
PATTERNS 2013

The Fifth International Conferences on Pervasive Patterns and Applications

ISBN: 978-1-61208-276-9

May 27- June 1, 2013

Valencia, Spain

PATTERNS 2013 Editors

Alfred Zimmermann, Reutlingen University, Germany

 1 / 91

PATTERNS 2013

Foreword

The Fifth International Conferences on Pervasive Patterns and Applications (PATTERNS
2013), held between May 27 and June 1, 2013 in Valencia, Spain, targeted the application of
advanced patterns, at-large. In addition to support for patterns and pattern processing, special
categories of patterns covering ubiquity, software, security, communications, discovery and
decision were considered, as well as domain-oriented patterns. It is believed that patterns play
an important role on cognition, automation, and service computation and orchestration areas.
Antipatterns come as a normal output as needed lessons learned.

We take here the opportunity to warmly thank all the members of the PATTERNS 2013
Technical Program Committee, as well as the numerous reviewers. The creation of such a broad
and high quality conference program would not have been possible without their involvement.
We also kindly thank all the authors who dedicated much of their time and efforts to contribute
to PATTERNS 2013. We truly believe that, thanks to all these efforts, the final conference
program consisted of top quality contributions.

Also, this event could not have been a reality without the support of many individuals,
organizations, and sponsors. We are grateful to the members of the PATTERNS 2013 organizing
committee for their help in handling the logistics and for their work to make this professional
meeting a success.

We hope that PATTERNS 2013 was a successful international forum for the exchange of
ideas and results between academia and industry and for the promotion of progress in the field
of pervasive patterns and applications.

We are convinced that the participants found the event useful and communications very
open. We hope that Valencia, Spain provided a pleasant environment during the conference
and everyone saved some time to explore this historic city.

PATTERNS 2013 Chairs:

PATTERNS General Chair

Jesus Tomas, Polytechnic University of Valencia, Spain

PATTERNS Advisory Chairs

Herwig Manaert, University of Antwerp, Belgium
Fritz Laux, Reutlingen University, Germany

 2 / 91

Michal Zemlicka, Charles University - Prague, Czech Republic
Alfred Zimmermann, Reutlingen University, Germany

PATTERNS Research/Industry Chairs

Teemu Kanstren, VTT, Finland
Guenter Neumann, DFKI (Deutsches Forschungszentrum fuer Kuenstliche Intelligenz GmbH),
Germany
Markus Goldstein, DFKI (German Research Center for Artificial Intelligence GmbH), Germany
Zhenzhen Ye, iBasis, Inc., Burlington, USA
Cornelia Graf, CURE - Center for Usability Research & Engineering, Austria
René Reiners, Fraunhofer FIT - Sankt Augustin, Germany

 3 / 91

PATTERNS 2013

Committee

PATTERNS General Chair

Jesus Tomas, Polytechnic University of Valencia, Spain

PATTERNS Advisory Chairs

Herwig Manaert, University of Antwerp, Belgium
Fritz Laux, Reutlingen University, Germany
Michal Zemlicka, Charles University - Prague, Czech Republic
Alfred Zimmermann, Reutlingen University, Germany

PATTERNS Research/Industry Chairs

Teemu Kanstren, VTT, Finland
Guenter Neumann, DFKI (Deutsches Forschungszentrum fuer Kuenstliche Intelligenz GmbH), Germany
Markus Goldstein, DFKI (German Research Center for Artificial Intelligence GmbH), Germany
Zhenzhen Ye, iBasis, Inc., Burlington, USA
Cornelia Graf, CURE - Center for Usability Research & Engineering, Austria
René Reiners, Fraunhofer FIT - Sankt Augustin, Germany

PATTERNS 2013 Technical Program Committee

Ina Suryani Ab Rahim, Pensyarah University, Malaysia
Junia Anacleto, Federal University of Sao Carlos, Brazil
Andreas S. Andreou, Cyprus University of Technology - Limassol, Cyprus
Senén Barro, University of Santiago de Compostela, Spain
Rémi Bastide, University Champollion / IHCS - IRIT, France
Bernhard Bauer, University of Augsburg, Germany
Noureddine Belkhatir , University of Grenoble, France
Hatem Ben Sta, Université de Tunis - El Manar, Tunisia
Silvia Biasotti, Consiglio Nazionale delle Ricerche, Italy
Félix Biscarri, University of Seville, Spain
Jonathan Blackledge, Loughborough University, UK
Manfred Broy, Technical University Munich, Germany
Michaela Bunke, University of Bremen, Germany João Pascoal Faria, University of Porto, Portugal
M. Emre Celebi, Louisiana State University in Shreveport, USA
Jian Chang, Bournemouth University, UK

William Cheng-Chung Chu(朱正忠), Tunghai University, Taiwan
Bernard Coulette, Université de Toulouse 2, France
Karl Cox, University of Brighton, UK
Jean-Charles Créput, Université de Technologie de Belfort-Montbéliard, France

 4 / 91

Mohamed Dahchour, National Institute of Posts and Telecommunications - Rabat, Morocco
Jacqueline Daykin, Royal Holloway University of London, UK
Angelica de Antonio, Universidad Politecnica de Madrid, Spain
Sara de Freitas, Coventry University, UK
Vincenzo Deufemia, Università di Salerno - Fisciano, Italy
Kamil Dimililer, Near East University, Cyprus
Giovanni Maria Farinella, University of Catania, Italy
Eduardo B. Fernandez, Florida Atlantic University - Boca Raton, USA
Simon Fong, University of Macau, Macau SAR
Francesco Fontanella, Università di Cassino e del Lazio Meridionale, Italy
Dariusz Frejlichowski, West Pomeranian University of Technology, Poland
Joseph Giampapa, Carnegie Mellon University, USA
Harald Gjermundrod, University of Nicosia, Cyprus
Markus Goldstein, German Research Center for Artificial Intelligence (DFKI), Germany
Gustavo González, Mediapro Research - Barcelona, Spain
Pascual Gonzalez, University of Castilla - La Mancha, Spain
Cornelia Graf, Center for Usablitity / Research and Engineering - Vienna, Austria
Carmine Gravino, Università degli Studi di Salerno - Fisciano, Italy
Christos Grecos, University of the West of Scotland, UK
Yann-Gaël Guéhéneuc, École Polytechnique - Montreal, Canada
Pierre Hadaya, UQAM, Canada
Brahim Hamid, IRIT-Toulouse, France
Sven Hartmann, TU-Clausthal, Germany
Kenneth Hawick, Massey University, New Zealand
Mauricio Hess-Flores, University of California, USA
Christina Hochleitner, CURE, Austria
Władysław Homenda, Warsaw University of Technology, Poland
Wei-Chiang Hong, Oriental Institute of Technology, Taiwan
Chih-Cheng Hung, Southern Polytechnic State University-Marietta, USA
Shareeful Islam, University of East London, UK
Slinger Jansen (Roijackers), Utrecht University, The Netherlands
Maria João Ferreira, Universidade Portucalense - Porto, Portugal
Hermann Kaindl, TU-Wien, Austria
Abraham Kandel, University South Florida - Tampa, USA
Teemu Kanstren, VTT, Finland
Alexander Knapp, Universität Augsburg, Germany
Richard Laing, The Scott Sutherland School of Architecture and Built Environment/ Robert Gordon
University - Aberdeen, UK
Robert Laramee, Swansea University, UK
Fritz Laux, Reutlingen University, Germany
Hervé Leblanc, IRIT-Toulouse, France
Gyu Myoung Lee, Institut Telecom/Telecom SudParis, France
Daniel Lemire, LICEF Research Center, Canada
Haim Levkowitz, University of Massachusetts Lowell, USA
Pericles Loucopoulos, Harokopio University of Athens, Greece / Loughborough University, UK
Herwig Manaert, University of Antwerp, Belgium
Yannis Manolopoulos, Aristotle University - Thessaloniki, Greece
Constandinos Mavromoustakis, University of Nicosia, Cyprus

 5 / 91

Murali Medidi, Boise State University, USA
Gerrit Meixner, German Research Center for Artificial Intelligence (DFKI) - Kaiserslautern, Germany
Ivan Mistrík, Independent Consultant. Heidelberg, Germany
Paula Morais, Universiadade Portucalense - Porto, Portugal
Fernando Moreira, Universidade Portucalense, Portugal
Haralambos Mouratidis, University of East London, UK
Jean-Marc Ogier, Université de la Rochelle, France
Krzysztof Okarma, West Pomeranian University of Technology, Poland
Hichem Omrani, CEPS/INSTEAD, Luxembourg
Jerry Overton, Computer Sciences Corporation, USA
Ana Paiva, University of Porto, Portugal
Juan C Pelaez, Defense Information Systems Agency, USA
João Pascoal Faria, University of Porto, Portugal
Galina Pasko, Uformia, Norway
Rodrigo Paredes, Universidad de Talca, Chile
Giuseppe Patane', CNR-IMATI, Italy
Christian Percebois, IRIT/Université de Toulouse, France
Gabriel Pereira Lopes, Universidade Nova de Lisboa, Portugal
Luciano Pereira Soares, Insper, Brazil
Nadia Pisanti, University of Pisa, Italy
José R. Pires Manso, University of Beira Interior, Portugal
Agostino Poggi, Università degli Studi di Parma, Italy
Giovanni Puglisi, University of Catania, Italy
Francisco A. Pujol, Universidad de Alicante, Spain
Mar Pujol, Universidad de Alicante, Spain
Claudia Raibulet, University of Milano-Bicocca, Italy
Thurasamy Ramayah, Universiti Sains Malaysia - Penang, Malaysia
Alessandro Rizzi, Università degli Studi di Milano, Italy
José Raúl Romero, University of Córdoba, Spain
Agostinho Rosa, Technical University of Lisbon, Portugal
Gustavo Rossi, UNLP - La Plata, Argentina
Ozgur Koray Sahingoz, Turkish Air Force Academy, Turkey
Kurt Sandkuhl, Jönköping University, Sweden
Alberto Egon Schaeffer Filho, Federal University of Rio Grande do Sul (UFRGS), Brazil
Isabel Seruca, Universidade Portucalense - Porto, Portugal
Caifeng Shan, Philips Research, The Netherlands
Carina Soledad, Universidad de La Laguna, Spain
Marco Spruit, Utrecht University, The Netherlands
Michael Stal, Siemens, Germany
Martin Stanton, Manchester Metropolitan University, UK
Janis Stirna, Stockholm University, Sweden
Mu-Chun Su, National Central University, Taiwan
Kumbakonam Govindarajan Subramanian, Universiti Sains Malaysia, Malaysia
Sam Supakkul, Sabre Inc., USA
Ryszard Tadeusiewicz, AGH University of Science and Technology, Poland
Dan Tamir, Texas State University - San Marcos, USA
Shanyu Tang, China University of Geosciences - Wuhan City, P. R. China
Horia-Nicolai Teodorescu, "Gheorghe Asachi" Technical University of Iasi / Romanian Academy, Romania

 6 / 91

Daniel Thalmann, Nanyang Technological University, Singapore
Alain Toinon Léger, Orange - France Telecom R&D / University St Etienne / ENS Mines - Betton, France
Mati Tombak, University of Tartu / Tallinn Technical University, Estonia
Alessandro Torrisi, Università di Catania, Italy
Theodoros Tzouramanis, University of the Aegean, Greece
Michael Gr. Vassilakopoulos, University of Central Greece - Lamia, Greece
Maria-Esther Vidal, Universidad Simón Bolívar - Caracas, Venezuela
Krzysztof Walczak, Poznan University of Economics, Poland
Stefan Wendler, Ilmenau University of Technology, Germany
Laurent Wendling, University Descartes (Paris 5), France
Mudasser F. Wyne, National University- San Diego, USA
Reuven Yagel, The Jerusalem College of Engineering, Israel
Zhenzhen Ye, Systems & Technology Group, IBM, USA
Hongchuan Yu, Bournemouth University, UK
Alfred Zimmermann, Reutlingen University, Germany
Michal Žemlička, Charles University, Czech Republic

 7 / 91

Copyright Information

For your reference, this is the text governing the copyright release for material published by IARIA.

The copyright release is a transfer of publication rights, which allows IARIA and its partners to drive the

dissemination of the published material. This allows IARIA to give articles increased visibility via

distribution, inclusion in libraries, and arrangements for submission to indexes.

I, the undersigned, declare that the article is original, and that I represent the authors of this article in

the copyright release matters. If this work has been done as work-for-hire, I have obtained all necessary

clearances to execute a copyright release. I hereby irrevocably transfer exclusive copyright for this

material to IARIA. I give IARIA permission or reproduce the work in any media format such as, but not

limited to, print, digital, or electronic. I give IARIA permission to distribute the materials without

restriction to any institutions or individuals. I give IARIA permission to submit the work for inclusion in

article repositories as IARIA sees fit.

I, the undersigned, declare that to the best of my knowledge, the article is does not contain libelous or

otherwise unlawful contents or invading the right of privacy or infringing on a proprietary right.

Following the copyright release, any circulated version of the article must bear the copyright notice and

any header and footer information that IARIA applies to the published article.

IARIA grants royalty-free permission to the authors to disseminate the work, under the above

provisions, for any academic, commercial, or industrial use. IARIA grants royalty-free permission to any

individuals or institutions to make the article available electronically, online, or in print.

IARIA acknowledges that rights to any algorithm, process, procedure, apparatus, or articles of

manufacture remain with the authors and their employers.

I, the undersigned, understand that IARIA will not be liable, in contract, tort (including, without

limitation, negligence), pre-contract or other representations (other than fraudulent

misrepresentations) or otherwise in connection with the publication of my work.

Exception to the above is made for work-for-hire performed while employed by the government. In that

case, copyright to the material remains with the said government. The rightful owners (authors and

government entity) grant unlimited and unrestricted permission to IARIA, IARIA's contractors, and

IARIA's partners to further distribute the work.

 8 / 91

Table of Contents

DAO Dispatcher Pattern: A Robust Design of the Data Access Layer
Pavel Micka and Zdenek Kouba

1

Android Passive MVC: a Novel Architecture Model for the Android Application Development
Karina Sokolova, Marc Lemercier, and Ludovic Garcia

7

Project Planning Add-In based on Knowledge Reuse with Product Patterns
Fuensanta Medina-Dominguez, Maria-Isabel Sanchez-Segura, Arturo Mora-Soto, and Antonio Amescua Seco

13

Comparing Two Architectural Patterns for Dynamically Adapting Functionality in Online Software Products
Jaap Kabbedijk, Tomas Salfischberger, and Slinger Jansen

20

Using Patterns to Move the Application Data Layer to the Cloud
Steve Strauch, Vasilios Andrikopoulos, Uwe Breitenbuecher, Santiago Gomez Saez, Oliver Kopp, and Frank
Leymann

26

A Factor Model Capturing Requirements for Generative User Interface Patterns
Stefan Wendler, Danny Ammon, Ilka Philippow, and Detlef Streitferdt

34

Three Patterns for Autonomous Robot Control Architecting
Carlos Hernandez, Julita Bermejo-Alonso, Ignacio Lopez, and Ricardo Sanz

44

A Method for Directly Deriving a Concise Meta Model from Example Models
Bastian Roth, Matthias Jahn, and Stefan Jablonski

52

Remodeling to Powertype Pattern
Matthias Jahn, Bastian Roth, and Stefan Jablonski

59

Developing Patterns Step-by-Step: A Pattern Generation Guidance for HCI Researchers
Alina Krischkowsky, Daniela Wurhofer, Nicole Perterer, and Manfred Tscheligi

66

An Analysis Model for Generative User Interface Patterns
Stefan Wendler and Detlef Streitferdt

73

Powered by TCPDF (www.tcpdf.org)

 1 / 1 9 / 91

DAO Dispatcher Pattern:
A Robust Design of the Data Access Layer

Pavel Micka
Faculty of Electrical Engineering

Czech Technical University in Prague
Technicka 2, Prague, Czech Republic

mickapa1@fel.cvut.cz

Zdenek Kouba
Faculty of Electrical Engineering

Czech Technical University in Prague
Technicka 2, Prague, Czech Republic

kouba@fel.cvut.cz

Abstract—Designing modern software has to respect the nec-
essary requirement of easy maintainability of the software in
the future. The structure of the developed software must be
logical and easy to comprehend. This is why software designers
tend to reusing well-established software design patterns. This
paper deals with a novel design pattern aimed at accessing data
typically stored in a database. Data access is a cornerstone of
all modern enterprise computer systems. Hence, it is crucial to
design it with many aspects in mind – testability, reusability,
replaceability and many others. Not respecting these principles
may cause defective architecture of the upper layer of the product,
or even make it impossible to deliver the product in time and/or
in required quality. This paper compares several widely used
data access designs and presents a novel, robust, cheap to adopt
and evolutionary approach convenient for strongly typed object
oriented programming languages. The proposed approach makes
it possible to exchange different data access implementations or
enhance the existing ones even in runtime of the program.

Keywords—data-access; software design; pattern; object-
oriented; architecture; software evolution

I. INTRODUCTION

Software design pattern can be understood as a well-
established and reusable technique of designing certain soft-
ware artifacts that are frequently present in various particular
forms in a number of software projects. This paper introduces
a novel software pattern aimed at accessing database objects.
Its basic idea is motivated by the work of other authors that
is briefly surveyed in section III.

Modern computer systems have to deal with increasing
volume of data. According to the Moore’s law [1], the number
of transistors in integrated circuits doubles approximately
every 18 months and as the computational capacity grows,
grows also the volume of data processed. Hence, the systems
and their storage engines (databases), became also increasingly
complex in past decades.

To deal with the complexity of application (business) logic,
object oriented programming was introduced. Nevertheless, the
data itself is usually stored in conventional relational databases,
which creates impedance mismatch between the data storage
and the program itself. Object-relational technologies and
frameworks, such as Java persistence API [2], were developed
in order to minimize the differences and provide transparent
persistence to the programmer.

Such frameworks help to separate the principal concern of
business objects behavior (business logic) from the infrastruc-
tural concern of how business object’s data is retrieved/stored
from/to the database and make business objects free from this
infrastructural aspect by delegating it to specialized data access
objects (DAO). Thus, DAOs intermediate information ex-
change between business objects and the database. To facilitate
the replacement of the particular mapping technology and to
encapsulate database queries, data access objects layer pattern
was devised. There are many possible implementations that
differ mainly in their reusability, testability, architecture/design
purity and by the means they provide to support software
evolution.

II. BASIC PRINCIPLES

In order to compare various implementations/designs, we
use the following criteria, which describe their conformity with
the object oriented paradigm and applicability in non-trivial
and evolving software systems. Although these principles are
well known within the software engineering community, we
will describe them in next paragraphs in order to avoid possible
misunderstandings stemming from different definitions.

Encapsulation – the data access module should be well
encapsulated to hide implementations details (see the Protected
Variations GRASP pattern). Minor changes in implementations
should never affect interface of DAO module.

Do not repeat yourself (DRY principle) [3] – the code
of the module itself as well as code needed for the usage of
the module should not be duplicated (or even multiplicated).
This constraint reduces the number of scripts needed to test
the application and reduces the possibility of regression defects
caused by modifying only one of the copies of the respective
code.

You aint gonna need it (YAGNI principle) [4] – the
user (programmer) should never be forced to create classes
or structures, which he doesnt need at the moment. Also the
module itself should fit the actual needs of the programmer,
not needs of some feature, which may not be implemented
yet. The YAGNI principle reduces code bloat and hence saves
money, which would be otherwise spent to create, debug and
test superficial features.

Single responsibility principle – every class/structure of
the program should have only one responsibility. Hence, if

1Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 10 / 91

@Enti ty
@NamedQueries (

{@NamedQuery (
name =Book . Q FIND BY TITLE ,
que ry = ”SELECT b FROM Book b

WHERE b . t i t l e = : t i t l e ”) })
p u b l i c c l a s s Book {<CODE>}

Fig. 1. JPA Named Query code example

properly encapsulated, it can be easily replaced by another
implementation. As the code is focused and has only limited
set of dependencies, classes respecting this principle are easier
to test.

Reusability – the generic DAO functionality should
be reusable, project independent and possibly modularized.
Reusability reduces costs of the module, because the generic
core code is written and tested only once and developers shared
by several projects have to be familiar with only one DAO
implementation.

Testability – the testability criterion states that the DAO
functionality should be controllable by external testing scripts,
its behaviour should be observable and the number of scripts
needed for its testing should be minimized.

III. CONVENTIONAL APPROACHES

A. Generated queries (no DAO)

The most straightforward implementation of data access
is not to use the data access layer at all and hardcode the
functionality into business objects/service layer. As an example
may serve Java Persistence API Named queries[5].

The named queries are Strings written in JPA query lan-
guage, which are passed to the framework as class annotations
(metadata) as shown in Figure 1. The programmer invokes
these queries by their name. The named queries are usually
generated by integrated development environment and do not
posses any means for structural parameterization (i.e. name of
a columns passed as a query parameter).

Thanks to its support by development environments, named
queries are convenient for rapid development of a product
prototype.

Nevertheless, they are enormously inappropriate for usage
in production. The main disadvantage stems from the above-
mentioned fact that their structure cannot be parametrized.
This means that for every entity and its every property a new
named query has to be created, what results in massive code
duplication and additional testing expenses. In addition, all
queries are bound to entities, so they are not reusable at all
in other non-related projects. Such a design violates encap-
sulation and single responsibility principle, because the data-
access technology is invoked directly from business logic. This
makes business logic dependent on the data access technology,
although it should be technology agnostic, and when the data
access implementation is changed, the business logic will have
to be reprogrammed and retested as well.

B. Simple data access object

To encapsulate the technology used, data access objects
may be introduced. In their simplest form [6][7] there is one
DAO for every business object in the domain that provides
all the functionality needed. This design can be seen as
encapsulation of generated queries.

Although it solves the main architectural drawback of
generated queries, there exists one DAO class per each business
object class and it causes immense code duplication, which
makes the objects hard to test and maintain. This is why this
approach is not suitable for practical usage and the scientific
community gone on in investigating more sophisticated meth-
ods.

C. Generic data access object

The above mentioned code duplication can be resolved
using generic data access object (Figure 2) that contains
methods common for all entities, such as findById, remove,
getAll, in their generic form (i.e. property and names are passed
as parameters when necessary).

GenericDAO class is highly cohesive and radically reduces
code redundancy and thus improves testability as opposed to
the generated queries design. When combined with templating
features of the given programming language (e.g. templates,
generics), then the class also provides type safe access to the
underlying repository.

Generic DAO still possess some design drawbacks. First
of all, there is a question, where to place specific DAO
functionality. For example, let us have the query looking
for all books that are currently in the borrowed state. One
option might be to place all specific queries into GenericDAO
class, which will result in creating poorly cohesive class with
responsibilities over several entities. The second solution might
be to create a new specific DAO (e.g. BookDAO) for all
persistent business objects, when needed. Although this second
option is better, it still does not satisfy another requirement: the
data access should support software evolution. Let us suppose
that software, which has been developed for a long time, uses
GenericDAO in conjunction with specific DAOs. Then a new
requirement appears, which implies a specific functionality
of getById method for the Book entity. Again there are two
options, how to realize the new behaviour. The first one
requires sub-classing of the GenericDAO and overriding the
getById method so that it behaves differently for Book entity
(testing the type of the entity by instanceof operator). The

Fig. 2. UML Class diagram of GenericDAO class

2Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 11 / 91

Fig. 3. UML Class diagram of Generic superclass DAO

second option is to put this modified method into specific
DAO. While the first approach will later or soon result in
spaghetti code — code with enormously tangled structure,
usually massively using branching and loop statements —
when more modifying functionality will be added, the second
approach requires rewriting all calls of the respective method
of GenericDAO to specific DAOs one. Thus, none of these two
options is satisfactory.

