be provided with suitable UIPs in dynamic
dialogs at runtime based on their current inputs. The
mechanisms can only work if a uniform essential model with
clear defined abstractions derived from fixed guidelines is
available as fundamental information.

VI. CONCLUSION AND FUTURE WORK

A. Conclusion
We theoretically and experimentally elaborated that UIPs

do have numerous positive influences on the GUI
development process. UIPs integrate well in the common
GUI transformations. Therefore, our findings are not
restricted to the domain of eShops but rather can be adapted
to other standard software such as enterprise resource
planning systems. Even for individual software systems,
UIPs can be of interest in case that numerous GUI aspects
are similar and their reuse appears reasonable.

Currently, adaptability and reuse of UIPs is limited to
their invariant formalizations. UIP compositions could only

65Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

 73 / 74

be created by manual implementation. We pointed to the
limitations of current UIP specification format options and
presented architectural solutions for their practical
application. Above all, the upstream transformation of the
abstract UIP description into UsiXML or UIML is worth to
be considered since one could use their strength in concretely
specifying user interfaces. Afterwards, the generation of
GUIs based on this information would pose a minor issue.

B. Future Work
Formalization. For future work, we primarily see the

research in formalizing UIPs. An important goal is to enable
UIPs to act as real patterns that are adaptable to various
contexts. The synthesis of a UIP-description model is the
next step to determine properties and parameters of UIPs
exactly and independently from GUI specification languages.
Consequently, it can be more accurately assessed whether
UIML or UsiXML are able to express the description model
and thus UIPs completely. The independence from the
platform can be achieved by both languages. However, it
was not possible to specify context independent UIPs besides
invariant or concrete UIPs. In this regard, the composition of
UIPs, to form structured and modular specifications, remains
unsolved, too.

Paradigm. Another open issue exists in the field of
interaction paradigms [7] and the applicability of UIPs. With
respect to the procedural paradigm, processes are defined
which exactly define the single steps of a use case scenario.
To provide a matching user interface for this case, additional
information needs to be included in the formalization of
UIPs. For instance, the process or task structures have to be
specified by UIPs on a high level of hierarchy. These UIPs
possess little visual content, maybe a framing layout for
windows, and mainly act as entities for controlling the
application flow. The Dialog Controller from Figure 5 and
Figure 7 could be based on such a UIP. In this paper, no
information for these components was integrated in the
formal UIPs. So these components had to be implemented
manually. For example, the Dialog Controller opens a new
window with search results for the Advanced Search,
controls the further navigation and delegates the structuring
of the next or previous windows. In this context, our VUI
solution is a compromise between automation and the reuse
of elementary and invariant UIPs through manual
configuration of the Dialog Controller and the delegated
Logical View. A full automation needs further research.

REFERENCES
[1] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and

M. Stahl, A System of Patterns, New York: Wiley, 1996.
[2] M. Fowler. Patterns of Enterprise Application Architecture,

Addison-Wesley, Boston, 2003.
[3] M. Haft, B. Olleck, “Komponentenbasierte Client-

Architektur,” in Informatik Spektrum, 30(3), 2007, pp. 143-
158, doi: 10.1007/s00287-007-0153-9

[4] M. van Welie, G. C. van der Veer, A. Eliëns, “Patterns as
Tools for User Interface Design,”. in Tools for Working with
Guidelines, Springer, London, Eds.: Ch. Farenc, J.
Vanderdonckt, 2000, pp. 313-324.

[5] M. J. Mahemoff, L. J. Johnston, “Pattern languages for
usability: an investigation of alternative approaches,” Proc.
Computer Human Interaction, pp.25-30, 15-17 July 1998, doi:
10.1109/APCHI.1998.704138

[6] J. Vanderdonckt and F.M. Simarro, “Generative pattern-based
Design of User Interfaces,” Proc. 1st International Workshop
on Pattern-Driven Engineering of Interactive Computing
Systems (PEICS '10), ACM, June 2012, pp. 12-19, doi:
10.1145/1824749.1824753.

[7] M. Ludolph, “Model-based User Interface Design: Successive
Transformations of a Task/Object Model,” in User Interface
Design: Bridging the Gap from User Requirements to Design,
CRC Press, Boca Raton, Ed.: L.E. Wood, 1998, pp. 81-108.

[8] N. J. Nunes, “Representing User-Interface Patterns in UML,”
in International Conference on Object-Oriented Information
Systems (OOIS 2003), LNCS 2817, D. Konstantas, M.
Léonard, Y. Pigneur, S. Patel, Eds. Heidelberg: Springer,
2003, pp. 142–151, doi: 10.1007/978-3-540-45242-3_14.

[9] A. Dearden and J. Finlay, “Pattern Languages in HCI; A
critical Review,” Human-Computer Interaction, 21, 2006.

[10] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-oriented Software,
Reading: Addison-Wesley, 1995.

[11] S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen, J.
Thomas, and P. J. Molina, “Perspectives on HCI Patterns:
Concepts and Tools (Introducing PLML),” Ext. Proc.
Computer-Human Interaction (CHI’2003). Workshop Report,
ACM Press, 2003, pp. 1044–1045.

[12] M. van Welie, “A pattern library for interaction design,”
http://www.welie.com 10.05.2012.

[13] Open UI Pattern Library, http://www.patternry.com
10.05.2012.

[14] A. Toxboe, “User Interface Design Pattern Library,”
http://www.ui-patterns.com 10.05.2012.

[15] J. Vanderdonckt, Q. Limbourg, B. Michotte, L. Bouillon, D.
Trevisan, and M. Florins, “UsiXML: a User Interface
Description Language for Specifying multimodal User
Interfaces,” Proc. W3C Workshop on Multimodal Interaction
(WMI'2004), 19-20 July 2004.

[16] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster, “UIML: An Appliance-
Independent XML User Interface Language,” Proc. Eighth
International World Wide Web Conference (WWW’8),
Elsevier Science Pub., May 1999.

[17] R. Pawson and R. Matthews, Naked Objects, Chichester: John
Wiley & Sons, 2002.

[18] H. Balzert, “From OOA to GUIs: The Janus system,” IEEE
Software, 8(9), February 1996, pp. 43-47.

[19] L. Constantine, “The Emperor Has No Clothes: Naked
Objects Meet the Interface”, http://www.foruse.com/articles
10.05.2012.

[20] D. Kulak, E. Guiney, Use Cases: Requirements in Context,
New York: Addison-Wesley, ACM Press, 2000.

[21] K. Bittner, I. Spence, Use Case Modeling, New York:
Addison-Wesley, 2003

[22] UIML 4.0 specification, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=uiml 10.05.2012.

[23] E. Denert, J. Siedersleben, „Wie baut man Informations-
systeme? Überlegungen zur Standardarchitektur,“. in
Informatik Spektrum, 23(4), 2000, pp. 247-257

[24] J. Siedersleben, Moderne Softwarearchitektur - Umsichtig
planen, robust bauen mit Quasar, 1st ed. 2004, corrected
reprint, Heidelberg: dpunkt, 2006

66Copyright (c) IARIA, 2012. ISBN: 978-1-61208-221-9

PATTERNS 2012 : The Fourth International Conferences on Pervasive Patterns and Applications

Powered by TCPDF (www.tcpdf.org)

 74 / 74

http://www.tcpdf.org