D. Generic superclass

To make possible the code evolution, GenericDAO (see
Figure 3) can be modelled as a common (abstract) superclass
of all DAO objects. Rosko [8] presents a very similar approach,
but he isusing factory to instantiate particular DAOs. Because
there will be a mandatory implementation of a specific DAO
for every entity, the situation described above will never
happen. Software evolution is well supported, because the pro-
grammer can consistently override the generic implementation
in the respective specific subclass, easily add new specific data
access methods and last but not least, the implementation can
be easily protected by interfaces and reused in other projects.

Although the generic superclass DAO solves most of the
design flaws of the previously discussed implementations, it
creates a new one. According to our experience with develop-
ment of enterprise systems, for the most of entities the generic
method implementation is sufficient and also many entities do
not require any additional specific methods. And as the specific
DAO classes are mandatory, the design results in many classes
with empty specification, which is prepared only for possible
future changes. This is premature generality, which strongly
violates the YAGNI principle.

IV. DAO DISPATCHER PATTERN

To overcome violation of YAGNI, we introduce a new DAO
Dispatcher pattern, which combines benefits of both simple
Generic DAO and Generic superclass DAO.

A. The overall structure

The pattern (see Figure 5) uses internally Generic DAO
class mentioned in the previous chapter to handle all generic
requests at one place. If necessary, additional data access
methods can be defined in specific DAO classes derived w.r.t.

inheritance from the more generic one. If present, the specific
data access object mandatorily implements all generic meth-
ods, forwarding the call to the respective method of the generic
DAO class by default. The signatures of the corresponding
methods of specific and generic DAOs are identical except
the following point. As the generic DAO class processes data
objects of various types, its methods have to have the class
parameter that determines the exact type of the processed
data. This class parameter is not necessary in case of specific
DAO classes. In this case, the type of processed data is
implicitly determined by the type of the specific DAO class
itself. As a common facade for all generic calls, a new class
GenericDAODispatcher was introduced.

B. Registry/DAO Dispatcher class

The registry object is the core of this pattern. It implements
the GenericDAO interface and all generic calls should be
always made though the registry object. When no specific data
access object is registered, it simply delegates the call to the
GenericDAO, otherwise the DAO specific to the given class is
called.

This mediator makes it possible to introduce the specific
functionality without any changes to the code (only the project
configuration) just in time, or even to hotswap DAO implemen-
tations at runtime.

C. Abstract specific DAO

The abstract specific DAO is a common ancessor of all
specific DAO implementations. As it was stated in the previous
chapter, usually, the generic functionality is sufficient for most
use cases. This is why the default functionality of the specific
DAO just routes the query to the generic DAO implementation.

When need for a new DAO functionality occurs, the
programmer subclasses the abstract specific DAO and creates
only the new method — writes only what he needs. The
modification of the generic behaviour is analogous and requires
only overriding of the respective method.

D. User interaction

From the user’s point of view, there are four major types
of interaction with the framework. The interactions are shown
as UML transactional diagram in Figure 4.

The first interaction type depicts a call of getAll method
on a specific DAO type – BookDAO. As it was already
stated, the programmer typically does not need to override the
existing generic functionality, but wants to extend it. Hence,
when the dispatcher is called and the call is delegated to the
BookDAO, it only propagates the call further to the generic
DAO implementation.

On the contrary, when the getAll functionality is overriden
in the specific DAO, than only the delegation from dispatcher
is made and the call is executed by the specific method itself
(second interaction type).

When the programmer does not specify any specific DAO
for the Book entity, than the dispatcher calls directly the Gener-
icDAO in order to provide the default common functionality.
This interaction type, third in the image, is predominant for

3Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 12 / 91

Fig. 4. UML diagram of DAO Dispatcher pattern with Hibernate (JPA) data access implementation

new or not fully fledged applications, where data handling does
not have any exceptions from the general flow.

The fourth interaction shows direct invocation of a method
specific to the given entity. This method cannot be called
through the dispatcher, because the generic interface does
not contain its contract and there is naturally no generic
implementation in the GenericDAO class. For this reasons the
specific functionality calls are always made directly.

E. Advantages of the pattern

The above described structure of the pattern in conjunction
with the designed interaction flow provide significant benefits
for the end programmer (programmer which creates a system

with DAO Dispatcher pattern already implemented as a sub-
module).

Namely the programmer does not need to write and test
the generic DAO functionality, which is already embedded in
the submodule.

Also he does not need to prematurely determine, whether
the given entity will need any special handling when being
stored or retrieved from the database. The framework allows
the programmer to make this decision just in time – when it
is really needed.

Last but not least, the pattern structure is highly dy-
namic and flexible. The overriding functionality can be easily
plugged-in using configuration of the application, because this
change does not require any modifications of the source code

4Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 13 / 91

of the project itself. The behaviour of the application can be
modified/extended even at runtime.

V. RELATED PATTERNS

Our novel DAO Dispatcher design pattern uses and extends
several commonly known patterns and principles already de-
scribed by other works. To allow the reader to understand our
approach in detail, this section lists these patterns/principals
and depicts their usage, similarities and how they relate to
DAO Dispatcher classes.

Singleton [9] – all presented classes in the DAO Dispatcher
pattern are singletons by their nature. It means that there exists
at most one instance of each of them. The reason is that they
are either stateless or their state has the application global
scope. An example is the Dispatcher class fulfilling the role
of a registry in terms of the Registry pattern described bellow.

Ports and adapters (Hexagonal architecture) [10] – In
a nutshell, the hexagonal architecture dictates a design of a
component in such a way that it communicates with external
entities through an API consisting of technology specific ports
that are easily adaptable. This makes the core of the component
independent on the specific technologies used by the given
project and thus the component core is easily portable to other
environments.

In particular, DAO Dispatcher pattern as a whole can be
described as a single module with clearly defined boundary
(interface/ports), which can be accessed through technology
specific adapters, when needed. The Dispatcher pattern API
also provides means for setting the implementation of the data
source (eg. JPA EntityManagerFactory), which can be easily
exchanged by a mock implementation for testing purposes.

For example: while the core of the module is stable and
provides means for direct (binary) calls, in some cases it might
be useful to create a serializing adapter, which will transform
the input/output objects into JSON, XML or to any other
transport format and back. Because the adapting functionality
is located externally from the core, it is still possible to test it
directly using ordinary unit tests.

Registry – The dispatcher class is an exact realization of
the registry pattern as described by Martin Fowler in [11].
The fundamental principle of this pattern is an associative
container enabling service providers to register their services
in this container using an (typically unique) identifier. Later
on, the clients may look up and use the registered services
using these identifiers.

Such an architecture is very flexible. From the perspective
of the proposed DAO Dispatcher pattern, it is important that
the registry allows for on-the-fly inferencing of the appropriate
Specific DAO implementation.

For example: if the DAO object for the Novel entity is
requested but not available then the more generic Book DAO
object shall be used rather than falling back to the purely
generic DAO.

Inversion of Control [12] – In conventional programming,
the programmer defines the control flow from the beginning
to the end himself. However, if he applies a generic frame-
work to the specific problem domain, he usually designs

and implements a plugin to that framework. In such a case,
he cannot influence the control flow that is determined by
the framework itself. Programmer only fills in additional or
overriding functionality using pre-prepared join points. In other
words, the code of the programmer has the role of a library,
while the control flow (in our case of the query evaluation call)
is controlled by the framework (DAO Dispatcher pattern).

VI. APPLICATION

In typical software systems, the maintenance and enhance-
ment expenses outweigh the costs of development [13], hence
it is crucial to use sufficiently robust components during
its construction. The pattern is in particular convenient for
applications in enterprise systems, which usually evolve con-
tinuously and require means for specialization of generic use
cases (and respective data access procedures).

Since, as was already described, the DAO layer forms a
well encapsulated module, it can be easily interchanged with
another implementation. This might be very useful property,
when developing a generic system, which will be used by
many different customers, each of whom can use completely
different data source.

VII. FUTURE WORK

Although the pattern is intended to be used in strongly
typed languages, some dynamic properties might be also
employed in future. Mainly, the DAO Dispatcher (registry)
class code is in its static form highly duplicate, because each
call of the registry only has to delegate the functionality to the
appropriate implementation. However, this duplication is well
hidden from the user of the module, it would be convenient to
use reflection abilities of the host language in order to simplify
the registry implementation and reduce the number of lines of
code needed to extend the core module functionality.

The extensibility of the core of the module can be also
improved by application of the visitor pattern [9]. Each visitor,
accepted by the registry, will provide new generic functionality
of the core module and, when needed, also overriding func-
tionalities for specific DAO implementations.

VIII. CONCLUSION

This paper proposed a novel approach to robust data
access design, which overcomes imperfections of common
implementations. Mainly it is well testable, reusable, honoures
the single responsibility and YAGNI principles and last but not
least it supports software evolution.

Because the main logic of the module is well hidden behind
a facade, the programmer working with it can be familiar
only with the general principle, generic DAO interface and the
Abstract specific DAO class. This makes the implementation
easy to use and cheap to adopt.

However the reference implementation written in Java,
using Spring framework [14] for dependency injection, it
provides sufficient means for porting the code to other pro-
gramming languages and clearly proves that the pattern can be
easily implemented in strongly typed language, some language
specific improvements might be also employed. The reference
implementation can be found at https://kbss.felk.cvut.cz/web/
portal/dao-dispatcher.

5Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 14 / 91

Fig. 5. UML Class diagram of DAO Dispatcher pattern with Hibernate (JPA) data access implementation

ACKNOWLEDGMENT

This work has been supported by the grant by the
grant of the Czech Technical University in Prague No.
SGS13/204/OHK3/3T/13 — Effective solving of engineering
problems using semantic technologies.

REFERENCES

[1] G. Moore, Cramming More Components Onto Integrated Circuits.
McGraw-Hill, 1965.

[2] Oracle. (2013) Java persistence api. Retrieved: 12/03/2013.
[Online]. Available: http://www.oracle.com/technetwork/java/javaee/
tech/persistence-jsp-140049.html

[3] A. Hunt and D. Thomas, The Pragmatic Programmer: From Journeyman
to Master. Pearson Education, 1999.

[4] C. Zannier, H. Erdogmus, and L. Lindstrom, Extreme Programming
and Agile Methods - XP/Agile Universe 2004, ser. 4th Conference on
Extreme Programming and Agile Methods, Calgary, Canada, August
15-18, 2004. Proceedings. Springer, 2004.

[5] Oracle. (2013) Oracle fusion middleware kodo developers guide
for jpa/jdo, chapter 10. jpa query. Retrieved: 12/03/2013.
[Online]. Available: http://docs.oracle.com/html/E24396 01/ejb3
overview query.html#ejb3 overview query named

[6] M. Berger. (2005) Data access object pattern. Retrieved: 11/03/2013.
[Online]. Available: http://max.berger.name/research/silenus/print/dao.
pdf

[7] D. Matic, D. Burotac, and H. Kegalj, “Data access architecture
in object oriented applications using design patterns,” Proceedings
of the 12th IEEE Mediterranean Electrotechnical Conference, 2004.
MELECON 2004., vol. 2, pp. 595–598, 2004. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=1347000

[8] Z. Rosko and M. Konecki, “Dynamic data access object design
pattern,” Information and intelligent systems CECIIS 2008 : 19th
International conference, 2008. [Online]. Available: http://www.ceciis.
foi.hr/app/index.php/ceciis/2008/paper/view/41

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software, ser. Addison-Wesley
Professional Computing Series. Pearson Education, 2004.

[10] A. Cockburn. (2005) The pattern: Ports and adapters (”object
structural”). Retrieved: 11/03/2013. [Online]. Available: http://alistair.
cockburn.us/Hexagonal+architecture

[11] M. Fowler, Patterns of Enterprise Application Architecture, ser. The
Addison-Wesley Signature Series. Addison-Wesley, 2003.

[12] ——. (2005) Inversionofcontrol. Retrieved: 11/03/2013. [Online].
Available: http://martinfowler.com/bliki/InversionOfControl.html

[13] R. L. Glass, Ed., Frequently Forgotten Fundamental Facts about Soft-
ware Engineering, ser. IEEE Software, IEEE, May/June 2001.

[14] SpringSource. (2013) Spring framework. Retrieved: 12/03/2013.
[Online]. Available: http://www.springsource.org/spring-framework

6Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 15 / 91

Android Passive MVC: a Novel Architecture Model
for Android Application Development

Karina Sokolova⇤†, Marc Lemercier⇤
⇤University of Technology of Troyes, France

{karina.sokolova, marc.lemercier}@utt.fr

Ludovic Garcia†
†EUTECH SSII, France

{k.sokolova, l.garcia}@eutech-ssii.com

Abstract—Nowadays the demand for mobile application de-
velopment is very high. To be competitive, a mobile application
should be cost-effective and be of good quality. The architecture
choice is important to ensure the quality of the application over
time and to reduce development time. Two main leaders are
very represented on the mobile market: Apple (iOS) and Google
(Android). The iOS development is based on the Model-View-
Controller design pattern and is well structured. The Android
system does not require any model: the architecture choice
and the application quality highly depends on the developer
experience. Heterogeneous solutions slow down the developer,
while the one known design pattern could not only boost
development time, but improve the maintainability, extensibility
and performance of the application. In this work, we investigate
some widely used architectural design patterns and propose a
unified architecture model adapted to Android development. We
provide the implementation example and test the efficiency of the
proposed architecture by implementing it on a real application.

Keywords—Smart mobile devices (smartphones, tablets); design

patterns; Model-View-Controller; Android architecture model; An-

droid passive MVC.

I. INTRODUCTION

The mobile market has grown rapidly in recent years.
Many enterprises feel the need to be present on mobile
markets and propose their services with mobile applications.
Compared to computer programs, mobile applications often
have limited functionalities, shorter shelf life and lower price.
New applications should be developed fast to be cost-effective
and updated often to keep users interested. The quality of
the application should not be neglected, as mobile users are
very pernickety and competition is stiff. Architecture choice
remains important for mobile applications to ensure quality:
mobile applications as well as other systems could be complex
and evolve over time.

The demand for smartphone application development is
very high especially for the two market leaders: Apple (iOS)
and Google (Android). Multi-platform solutions, such as
Phone-Gap, Rhodes Rhomobile and Titanium Appcelerator
reduce development time, as one application is developed for
several platforms [1], but have limited possibilities – often
requiring native plug-ins. Multi-platform solutions also add
complexity to the native code (e.g. web layer) that decreases
the performance of the application. The support of non-native
solutions could be abandoned. Native solutions enable use
of all the platform’s options with better performance and
lighter code, therefore developers often choose native software
development kits (SDK).

The iOS SDK imposes the Model-View-Controller (MVC)
design pattern for the iOS application development [2]. An-
droid requires no particular architecture [3] – developers
choose a suitable architecture for their applications that is
especially difficult for less experienced developers. Complex
applications that do not follow any architecture can end as a
big ball of mud code: incomprehensible and unmaintainable
[4]. Suitable architecture can improve three non-functional
requirements of software structural quality: extensibility, main-
tainability and performance. A defined architecture could ad-
ditionally reduce the complexity of the code, simplify the
documentation and facilitate collaboration work [5].

Android development books and tutorials are mostly fo-
cused on Android SDK technical details and user interface
design. Only a few works have been dedicated to the Android
application architecture, while the Android community identify
an architecture as an important part of successful system design
and development. Developers open many discussions about
suitable Android architecture on forums, blogs and groups.

In this work, we provide an overview of some widely used
architectural patterns and propose an MVC-based architecture
particularly adapted to the Android system. Android Passive
MVC simplifies the development work giving the guidelines
and solutions for common Android tasks enabling the creation
of less complex, high-performance, extendable and maintain-
able applications.

The remainder of the paper is organized as follows: the
second section presents several architectural patterns used in
software development. Section 3 presents briefly the Android
SDK and existing difficulties in adapting one known architec-
ture to Android. In Section 4, we propose an adaptation of the
MVC design pattern to the Android environment and provide
an implementation example. Section 5 evaluates the Android
Passive MVC model and Section 6 concludes this work and
presents some perspectives.

II. FUNDAMENTAL DESIGN PATTERNS

We present four popular MVx-based design patterns in
historical sequence. These patterns are widely used in desktop
and web applications development. If mobile development as-
similates similar design, developers moving from other systems
could take advantage of their knowledge. Different components
and existing variants of models are included in the description.

7Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 16 / 91

Fig. 1. Classic MVC and Application Model MVC

A. Model-View-Controller (MVC)

Presented in 1978 [6], Model-View-Controller is the oldest
design pattern and has been successfully applied for many
systems since it’s creation [7], [8]. The goal of this model is to
separate business logic from presentation logic. The business
logic modifications should not affect the presentation logic
and vice versa [6]. MVC consists of three main components:
Model, View and Controller. The Model represents a data to be
displayed on the screen. More generally, Model is a Domain
model that contains the business logic, data to be manipulated
and data access objects. The View is a visual component on
the screen, such as a button. The Controller handles events
from user actions and communicates with the Model. The
View and the Controller depend on the Model, but the Model
is completely independent. The design pattern states that all
Views should have a single Controller, but one Controller can
be shared by several Views.

MVC model have three varieties: Classic MVC, Passive
Model MVC and Application Model MVC (AM-MVC). The
scheme of two MVC model varieties is shown in Figure 1.
The Classic MVC is shown on the left and the AM-MVC is
shown on the right.

In all variants, Controller handles events and communicates
directly with a Model that is indicated by a black arrow. On the
Classic MVC the Model processes data and notifies the View.
The View handles messages from the Model and updates the
screen using the data received from the Model. This behaviour
is implemented using the Observer pattern (grey arrow in
Figure 1). Conversely, the communication between the Model
and the View in Passive Model MVC is done exclusively via the
Controller. The Model notifies Controller which then notifies
View and finally the View makes changes on the screen [9].
The AM-MVC is an improved Classic MVC with an additional
component. The Application Model component was added for
the presentation logic (e.g. change the screen colour if the
value is greater than 4) that was often added to View or
Controller previously and makes a bridge between the Model
and the View-Controller couples.

B. Model-View-Presenter (MVP)

The Model-View-Presenter was introduced in 1996 as an
MVC adaptation for the modern needs of event-driven systems
[10]. The model consists of three components: Model, View
and Presenter. In this model, the View represents a full screen
and it handles events from the user actions. The Presenter is

Fig. 2. Supervising controller and Passive view

responsible of the presentation logic. The Model is a Domain
model.

There are two types of MVP: Supervising controller and
Passive view. Both models are shown in Figure 2. The Super-
vising controller uses the Observer pattern for the communica-
tion between Model and View. The View can interact directly
with the Model to save the data if there is no change to be
made on the screen. Otherwise, the communication between
the View and the Model is made via the Presenter. Interaction
between View and Model of the Passive View MVP is done
exclusively via Presenter [10].

C. Hierarchical-Model-View-Controller (HMVC)

The Hierarchical-Model-View-Controller was first intro-
duced in 2000 as an Classic MVC adaptation for Java pro-
gramming [11]. This model takes into account the hierarchi-
cal nature of Java graphical interface components: the main
window frame contains panes that contain components. The
authors propose to create layered architecture for the screen
with Classic MVC triads for each layer communicating with
each other by controllers. The HMVC model is shown in
Figure 3.

Thereby the child controller intercepts methods from its
view. If a view of the upper hierarchy (parent view) needs to
be changed, the child component informs the parent controller,
which makes the changes. The communication between layers
is made exclusively via controllers.

D. Model-View-ViewModel (MVVM)

Model-View-ViewModel is another model to separate the
presentation and business logic. The ViewModel is a linking
component between View and Model. This design pattern is
mainly used in Microsoft systems [12]. The realization of this
model is done with binding between components [13]. The
binding is not supported in Android by default but could be im-
plemented using the very recent Android-binding framework.

Fig. 3. Hierarchical-Model-View-Controller

8Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 17 / 91

As stated in [14], a good basic model should not use any
additional framework and should be easily implemented with
original components, therefore this model is not dealt with in
the paper.

III. ANDROID APPLICATION
DEVELOPMENT EXPERIENCE

Android is a Linux-based open source operation system
designed for mobile devices. Android was first presented by
Google in 2007 and in spite of huge competition from Apple
has been the leading smartphone platform since 2010. Google
continues to work on the system systematically integrating
new features and correcting bugs. Many manufacturers of
smartphones and tablets adopted this open-source solution; the
National Security Agency and NASA also choose Android for
their projects.

Android applications are mainly written in Java using the
Android SDK [15]. The code is compiled to be executed on
the Dalvic virtual machine on a smartphone. Additionally,
developers can use the Native Development Kit (NDK) to add
a C or C++ written code referred to as native. NDK allows
more advanced features and better performance, however, the
complexity of the code increases with the quantity of native
code [16] – Google suggested minimizing the use of this kit.

Four principal components of Android SDK are used in
Android Application development: Activity, Service, Content
provider and Broadcast receiver. Activity is a main component
of Android applications created while the application that
is also the entry point to the application is open. Many
Activities can exist in the application but only one is active at
a time. The service works on the background of an application
permitting an execution of long tasks (e.g. file download).
When the application is closed, unlike Activity, the work of the
Service is not interrupted. The Content provider component
gives access to the local data stored in SQLite databases.
The Broadcast receiver is a messaging system that enables
communication inside the application and between multiple
Android applications installed on the phone.

Activity causes major difficulties in implementing the
known architecture: is it a View, a Controller, a Presenter or
none of them? Some developers say Android actually imposes
the MVC model where the layout.xml (file, defining the layout
of the screen) is a View, Activity component is a Controller
and the rest is a Model. This proposition is not really the
MVC: layout.xml only defines what the screen looks like, but
button actions, text information and other presentation logic
are usually placed in Activity. Therefore, Activity handles
events as Controller and manages the visualization as View,
replacing the View-Controller. It leads to the creation of a
heavy and complex Activity class [17]. Huge classes that have
many responsibilities (event handler, presentation logic, etc.)
violate the Single Responsibility Principle of Object Oriented
Programming and could be hard to understand, test and extend
[18].

Other developers place Activity as a View of MVC creating
Controller apart. This solution works for simple applications
where one Activity represents one visual block, while Activity
usually manages several Views: main screen, menu, dialogue
box, etc. In complex visual applications Activity becomes

heavy; View components are strongly linked to each other
and are not reusable. Controller will be either complex or
divided into parts by a number of embedded Activity Views
that go against the MVC statement of one Controller, one
View. Replacing MVP View with Activity can cause similar
problems.

Some developers observed that Android have predefined
Views as ViewFlipper. It brings another solution where the
Activity became a Controller and Views are created apart.
Solution seems more adaptable to Android as event inter-
ception in Activity can be defined in layout.xml but actually
creates problems similar to previous implementation: many
Views make the only Controller (Activity) complex. Views
are reusable but the corresponding Controller should always
be added to the new Activity using the View. To delete or
modify the View developer should modify the full Activity.
Final application is complex and hard to maintain.

Even if MVC and MVP architectures seem suitable for
Android developments they are not intuitive to implement. A
new architecture should be easily implemented with Android-
specific components, such as Activity. The implementation of
the model should improve the application and code quality.
More precisely, the model should reduce the complexity of
an application, clarify the code and improve extensibility.
The coupling between components should be weak to avoid
the modification of other components if one is modified.
Modules should be reusable [14], [18]. A mobile phone has a
limited memory and a garbage collector could have unexpected
behaviour therefore the creation of unnecessary objects should
be avoided. Finally, objects remaining in the memory should
be lightweight [16].

IV. NOVEL DESIGN PATTERN FOR
ANDROID PLATFORM

The first part of the section explains the novel architec-
ture for Android application development we named Android
Passive MVC. The second part of the section presents a
simple example implementing the Android Passive MVC.
The third part of the section recommends an architecture of
the business logic of the application – the Model. Android
applications have similar needs: internal database management
and access, web service access and reusable components use.
Clear main architecture of business logic could also simplify
the development process.

A. Android Passive MVC Presentation

We have decided to base our architecture on the MVC
model, as MVC is well-known and widely used in desktop and
web systems as well as in iOS mobile development. Developers
coming from other systems would be able to easily appropriate
the Android development architecture.

Activity is an inevitable component of the Android appli-
cation. Previous experience of the Android community shows
Activity does not fit well on the MVC model, while it seems
to be well adapted to developers’ needs. We decided to create
MVC model around Activity making the Activity the fourth
component. We can also think of Activity as a main screen
(parent) controller in HMVC model.

9Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 18 / 91

Observer-observable pattern is relevant for multi-screen
systems but only one screen is active at a time in Android
application. This pattern supposes keeping in memory Views
and Models that appear heavy for the mobile environment,
therefore we chose the Passive Model MVC as a base for our
architecture.

In our model, Activity becomes an intermediate component
between the Views and the Controllers, thereby Controllers
take the event handling responsibility and the Views take
the presentation logic making the Activity lightweight. The
scheme of the Android Passive MVC model is shown in Figure
4. The grey dashed arrows show the interaction via Android
native methods. Black arrows indicate direct calls and grey
arrows represent listener events.

The Activity is like a screen controller. The starting Ac-
tivity creates a link between a View and a corresponding
Controller to make them communicate directly. The commu-
nication between Controllers is made via Activity.

The Views are the interface components, such as a form, a
menu or a list of elements. View components contain methods
that allow the setting or obtaining of data from the user
interface on Controller demand, the setting of event listeners on
visual components and the modification of visual components
(set errors, change colours, etc.). Views are independent and
do not communicate.

The Controller handles events from the user action (e.g.
button click), calls necessary methods from the Model and
then notifies the View to be updated on Model response.
The Controllers are independent from one another and do not
communicate directly.

This solution makes Activity lightweight by moving all
event handlers to Controllers and interface management to
Views. Views and Controllers created on demand avoid unnec-
essary objects, saving memory. Developers can easily modify
or remove application components by only modifying or
deleting the corresponding view-controller couple. Application
can be extended with view-controller couples. The Model is
independent from the View, the Controller and the Activity.
The user interface could be replaced without any impact on
Model thereby the maintainability of the application is high.

We perform the communication between Activity, Con-
troller and Model via message listeners implemented via
interfaces as proposed by [19]. Figure 5 shows the Android
Passive MVC implementation diagram. Listeners increase the
performance of the application and create a weak coupling
between components that improve maintainability.

Fig. 4. Android Passive MVC

Fig. 5. Android Passive MVC implementation

B. Android Passive MVC Implementation

This section presents an implementation example of com-
munication between Android Passive MVC components. This
implementation is suitable for the new manually created Ac-
tivities. Some predefined Activities, especially from third-party
libraries, will possibly not fit the implementation. We created
a login screen with a classic login form to enter the login
and password; if the login is successful the user goes to the
welcome page, otherwise the error message appears.

The example contains two Activities: Login Activity
managing the login page and Welcome Activity for the wel-
come page. The login form is managed by Login View and
Login Controller. Login Activity implements the LoginCon-
trollerListener interface to be able to receive calls from the
Login Controller. The schema is shown in Figure 6.

Login View contains methods for obtaining login and
password (getters), methods to set button listener and methods
to set errors. Login Controller handles event from the login
form implementing the onClickListener; while the button is
pressed Controller launches simple verifications and calls the
model. If login is successful, the answer goes back to the
Login Activity, which opens a welcome screen. To simplify the
example we do not include the model, but the communication
between the Controller and the Model can be implemented
similarly. A full code example can be found on [20].

C. Android Domain Model

The Model of Android Passive MVC is a Domain Model con-
taining business methods, web service call methods, database
access objects, reusable methods and data model objects.

A Domain Model architecture should include components
usually used in Android applications, such as Database man-
ager, Web services manager and Business logic. Those com-
ponents should be independent, as the architecture should be
adaptable. Reusable components should be also separated. The
basic model architecture is shown in Figure 7.

Fig. 6. Login implementation example

10Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 19 / 91

Fig. 7. Domain Model Architecture

The architecture of Domain Model proposed in this doc-
ument is inspired by 3-tier architecture that separates the
presentation, the business and the data access layers [21].

The business layer of our model regroups objects and meth-
ods that use web services, business services and reusable tools.
Business services contain business logic. If an application
works via Internet as well as locally, all necessary verifications
are done in Business services, which calls corresponding
methods. The communication between a presentation and a
domain model layer are made via Business services.

The data layer contains Models, Data Access Objects
(DAO) and Database Manager. DAO and Model are the
implementation of the Data Access Object pattern. Model
contains data being persisted in the database or retrieved by
web services calls. Model is a simple Plain Old Java Object
(POJO) that contains only variables and their getter and setter
methods. Data is manipulated and transferred through the
application using those lightweight objects that are often called
Data Transfer Object (DTO).

Persistence methods are organized in DAOs. DAO contains
methods that enable the data in a database to be saved, deleted,
updated and retrieved. Even if Android proposes an abstraction
on the data access level with Content Provider, DAO simplifies
the code of the application. The DAO design pattern creates
a weak coupling between components and use a lightweight
Model object instead of an Android cursor object in the
application. DAO can also be used for the data stored in XML
or text files. Good practice is to make DAO accessible via
interfaces. It allows DAO modification (for example the change
of SQLite to XML storage) without any change in Business
services, which increases maintainability.

Database manager is in charge of the database creation.
Database manager exists only if SQlite database is used by
the application. It stores the name of the database, and of its
tables and methods to be able to create, drop, open and close
the database.

This architecture regroups logically similar methods to-
gether, increases cohesion. High cohesion facilitates the main-
tainability of the software. The final code of the application
could be organized in packages by architectural components:
Activities, Views, Controllers, Business Services, Tools, Web
Services, Model, DAOs and Database. It gives the clear
structure of an application and limits the package number.
Additional packages could be created for interfaces, parsers
(e.g. XML, JSON) and constants.

V. ARCHITECTURE EVALUATION

We evaluated the architecture in two steps. First, we
ensured that the architecture fit the lists of code quality criteria
proposed by [14], [16]. Second, we ask an Android developer
to rewrite one of his latest applications using Android Passive
MVC, compare results and give feedback regarding the model.

A. Code quality

The evaluation of our architecture is based on the following
code quality evaluation criteria: techniques used, maintainabil-
ity, extensibility, reusability and performance.

The use of standard platform techniques is important for
the model: the support of third-party functionalities could be
interrupted making implementation of the model impossible.
The Android Passive MVC could be implemented using An-
droid SDK without any additional libraries.

A high-quality application has high maintainability and
extensibility: codes have weak coupling between components,
easy code suppression possibility and high testability. The
Passive MVC architecture ensures high maintainability. Clear
separation between presentation and business logic simplifies
testability of components. Weak coupling between all layers is
carried out via listeners. One component (ex. interface, DAO,
web service) could be replaced or modified without changes
in others. The extension or modification of the user interface
itself is done by simply adding, deleting or modifying the view-
controller couples.

The reusability of components make the code clearer
and boost development time. The view-controller components
of the Android MVC model could be reused through the
application and could be easily embedded in other Android
applications made with Android Passive MVC.

Good performance is especially important in mobile en-
vironments: resource utilization should be limited as mobile
devices have little memory. Short response time is essential
for modern users. The Android MVC architecture makes a
very lightweight Activity component. Controllers, View and
Model objects are also small and kept in memory only if used,
which minimizes resource utilization. The use of listeners also
slightly increases response speed.

B. Architecture implementation

We asked an Android developer with three years’ experi-
ence to test the Android Passive MVC. He chose to redevelop
one of his latest applications which had become complex,
hard to maintain, extend and test. The application is called
‘TaskProjectManager’ and it enables tasks to be assigned to
different employees and to view the full calendar of tasks
on the screen by day, week and month. The application also
generates reports by given parameters.

Measurements of both versions of the application are made
with javancss, a source measurement suite for Java, and the
results are shown in Table I. Android Passive MVC reduces
all code parameters.

The Android Passive MVC helps with organizing classes
in packages. The original version of the application had many

11Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 20 / 91

packages created partly using the MVP model, partly the
application logic, and partly the Android components named.
The limited number of packages of the Android Passive MVC
version gives the application a clear structure.

The full code became smaller: both the number of classes
and the number of functions were reduced. The Android
Passive MVC enables high reusability of components.

The code complexity is evaluated using Cyclomatic Com-
plexity Number (CCN). ‘Cyclomatic complexity measures
the number of linearly independent paths through a program
module.’ [5]. Normal method complexity without any risks is
1-10 CCN, with 11-20 CCN the complexity is moderate, with
21-50 CCN the complexity is very high and and with CCNs
greater than 50 the program is untestable. Table I shows that
the average complexity of the application of the application has
decreased slightly. The maximum CCN dropped significantly:
an original version has methods with CCNs of 40, 50 and even
100 and 110, while the new version has the only JSON parser
with a CCN of 30 and several methods with a CCN of 10 to
15.

The developer’s feedback was that the Android Passive
MVC model is easy to understand and to follow. The fi-
nal application was visibly more reactive: the response time
became almost nil, while the users of the original version
complained about a very long response time for each screen.
The Android Passive MVC version is open to extensions
and easily modifiable. Application components are not only
reusable in the application, but could also be reused in future
Android development.

VI. CONCLUSION AND FUTURE WORK

We have analysed some well-known architectural design
patterns and proposed an Android architecture solution based
on an MVC design pattern and the Domain Model orga-
nization. The architecture defined can simplify the work of
novice and experienced developer alike and enable creation
of less complex and well-structured applications. The existing
Android application was reimplemented using the Android
Passive MVC, resulting in better maintainability, extensibility
and performance. The complexity of the new implementation
was lower.

We consider a wider evaluation by the Android community.
We are currently working on a user-friendly model description
and several well-commented implementation examples. We are
also drawing up on a questionnaire for the developers who
have tested the model. We plan to spread the documentation,
examples and a survey over the important websites and blogs
to reach a larger audience.

TABLE I
TASKPROJECTMANAGER STATISTICS

Original Android MVC % Gain
Packages 25 17 32
Classes 393 275 30

Functions 2186 1683 23
Avg CCN 2,30 1,87 19
Max CCN 110 30 73

This work can be continued by testing the observer-
observable design pattern integrated in the Android Passive
MVC. The adaptation of the MVP model can be envisaged.
The same testing software could be redeveloped to compare
the results. Finally, the same test using the Android-binding
MVVC framework could be implemented to choose the most
effective solution for different types of applications.

REFERENCES

[1] S. Allen, V. Graupera, and L. Lundrigan, Pro Smartphone Cross-
Platform Development: IPhone, Blackberry, Windows Mobile and An-
droid Development and Distribution, 1st ed. Berkely: Apress, Sep.
2010.

[2] D. Mark and J. LaMarche, More IPhone 3 Development, ser. Tackling
Iphone Sdk 3. Berkely: Apress, Jan. 2010.

[3] J. Steele, N. To, S. Conder, and L. Darcey, The Android Developer’s
Collection. Addison-Wesley Professional, Dec. 2011.

[4] B. Foote and J. Yoder, Big Ball of Mud. Addison-Wesley, 1997.
[5] T. Ihme and P. Abrahamsson, “The Use of Architectural Patterns in the

Agile Software Development of Mobile Applications,” ICAM 2005, pp.
155–162, Aug. 2005.

[6] G. Krasner and S. Pope, “A description of the model-view-controller
user interface paradigm in the smalltalk-80 system,” Journal of object
oriented programming, vol. 1, pp. 26–49, 1988.

[7] P. Sauter, G. Vögler, G. Specht, and T. Flor, “A Model-View-Controller
extension for pervasive multi-client user interfaces,” Personal and
Ubiquitous Computing, vol. 9, no. 2, pp. 100–107, Mar. 2005.

[8] M. Veit and S. Herrmann, “Model-view-controller and object teams:
a perfect match of paradigms,” in AOSD ’03: Proceedings of the
2nd international conference on Aspect-oriented software development.
ACM Press, Mar. 2003, pp. 140–149.

[9] S. Burbeck. (1997, Mar.) Applications Programming in Smalltalk-
80TM: How to use Model-View-Controller MVC. [Online]. Available:
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html [retrieved:
March 2013]

[10] M. Potel, “MVP: Model-View-Presenter the taligent programming
model for C++ and Java,” Taligent Inc., Tech. Rep., 1996.

[11] J. Cai, R. Kapila, and G. Pal, “HMVC: The layered pattern for
developing strong client tiers,” Java World, pp. 07–2000, 2000.

[12] J. Smith. (2009, Feb.) Wpf apps with the model-view-viewmodel
design pattern. [Online]. Available: http://msdn.microsoft.com/en-
us/magazine/dd419663.aspx [retrieved: March 2013]

[13] R. Garofalo, Building Enterprise Applications with Windows Presenta-
tion Foundation and the Model View ViewModel Pattern. Microsoft
Press, Mar. 2011.

[14] S. McConnell, Tout sur le code : Pour concevoir du logiciel de qualité,
2nd ed. Dunod, Feb. 2005.

[15] R. Meier, Professional Android 4 Application Development (Wrox
Professional Guides), 3rd ed. Birmingham: Wrox Press Ltd., May
2012.

[16] I. Salmre, Writing Mobile Code: Essential Software Engineering for
Building Mobile Applications. Addison-Wesley Professional, Feb.
2005.

[17] F. Garin, Android - Concevoir et développer des applications mobiles
et tactiles, 2nd ed. Dunod, Mar. 2011.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software, 1st ed. Addison-
Wesley Professional, Nov. 1994.

[19] W.-Y. Kim and S.-G. Park, “The 4-tier design pattern for the de-
velopment of an android application,” in Proceedings of the Third
international conference on Future Generation Information Technology,
ser. FGIT’11. Springer-Verlag, Dec. 2011, pp. 196–203.

[20] K. Sokolova. Android passive mvc implementation example.
[Online]. Available: https://github.com/KarinaSokolova/android-mvc-
example [retrieved: March 2013]

[21] P. D. Sheriff, Fundamentals of N-Tier Architecture. PDSA Inc., May
2006.

12Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 21 / 91

Project Planning Add-In based on Knowledge Reuse with Product Patterns

Fuensanta Medina-Dominguez, Maria-Isabel Sanchez-Segura, Arturo Mora-Soto, Antonio de Amescua Seco

Computer Science Department
Carlos III University

Leganes, Madrid, Spain
{fmedina, misanche, jmora, amescua}@inf.uc3m.es

Abstract—This work presents an approach that incorporates
knowledge reuse to the planning process. Project managers can
reuse knowledge using product patterns to learn project
management techniques. In addition, they can use the add-in
support tool proposed in this work to link information to the
Gantt chart; therefore, people assigned to each activity in the
Gantt chart can reuse existing product patterns that help
develop the assigned activity. The authors have corroborated
that the proposed solution improves the satisfaction of the
people involved in the development of a software project that
has been planned using the proposed solution.

Keywords-Knowledge Management; Project Management;
Software Aplication Component; Product Patterns.

I. INTRODUCTION

Project planning has been recognized by the European
Commission as essential for a project's success and, as such,
is often considered the most important phase in project
management [1]. An immense benefit to planning is that, in
case a problem arises during the project development, it
functions as an alarm mechanism. Also, project planning is a
widely explained process in standards like PMBOK [2] and
is supported by a wide variety of software tools (analyzed
later, in Section II). Nevertheless, there is an aspect of
project planning performance that has not been addressed
properly, namely, how to incorporate software reuse while
project planning is being developed?

Software reuse is the area that studies how to use a
thousand times the same piece of software always in a
different way. Software reuse is being applied for products
developed in different phases of the software development
lifecycle by the use of analysis patterns [3], design patterns
[4], requirements patterns [5], etc., but in project planning
phase, software reuse has not already been incorporated.

It would be very useful to plan the activities to be
performed in a software project and, at the same time, plan
the potential pieces of software that could be reused on each
activity, or even the potential knowledge that could be reused
to develop an assigned activity. So, the authors believe that
there are at least two scenarios where reuse can be very
interesting while planning. One scenario that can occur is
when a project manager faces the challenge to develop a
project planning; he or she could reuse the knowledge about
project planning from experts in the field. Another scenario
could be when the project manager is planning the project
activities and would like to provide more information
regarding the activities the human resources are assigned to.
This information can include examples of this activity

developed in other projects, lessons learned while developing
this activity previously, or references where the person
assigned to the activity can learn more about how to develop
the activity assigned. The project manager has to always bear
in mind the context, the problem, and the forces of the
project under development.

Existing project planning tools do not cover these two
potential scenarios. This is why the authors propose the use
of reuse artifacts, called Product Patterns [6] and the use of a
software module that has been developed as a Microsoft
Project Add-in, which allows the management of product
patterns while developing project planning in the previously
described scenarios.

The reminder of this paper is structured as follows:
Section II describes an analysis of the most remarkable
software tools for project management. Section III presents
the solution, an add-in support tool based on knowledge
reuse with product patterns; this section describes the
product pattern, product patterns in project planning and the
add-in support tool architecture. Section IV presents the
description of the experiment and analysis of the results.
Finally, in Section V, the authors present their conclusions
and future works.

II. ANALYSIS OF THE MOST REMARKABLE SOFTWARE

TOOLS FOR PROJECT MANAGEMENT

When a project manager wants to plan a project, there is
no doubt that the most common technique is the Gantt Chart
[7], which is typically drawn using a software application.
Among the wide variety of project management software
tools, according to International Data Corporation (IDC), one
of the most notable global providers of market intelligence
and analysis [8] is Microsoft Project (MS Project), as can be
seen below in Figure 1. MS Project is the most used project
manager software tool worldwide [9] and by this fact alone,
MS Project could be selected as the best tool to use since it
seems that it is the most popular and trustworthy application.
However, before choosing a software to implement the
authors’ knowledge of reuse solution for project planning, an
analysis of the most important tools available in the market
will be presented in this section, emphasizing whether or not
these tools support knowledge reuse to back up project tasks
execution.

Nowadays, the most remarkable project management
tools available are cloud-based applications or services [10].
In addition, there are software desktop applications that
could offer a sort of web synchronization service or feature
[9], [11] that include not only project management features,
but also, project portfolio features as well as collaboration

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 22 / 91

tools. Since the authors’ proposal is focused only to back up
a project manager in project planning, the authors only
analyzed those tools whose main purpose is project planning.
They also analyzed those that are mentioned as relevant by
IDC in [9] and by Gartner in its MarketScope for Project and
Portfolio Management Software Applications [11] and its
Magic Quadrant for Cloud-Based Project and Portfolio
Management Services [10]. The tools selected for this
analysis were the following:
 Microsoft Project Professional 2010 [12]. This is the

most popular project management software, it is
developed and sold by Microsoft [13] and is designed to
assist a project manager in developing a plan, assigning
resources to tasks, tracking progress, managing the
budget, and analyzing workloads.

 Augeo6 [14]. This is a software solution that organizes
and automates all activities related to the life cycle of
projects, from the initial evaluation of the project
proposal until the completion of the project.

 Genius Project [15]. This is a web-based tool that
delivers a highly flexible and configurable portfolio and
project management software allowing for tailored
feature sets for a wide array of project teams and project
types.

 Planisware 5 [16]. This is a web-based application that
supports the end-to-end governance of company
portfolios; it offers a complete project management
capability with features such as project and resource
scheduling, portfolio reporting, simulation,
comprehensive project reporting/cost control, and
collaboration tools.

 Planview Enterprise [17]. Among its capabilities, this
tool delivers visibility into and control of project
portfolios, allowing to efficiently prioritize work and
make better decisions around request management,
planning, and resource capacity.

 Project.net [18]. This is a web-based tool aimed to
maximize the performance of any organization tracking
a single project or a portfolio of projects.

 Sciforma 5 [19]. This is project and portfolio
management software aimed to help project managers to
administer all aspects of project, resource, risk, and
change management.

 AtTask [20]. This is a web-based tool that features task,
management, issue tracking, document management,
time tracking and portfolio management.

Table I shows the criteria defined to assess the
knowledge reuse capabilities. Each criteria is defined by: the
criteria, the description and the phase of the knowledge
lifecycle supported. To analyze if a tool fulfills a criterion or
not, every tool was used to plan a simple software project,
looking if the capabilities depicted in the criteria were
present or not. The presence of a criterion was rated with the
following scale: (0) meant that the criterion was not present;
(1) meant that the criterion was partially present; (2) meant
that the criterion was completely present; the objective is that
the ideal tool could reach a rating of 10, meaning that it has

all the criteria completely present. The final results of the
analysis are shown in Table II, as can be seen MS Project,
Project.net, and AtTask obtained the best ratings. However it
is important to highlight that none of the tools analyzed
offered any formal knowledge representation mechanism,
such as the Product Pattern defined by the authors; all of
them only offered basic knowledge representation
mechanisms such as notes, document attachments, blogs, or
wiki. This is an important contribution; nevertheless it is not
formal enough to accomplish the goals proposed by the
authors, especially to foster an accurate knowledge reuse in
project planning.

Figure 1 Marker share of project management tools according to IDC

This fact encourages authors to try to improve one of the
existing project management software tools, and implement
a mechanism to support Product Patterns to help project
managers improve their project planning activities.

After this analysis, and considering the results offered by
Gartner [10], [11] and IDC [9], the authors decided to choose
MS Project as the tool to be extended for incorporating a
new functionality to link Product Patterns and project plan
tasks. This decision was made due to Ms Project’s wide
adoption in the market, a key factor to spreading the use of
the solution presented by the authors in this paper, as well as
to the large amount of existing documentation to develop
new functionalities for this program using the programming
languages provided by Microsoft.

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 23 / 91

TABLE I. CRITERIA DEFINED TO ASSES THE KNOWLEDGE REUSE CAPABILITIES OF PROJECT MANAGEMENT SOFTWARE TOOLS

Criteria Description
Phase of the

Knowledge Lifecycle
supported

C1: Basic knowledge assets
representation mechanism.

This criterion is intended to identify if the tool offers an integrated mechanism to
represent basic knowledge assets related to project plan tasks. This kind of asset is
any piece of knowledge (an idea, a comment, best practices, or thoughts) that is
explicitly represented in natural language, which in turn can be stored in some
way that could be shared or used by any person (e.g. document attaching,
document sharing, notes, embedded documentation, etc.)

Create

C2: Formal knowledge
assets representation

mechanism.

This criterion is intended to identify if the tool offers and integrates mechanism to
represent formal knowledge assets related with project plan tasks. This kind of
asset is a piece of knowledge that is represented using a formal or standard
notation, such as a metamodel, a pattern language, or a graphical notation (like
UML or BPMN).

Create, Codify

C3: Knowledge-tasks
linking protocol.

This criterion is intended to identify if the tool offers rules to link the tasks of a
project plan with existing knowledge assets that could be helpful to perform them.
Knowledge assets could be basic or formal as described above in criteria C1 and
C2.

Embed, Diffuse

C4: Knowledge
improvement mechanism.

If the tool offers some of the characteristics depicted in criteria C1, C2 and C3,
this criterion is intended to identify if the tool offers a mechanism to improve
existing knowledge assets that were linked to project plan tasks, for example, by
adding new information that could complement the existing one.

Create, Codify,
Embed, Diffuse

C5: Tool extension
capabilities.

This is not a criterion related to knowledge reuse, but due to the authors’ desire to
extend the capabilities of the software tool, this criterion is intended to identify if
the tool’s features can be extended using a programing language.

This criterion does
not apply.

TABLE II. RESULTS OF THE PROJECT MANAGEMENT SOFTWARE

TOOLS ANALYSIS

Criteria

M
S

P
ro

je
ct

P
ro

fe
ss

io
n

a
l

2
0

1
0

A
u

g
eo

6

G
en

iu
s

P
ro

je
ct

P
la

n
is

w
a

re
5

P
la

n
v

ie
w

E
n

te
rp

ri
se

P
ro

je
ct

.n
et

S
ci

fo
rm

a
5

A
tT

a
sk

C1 2 2 2 1 2 2 2 2

C2 0 0 0 0 0 0 0 0

C3 1 1 1 1 1 1 1 1

C4 1 1 1 1 1 1 1 2

C5 2 0 0 0 1 2 0 1

Rating 6 4 4 3 5 6 4 6

III. SOLUTION

This section describes the solution developed to reuse
knowledge with product patterns in project planning,
therefore describing the product pattern concept, product
patterns in project planning and the add-in support tool
architecture.

A. Product Pattern

Product Patterns are reusable artifacts that store the
experts’ knowledge and best practices to develop a product
[6]. Although product patterns can be used in different fields,
in this paper they have been applied in the software
engineering field, where the authors are experts.

For the authors, a software product is any product
obtained along the activities of the software project life cycle
(for example, requirement specification, data base, planning,
etc). Product patterns have been formalized in a wiki, which
is available at [21]

The Gantt Chart Product Pattern [22] is an example of
product patterns to perform project planning.

B. Product Patterns in Project Planning

When a project manager has to perform a project
planning, he or she must think about the next question: Do I
have the needed knowledge to develop a project planning
based on the software engineering best practices?

Figure 2 illustrates the way authors propose to use
product patterns in projects planning. There are two
possibilities, that the project manager does not know how to
perform a project planning (which is illustrated in Block 1 in
Figure 2), or the project manager knows how to develop a
project planning and wants to perform it (which is illustrated
in Block 2, Figure 2).

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 24 / 91

Project planning learning process (Block 1
description): If the project manager does not know how to
develop a project planning, he or she can learn the software
engineering best practices and the experience of other
project managers. The project manager has to follow the
next two steps: STEP 1: Access to the product pattern wiki,
available at [21]. STEP 2: Look for the Gantt Chart Product
Pattern and learn its content. In the product pattern wiki, the
project manager should look for the "Project Planning
Product pattern". With this product pattern, the project
manager will learn step by step how to perform a project
planning. Lessons learned, information resources,
knowledge and skills to perform project planning are also
available.

Figure 2 Product Patterns in Project Planning

In this way, product patterns will be useful to the project
manager to learn the needed knowledge to perform project
planning, using the best practices of software engineering
and the experience of software managers who have used and
given feedback about the product patterns with the
knowledge of using the Gantt Chart product pattern in
different projects.

Project planning development process (Block 2
description): If the project manager knows how to perform
the project planning and he or she wants to develop a Gantt
Chart, the project manager must follow the next steps: STEP
3: Create and identify the tasks to be performed during the
software project. STEP 4: Access the add-in support tool
developed by the authors. STEP 5: Select the context and
the forces of the project; the project manager will have to
select the context where the project will be developed and
the generic and specific forces that affect the project
planning under development, such as the kind of

organization, team experience, etc. Figure 3 shows the
screenshot where project manager has to select the context
and forces. STEP 6: Select the activity you want to plan. As
can be seen see in Figure 4, once the context and the force
are selected, the project manager will have to select the
activity to be planned. STEP 7: The add-in suport tool will
create a column in the Gantt Chart where the selected
product patterns url will be stored (it can be seen in Figure
5).

Figure 3. Context and forces selection

Figure 4. Activities selection

Figure 5. Create URL Column

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 25 / 91

STEP 8: The add-in support tool will look for the product
patterns which comply with the context, forces and the
activity (problem) that the project manager wants to plan; so
the tool will execute the next rule:

If you find yourself in this context
(and) with this problem
(and) entailing these forces

then
map a product pattern in your project
(and) look for more product patterns

The product patterns that comply the rule will be shown in
the tool, this can be seen in Figure 6. STEP 9: The project
manager can select each product pattern and the add-in
support tool will show the description and the url of the
product pattern where the project manager will have access
to the best practices and the experiences of other software
engineers related to the activity being planned (time,
resources, lessons learned, etc).

Figure 6. Product pattern search and select

Figure 7. Update Gantt Chart

At this point, the project manager will have to select the
product pattern that best fits with the activity which is being
planned. STEP 10: Update Gantt Chart: the add-in suport
tool will update the Gantt Chart with the url of the selected
product pattern, this can be seen in Figure 7. STEP 11: Save
the changes. The add-in suport tool will save the updated
project planning.

C. Add-in Support Tool Architecture

The architecture of the add-in consists of three modules
clearly identifiable:
 The client (or component add-in) is embedded within

the Microsoft Project program. The add-in is installed
on client computers using a simple self-install, slightly
configurable, and outside the building application.

 Web service: it works thanks to an application server;
both are located in a server computer. The Web Service
WSDL descriptor allows that the services can be public
and accessible for the customer.

 Database manager: it is located in a server computer.
The database query manager handles the queries of the
project manager to obtain the knowledge needed to
perform the project planning.

IV. EXPERIMENTATION

This section describes the experiment and the analysis
of results.

A. Description of the experiment

This solution provides an add-in support tool for project
planning using product patterns. The authors validated the
time spent developing the project planning from the
satisfaction of project managers and teamwork involved in
the development of each planned project. The experiment
was conducted in two phases:

Phase I: Implementation of project planning without
using add-in support tool, and development of the projects
planned.

Phase II: Implementation of project planning using add-
in support tool developed by the authors and development of
the projects planned.

The authors believe that although the development time
using the add-in support tool will increase, the level of
satisfaction achieved will increase as well because it
provides the knowledge of the best practices and the
experience and knowledge of experts in software
engineering.

To validate this goal, six software projects were
developed at Carlos III University in Spain. All the project
managers who participated in this validation had between 10
– 15 years’ experience, and a Bachelor’s degree in computer
science. Each of the 6 projects that took part in the
validation included:

 Two different project managers that participated in the
validation, one project manager to develop the planning
without using the add-in support tool, and another one
using the add-in.

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 26 / 91

 Two different teams, one team that used the planning
made by the project manager without using the add-in
support tool, and the other one that used the planning
made by the project manager using the add-in support
tool.

A survey was performed to value the level of satisfaction
of people involved in the experiment.

B. Results Analysis

The data analysis results are shown in Figure 8. The
bubble figure shows a comparative: for each project (x-axis)
there are two bubbles with the development time (y-axis) and
a level of satisfaction (bubble area), within each bubble there
are numbers that represent "time; satisfaction".

As can be seen in Figure 8, the development time is
greater in phase 2 where the add-in support tool is used. This
increase is the result of the project manager learning the
knowledge provided by the product patterns to select the
ones that best fit with each project activity. Although for
each project the time spent in project planning is greater
when using the add-in support tool, the bubble area is larger
as well because the project planning is done with the
knowledge about how each activity affects the project
planning. Also, the project manager provides for each
activity, using the add-in support tool, a URL to the products
patterns wiki, where the person in charge of each activity can
access the knowledge on how to perform the assigned
activity.

Figure 8. Results Analysis (Phases – Development Time – Level of
Satisfaction)

V. CONCLUSIONS AND FUTURE WORKS

The most important mission of this work was to focus on
the scarce reuse being done in general in project
management and specifically in project planning. The
authors proposed an easy way to incorporate into project
planning all the necessary information (i.e., activities to be
done, product to be obtained, people assigned, time schedule,
budget, etc.), but also the know-how the software engineers
have on developing software products, which can be reused a
thousand times and never in the same way to develop the
project activities. This has been done by using product

patterns, proposed by the authors as artifacts to gather the
know-how on how to develop software products and easily
accessed by the wiki [21], and an add-in support tool, that
can be easily developed by any project development
platform (in this case developed to be added to Microsoft
Project). The use of the proposed solution has demonstrated
that, although the time spent in the project planning
increased, the satisfaction of the teamwork while developing
their assigned activities also increased. The authors want to
demonstrate as future work that the productivity of the
teamwork increases as well.

Using this approach is an interesting way to ensure the
company which is developing software projects, that the
planning has been done by reusing the know-how of the
people working in the company and in this way it is easy to
assess how the know-how is giving a return of investment to
the company.

ACKNOWLEDGMENT

This work has been partially funded by the Spanish
Ministry of Science and Technology through the project
TIN2011-27244.

REFERENCES

[1] European Commission. Managing projects. Available at:
http://ec.europa.eu/eahc/management/Fact_sheet_2010_01.ht
ml. [Accessed: 30-Jan-2013].

[2] PMBOK A Guide to the Project Management Body of
Knowledge. Fifth Edition. PMI. 2013.

[3] S. Ketabchi, N.K. Sani, and L. Kecheng, ”A Norm-Based
Approach towards Requirements Patterns”. Computer
Software and Applications Conference (COMPSAC), 1 IEEE
35th Annual Topics: Computing & Processing
(Hardware/Software), 2011, pp: 590 – 595, Digital Object
Identifier: 10.1109/COMPSAC.2011.82

[4] C. Larman. Applying Uml and Patterns: An Introduction to
Object-Oriented Analysis and Design, and the Unified
Process. 2002. Prentice Hall

[5] L. Hagge, K. Lappe, and T. Schmidt, “REPARE: The
Requirements Engineering Patterns Repository”. 13th IEEE
International Conference on Requirements Engineering
(RE'05), 2005, pp. 489-490.

[6] M. Sanchez Segura, F. Medina-Dominguez, A. Amescua and
A. Mora-Soto. “Improving the Efficiency of Use of Software
Engineering Practices Using Product Patterns”. Information
Sciences (Impact Factor: 3.291), Vol. 180, Issue 14, July 15,
2010, Pages 2721-2742.

[7] H. Kerzner, Project management: a systems approach to
planning, scheduling, and controlling, 10th ed. Hoboken, NJ,
USA: Wiley, 2009, p. 1120.

[8] USA IDC Corporate, “International Data Corporation.”
[Online]. Available: http://www.idc.com/. [Accessed: 24-Jan-
2013].

[9] M. Ballou and J. C. Pucciarelli, “IDC MarketScape Excerpt:
IT Project and Portfolio Management 2010 Vendor Analysis.
Four Views to Enable Effective Evaluation,” Framingham,
MA, 2010.

[10] D. B. Stang and R. A. Handler, “Magic Quadrant for Cloud-
Based Project and Portfolio Management Services”,
Stamford, CT, USA, 2012.

[11] D. B. Stang and R. A. Handler, “MarketScope for Project and
Portfolio Management Software Applications”, Stamford, CT,
USA, 2012.

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 27 / 91

[12] Microsoft Corporation, “Microsoft Project Professional 2010.
Product Information.,” 2010. [Online]. Available:
http://www.microsoft.com/project/en-us/project-professional-
2010.aspx. [Accessed: 26-Jan-2013].

[13] Microsoft Corporation, “About Microsoft,” 2013. [Online].
Available:
http://www.microsoft.com/about/en/us/default.aspx.
[Accessed: 25-Jan-2013].

[14] Augeo Software SAS, “Augeo6 Product Description,” 2012.
[Online]. Available: http://www.augeo.com/page/augeo6.
[Accessed: 24-Jan-2013].

[15] Genius Inside, “Genius Project. Product Description.,” 2012.
[Online]. Available:
http://www.geniusinside.com/software/software. [Accessed:
24-Jan-2013].

[16] Planisware, “Planisware 5 information.,” 2011. [Online].
Available:
http://www.planisware.com/main.php?docid=12420.
[Accessed: 24-Jan-2013].

[17] Planview Inc., “Planview Enterprise description.,” 2013.
[Online]. Available:
http://www.planview.com/products/enterprise/. [Accessed:
24-Jan-2013].

[18] Project.net, “Project.net overview.,” 2013. [Online].
Available: http://www.project.net/overview. [Accessed: 24-
Jan-2013].

[19] Sciforma Corporation, “Sciforma 5.0 overview.,” 2012.
[Online]. Available: http://www.sciforma.com/page?id=927.
[Accessed: 24-Jan-2013].

[20] AtTask Inc., “attask product overview.,” 2012. [Online].
Available: http://www.attask.com/product. [Accessed: 24-Jan-
2013].

[21] Product Pattern Wiki. Available at:
http://kovachi.sel.inf.uc3m.es

[22] Gantt chart Product Pattern. Available at:
http://kovachi.sel.inf.uc3m.es/800-
spanish/801_libreria_de_patrones_de_producto/Diagrama_de
_Gantt

19Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 28 / 91

Comparing Two Architectural Patterns for
Dynamically Adapting Functionality in Online

Software Products

J. Kabbedijk, T. Salfischberger, S. Jansen
Department of Information and Computing Sciences

Utrecht University, The Netherlands
J.Kabbedijk@uu.nl, Tomas@salfischberger.nl, Slinger.Jansen@uu.nl

Abstract—Business software is increasingly moving towards
the cloud. Because of this, variability of software in order to
fit requirements of specific customers becomes more complex.
This can no longer be done by directly modifying the application
for each client, because of the fact that a single application
serves multiple customers in the Software-as-a-Service paradigm.
A new set of software patterns and approaches are required to
design software that supports runtime variability. This paper
presents two patterns that solve the problem of dynamically
adapting functionality of an online software product; the Com-
ponent Interceptor Pattern and the Event Distribution Pattern.
The patterns originate from case studies of current software
systems and are reviewed by domain experts. An evaluation
of the patterns is performed in terms of security, performance,
scalability, maintainability and implementation effort, leading to
the conclusion that the Component Interceptor Pattern is best
suited for small projects, making the Event Distribution Pattern
best for large projects.

Keywords—architectural patterns. quality attributes. software
architecture. variability.

I. INTRODUCTION

Software as a Service (SaaS) is a rapidly growing deploy-
ment model with a clear set of advantages to software vendors
and their customers. SaaS allows vendors to deploy changes to
applications more rapidly, which increases product innovations
while reducing support-costs as only a single version is to be
supported concurrently [1]. In the SaaS deployment model a
single application serves a large number of customers. These
customers are called tenants, which can be a single user or an
organisation with hundreds of users. Because all tenants use
the same application, the cost of development and setup of the
application can be amortized over all contracts.

The multi-tenant deployment model requires the appli-
cation to be aware of different tenants and their users, for
example in separating the data visible to different groups of
users. We define multi-tenancy as: “the property of a system
where multiple varying customers and their end-users share
the system’s services, applications, databases, or hardware
resources, with the aim of lowering costs”. Database designs
for multi-tenant aware software require specialized architec-
ture principles to accommodate multiple tenants [2]. One of
the challenges in multi-tenant application architectures is the
implementation of tenant-specific requirements [3]. Variability
of software to fit requirements of specific customers can no
longer be done by directly modifying the application for each

client, because a single application serves multiple customers.
A new set of software patterns and approaches are required to
design software that supports runtime variability. The patterns
vary in impact on the technical properties of the software like
performance and maintainability, impact on the cost-drivers of
the SaaS business model, and the requirements they can fulfil.

The concepts of variability and quality attributes are ex-
plained in Section II, after which the expert evaluation used is
explained in Section III. The architectural problem related to
variability, faced by software architects, is explained in Sec-
tion IV. The COMPONENT INTERCEPTOR PATTERN and the
EVENT DISTRIBUTION PATTERN, two patterns both solving
the problem of dynamically adapting functionality of online
business software, are presented in Section V. The patters
are compared in terms of security, performance, scalability,
maintainability and implementation effort, of which the results
in be found in a summarizing table in Section VII.

Please note; in the text, we set pattern names in SMALL
CAPS according to the convention by Alexander et al. [4].

II. RELATED WORK

Variability - The field of software variability has been the
subject of research from both the modeling perspective as well
as the technical perspective. Software variability modeling is
common in software product lines as described by Jaring and
Bosch [5]. The application of variability modeling as used in
product line variability [6] to software as a service environ-
ments has been described by Mietzner, Metzger, Leymann,
and Pohl [7]. Variability modeling as dicussed in the afore-
mentioned works contributes to the understanding of where the
application architecture needs to be able to accomodate change
or extension. Patterns play an important role in modeling and
solving variability in software products [8].

Svahnberg, van Gurp, and Bosch [9] propose feature di-
agrams as a modeling technique to describe the different
variants of feature in a software product. Svahnberg et al [9]
use their feature diagrams as the basis for a method to
identify variability in a product, constrain this variability, pick
a method of implementation for the variability and further
manage this variability point in the application lifecycle. The
main difference from the objectives of our research is that
Svahnberg et al. [9] describe implementation techniques for
variability per installation instance of the software, whereas
we focus on runtime variability in a multi-tenant context.

20Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 29 / 91

Quality Attributes - Benlian and Hess [10] identify se-
curity as one of the most important risk-factors perceived,
followed by performance risks. To assess security risks, SaaS
vendors need to include security as a quality attribute in their
design of the architecture. This leads to security as the first
desired quality attribute for business SaaS. Performance as an
important factor to SaaS users is closely related to the most
important factor as found by Benlian and Hess [10]; cost.
When performance is insufficient, clients are lost, when the
system uses too many resources to gain an acceptable level of
performance, cost is increased. A SaaS vendor must thus assess
the possible performance impact of changes to the software.
To control cost in business SaaS, the SaaS vendor needs to
utilize its opportunities for scalability to decrease the cost of
hardware or hosting fees (e.g. using scalable software to make
optimal use of cloud-hosting).

Another cost driver in SaaS is the cost of development
and maintenance of the software product. Maintenance cost is
generally decreased by having to maintain only a single version
instead of multiple previous releases. On the other hand this
maintainability cost-saving must not be lost while implement-
ing runtime variability. Thus scalability and maintainability
are also desired quality attributes for business SaaS. Another
way the implementation of runtime variability will influence
product cost is through implementation-cost. Development is a
cost-driver for SaaS, thus if one or more specialized developers
are required to implement a certain pattern this will influence
the final product cost.

The identified quality attributes are the following: Security
- The ability to isolate tenants from each other and the possible
impact of security breaches in custom components on other
parts of the system.
Performance - The utilization of computing, storage and
network resources by the application at a certain level of usage
by clients.
Scalability - The relative increase in capacity achieved by the
addition of computing, storage and network resources to the
system as well as the flexibility with which these resources
could be added to the system.
Maintainability - The ease with which the system can be
extended and potential problems can be solved.
Implementation Effort - The effort required to implement and
deploy a specific system.

III. RESEARCH APPROACH

In order to gather the patterns in this research, a design
science approach [11] was used in which the initial solutions
are observed in case studies in which one of the authors took
part as a consultant. The solutions are implemented in current
commercial software products. Solutions that are observed in
multiple at least three products are presented as patterns and
are evaluated by two domain experts as feedback mechanism.
The evaluation of the cases by experts enhances the validity
of the cases, as described by Runeson and Höst [12].

During each evaluation session, a pattern is discussed with
an expert, in a semi-structured way. Standard questions related
to the quality attributes are asked, after which issues are freely
discussed per quality attribute. The first expert selected is a
senior software architect in an international software consult-
ing firm specialized in large scale development of Enterprise

Java applications. His role is to investigate technologies and
methodologies to help design better architectures resulting in
faster development and more extensible software. A recent
project includes a multi-tenant administrative application stor-
ing security sensitive data for multiple organizations.

The second expert is a technology director and lead archi-
tect for an application used in distributed statistics processing
of marketing data, previously working in software performance
consulting for web-scale systems. His experience lies in the
field of high-performance distributed computing. The applica-
tion his company works on focuses of low-latency coordinated
processing of large volumes of data to calculate metrics used
for marketing. Performance and scalability are important areas
of expertise for their product.

IV. ARCHITECTURAL PROBLEM DEFINITION

Software product vendors not only need to offer a data
model that fits an organisation’s requirements, software func-
tionality also has to meet an organisation’s processes [13].
When tailor-made software is developed, it is possible to set
the requirements to exactly match the processes of a specific
organisation. For standard online software products this is not
possible and differences between requirements of organisation
have to be addressed at runtime.

A requirement for the ERP system of a manufacturing
company could be to send a notification to the department
responsible for transportation if tomorrow’s batch will be larger
than a certain size. If this requirement is not met by the
software product selected, the company could either decide
to select another software product or develop a tailor-made
application that does meet their requirements.

To allow for the addition of extra functionality in the
application a solution is needed that allow to configure this
functionality. This functional situation is modeled in Figure 1,
the envisioned functional situation. The StandardComponent is
a normal component of the software with default functionality,
this component has a set of ExtensionPoints. An Extension-
Point is a location within the normal workflow where there is
a possibility to add or change functionality. This functionality
is specified in an ExtensionComponent, which contains the
actual functionality that is to be executed at the specified
ExtensionPoint.

Fig. 1: Functional Model for adapting functionality

21Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 30 / 91

Fig. 2: Component Interceptor Pattern: System Model

V. DYNAMICAL FUNCTIONALITY ADAPTATION PATTERNS

This section presents two different patterns, both offering
a solution to dynamically adding functionality to a software
product.

Component Interceptor Pattern - The COMPONENT IN-
TERCEPTOR PATTERN as depicted in Figure 2 consists of only
a single application server. Interceptors are tightly integrated
with the application, because they run in-line with normal
application code. Before the StandardComponent is called the
interceptors are allowed to inspect and possibly modify the set
of arguments and data passed to the standard component. To
do this the interceptor has to be able to access all arguments,
modify them or pass them along in the original form. Running
interceptors outside of the application requires marshalling of
the arguments and data to a format suitable for transport,
then unmarshalling by the interceptor component and again
marshalling the possibly modified arguments to be passed on
to the standard component that was being intercepted. This is
impractical and involves a performance penalty [14].

Running the extension components inside the application-
server while supporting runtime variability requires support
for adding and changing interceptors at runtime. The system
model depicts this requirement in the form of a reloadable
container. In some implementations this could be as simple
as changing a source file, because the programming platform
used will interpret source code on the fly. Other platforms
require special provisions for reloading code, such as OSGi
for the Java platform or Managed Extensibility Framework for
the .NET platform.

Figure 3 depicts the interaction with interceptors involved.
Interaction with standard components that can be extended
goes through the interceptor registry. This registry is needed
to keep track of all interceptors that are interested in each
interaction. Without the registry the calling code would have
to be aware of all possible interceptors. As depicted, multiple
interceptors can be active per component. It is up to the
interceptor registry to determine the order in which interceptors
will be called. An example strategy would be to call the first
registered interceptor first or to register an explicit order when
registering the interceptors.

Each interceptor has the ability to change the data that is
passed to the standard component, modify the result returned
by the standard component, execute actions before or after

passing on the call or even skip the invocation of the next
step all together and immediately return. Immediately returning
would for example be used when the interceptor implements
certain extra validation steps and refuses the request based on
the outcome of the validation. As a result of these possibilities
the interceptors must be invoked in-line with the standard com-
ponent, the application cannot continue until all interceptors
have finished executing.

In the event distribution pattern the application generates
events at extension points, which are distributed by a broker. At
each extension point the standard component is programmed to
send an event indicating the point and appropriate contextual
data (e.g. which record is being edited) to a broker. For
example in a CRM system the standard component for editing
client-records sends a ClientUpdated event with the ID of
the client that was edited. Extension components listen for
these events and take appropriate actions based on the events
received. In the example of a ClientUpdated event an extension
component could be developed that sends a notification to an
external system to update the client details there.

Event Distribution Pattern - The system model in Fig-
ure 4 depicts the distributed nature of the EVENT DISTRIBU-
TION PATTERN. Standard components run in the application
server, sending events to a central broker, which can be run
outside of the application. Extension components are isolated
and can be on a separate physical server or run as separate
processes on the same server depending on capacity and scale
of the application. Components are loosely coupled, sharing
only the predefined set of events.

The standard components are unaware of which extension
components listen for their events, execution of extension com-
ponents is decoupled from the standard components. Executing
the extension components separately allows for independent
scalability of these components. Depending on system load
and the volume of events each component listens for, it is
possible to allocate the appropriate amount of resources to each
component. Because there is no interaction between listeners,
it is possible to execute all listeners in parallel if appropriate
for the execution environment.

Standard components publish events to the broker as de-
picted in the sequence diagram in Figure 5. The activation
of the standard component not necessarily overlaps with its
listeners. After publishing the event, a standard component is
free to continue execution. Depending on the fault tolerance
and nature of the events it is up to the standard component

Fig. 3: Component Interceptor Pattern: Sequence Diagram

22Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 31 / 91

Fig. 4: Event Distribution Pattern: System Model

to make a trade-off between guaranteed delivery at a higher
latency by waiting on the broker system to acknowledge
reception of the event or continue without waiting for such
an acknowledgement. If, for example, an event is only meant
to prime a cache for extra performance the loss of such a
message would not impact critical functionality of the system
while waiting for the message might mitigate any performance
gains. If on the other hand an event is used for updating an
external system for which no other synchronization method
is available the system needs guaranteed delivery to function
correctly. At design time this decision can be made on an event
by event basis depending on the capabilities of the messaging
system used.

Because of the one-way nature of events and decoupled
execution of extension components it is not possible for
an ExtensionComponent to stop standard functionality from
happening. In the observed system this was solved by allowing
ExtensionComponents to execute a compensating action in
their listener. The compensating action is sent from the listener
component back to the system independently of the original
action that caused the event. An example of such a compen-
sating action is an extension component that monitors changes
to certain records and reverts the change in case special
conditions are met. This approach has the added benefit that
any changes made by extension components are clearly visible
in audit logs, which simplifies tracing possibly unexpected
system behaviour back to an ExtensionComponent.

Fig. 5: Event Distribution Pattern: Sequence Diagram

VI. PATTERN COMPARISON

This section presents an analysis of both patterns on the
five presented quality attributes.

A. Security

When adapting functionality of an application, there is
always the possibility of introducing new security vulnera-
bilities. This is an inherent risk of extending an application.
The variability patterns do however influence how much larger
the attack surface becomes and how well a breach in one
of the components is isolated from other components. In the
COMPONENT INTERCEPTOR PATTERN the code handling the
new functionality becomes part of the application and will have
the ability to execute arbitrary code within the context of the
main application as depicted in Figure 2. It will also have
full access to any parameters passed to intercepted functions
as well as any returned values. A security breach in the
extension components (interceptors) is not isolated to only
those components unless extra security measures are imple-
mented to separate the components from the main application.
This isolation would however have an impact on performance
because of the nature of the integration.

The EVENT DISTRIBUTION PATTERN isolates the extension
components from the application by executing them in a
separate context based on incoming events as depicted in
Figure 3. This execution in a separate context allows for
more isolation between extension components and the main
application components. The components also have far more
limited access to standard functionality, because any change
the component wants to make has to go through explicitly
exported APIs or messages. Combined with event-sourcing,
any change to data as a result of custom functionality is fully
traceable including the original values [15].

B. Performance

The COMPONENT INTERCEPTOR PATTERN executes in-
terceptors within the context of the application. This results
in little overhead when executing the extension components,
because data does not need to be marshalled, unmarshalled
and transferred between applications. For security reasons it
could however be necessary to separate the interceptors from
the main application as described in the previous section. This
removes one of the performance advantages of the component

23Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 32 / 91

interceptor pattern because data must be transferred between
the different contexts.

Applications implementing the EVENT DISTRIBUTION PAT-
TERN require the setup of a message broker that handles
all events coming from the application and going into the
extension components. This requires extra processing and
network resources and in the case of durable message delivery
mechanisms also storage resources reading and writing the
messages. To transfer the events from the application via a
message broker to the extension components the events must
be marshalled into a format suitable for transferring over a
network and unmarshalled upon reception by the extension
component, these steps add non-trivial cost to the operations.

C. Scalability

Applications using the COMPONENT INTERCEPTOR PAT-
TERN will execute interceptors within the context of the
application. This has performance advantages described in the
previous section, however the interceptors cannot be scaled
independently of the application. When a high number of in-
terceptors exists requiring significant resources the application
as a whole needs more application servers to execute. The
interceptors must be available to all application servers in that
case.

The EVENT DISTRIBUTION PATTERN on the other hand
decouples the execution of the event handlers from the applica-
tion by running them on a logically separate application server.
Because events are handled outside the execution flow of the
standard components they can also be distributed to multiple
systems. Adding extra application servers subscribing to the
same events in the message broker the processing capacity of
events could increase linearly. For the EVENT DISTRIBUTION
PATTERN this requires a message broker system that is able
to handle the increasing numbers of messages. Those systems
are available off the shelf from open source projects like Fuse
Message Broker, JBoss Messaging, RabbitMQ and commercial
offerings like Microsoft BizTalk, Oracle Message Broker,
Cloverleaf and others.

D. Maintainability

When adapting the functionality of an application, main-
tainability is also affected by the necessity to make sure future
extensions and modifications are compatible with any custom
functionality implemented for tenants. This is a trade-off
between the flexibility and depth with which ExtensionCompo-
nents can affect the application and the impact that changes to
the application will have on the ExtensionComponents. As an
example of the aforementioned trade-off a simple system with
only a single ExtensionPoint will have a much lower impact
on maintainability than a complex system with a very high
number of ExtensionPoints. This however affects both patterns
equally.

The way the patterns decouple ExtensionComponents from
StandardComponents is however a differentiating factor. In the
COMPONENT INTERCEPTOR PATTERN the ExtensionCompo-
nent is more tightly integrated with the StandardComponent
because calls to a StandardComponent at an ExtensionPoint
go through the interceptor providing all parameters and re-
turn values of the call. When changing calls by adding or

removing parameters this will directly affect the input of
each ExtensionComponent registered from that ExtensionPoint.
When applying the event distribution pattern the integration
is more decoupled because calls to StandardComponents are
not directly affected by the ExtensionComponents. Instead the
ExtensionComponent receives a standardized event-message
and uses a provided API to send any changes or other
actions back to the application. This allows for changes to
the StandardComponent without changing the event-messages
going to the ExtensionComponent. At the same time the API
used by ExtensionComponents to influence the application
can be kept stable for small changes or versioned to support
future compatibility using methods like the one described by
Weinreich, Ziebermayr, and Draheim [16].

E. Implementation effort

When implementing a pattern for adding functionality to
an application we distinguish two factors determining the
implementation effort. The first factor is the direct effort
required to implement the pattern in the system, e.g. adding
ExtensionPoints to the StandardComponents of the applica-
tion. The second factor is the effort necessary to implement
ExtensionComponents. Later changes to the components might
also require development effort, this is however excluded from
implementation effort because it is covered under maintainabil-
ity. Both patterns require the definition and implementation of
ExtensionPoints, the way these points are implemented differs
per pattern. When implementing the COMPONENT INTERCEP-
TOR PATTERN it is necessary to setup an Interceptor Registry
and modify calls to StandardComponents to go through the
Interceptor Registry.

In the EVENT DISTRIBUTION PATTERN, a message broker
system must be setup to handle the event-messages flowing
from StandardComponents to ExtensionComponents. The ap-
plication still has to be modified at the ExtensionPoints to
send the event-messages belonging to that ExtensionPoint. A
larger difference between the two patterns emerges in the
way they influence the system. Using component interceptor
pattern each interceptor has full access to the application
because it executes within the same context. Communication
with StandardComponents from within ExtensionComponents
could use normal function-calls just like any other part of the
system. This differs from the event distribution pattern where
the ExtensionComponents execute in a separate environment
outside the context of the StandardComponents. Any interac-
tion between ExtensionComponents and StandardComponents
needs to go through an external interface. Depending on
the type of system and the requirements for interaction this
requires the development of some sort of (webservice-)API
for the ExtensionComponents to use.

The second factor of implementation effort, the effort
required to implement ExtensionComponents, affects both
patterns. In the COMPONENT INTERCEPTOR PATTERN the
implementation requires the development of an interceptor,
which executes the correct behaviour when certain conditions
are met. The EVENT DISTRIBUTION PATTERN requires the
development of ExtensionComponents, which listen for the
right messages and execute the correct functionality when
certain conditions are met.

24Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 33 / 91

VII. CONCLUSION

Within this paper the COMPONENT INTERCEPTOR PAT-
TERN and the EVENT DISTRIBUTION PATTERN are compared
in terms of security, performance, scalability, maintainability
and implementation effort. Both patterns offer a solution
for dynamically adapting functionality of an online software
product, both do so in different ways.

The COMPONENT INTERCEPTOR PATTERN performs less
in terms of scalability, because the interceptors can not scale
independently of the application. When scaling up in terms
of number of servers, the interceptors need to be available
to all servers. Related to this issue, the maintainability of
the COMPONENT INTERCEPTOR PATTERN is also less than
that of the EVENT DISTRIBUTION PATTERN. This is caused
by the fact the interceptors can not be decoupled from the
rest of the system, creating a software product which will
be difficult to maintain. The EVENT DISTRIBUTION PATTERN
offers more isolation in terms of security than the other
pattern, but requires more processing and network resources
in terms of performance. Related to implementation effort, the
COMPONENT INTERCEPTOR PATTERN is easier to implement,
because no message broker or related services are required.
Please see Table I for an overview of the evaluation of both
patterns. Plus and minus signs are used to indicate whether a
characteristic is positive or negative. Keep in mind all scores
are relative scores compared to the other pattern.

In general, the COMPONENT INTERCEPTOR PATTERN
serves best for adapting functionality of small projects,
where the EVENT DISTRIBUTION PATTERN is better for large
projects, considering the quality attributes described in this
paper. For future work we are currently setting up larger
evaluation sessions in which different patterns will be evalu-
ated using experts. The evaluation of patterns is particularly
difficult, because you shoud evaluate an abstract solution
instead of a specific implementation. We are working on a
structured method for comparing sets of patterns and making
use of the implicit knowledge of experts. By doing this, we aim
at evaluation the solution, instead of just an implementation.

ACKNOWLEDGMENT

The authors would like to thank Allard Buijze and Koen
Bos for helping in reviewing the results of the research.

REFERENCES

[1] A. Dubey and D. Wagle, “Delivering software as a service,” The
McKinsey Quarterly, vol. 6, 2007.

[2] S. Aulbach, T. Grust, D. Jacobs, A. Kemper, and J. Rittinger, “Multi-
tenant databases for software as a service: schema-mapping techniques,”
in Proceedings of the ACM SIGMOD international conference on
Management of Data. ACM, 2008, pp. 1195–1206.

[3] S. Jansen, G. Houben, and S. Brinkkemper, “Customization realization
in multi-tenant web applications: case studies from the library sector,”
Lecture Notes in Computer Science, pp. 445–459, 2010.

[4] C. Alexander, S. Ishikawa, and M. Silverstein, A pattern language:
towns, buildings, construction. Oxford University Press, USA, 1977,
vol. 2.

[5] M. Jaring and J. Bosch, “Representing variability in software product
lines: A case study,” Software Product Lines, pp. 219–245, 2002.

[6] J. Bayer, S. Gérard, O. Haugen, J. Mansell, B. Moller-Pedersen,
J. Oldevik, P. Tessier, J. Thibault, and T. Widen, “Consolidated product
line variability modeling,” 2006.

[7] R. Mietzner, A. Metzger, F. Leymann, and K. Pohl, “Variability
modeling to support customization and deployment of multi-tenant-
aware software as a service applications,” in Proceedings of the ICSE
Workshop on Principles of Engineering Service Oriented Systems.
IEEE Computer Society, 2009, pp. 18–25.

[8] J. Kabbedijk and S. Jansen, “The role of variability patterns in multi-
tenant business software,” in Proceedings of the Joint 10th Working
IEEE/IFIP Conference on Software Architecture and 6th European
Conference on Software Architecture Companion. ACM, 2012, pp.
143–146.

[9] M. Svahnberg, J. Van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques,” Software: Practice and Experience, vol. 35,
no. 8, pp. 705–754, 2005.

[10] A. Benlian and T. Hess, “Opportunities and risks of software-as-a-
service: Findings from a survey of it executives,” Decision Support
Systems, vol. 52, no. 1, pp. 232–246, 2011.

[11] A. Hevner and S. Chatterjee, “Design science research in information
systems,” Design Research in Information Systems, pp. 9–22, 2010.

[12] P. Runeson and M. Höst, “Guidelines for conducting and reporting case
study research in software engineering,” Empirical Software Engineer-
ing, vol. 14, no. 2, pp. 131–164, 2009.

[13] W. Van der Aalst, A. ter Hofstede, and M. Weske, “Business process
management: A survey,” Business Process Management, pp. 1–12,
2003.

[14] B. Carpenter, G. Fox, S. Ko, and S. Lim, “Object serialization for
marshalling data in a java interface to mpi,” in Proceedings of the ACM
Conference on Java Grande. ACM, 1999, pp. 66–71.

[15] M. Fowler, Patterns of enterprise application architecture. Addison-
Wesley Professional, 2003.

[16] R. Weinreich, T. Ziebermayr, and D. Draheim, “A versioning model
for enterprise services,” in 21st International Conference on Advanced
Information Networking and Applications Workshops, vol. 2. IEEE,
2007, pp. 570–575.

TABLE I: Overview of both Dynamical Functionality Adaptation Patterns

Component Interceptor Pattern Event Distribution Pattern

Security - Extension components execute within application scope. + Isolation of extension components and full traceability of actions by
extension components.

Performance + Direct execution of extension components. - Network overhead for calling extension components.
- The broker system requires extra resources.

Scalability - No independent scaling of extension components. + Independent scaling of extension components.
- Does not scale to high number of extension components. + Extension components cannot delay standard components.

- Requires scalable message-broker system.

Maintainability - Tight coupling of extension components. + Loose coupling of extension components.

Implementation Effort + Direct communication with standard components. - Requires the setup of a message broker system.
+ Access to all data by design. - Requires a separate mechanism to communicate with the application.

25Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 34 / 91

Using Patterns to Move the Application Data Layer
to the Cloud

Steve Strauch, Vasilios Andrikopoulos, Uwe Breitenbücher, Santiago Gómez Sáez, Oliver Kopp, Frank Leymann
Institute of Architecture of Application Systems (IAAS),

University of Stuttgart, Stuttgart, Germany
{firstname.lastname}@iaas.uni-stuttgart.de

Abstract—Cloud services allow for hosting applications par-
tially or completely in the Cloud by migrating their components
and data. Especially with respect to data migration, a series of
functional and non-functional challenges like data confidentiality
arise when considering private and public Cloud data stores. In
this paper we identify some of these challenges and propose a
set of reusable solutions for them, organized together as a set of
Cloud Data Patterns. Furthermore, we show how these patterns
may impact the application architecture and demonstrate how
they can be used in practice by means of a use case.

Keywords—Data layer; Cloud applications; Data migration;
Cloud Data Patterns; Cloud data stores.

I. INTRODUCTION

Cloud computing has become increasingly popular with
the industry due to the clear advantage of reducing capital
expenditure and transforming it into operational costs [1]. To
take advantage of Cloud computing, an existing application
may be moved to the Cloud or designed from the beginning to
use Cloud technologies. Applications are typically built using a
three layer architecture model consisting of a presentation layer,
a business logic layer, and a data layer [2]. The presentation
layer describes the application-users interactions, the business
layer realizes the business logic and the data layer is responsible
for application data storage. The data layer is in turn subdivided
into the Data Access Layer (DAL) and the Database Layer
(DBL). The DAL encapsulates the data access functionality,
while the DBL is responsible for data persistence and data
manipulation. Figure 1 visualizes the positioning of the various
layers.

Each application layer can be hosted using different Cloud
deployment models. Possible Cloud deployment models, also
shown in Figure 1, are: Private, Public, Community, and
Hybrid Cloud [3]. Figure 1 shows the various possibilities
for distributing an application using the different Cloud types.
The “traditional” application not using any Cloud technology
is shown on the left of the figure. In this context, “on-premise”
denotes that the Cloud infrastructure is hosted inside the
company and “off-premise” denotes that it is hosted outside
the company.

In this work, we focus on the lower two layers of Figure 1,
the DAL and DBL layers of the application. Application data is
typically moved to the Cloud because of, e. g., Cloud bursting,
data analysis or backup and archiving. Using Cloud technology
leads to challenges such as incompatibilities with the database
layer previously used or the accidental disclosing of critical
data by, e. g., moving them to a Public Cloud. Incompatibilities

in the database layer may refer to inconsistencies between the
functionality of an existing traditional database layer, and the
functionality and characteristics of an equivalent Cloud Data
Hosting Solution [4]. For instance, the Google App Engine
Datastore [5] is incompatible with Oracle Corporation MySQL,
version 5.1 [6], because the Google Query Language [7]
supports only a subset of the functionality provided by SQL,
e. g., joins are not supported. An application relying on such
functionalities cannot therefore have its data store moved to the
Cloud without deep changes to its implementation. It has to be
noted here that, for the purposes of this work, we assume that
the decision to migrate the data layer to the Cloud has already
been made based on criteria such as cost, effort etc. [8], [9].

The contribution of this paper is the identification of such
challenges and the description of a set of Cloud Data Patterns
as the best practices to deal with them. As defined in [10], a
Cloud Data Pattern describes a reusable and implementation
technology-independent solution for a challenge related to the
data layer of an application in the Cloud for a specific context.
For this purpose, in the following we present an initial catalog
of Cloud Data Patterns dealing with functional, non-functional
and privacy-related aspects of having the application data layer
realized in the Cloud. The Cloud Data Patterns are geared
towards the Platform as a Service (PaaS) delivery model [3].
The presented list of the patterns is a result of our collaboration
with industry partners and research projects. We do not claim
that the list of patterns is complete and we plan to expand it
in the future.Overview of Cloud Application Hosting Topologies

Traditional

Ap
pl
ic
at
io
n
La
ye
rs

Presentation
Layer

Application

Business
Layer

Data Access
Layer

Database
Layer

Presentation
Layer

Business
Layer

Data Access
Layer

Database
Layer

Private
Cloud

Community
Cloud

Deployment
Models

Hybrid Cloud

Public
Cloud

Presentation
Layer

Presentation
Layer

Business
Layer

Business
Layer

Data Access
Layer

Data Access
Layer

Database
Layer

Database
Layer

Data
Layer

Figure 1: Overview of Cloud Deployment Models and
Application Layers

26Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 35 / 91

The presentation of the patterns uses the format defined
by Hohpe and Woolf [11], consisting of the description of a
context where the pattern is applicable, the challenge posed,
external or internal forces that impose constraints that make the
problem difficult to solve, a proposed solution for the challenge,
detailed technical issues (as sidebars), the results of applying
the proposed solution in the defined context, an example of use,
and other patterns to be considered (next). A representative
icon and a graphical sketch of the pattern are also provided. In
addition, we show how these patterns can be used in practice
by means of a use case.

The remainder of this paper starts with providing a motivat-
ing scenario (Section II) highlighting some of the challenges
that need to be addressed in the following sections. A set of
functional Cloud Data Patterns are presented in Section III as
best practices for addressing these challenges. Sections IV and V
summarize and update some of the patterns we defined for the
same purposes in [4] and [10], respectively, but with respect to
Quality of Service and data confidentiality. Section VI discusses
the impact of applying these patterns to the application layers
and evaluates them in practice using the motivating scenario
of Section II. A presentation of related work is contained in
Section VII; conclusions and future work in Section VIII.

II. MOTIVATING SCENARIO

For purposes of an illustrative example let us consider the
case of a health insurance company in Germany. As a result of
the increase of the numbers of its clients, the company stores
their data in two data centers in different parts of Germany.
The data centers, covering geographical regions A and B,
respectively, form a private Cloud data hosting solution that
offers a uniform access point and view of the data to the
various applications used by the employees of the company.
The company is required to provide access to an external auditor
to the financial transactions processed by the company. The
auditor essentially executes a series of predefined complex
queries on the financial transactions data at irregular intervals
and reports back to the company and the responsible authorities
their findings. The health insurance company however is also
obliged by law to protect the personal data privacy and the
confidentiality of the medical record of its clients. For this
purpose, the company takes special care to anonymize the
results of the queries executed by the auditor in order to ensure
that no client information is accidentally exposed.

Providing the external auditor with direct access to the
database of the company raises a series of concerns about a)
ensuring the security of the company-internal data, and b) the
performance of the company systems, as an indirect result
of the unpredictable additional load imposed by the complex
queries executed by the auditor. As a solution to these issues, it
is proposed to use a public Cloud data hosting solution provider
and migrate a consistent replica of the financial transaction
records to the public Cloud, stripped of any personal data. The
auditing company would then be able to retrieve the necessary
information without burdening the company systems. Such a
migration to the Cloud however, even if only partial, requires
addressing different kinds of challenges: confidentiality-related
(ensuring that it is impossible to recreate the medical records
and other personal information of the company clients using the
data in the public Cloud), functionality-related (providing both

all the necessary data and the querying mechanisms for the
auditor to operate as required), and non-functional (ensuring
that the partial migration does not encumber in any way the
performance of the company systems). The following sections
discuss a series of Cloud Data Patterns that address these
issues.

III. FUNCTIONAL PATTERNS

Cloud data stores can be considered as appliances where a
fixed set of functionality is provided [12]. Cloud data stores
include SQL and NoSQL solutions [13], [14]. Each solution
is geared towards a specific application domain and therefore
does not come with all possible features. Furthermore, the
offered functionalities may be configurable but not extensible.
Functional Cloud Data Patterns provide solutions for these
challenges. More specifically:

A. Data Store Functionality Extension

The Data Store Functionality Extension pattern adds a
missing functionality to a Cloud data store.

Context: A Cloud data store does not inherently
support all functionalities usually offered by a
traditional data store. For instance, the Cloud data
store might not support data joins. The choice of
which data store to use is fixed by the application

requirements or contractual obligations and therefore it is not
possible to replace the data store with an equivalent one offering
the missing functionality.

Challenge: How can a Cloud data store provide a missing
functionality?

Forces: The missing (but required) functionality might be
implemented in the business layer. An example of missing func-
tionality are joins. Implementation of the missing functionality
on a higher application layer requires all data to be retrieved
from the database layer and leads to increased network load.

Solution: A component implements the required function-
ality as an extension of the data store, either by offering an
additional functionality, or by adapting one or more of the
existing functionalities offered by the data store. The extension
component is placed within the Cloud infrastructure of the
Cloud data storage. A low distance (in terms of network
performance) ensures low latency between the extension and
the data store.

Sidebars: The additional or extended functionality code has
to be wrapped into an application, which can be hosted in the
Cloud. The access to the data store of the Cloud provider from
this application is done via the API supplied by the provider.
The code in the data access layer has to be adjusted accordingly,
denoted by “Data Access Layer*” in Figure 2 case (a). This
means that each data access call using the required functionality
has to be replaced by a call to the component implementing
the corresponding data store functionality extension.

Results: The Cloud data store functionality is extended.
Assuming all additional functionality required (and not provided
by the Cloud data store) can be implemented within the
component implementing the functionality extension, there
is no adjustment or modification of the business layer required.

27Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 36 / 91

Sketch Data Store Functionality Extension / Emulator for Stored Procedures

Traditional

Presentation
Layer

Application

Business
Layer

Data Access
Layer*

Private
Cloud

Community
Cloud

Deployment
Models

Public
Cloud

Database
Layer

Database
Layer*

Legend

Dataflow

Migration

Modified Component *

A
p

p
lic

at
io

n
 L

ay
er

s
(a) (b)

Figure 2: Sketch of (a) Data Store Functionality Extension and (b) Emulator of Stored Procedures

Example: The database layer of an application built on
Oracle Corporation MySQL version 5.1 [6], is moved to Google
App Engine Datastore [5] by Google Inc. As a result, the
database layer functionality is incompatible, because the Google
Query Language [7] supports only a subset of the functionality
provided by SQL, e. g., join functionality is not supported.
As the application requires join functionality, this additional
functionality has to be provided by the component implementing
the join functionality.

Next: In case functionality for stored procedures has to be
added, the “Emulator of Stored Procedures” pattern has to be
considered.

B. Emulator of Stored Procedures

The Emulator of Stored Procedures pattern is a special
case of the Data Store Functionality Extension pattern see
case (b) in Figure 2, where an extension component is built
outside the data store, containing a set of predefined groups
of commands to be executed by the data store. While this is
a very common mechanism in traditional data stores, many
Cloud data stores do not support it natively. Due to its ubiquity
and usefulness we therefore define a separate pattern for it.

Context: Stored procedures “are application pro-
grams that execute within the database server
process” [15]. A Cloud data store does not
inherently support stored procedures as most
traditional data stores do. Changing the provider

of the Cloud data store might not be an option, because of
other advanced features provided or due to specific customer
requirements.

Challenge: How can a Cloud data store not supporting
stored procedures provide such functionality?

Forces: To keep network traffic low, the number of requests
to the database layer should be minimized. Thus, the stored
procedure code should not run on-premise, but within the Cloud
infrastructure of the Cloud data store.

Solution: An emulator of stored procedures is placed within
the Cloud infrastructure of the Cloud data storage. A low
distance (measured in terms of network performance) ensures
low latency between the emulator and the data store and reduces
communication overhead.

Sidebars: The stored procedure code has to be wrapped
into an application, which can be hosted in the Cloud. The
access to the data store of the Cloud provider is done via the
API supplied by the provider. The code of the data access
layer has to be adjusted accordingly, denoted by “Data Access
Layer*” in Figure 2 case (b). This means that each call to the
stored procedure has to be replaced by a call to the emulator.

Results: Instead of emulating the stored procedure func-
tionality in the business layer, the functionality is provided as
an application in the Cloud. The number of requests from the
data access layer to the database layer is reduced as the work
is done by the stored procedure emulator. Assuming the data
transfer between nodes in the provider’s Cloud infrastructure
is free and the stored procedure emulator is hosted there, then
costs are also reduced.

Example: The database layer of an application built on
Microsoft SQL Server with stored procedures is moved to
Microsoft SQL Azure Database. As Microsoft SQL Azure
does not support full text search stored procedures [16], this
functionality has to be emulated.

Next: In case more functionality has to be added, the “Data
Store Functionality Extension” pattern has to be considered.

IV. NON-FUNCTIONAL PATTERNS

We previously investigated non-functional patterns with
focus on providing solutions for ensuring an acceptable Quality
of Service (QoS) level by means of scalability in case of
increasing data read or data write load [17]. In the following,
we provide an overview on these non-functional patterns
focusing on their context, challenge, and solution. When
considering the data rather than the database system, there
are two scaling options available: vertical and horizontal data

28Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 37 / 91

scaling. Vertical data scaling can be achieved by moving the
data to a more powerful database system, which offers better
performance, advanced functionalities, or both. Horizontal data
scaling is based on partitioning the data according to functional
groups [18]. Examples for functional groups are European
customers and American customers. Each functional group
may be itself distributed among different database systems to
increase search speed. This method is also called sharding [19].

A. Local Database Proxy

The Local Database Proxy enables read scalability by
requiring a master/multiple slave model and forwarding read
requests to any read replica.

Context: A Cloud data store does not inherently
support horizontal scalability for data reads.
When the data read load of the application
permanently increases, e. g., due to increased
user acceptance and usage, a mechanism for

horizontally scaling read requests is required. Additionally,
the business logic of processing user requests is also moved to
the Cloud.

Challenge: How can a Cloud data store not supporting
horizontal data read scalability provide that functionality?

Solution: The Cloud data store is configured using a single
master/multiple slave model. The master handles data writes
and the slaves are used as replicas serving read requests only. In
case the application has to deal with stale data, the replication
of data may be lazy. A proxy component is locally added below
each data access layer. All requests from each data layer are
routed through the respective proxy. The proxy routes data read
requests to any slave and write requests to the master.

B. Local Sharding-Based Router

The Local Sharding-Based Router enables read and
write scalability by requiring the independent splitting and
distributing of data into functional groups and forwarding read
and write requests to the corresponding shard.

Context: A Cloud data store does not inherently
support horizontal scalability for data reads and
writes. When the data read load of the application
permanently increases, e. g., due to increased user
utilization, a mechanism for horizontally scaling

read requests to the data store is required. Furthermore, a
permanent high data update rate of the application requires
also horizontally scaling for data writes. The business logic of
processing user requests is moved to the Cloud.

Challenge: How can a Cloud data store not supporting
horizontal data read and write scalability provide that function-
ality?

Solution: The data to be stored in the Cloud are split
horizontally. This means that tables with many rows are split
into several data stores. Each data store is assigned a distinct
number of rows of the original table. This technique is called
“sharding” [19]. A dedicated sharding-based router is added
locally below each data access layer. All requests from each
data layer are routed through the respective sharding-based

router. The local sharding-based router forwards data read and
write requests to the appropriate Cloud data store.

V. CONFIDENTIALITY PATTERNS

In our previous work [10], we presented Cloud Data Patterns
for confidentiality. They deal with data that have to be kept
private and secure, commonly referred to as “critical data”. In
the following, we present and update these patterns focusing
on their context, challenge, and solution.

A. Confidentiality Level Data Aggregator

Critical data can be categorized into different confidentiality
levels. As data are not always categorized by confidentiality, or
categorized using different confidentiality categorizations, the
confidentiality level has to be harmonized. The Confidentiality
Level Data Aggregator provides one confidentiality level
for data from different sources with potentially different
confidential categorizations on different scales.

Context: The data formerly stored in one tradi-
tionally hosted data store is separated according
to the different confidentiality levels and stored in
different locations. The business layer is separated
into the traditionally hosted part processing the

critical data, and the part hosted in the public Cloud processing
the non-critical data. As the application accesses data from
several data sources, the different confidentiality levels of the
data items have to be aggregated to one common confidentiality
level. This builds the basis for avoiding disclosure of critical
data by passing it to the public Cloud.

Challenge: How can data of different confidentiality levels
from different data sources be aggregated to one common
confidentiality level?

Solution: An aggregator retrieves data from all Cloud data
stores. The aggregator is placed within the Cloud infrastructure
of the Cloud data storage with the highest confidentiality
level. Since it must be able to process data with the highest
confidentiality level, it may not be placed where data with a
lower level of confidentiality reside. As a consequence, the
aggregator has to be placed in a location where the demands
of the highest confidentiality level are fulfilled.

B. Confidentiality Level Data Splitter

The Confidentiality Level Data Splitter splits data according
to pre-configured privacy levels. This is required when an
application writes data to multiple data stores with different
confidentiality levels.

Context: The data formerly stored in one tradi-
tionally hosted data store is separated between
data stores with different confidentiality levels.
As the application writes data to several data
stores, the data have to be categorized and split

according to their confidentiality level. This builds the basis
for avoiding disclosure of critical data when storing them in
the public Cloud.

Challenge: How can data of one common confidentiality
level be categorized and split into separate data parts belonging
to different confidentiality levels?

29Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 38 / 91

Solution: A splitter is placed within the infrastructure of
the data access layer of the application. Thus, additional data
movement, network traffic, and load can be minimized. The
splitter writes data to all Cloud data stores. As the splitter
processes data with the highest confidentiality level, it has
to be placed in a location where the demands of the highest
confidentiality level are fulfilled.

C. Filter of Critical Data

The Filter of Critical Data ensures that no confidential
data are disclosed to the public. The filter enforces that no
data leaves the private Cloud by filtering out critical data.

Context: The private Cloud data store contains
both critical and non-critical data. To prevent
disclosure of the critical data, it has to be enforced
that the critical data do not leave the private Cloud.
The logic implemented in the business layer is

split into one part processing critical and one part processing
non-critical data. The party implementing and/or hosting the
business logic for processing the non-critical data cannot be
trusted.

Challenge: How can data-access rights be ensured when
moving the database layer into the private Cloud together with
a part of the business layer, as well as a part of the data access
layer to the public Cloud?

Solution: A filter for the critical data is placed within the
infrastructure of the private Cloud data store. All requests to
the private Cloud data store have to be directed to the filter.
The private Cloud data store is only reachable through the filter.
Requests for critical data originating off-premises are denied
by the filter.

D. Pseudonymizer of Critical Data

The Pseudonymizer of Critical Data implements
pseudonymization. Pseudonymization is a technique to provide
a masked version of the data to the public while keeping the
relation to the non-masked data in private [20]. This enables
processing of non-masked data in the private environment
when required.

Context: The private Cloud data store contains
critical and non-critical data. The business layer
is partially moved to the public Cloud and needs
access to data. The logic implemented in the
business layer is split into one part requiring

critical data, and one where critical data in pseudonymized
form is sufficient for processing. The party implementing and/or
hosting the business logic for processing pseudonymized data
may not be trusted. Furthermore, passing critical data may be
restricted by compliance regulations. It also is required to be
able to relate the pseudonymized data processing results from
the public business layer back to the critical data.

Challenge: How can a private Cloud data store ensure
passing critical data in pseudonymized form to the public
Cloud?

Solution: A pseudonymizer of data is placed within the
infrastructure of the private Cloud data storage. All requests
to the private Cloud data storage have to be directed to the
pseudonymizer. The private Cloud data storage is only reachable
by the pseudonymizer. Results of requests for critical data
originating off-premises are pseudonymized.

E. Anonymizer of Critical Data

The Anonymizer of Critical Data implements
anonymization [20]. Anonymization is a technique to
provide a reduced version of the critical data to the public
while ensuring that it is impossible to relate the reduced
version to the critical data.

Context: The private Cloud data store contains
both critical and non-critical data. The business
layer is partially moved to the public Cloud and
needs access to data. To prevent disclosure and
misuse, the critical data are anonymized before

being passed to the public Cloud. The logic implemented in the
business layer is split into one part requiring critical data, and
one where critical data in anonymized form are sufficient for
processing. The party implementing and/or hosting the business
logic for processing the anonymized data cannot be trusted.
It is not required to be able to relate the anonymized data
processing results from the public business layer back to the
critical data.

Challenge: How can a private Cloud data store ensure
passing critical data in anonymized form to the public Cloud?

Solution: An anonymizer is placed within the infrastructure
of the private Cloud data store. All requests to the private Cloud
data store have to be directed to the anonymizer. The private
Cloud data store is only reachable through the anonymizer.
Results of requests for critical data originating off-premises
are anonymized.

For more details on these patterns, the interested reader is
referred to [10]. In the following sections we combine these
patterns with the ones we defined in Section III and Section IV
in order to demonstrate how they can be used in practice.

VI. CLOUD DATA PATTERNS IN PRACTICE

Table I provides an overview of the impact created by the
application of the patterns presented in the previous sections
to the various application layers. Table I distinguishes between
the layer the patterns are supposed to be realized in, and the
ones that may require additional modifications as a result of
applying them.

As the functional patterns are used in order to add additional
functionality to a Cloud data store, they are realized in the
database layer. In case the extended functionality should be
used for a data request, the request has to go through the
realization of the functional pattern. Thus, adaptations of the
data access layer are also required.

Non-functional and confidentiality patterns are supposed
to be realized in the data access layer. The confidentiality
patterns Confidentiality Level Data Aggregator, Filter of Critical
Data, Pseudonymizer of Critical Data, and Anonymizer of

30Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 39 / 91

TABLE I: Relation between Cloud Data Patterns and Application Architecture Layers

Cloud Data Patterns / Application Layers Business Layer Data Access Layer Database Layer

Data Store Functionality Extension � 4 ♦
Emulator of Stored Procedures � 4 ♦
Local Database Proxy � 4♦ 4
Local Sharding-Based Router � 4♦ 4
Confidentiality Level Data Aggregator 4 4♦ �
Confidentiality Level Data Splitter � 4♦ �
Filter of Critical Data 4 4♦ �
Pseudonymizer of Critical Data 4 4♦ �
Anonymizer of Critical Data 4 4♦ �

Legend: � has no impact on, ♦ is realized in, 4 requires adaptations to

Critical Data require also adaptations of the business layer of
the application. This is because, by realizing the corresponding
patterns, the business logic might not have the same view on
the data as before since the business layer has to deal with data
in aggregated, filtered, pseudonymized or anonymized form.

As patterns are related to each other — to be considered as
a whole and to be composable [11], we have chosen the form of
a piece of a puzzle for the pattern icons. Whether two or more
Cloud Data Patterns are composable depends on the semantics
and functionality of each of the patterns. Moreover, the specific
requirements and context of the needed solution effect whether
a composition of patterns is required. Thus, we do not claim
that all Cloud Data Patterns are composable with each other.
A deeper investigation under which conditions a composition
of Cloud Data Patterns is possible, and what are the resulting
semantics, is required. The investigation and results leading to
a Cloud Data Pattern language are part of our future work.

In the following, we discuss how the functional, non-
functional, and confidentiality patterns can be used in practice
based on the motivating scenario introduced in Section II.
Figure 3 provides an overview of the realization of the scenario
using Cloud Data Patterns. More specifically, in order to provide
horizontal scalability for reads and writes to the data of the
clients and their transactions, the Local Sharding-Based Router
pattern is used. The data are separated between the two data
centers according to geographical location.

The Google App Engine Datastore is chosen for outsourcing
the storage of the data on financial transactions, configured
accordingly. The client information and their corresponding
medical records are critical data to be kept only in the
company’s private Cloud. Financial transactions information
will appear both in the private and in the public Cloud. In order
to keep both the data stored in the private data store and the
one outsourced to the public Cloud consistent, data updates and
inserts should be done in parallel to both the private and the
public part of the database layer. However, only a part of the
financial data is necessary for the auditing (e. g., client names
can be removed) and the remaining can be pseudonymized
before moving to the public Cloud (e. g., bank account numbers
replaced by serial IDs). A composition of the Filter of Critical
Data and the Pseudonymizer of Critical Data is used to fulfill
both requirements. The filter is configured so that only data
on financial transactions pass it. After passing the filter, the
information on financial transactions is pseudonymized before

it is stored in the public Cloud. Storage of data on the auditing
company side can be done either in a private Cloud or in the
traditional manner; this is out of the scope of our discussion.

Due to the challenges identified in the motivating example
regarding the data access of the auditing company, the query
results must not contain any relations concerning clients
and their corresponding medical records or personal data.
Therefore, this information has to be completely deleted before
passing the query results to the auditing company (instead of
simply obfuscating this relation by using pseudonymization).
In addition, the queries to be executed by the auditor have to
be agreed upon in advance. For these purposes, the realization
uses a composition of the Anonymizer of Critical Data and the
Emulator of Stored Procedures patterns. The emulator is used
to predefine and restrict the data queries allowed to be executed
by the auditing company. The Anonymizer of Critical Data
additionally ensures the removal of any critical information
from the results of the queries. A combination of functional,
non-functional, and confidentiality patterns can therefore be
used in tandem to address the requirements of the use case
posed by the motivating scenario.

VII. RELATED WORK

Pattern languages defining reusable solutions for recurring
challenges in architecture have been first proposed by Christo-
pher Alexander [21]. A series of well-established patterns
have been previously identified concerning, e. g., software
engineering [22], enterprise integration [11] and application
architecture [2]. Such general works do not consider building
or migrating the database layer in the Cloud. Nevertheless, we
reuse the pattern format defined by Hohpe and Woolf [11] for
describing our Cloud Data Patterns.

Petcu [23] proposes Cloud usage patterns for Cloud-based
applications based on existing use cases. Fehling et al. [24]
and Pallmann [25] provide high-level architectural patterns to
design, build, and manage applications using Cloud services.
None of these works discusses patterns for building and/or
moving the data layer to the Cloud. Adler [12] provides
contributions regarding best practices for scalable applications
in the Cloud. In this paper we reuse some of the results
presented in [12] to form the non-functional patterns presented
in Section IV.

ARISTA Networks, Inc. [26] provides seven patterns for
Cloud computing of which only one (the Cloud Storage pattern)

31Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 40 / 91

Evaluation Scenario

Traditional / Cloud Private Cloud

Deployment Models
Public Cloud

A
p

p
lic

at
io

n
 L

ay
er

s

External
Auditing
Company

External Cloud
Data Store
Provider

Health
Insurance
Company

Database
Layer*

Data Access
Layer

Database Layer

Region A

Data Access
Layer

Legend

Dataflow

Partial Migration

Modified

*

Region B

Data
 Layer

Component

Figure 3: Realization of motivating scenario using Cloud Data Patterns (Data Layer)

deals with data in the Cloud. Nock [27] provides patterns for
data access in enterprise applications, without however treating
Cloud data stores in the same manner as we do.

Schumacher et al. [28] present reusable solutions for secur-
ing applications, but do not deal with data pseudonymization,
data anonymization, and data filtering. Hafiz [29] presents a pri-
vacy design pattern catalog consisting of nine patterns achieving
anonymity by mixing data with data from other sources instead
of providing a general pseudonymization, anonymization, or
filtering pattern. Creese et al. [30] consider design patterns
for data protection of Cloud services. Romanosky et al. [31]
describe privacy patterns applicable for online interactions.
Schumacher [32] introduces an approach for mining security
patterns from security standards and presents two patterns for
anonymity and privacy. These works do not consider building a
data layer in the Cloud or migrating an existing one there; some
of the mechanisms identified however (e. g., pseudonymization)
are reused in the Cloud Data Patterns we propose.

Finally, Schuemmer [33] presents patterns filtering personal
information to establish boundaries for interactions between
users utilizing collaborative systems. Our patterns are more
general in the sense that they are not limited to filtering of
personal data.

VIII. CONCLUSIONS AND FUTURE WORK

This work presented a set of reusable solutions to face the
challenges of moving the data layer to the Cloud or designing
an application using a data store in the Cloud. The challenges
and proposed solutions were organized as a non-exhaustive
catalog of Cloud Data Patterns focusing on the PaaS delivery
model. These patterns are the result of our collaboration with
industry partners and research projects. Patterns for functional,
non-functional, and confidentiality issues were discussed and
shown how they can be combined in order to address a use
case in practice.

The presentation of the patterns focused on the design
issues, rather than the underlying technical challenges, in

order to ensure their applicability across different technological
platforms. This means that issues requiring a deeper technical
insight, like for example scalability, are not covered sufficiently
in the scope of this work. Nevertheless, these are issues we
are currently looking into. For example, in the discussion in
Section VI, implementing the Local Sharding-Based Router as
a single component may result in a bottleneck for scalability,
or even to a complete failure of the data access/database layer
connection. A possible scalability enabling mechanism, and a
counter-measure to single points of failure is to implement each
pattern using a hot-pool of pattern realizations in the Cloud.
A hot-pool consists of multiple instances of the realization
component and a watchdog. Such issues and their possible
solutions are investigated as part of a larger scale evaluation
of our patterns using an industrial case study. Toward this
direction, we also plan to formalize a general composition
method of Cloud Data Patterns and expand our catalog with
identified patterns presented here.

ACKNOWLEDGMENTS

The research leading to these results has received funding
from projects 4CaaSt (grant agreement no. 258862) and Allow
Ensembles (grant agreement no. 600792) part of the European
Union’s Seventh Framework Programme (FP7/2007-2013), and
the BMWi-project Cloud-Cycle (01MD11023). We thank Tobias
Unger for his valuable input.

REFERENCES

[1] M. Armbrust et al., “Above the Clouds: A Berkeley View of Cloud
Computing,” EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2009-28, 2009.

[2] M. Fowler, Patterns of Enterprise Application Architecture. Addison-
Wesley Professional, November 2002.

[3] P. Mell and T. Grance, “Cloud Computing Definition,” National Institute
of Standards and Technology, July 2009.

[4] S. Strauch, O. Kopp, F. Leymann, and T. Unger, “A Taxonomy for Cloud
Data Hosting Solutions,” in Proceedings of the International Conference
on Cloud and Green Computing (CGC ’11). IEEE Computer Society,
Dezember 2011, pp. 577–584.

32Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 41 / 91

[5] Google, Inc., “Google App Engine Datastore,” 2011.
[6] Oracle Corporation, “MySQL,” 2011, http://www.mysql.com 31.03.2013.
[7] Google, Inc., “Google App Engine GQL Reference,” 2011, https://code.

google.com/intl/en/appengine/docs/python/datastore/gqlreference.html
31.03.2013.

[8] B. C. Tak, B. Urgaonkar, and A. Sivasubramaniam, “To Move or Not
to Move: the Economics of Cloud Computing,” in Proceedings of
the 3rd USENIX Conference on Hot Topics in Cloud Computing, ser.
HotCloud’11. Berkeley, CA, USA: USENIX Association, 2011.

[9] M. Menzel and R. Ranjan, “CloudGenius: Decision Support for Web
Server Cloud Migration,” in Proceedings of WWW ’12. New York, NY,
USA: ACM, 2012, pp. 979–988.

[10] S. Strauch, U. Breitenbücher, O. Kopp, F. Leymann, and T. Unger,
“Cloud Data Patterns for Confidentiality,” in Proceedings of CLOSER’12.
SciTePress, April 2012, pp. 387–394.

[11] G. Hohpe and B. Woolf, Enterprise Integration Patterns: Designing,
Building, and Deploying Messaging Solutions. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2003.

[12] B. Adler, “Building Scalable Applications In the Cloud:
Reference Architecture & Best Practices, RightScale Inc.”
2011, http://www.rightscale.com/info center/white-papers/
building-scalable-applications-in-the-cloud.php 31.03.2013.

[13] C. Strauch, “NoSQL Databases,” February 2011, http://www.
christof-strauch.de/nosqldbs.pdf 31.03.2013.

[14] Stefan Edlich, “List of NoSQL Databases,” July 2011, http://
nosql-database.org 31.03.2013.

[15] P. A. Bernstein, Principles of Transaction Processing (Morgan Kaufmann
Series in Data Management Systems), 2nd ed. Morgan Kaufmann,
2006.

[16] Microsoft, “System Stored Procedures (SQL Azure Database),”
August 2011, http://msdn.microsoft.com/en-us/library/ee336237.aspx
31.03.2013.

[17] S. Strauch, V. Andrikopoulos, U. Breitenbücher, O. Kopp, and F. Ley-
mann, “Non-Functional Data Layer Patterns for Cloud Applications,”
in Proceedings of the 4th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom’12). IEEE Computer
Society Press, Dezember 2012, pp. 601–605.

[18] K. Küspert and J. Nowitzky, “Partitionierung von Datenbanktabellen,”
Informatik-Spektrum, vol. 22, pp. 146–147, 1999.

[19] J. Zawodny and D. Balling, High Performance MySQL: Optimization,

Backups, Replication, Load-balancing, and More. O’Reilly & Asso-
ciates, Inc. Sebastopol, CA, USA, 2004.

[20] Federal Ministry of Justice, “German Federal Data Protection Law,” De-
cember 1990, http://www.gesetze-im-internet.de/bdsg 1990/ 31.03.2013.

[21] C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language.
Towns, Buildings, Construction. Oxford University Press, 1977.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman, October 1994.

[23] D. Petcu, “Identifying Cloud Computing Usage Patterns,” in 2010 IEEE
International Conference on Cluster Computing Workshops and Posters
(CLUSTER WORKSHOPS). IEEE, October 2010.

[24] C. Fehling, F. Leymann, R. Retter, D. Schumm, and W. Schupeck,
“An Architectural Pattern Language of Cloud-based Applications,” in
Proceedings of PLoP’11. ACM, October 2011.

[25] D. Pallmann, “Windows Azure Design Patterns,” 2011, http://www.
windowsazure.com/en-us/develop/net/architecture/ 31.03.2013.

[26] ARISTA Networks, Inc., “Cloud Networking: Design Patterns for Cloud-
Centric Application Environments,” January 2009.

[27] C. Nock, Data Access Patterns: Database Interactions in Object Oriented
Applications. Prentice Hall Professional Technical Reference, February
2008.

[28] M. Schumacher, E. Fernandez-Buglioni, D. Hybertson, F. Buschmann,
and P. Sommerlad, Security Patterns: Integrating Security and Systems
Engineering. Wiley, 2006.

[29] M. Hafiz, “A Collection of Privacy Design Patterns,” in Proceedings of
PLoP’06, New York, NY, USA, 2006.

[30] S. Creese, P. Hopkins, S. Pearson, and Y. Shen, “Data Protection-Aware
Design for Cloud Services,” in Proceedings of CloudCom’09, 2009, pp.
119–130.

[31] S. Romanosky, A. Acquisti, J. Hong, L. F. Cranor, and B. Friedman,
“Privacy Patterns for Online Interactions,” in Proceedings of PLoP’06.
ACM, 2006.

[32] M. Schumacher, “Security Patterns and Security Standards,” in Proceed-
ings of the 7th European Conference on Pattern Languages of Programs
(EuroPLoP), July 2002.

[33] T. Schuemmer, “The Public Privacy–Patterns for Filtering Personal
Information in Collaborative Systems,” in Proceedings of the Conference
on Human Factors in Computing Systems (CHI’04), 2004.

33Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 42 / 91

A Factor Model Capturing Requirements for Generative User Interface Patterns

Stefan Wendler, Danny Ammon, Ilka Philippow, Detlef Streitferdt
Software Systems / Process Informatics Department

Ilmenau University of Technology
Ilmenau, Germany

{stefan.wendler, danny.ammon, ilka.philippow, detlef.streitferdt}@tu-ilmenau.de

Abstract — The lowering of efforts for the adaptation of GUI

dialogs to changing business processes is still a worthwhile

goal. In this context, user interface patterns (UIPs) have been

introduced in the development of user interfaces to increase

both usability and reusability. Originally derived from human

computer interaction patterns, UIPs are generative and thus

have to be formalized. Recent approaches for model-based

GUI development employ UIPs with specific notations. These

UIP concepts have not yet been evaluated on the basis of a

stringent set of criteria. We elaborate detailed requirements

for generative UIPs. The resulting influence factor model is

used to assess recent UIP approaches and identify open issues.

Keywords — user interface patterns; model-based user

interface development; HCI patterns; graphical user interface.

I. INTRODUCTION

A. Motivation

Domain. Nowadays, companies heavily rely on systems
that offer a vast support for the activities defined in business
processes. To serve their purpose effectively, those business
information systems provide graphical interaction dialogs to
various users. Besides the enormous effort to be taken into
the specification of the business processes and related
requirements, there are also considerable high costs involved
in the development of GUI dialogs the user interacts with in
order to process certain activities of the business process. In
addition, those dialogs need to be matched with their
currently assigned workflow derived from the respective
business processes. As business information systems must be
changed over time, the need to keep business processes,
application kernel functions and the GUI, that provides the
dialogs based thereupon, in correspondence [1] has arisen.

Problem. Approaches have been proposed that aim at
raising both efficiency and reuse by applying model- and
pattern-based concepts for the development of GUIs and
dialog structures derived from task models. The different
concepts have not been verified yet. Currently, there is no
detailed set of requirements, which can be used as foundation
to assess the pattern concepts employed for GUI generation.

B. Objectives

We review the state of the art of model-based
development processes employing generative user interface
patterns (UIPs) and present answers to following questions:

• What requirements have to be addressed by a general
definition for generative UIPs applied for GUIs?

• What are the capabilities and limitations of current
generative UIP concepts concerning reusability and
variability?

Our main focus lies on the last question, so we formulate
requirements for a UIP definition on the presentation level.
After we analyze current UIP issues, we apply a customized
Global Analysis [2] to derive the factors, which bear the
great impacts on the definition and application of generative
UIPs. As a result, we continue and detail our previous work
[3][4] on initial requirements associated to generative UIPs.

C. Structure of the Paper

The next section provides a brief overview to GUI
development and UIPs. In Section III, we establish a factor
model that captures major requirements for UIPs. The
model-based development approaches are described in
Section IV and are analyzed on the basis of the factor model.
In Section V, we express our findings and conclusions.

II. RELATED WORK

A. Graphical User Interface Development

GUI architecture patterns. Besides the requirements
and software architecture to be changed harmonically, a new
implementation of dialogs induces high costs as reuse of
existing code is hardly possible. More precisely, the GUI
system may be composed of proven architecture patterns that
enable separation of concerns and reduced dependencies like
the Quasar client architecture [8], but these kinds of patterns
are restricted to non-visual aspects of the GUI like event and
data processing or the communication with a workflow
system. As far as visual and closely associated interaction
design aspects are concerned, the common patterns do not
posses the means to offer the desired aspects of reuse.
Moreover, the usability is crucial for dialogs, as it affects
how quickly users are able to learn to use new features of the
GUI and how efficiently they will perform reoccurring tasks.
Usability also is not covered by architectural patterns.

GUI-generators. Generators have been applied for a
longer period now and could not fill the gap, since they can
only cover dialogs that allow a realization based on fixed
layout and interaction definitions. Besides the visual and
interactive aspect, GUI-generators often were based on
information provided by the domain model, so that task
models or other process definitions could not be sourced for
the generation of dialogs with acceptable usability.

B. User Interface Patterns

To overcome the high efforts and permit higher
reusability along with proven usability, patterns of human
computer interaction (HCI) have been integrated as model
artifacts in model-based development. In that environment
HCI patterns had to be formalized in order to obtain a

34Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 43 / 91

machine processable format. Called generative patterns by
Vanderdonckt and Simarro [6], a new form of pattern has
emerged based on descriptive HCI patterns. Commonly,
these patterns are named User Interface Patterns (UIPs).

Reusability. UIPs as generative patterns are to be
deployed as reusable entities in GUI development. By
specifying dialog parts abstractly (visual parts and
interaction) as well as parameters for variability, UIPs should
facilitate the reuse and automated generation of GUI dialogs.
Configured accordingly, the UIPs would be instantiated to
target contexts. This way, a GUI system should be compiled
by the selection and combination of chosen UIPs. Key
features of this approach shall be the variable application of
UIPs to any appropriate context and their ability to form
hierarchies of further cascading UIP instances. The latter
could form a context-specific composition of already
specified appearance and behavior qualities, which would be
quantitatively adapted to the context when instantiated.

Issues. The application of UIPs for GUI generation has
successfully been probed by past research
[1][11][14][19][24]. As HCI patterns need to be augmented
for automatic deployment, the main issue of finding a
suitable formalization format, which offers a feasible
definition of generative UIPs, has arisen. Current approaches
propose different UIP concepts combined with tools, which
propagate the instantiation of the abstract UIP entity for
various contexts and thus an increase in reuse. Nevertheless,
reusability is still restricted to a limited set of UIPs, which
can be deployed without having to consider all variability
aspects [3]. The potential variations for view, interaction and
in particular the control aspect are so extensive that they
need to be further detailed by a set of comprehensive criteria.

III. REQUIREMENTS FRAMEWORK

UIP definition. The specification of UIPs is impaired by
a fundamental problem that persists in the lack of a dedicated
definition for this generative artifact. Many sources have
been published on HCI or GUI related patterns, but these
either presented no or did not converge towards a unified
definition. We stick to our drafted definition in [3] and use
the term User Interface Pattern (UIP) that addresses the
generative form ready to be instantiated to a certain GUI
context. So, a UIP is settled in close proximity to architecture
and code artifacts assuming presentation responsibilities.

Approach. To overcome the disunity concerning the
definition and features of UIPs, we develop a system of
requirements that is able to express the conception of UIPs
independently from any employment in modeling
frameworks and tools. We apply the Global Analysis [2], as
requirements for UIPs are rather general. So, we refine them
according to their impact on the generative UIP artifact
definition. The background and an initial factor model have
been developed in [4], which is detailed in the following.

A. Criteria for User Interface Patterns

As outlined in [3], sufficient solutions for pattern-based
GUI development have to meet basic criteria. Firstly, they
must enable reusability in the context of vast variability of
stored patterns. Secondly, facilities must permit to compose
several patterns to form a hierarchy of GUI components - an

attribute that is not common for all kinds of software
patterns. Lastly, the instantiation into varying user interface
paradigms, platforms and types should be possible.

The first two criteria are relevant for our scope and we
will decompose them in our factor model as we progress
towards Section III.E. For now, the factor “Reusability of
UIPs” is defined, which is composed by the three factors
“Structural composition ability”, “Behavioral composition
ability” and “Variability of UIP instances”. The split nested
factors are motivated by the following distinction. A single
UIP may be reused for many contexts and for that purpose,
certain variability concerns have to be met that are covered
in the next section. Besides, a combination of more than one
UIP may be reused. In that case, both the structural and
behavioral definitions should be adaptable to the desired
context. Section III.C treats these composition ability factors.

B. Variability of User Interface Patterns

MVC analogy. If one UIP is variably instantiated,
implementations of given architecture components evolve
and eventually differ in certain aspects. For this reason, the
architectural pattern of model-view-controller (MVC) is used
to describe the UIP adaptability for different contexts [3]. An
UIP adaptation changes the actual view structure, data types
for the view parts and the control serving visual and
application event handling of a certain architecture instance.

Variability factor. The above mentioned variability
concerns affect various contents of an instance of a certain
adaptable UIP. The content is materialized by the two
aspects view and interaction in the factor model. Each sub-
factor of variability is operationalized by an aspect. Besides,
the variability factor influences a second dimension, which
describes the moment in time, when the UIP adaptation takes
place. Thus, the configuration factor details variability.

C. Aspects of User Interface Patterns

Purpose. Originally, we described three aspects of UIPs
to detail our definition in [3]. We pointed out the differences
between a concrete specification of a GUI unit, the
abstracted formalization of a UIP and its instances. Here, we
summarize the aspects to further evolve the factor model.

View. By the stereotype but abstract view of a UIP,
selection, arrangement and types of user interface controls
(UI-Controls) are defined. With its abstract definition the
“view aspect” preserves the applicability of a UIP to various
contexts and should not rely on certain GUI frameworks,
hence a UIP must be able to be transformed to desired
platforms. Through the “view aspect”, UIPs can be
categorized into simple and composite patterns. Simple
UIPs, like a simple search [10], consist of a fixed set of UI-
Controls, while composite UIPs, like an advanced search
[10], contain even other UIPs. Therefore, the “Structural
composition ability” is operationalized by the “view aspect”.
To define the visual element structure of a UIP, a developer
may source both UI-Controls and already defined UIPs.

Interaction. A user always perceives and performs
interactions with instances of a certain UIP in the same way.
Combined with the view, the interaction forms the general
purpose of a UIP and so, both aspects constitute the reusable
entity and distinguish UIPs from mere UI-Control
compositions. With interaction states, data handling and

35Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 44 / 91

presentation related events are defined by referring to view
contents. Moreover, a UIP may demand for structural view
states that are determined at run-time by user inputs.

Control. Composite UIPs, as defined above, actuate in-
and outputs depending on the defined selection, instantiation,
and configuration of their child UIPs. Sections III.D and
III.E treat how control operationalizes “Behavioral
composition ability” and in this regard details the interaction
of several UIPs in one view structure unit. Depending on the
variability configuration dimension, a dynamic control may
be needed where child UIPs are selected and instantiated at
runtime. The following section covers this case.

Reusability factor. View, interaction and control aspects
operationalize the before-mentioned reusability factor. All
three factors ensure either the composition abilities or
variability of UIPs. The reuse of single UIPs for different
contexts is achieved by abstraction in both the structure of
the view and the dynamics of the interaction as well as
parameters that provide instance-specific information.

D. Architecture Experiments

Architecture. For the GUI architecture, we assume a
structure to be established in analogy to Figure 1, which was
derived from [9] and altered for our scope. Notably is the
distinction of three controllers for presentation, dialog and
task. The PresentationController queries data from technical
GUI Framework objects, receives technical events from
them, adapts the DialogVisuals accordingly and finally
forwards events relevant for the application state to the
DialogController. The responsibility of the latter is to
implement application logic, query data from and send data
to the ApplicationKernel after selection based on the Model
data. Additionally, the DialogController decides on the
lifecycle of the Dialog, as it evaluates the state of the Model
and events received from the View. Acting as a factory, the
DialogConfiguration builds the Dialog composition unit, and
for that purpose, communicates with the TaskController,
which initiates the creation or deletion of dialogs.

The architecture is detailed, since a Dialog can be based
on composite UIPs. A child UIP affects the View component
only, while the superior one triggers DialogController
actions, when new sub-dialogs or data must be loaded. Thus,
the factor model lists presentation and dialog action-binding.
cmp GUI architecture

Dialog

Model

- DialogData

DialogConfiguration

DialogEvent

InputDataQuery

GUI Framework

PresentationEvent

DataSelection

ApplicationKernelService

DialogActivity
DialogCompletion

TaskController

DataUpdate

ViewDefinition

Observer

DomainObject

View

DialogController

PresentationControllerDialogVisuals

DialogResult

«call»

«call»
«call»

«call»

«create»

«create»

«create»

«call»

«call»

«create»

«use»

«use»

«call»

«use»

«use»

Figure 1. GUI architecture reference model

Experiments. We presented two architecture concepts to
implement UIPs specified with UIML (User Interface
Markup Language) in [5]. The main findings of our
experiments were that UIPs supporting the criteria in III.A
could not be formalized as single artifacts with UIML. This
was due to the complex example, which required for a
“control aspect” with dynamic configuration.

The advanced search UIP [3] holds a certain number of
search criteria, each demanding a certain UIP type, e.g., a
price range and a date represent two different search criteria.
The states such a composite UIP can adopt cannot be
enumerated by a static specification as they depend on user
input or another context not known at design-time. Figure 2
illustrates an example of an advanced search UIP instance.

Firstly, the object to be searched is selected and secondly,
attributes are offered for search criteria depending on the
choice. The architecture is affected, as new UIPs and UI-
Controls are instantiated for the DialogVisuals. Additionally,
the PresentationController actions and scope are altered.

In [24] and [25] run-time awareness of UIPs is
mentioned, but not further outlined. As outlined in Section
III.B, respective impacts of UIP configuration were included.
Finally, we discovered two possible workarounds for
composite UIPs, which govern the lifecycle of other sub-
ordinate UIPs and thus demand for the “control aspect”.

UIP context parameters. Firstly, the UIP specification
language should permit parameters essential for an
instantiation to varying contexts. This decoupling of UIPs
from concrete GUI definitions has already been considered
by the model-based approaches, which are assessed in
Section IV. Without such parameters only invariant but most
UIPs simply could not be formalized at design time [4][5].

Virtual user interface. Secondly, UIPs could be split
into several atomic UIPs, which would compose a dialog on
demand of the dynamic control aspect behavior. The atomic
UIPs, being mostly invariant and mainly variable concerning
data types and the number of structure elements, could be
instantiated during run-time by a virtual user interface
architecture [7]. This option would demand for manual
realization or a DSL for DialogController and View creation.

E. Influence Factor Model

The influence factor model continuously has been
supplemented during the previous sections and its final shape
is depicted by Figure 3. The method applied is described in
[4]. We cut-out factors not to be considered here.

UIP definition. The main definition factor is
decomposed by the three aspects derived from Sections III.B
and III.C. These are intended to identify, group and separate
the impacts with respect to architecture responsibilities.

Figure 2. Exemplary advanced search [10] [4]dialog

36Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 45 / 91

View impacts. The impacts of the “view aspect” are
concentrated on the DialogVisuals component. They are
refined by two factors. “View definition” demands for the
creation of stereotype visual structures composed of UI-
Controls or even UIPs. As these impacts resemble static
elements of a UIP definition, the second factor requests for
parameters to be defined for them. In detail, they need to be
named, enumerated and ordered, arranged in layout and
customized by style in order to enable variability of single
UIP instances.

Interaction impacts. The interaction impacts seem to be
primarily focused on the PresentationController. In fact, the
“Visual element structure states definition” impact depends
on actual View structure composition and so, a point of view.
Hence, the following distinction is made:

Firstly, when UI-Controls are the only components
contained in the visual structure of an individual UIP, several
states may have to be defined, which describe alternative
Views. So, the first impact requires the definition of states a
PresentationController has to ensure. For example, a UIP
may formalize the choice of just two options out of many
available, as it is sketched in Figure 4. Consequently, the
possible states, e.g., activations, deactivations or toggling
collapsible panels [10] of the visual element structure have
to be specified by the UIP. Moreover, the defined view
structure elements need to be bound to presentation related
actions that trigger changes in states or data to be displayed.
The “Presentation action-binding” foresees this binding. In
detail, a certain UI-Control has to be configured to trigger a
change in state of already defined visual elements of the
same scope, e.g., deactivate a delivery address (when it is the
same as billing address), assumed that the toggle button or
checkbox belongs to the same UIP specification unit.

Secondly, superior UIPs of a composition need to specify
an outside view on the sub-ordinate UIPs in order to change
or instantiate new sub-UIPs dynamically. For instance, this is
required when the user triggers the attribute combobox or
buttons on the right hand side of Figure 2, which change
states of criteria rows. Accordingly, when a UIP defines a
composition of UIPs, then the lower situated UIPs constitute
the view structure elements. Therefore, their outside view

states have to be governed by the superior UIP. In this case,
the control related impacts become relevant.

Control impacts. The impacts associated with control
mainly apply to UIP compositions and affect both the
PresentationController and DialogController. Several UIPs
may define the DialogVisuals altogether. In that case the
actions of the PresentationController are scattered among
the individual UIP specifications as each one governs its own
part of View separately. One UIP is to be defined as a
supreme entity to control the other UIPs visual states or
lifecycles. This way, a hierarchical control flow for
presentation is to be established.

The UIP formalization has to enable the combination of
various UIPs with the option to reuse their individual view
state and structure definition. Thus, the encapsulation of
UIPs demands for the autonomy of each UIP unit. As a
consequence, UIPs need to define an interface to report their
changes in state to superior UIPs. For this purpose, UIP
intercommunication events need to be defined that allow for
plugging in UIPs in a flexible way. However, UIPs still need
to be isolated from each other in order to maintain a flexible
composition and exchange options. According to events,
they have to be distinguished as the architecture
differentiates PresentationController and DialogController.
Since the UIPs principally may be combined in any fashion
to build composite UIPs, it is essential that one can define a
differentiated perception for UIP originated events. On the
one hand, one must specify, which UIPs events will trigger a
change in sub-ordinate UIPs view structure. On the other
hand, one has to define the UIP, which provokes application
relevant events that are to be forwarded to the
DialogController. For instance, a button of an online
shopping dialog may trigger to copy billing address data to
delivery address data fields of that dialog. Another button in
a button bar may confirm the entire shopping process, so that
data is validated and delivery address is checked. So, there is
a need for “Dialog action-binding”. The latter could also be
associated to interaction, but we decided that this impact has
a stronger relation to UIP compositions, when the superior
UIP has to filter events from sub-ordinate UIPs and
respectively forward them to the DialogController.

req User Interface Patterns Influence factors

Legend

UIP
definition

View
aspect

Interaction
aspect

Hierarchical control flow for UIP compositions
Control
aspect

Data-binding

Configuration of UIP context at design-timeReusability
of UIPs Variability

of UIP
instances

Structural

composition
ability

Acceptance of
data types

Adaptability
of view
structure

Behavioral

composition
ability

Visual element structure definitionVisual element structure states definition

Intercommunication events definition

Style definition

Layout definition

Encapsulation of UIP artifacts

Dialog action-binding

Configuration of UIP context at run-time

Configuration of UIP
instances

Presentation action-binding

View
definition

View
variability
parameters

Enumeration of elements

Ordering of elements

Naming of elements

Layout placement of elements

Style customization of elements

Influence
factor

Impact

Adaption of presentation control in
correspondence to actual visual structure

dependent
factor

inflicts

impact

nested
factor

operationalized

factor

Figure 3. Influence factors identified for the UIP analysis

37Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 46 / 91

Figure 4. Checkboxes for the choice of two options

IV. EVALUATION OF MODEL-BASED DEVELOPMENT

PROCESSES

Recently, model-based development processes for GUIs
employing UIPs or similar artifacts have been proposed.
Based on available sources, we investigate what generative
UIP concept they have incorporated. Afterwards, we review
the capabilities and limitations of the respective concepts.
More precisely, we consider what impacts of the factor
model in Section III.E are supported or inspired.

A. Annotated Task Models - Queen’s University Kingston

Harmonic evolution. To restrain the disharmonic
evolution of business processes, application kernels and
finally user interfaces, Zhao et al. [1] proposed the
generation of GUI dialogs on the basis of task model
specifications. They applied “usability practices and UI
design principles to guide transformations” in order to ensure
a better usability of generated solutions. So, task activities
were annotated with information about roles, data in- and
output. By parsing the augmented task model and applying
rules, tasks were automatically segmented. For each
segment, windows of a dialog model were derived, so that
tasks handling the same data were kept together. This way
the dialog structure and its transitions were created.

Task patterns. A fixed set of HCI patterns - called task
patterns and based on collections like [10] - was mapped to
specific task type segments on the basis of similar naming
between both. During the transformation phases, a set of
rules was applied for task- and dialog-modeling. For the
presentation model, each occurring data type within the
respective task was mapped to a certain UI-Control. Thus, a
harmonic balance between grouped tasks, stereotype HCI-
pattern assignments and windows with a reduced UI-
Controls was propagated. On this basis, consistency between
changed task models and GUI should be achieved by re-
performing the transformation steps.

Factor support. Analyzing the relations to our factors,
we found out that the only impacts to be mentioned were the
following: For “Visual element structure definition”, the
UIPs were implicitly and strictly assigned by window or
dialog rules according to the information provided in the
mapped task-segment. Only a limited set of “task-patterns”
was introduced so far. A free composition of UIPs was not
possible or even aimed at. In addition, no fancy UI-Controls
like separators, progress bars, sliders etc. were to be included
for view structure definition. Thus, the DialogVisuals were
statically dictated by a limited set of model dependencies.

Concerning “Layout definition”, the general layout
already was determined by the dialog model rules as there
were Editor, Viewer and Dialog windows. Therefore, the
meta-model for presentation was limited to very basic
abstract UI-Controls and did not allow for custom UI-
Controls arrangement like the separation of mandatory from
optional data or a user specific grouping of data.

As far as variability and thus “Configuration of UIP
context at design-time” are affected, the DialogVisuals,
PresentationController and Model (data) were generated on
the basis of GUI-generators. In sum, there hardly was any
variability for the patterns aside from “data-binding” and the
strict automated rules. In this regard, the definition of own
presentation related patterns and usability principles was
considered as future work.

Questions. The formalization of abstract UI-Controls or
task patterns and their instantiation for certain contexts has
not been outlined yet. How the mapping of task-patterns and
tasks is done also remains as a question.

Summary. From our point of view, the approach of
annotated task models combined with a mapping to task-
patterns resembles a pure GUI-generator solution. However,
this generator has much enhanced capabilities compared to
single GUI-generators as it supports a much greater
requirement basis: The task names drive the selection of a
matching task pattern that is composed by certain usability
rules. More important, the process does not need manual
intervention and can be repeated when business processes
have changed. Starting with the task model, the developer is
able to initiate the update for both dialog and presentation
model. Although, the solution promises great automation, it
is not as flexible as the other UIP-based solutions. Its
suitability for a wider range of task types, the customization
of the uniform look & feel and the proposed future work of
integration of own task patterns and UI design principles
should be considered.

B. Patterns in Modeling - University of Rostock

PIC introduction. Forbrig et al. presented their
development environment that employed UIPs in many
consecutive sources. They described an approach also being
based on task-models [11]. Dialog graphs were manually
created with the DiaTask tool performing the steps of
defining views, assigning tasks to those views and finally
creating transitions between views. Then views were
translated to windows for a WIMP paradigm [11] platform
deriving the abstract user interface (AUI). For each
interactive task defined, buttons were created as UI-Controls
of a view within the AUI. The transition of the AUI to CUI
(concrete user interface) was performed by manual
refinement with the XUL-E tool. In this step, buttons from
AUI could be replaced by other UI-Controls or even Pattern
Instance Components (PICs). This way, the abstract
windows with their buttons served as UIP-placeholders for
manual replacement. In this regard, the tool-chain achieved
to maintain the initial connection between UI-Controls and
the task of the original task-model. Both AUI and CUI were
formally described with an enhanced XUL format as the
final output. Hence, PICs drafted an early approach to
formalized HCI patterns, as they only supported a set of five
patterns [12]. Moreover, they allowed for the simultaneous
replacement of more than one button and had task control
data for specific tasks attached, which enabled a more
customized processing of the respective task or domain data.

PIM. Continuing the work on pattern integration into
model-based processes, a new modeling framework was
presented in [13] along with the PIM (Patterns In Modeling)

38Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 47 / 91

tool. The pattern application areas were expressed as "UI
Multi Model" (task, dialog, presentation and layout). The
PIM was intended to apply and manage patterns for the four
defined models. Mainly, the focus was laid on the task model
and an approach for pattern integration therein. Other models
were not yet supported, but the steps for pattern instantiation
using a wizard were drafted. Firstly, instance structures had
to be specified, describing how often model fragments are
duplicated. Secondly, the variables defined by model
fragments had to be assigned. To express model fragments, a
research into formalization options for the model patterns -
especially presentation and layout - was conducted.

PIC revised. After two years, an overview of earlier
work was provided in [16]. The focus once more lay on task-
patterns to derive dialog navigation structures. It was
outlined that the pattern instantiation process could not be
fully automated. Therefore a “combination of automatisms
and human designer” was propagated. So, a semi-automatic
approach to creation of dialog graphs on the basis of task
models and respective pattern application was introduced.
Thus, the AUI was generated from dialog graphs containing
views as placeholders for UIP integration. For comparison,
the approach by Zhao et al. [1] fully relied on automated
derivation of dialog structures. As before, the CUI was
manually refined by replacement of UI-Controls. XUL-E as
a tool would permit the refinement of view structures within
generated navigation dialogs and their correspondence to the
tasks. Manual customization and instantiation of UIPs was
suggested by relying on PICs as formal HCI pattern
representations, which already resembled context-specific
instances of the respective patterns [17].

Factor support. Although it was proven that the
instantiation of invariant UIPs was possible, this step was
restricted to the replacement pre-determined UI-Controls.
Concerning “Visual element structure definition”, the
presentation model included UIPs implicitly as they were
intended to be changed and adapted manually. For instance,
the content area of each of the wizard dialog windows [11]
had to be customized once more via the replacement
mechanism. The generator created an initial abstract design
like the buttons in the mail client example. Thus, the wizard
pattern was strictly defined and could be adapted only in
limited ranges to the context as the textfields could be
replaced by other PICs or UI-Controls. Additional manual
adjustments were necessary, e.g., to remove the next button
in the last dialog “Apply”. Thus, variability depended on
manual rework. Lastly, not all kinds of UIPs were supported.

In sum, the “Configuration of UIP context at design-
time” relied on the PICs “pre-arranged as components.” [11].
From the wizard-example, we assume that there existed an
explicit dependency to the task information serving
implicitly as UIP-instance parameters. Thus, one could freely
decide on what parameters to be used for particular UIP-
instances, as this was the case for the approach by Zhao et al.

The “Layout definition” was determined by the PICs,
which probably consisted of a strict layout (content area of a
dialog, wizard button bar) and always instantiated the same
button configuration (Prev, Next, Finish).

For “ View variability parameters” the PIM-Tool
approach [13] suggested an instantiation process, which

could have inspired our parameter impacts: The view
structure definition and variable assignments were
introduced. Also, a hierarchical refinement of an entity by
structured patterns concentrated on one of the four models or
a mixed selection of them could be learned from this
approach. Therefore, the following requirements were also
inspired by Forbrig et al.:

The “Hierarchical control flow for UIP compositions”
and the “Dialog action-binding” had been drafted. Based on
published work, we support the assumption, that UIPs must
not interfere with application states since those are to be
determined by tasks. According to the “Intercommunication
events definition” and after following the vision established
by Forbrig et al., one could come to the conclusion that
standard-events were quite relevant to plug-In UIPs for
altering tasks or to allow UIPs for various task-combinations.
After all, the idea of replacement is also important since
UIPs should be exchangeable in dialog placeholders in order
to enable a change in view structure but not in application
workflow. Therefore, UIPs need to be replaceable and
universal in shape and the impact “Encapsulation of UIP
artifacts” may be inspired as well. We vote that the ability to
build a cascade of UIPs is important because artifact details
or their modules and matching project requirements are
hardly the same in different projects. Hence, specific
interpretations and instances are of the essence.

Questions. The main emphasis was put on task modeling
and the application of patterns on that context. How PICs
would be instantiated and applied to contexts is not clearly
outlined. It is also questionable how a PIC was successfully
shaped to be abstract and universally deployable.

Summary. The approach with rich tool support
investigated on the feasibility of “patterns in modeling” [13]
and backed or could have inspired some of our factors
impacts. The PIM-Tool voted for a combination of model-
based and pattern-based approach. This implicated and
required a UIP base model to increase reuse and lessen
efforts for linking and model integration.

Both Zhao and Forbrig et al. followed a similar approach
as they progressed towards the combination of model- and
pattern-based development to ensure cost-effectiveness and
the application of patterns for the sake of good usability.
Forbrig et al. put more emphasis on the pattern aspect. In this
respect, they developed tools and customized formal
languages for the individual models. However, besides tool
support automation could not be increased to the desired
level and manual refinements in interaction with the tools
had to be performed. For instance, task models had to be
shaped to accommodate PICs after the derivation of dialog
graphs. Finally, specific variants of arbitrary UIPs could be
modeled with the tools and thus greater variability could be
achieved compared to Zhao et al.

C. UsiPXML - University of Rostock

Following the former PIM approach, another pattern
application framework for UIPs was presented in [14]. The
models were further elaborated here, as layout and
presentation were intended to refine the AUI and thus enable
the transition to a CUI by instantiation of common solutions
encapsulated by respective patterns. To organize the patterns

39Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 48 / 91

of all four models, the “User Interface Modeling Pattern
Language” was introduced as a pattern language. The CUI,
where UIP instances were to be integrated next, still needed
manual adaptation work.

Continuing towards formalization of UIPs, they
presented UsiPXML (User Interface Pattern Extensible
Markup Language) as an enhanced UsiXML (USer Interface
eXtensible Markup Language) pattern specification language
for all four models. To provide both context information for
proper usage of a pattern and “implementational
information” [15] for automated processing, UsiPXML
incorporates PLML (Pattern Language Markup Language)
for description and UsiXML as generative part. The PIC
concept of older sources is not mentioned here. In contrast,
the UsiXML enhancements are further elaborated in [15].
The new pattern notation followed the PIM pattern
instantiation steps and thus featured structure attributes,
which would determine how many times (min, max) an
element within the pattern is instantiated. In addition,
variables were incorporated to define mandatory
placeholders for values, which could be governed via
assignments and applied for various purposes. The former
defined how variables would be evaluated. Pattern
references, a third feature, would specify sub-pattern-
relationships for refinement.

However, UsiPXML is no longer mentioned in
subsequent sources again focusing on PICs. Finally, the
goals to be achieved with UsiPXML were relativized in [17]
as they stated PIC “is called instance component, since we
consider the template to be already an instance of the pattern
that is described through this component. We are aware of
the fact that, due to their nature, not all known HCI patterns
can be treated as or translated into an algorithm or a PIC.”

Factor support. For the “Visual element structure
definition” presentation patterns were applied to define view
structures. Concerning UIP compositions, the patterns were
always presented in isolation and never in entirety, so the
real capabilities cannot be judged.

Separate patterns were dedicated to the “Layout
definition” impact. As it was not clearly outlined, where they
could be included in the hierarchy of pattern instances, the
flexibility of the solution cannot be assessed as well.

As far as “View variability parameters” are concerned,
structure attributes as well as variables and assignments were
invented. Those parameters would permit the deactivation of
certain pattern structure parts [15] by “set” assignments.

The “Data-binding” was also realized by the “set”
assignment, so that an implicit mapping of data types to
abstract UI-Controls was possible. This way the developer
did not have to decide for each domain object attribute what
kind of UI-Control or UIP to instantiate in a form.

A hierarchical structure of patterns was employed, so
patterns could be combined via a pattern interface. More
precisely, the variables of higher order patterns could be
passed to the pattern interface of lower patterns in order to
allocate their variable definition. For vast flexibility in
pattern composition ability, such a pattern interface could
have been arranged for potential reusable patterns, but this is
not further mentioned.

The pattern interface, variables and assignment facilities
might have been useful to empower “Hierarchical control
flow for UIP compositions” and the “Encapsulation of UIP
artifacts”, but due to missing examples and language
specifications, these cannot fully be judged. However, the
variables were not standardized for certain pattern types, so
they depend on the individual pattern model fragment and
their evaluation by the assignments. So, a superior UIP needs
to know about implementation details of sub-ordinate UIPs.
That is why the encapsulation eventually might be broken.

Inspired by the realization of the “Unambiguous Format”
[15] pattern, the advanced search criteria rows of Figure 2
could be defined in an abstract manner by UsiPXML, but it
has to be answered how they could be requested during run-
time. Eventually, the realization of “Configuration of UIP
context at run-time” remains unsolved.

Questions. At first we ask, how presentation and layout
patterns are merged in a generated window. Both are “CUI
Model Fragments” [15] and in that source the patterns are
only shown separately but not integrated. As far as UsiXML
is reused here, UsiPXML should have inherited some of its
weaknesses [3][4]. For instance, how could UI-Control types
be platform independently described when UsiXML uses a
strict set of types for UI-Controls? How did UsiPXML allow
for the description of all four 4 models when UsiXML
cannot describe presentation and especially layout models
separately? For a better assessment of these issues, we miss
code examples of UsiPXML.

Summary. This solution may be a great enhancement
concerning the expression ability of generative UIPs. Yet, it
is overshadowed by many open issues concerning impact
details, which have not been presented yet. So, this approach
could not accurately be assessed by us. Moreover, this
approach is limited to UIPs being able to be specified at
design time. A UIP dynamically morphing during run-time
as in Figure 2 most likely cannot be defined with known
UsiPXML facilities. Lastly, the occurrence of sub-patterns
was the only considered relationship so far. “Inter-Model”
[24] patterns have not been considered yet.

D. PaMGIS - University of Augsburg

HCI Pattern language. Engel et al. [20][21][22] state
that current UIP-collections do not reflect the need to
structure the UIPs to certain aspects, which would enable to
select and judge them independently from domain or their
relationships. They express that the abstraction and
organization criteria are not satisfying. Starting with advice,
how to structure a UIP language properly [18], Märtin et al.
gradually advanced to their own concepts for UIP
instantiation. The rules of a global entry point, allowed and
not allowed links within the pattern hierarchy, should guide
the user of the pattern collection, so that he would have to
start with a rather “abstract pattern for the general problem
class” [18] and consequently follow the same abstractions
searching the pattern hierarchy for a solution. It should be
avoided to oversee a potential useful pattern and isolate
individual patterns. The concept was applied in later sources.

PaMGIS. An entirely new modeling architecture was
presented in [19], named “pattern-based modeling and
generation of interactive systems (PaMGIS)” and neglecting

40Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 49 / 91

the very recent work of PIM, UsiPXML and respective four
pattern types of the University of Rostock. A central pattern
repository would hold patterns for the following modeling
stages. Firstly, an “abstract application model is generated”
(AAM) by interpreting a set of potential input models (task,
user, device, context). Secondly, “a semi-abstract application
model” (SAAM) is generated. During this step, the patterns
might be instantiated. For this purpose, patterns were
composed of both descriptive and generative information. In
detail, the generative part introduced an <automation> XML
tag allowing the parameterization of the respective
<element>, which served as the container and layout unit of
the UIP. The <children> tag referenced child UIPs or UI-
Controls, governed their number, ordering and position in
relation to the parent UIP. This mechanism was based on the
<element> tag and the therein defined attributes of the
respective sub-UIP or UI-Control. The superior UIP could
select from the lower specified attributes.

The approach of PaMGIS was further outlined in [22] by
Engel. He stated that the process was based on the
enhancement of information derived from fully-fledged task-
models and unique pattern models. Patterns would be applied
for both the extended AAM and the SAAM. Furthermore, he
mentioned that the framework contained a repository for UI-
Controls as lowest units in the UIP hierarchy, which would
be mapped to target platforms.

Joined by Forbrig, Engel and Märtin presented further
information about the PaMGIS framework and the DTD
applied for the generative <automation> tag of UIPs in [23].
By example, they outlined the unique way of structuring
UIPs based on [18]. Therein, main categories resembled
technically shaped patterns appropriate for the current GUI
structure element, e.g., a panel or button-bar as sub-patterns.

Factor support. The XML specification defined by the
<automation> DTD is closely related to “Visual element
structure definition”. In general, UIPs are supported as
composites. They always define the inclusion of child
patterns, since even UI-Controls are regarded as patterns.
Their ordering is explicitly determined and constraints are
allowed as well as optionals. However, the composite
patterns only approach is unfavorable, since one cannot
decide on what are composite and what are atomic units of
reuse. For instance, a panel is often to be used as an atomic
unit in Figure 2. The advanced search UIP defines its own
tree of elements or reuses entire UIPs. Not the included panel
should decide on that. Anyway, one cannot use a panel
without children definition in PaMGIS, since this would
result in an empty panel as well as a breach in layout
definition hierarchy. The UIP hierarchy is designed in a way,
that UIP definitions cannot traverse more than one level at
once. So the structure parameters would be limited to a
certain levels scope. Single UIPs were too strictly bound to
the hierarchy, as they always would have to determine about
sub-ordinate UIPs. The leveling would be too strict and one-
dimensional, so that one can only include a certain UIP with
its respective children and not without them. For Figure 2
this would implicate, a specialized set of panels had to be
formalized. Many specialized versions of a panel would have
to be created, because the children hardly would be reusable
in other contexts. In sum, the visual options are detailed, but

high efforts for formalization are needed, as there would be a
high amount of UIPs and branches in hierarchy.

As there is no dedicated layout pattern, “Visual element
structure definition” and “Layout definition” are merged in
UIP definitions. The Layout is governed by the superior UIP,
which refers to parameters provided by the children and
provides values for them. Therefore, layout attributes are
explicitly maintained by children. This may be a drawback
compared to layout patterns used in UsiPXML, hence for
changes in layout each single UIP instance has to be touched.

Concerning “View variability parameters”, there are no
dedicated parameters for the view structure, as each pattern
instance has to be declared explicitly to be included. For
layout, naming and ordering, the respective attributes have to
be assigned with certain values.

Questions. Consequently, each pattern, that reuses
others, needs to define them as children. As Seissler et al.
[24] have found out, the UIP hierarchy may be inflexible or
does not permit all possible combinations of UIPs to form
new UIP compositions. So the UIPs may indeed be very
statically linked among each other. For instance, the panel in
[19] can only be instantiated with the two buttons, since this
pattern has declared them as children. It is questionable
whether for each pattern instance the <automation> has to be
defined over and over, or if one is assisted by a tool. Since
the pattern instance configuration was not described, it is not
clear, how the occurrences of children (min and max) are
configured and how this impacts their order in layout.

 In addition, the concepts for data and action binding
have not been presented yet. Moreover, the intended
realization of control aspect impacts is not clear. This is of
the essence for the fine grained pattern structure and so, each
UIP instance is composite.

Summary. Due to above issues, the variability of this
approach can hardly be assessed. Along with missing
concepts for the control aspect, the generic and fine-grained
UIP categorization approach is arguable and has to be
proved. Both framework and process of PaMGIS were only
drafted by available sources. Therefore, the scope for AAM
and SAAM model generation stages were not outlined as the
application of patterns was only mentioned for the SAAM.

E. Encapsulated UIML - University of Kaiserslautern

Reflection of recent approaches. Seissler et al. shortly
reflect previous approaches and present their rather new
pattern application framework in [24]. Concerning PaMGIS,
they claim, separation of concerns was compromised, since
layout information was implicitly included in the generative
part of <automation> (anchor attribute) and this way, layout
and presentation structure were mixed up. In addition, the
pattern language suggested was “very fine-grained (and
complex)” and thus contradicted the idea that patterns would
cover a broader view on the problem. Regarding UsiPXML,
it is described as “one of the more mature approaches”, but
also has a weak spot, since links between individual patterns
were rated as rather static. Finally, it was implied that UIP
compositions could not be built flexibly.

Process. Within their process, they suggest the “Use
Model” for tasks, “Dialog Model” for the states of view and
finally a “Presentation Model” to express certain interaction

41Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 50 / 91

objects and their layout. For each model patterns could be
defined. The patterns were classified according to their
relationships on the model layer and to each other. Single
patterns do stand alone; “intra-model” patterns reference
sub-patterns of the same model and “inter-model” patterns
reference patterns of other models and may include both
other kinds. In contrast to UsiPXML, separate notations were
being used for every model. The presentation used UIML
and both held structure (UI-Controls) and layout. Rather than
deriving dialog graphs from tasks, they defined infinite state
machines for dialogs to be interpreted at run-time.

Pattern instantiation. A “generative pattern solution”
consisted of the three parts “Pattern Specification Interface”
(PSI), “Pattern Interface Implementation” (PII) and “Model
Fragments” [24]. The PSI offered instance parameters of two
types, as there were variables and constraints (data type, min,
max and default) to be defined for each model fragment. A
selection acted as a special variable to enable a choice out of
more than one data option. Furthermore, model fragments
constituted the core solution (e.g., UIML for presentation)
and thereby a non-altered notation. The enhancements were
limited to the PSI and PII. The latter is realized via XSLT
and allowed the specification of four basic operations. It put
the parameters to effect on the core part: The structure of a
model fragment might be altered by add, remove and replace
operations. The assign operation passed parameters to the
corresponding model fragment attributes in order to assign
data to defined variables. After selection and instantiation,
patterns were integrated to be finally interpreted.

For future work the tool-chain has to be developed, the
pattern notation is to be tested according to its formalization
capabilities and lastly, a refinement of inter-pattern
relationships is to be sought after.

In a more recent source, Breiner et al. [25] once more
introduce their model framework, but add the conclusion that
HCI patterns are difficult to integrate in model-based
processes, since they missed a “lingua franca or modeling
standard”. They outline the process of pattern formalization
and add that a pattern commonly features both fixed and
adaptable content. In the future, the automation of pattern
instantiation and integration shall be investigated. Another
aspect, aimed at in future, focuses on how to determine and
consider user capabilities during GUI creation at run-time.

Review of criticism. To begin with, we consider their
way of argumentation for criticism on other approaches. In
principle, Seissler et al. do not provide information on
requirements allowing for a comparison with the other
approaches. According to their valuation, UsiXML has least
weaknesses. We wonder, what a direct comparison between
their and the UsiPXML approach would result in.

According to PaMGIS, they regard the mix-up of layout
and presentation patterns as unfavorable. A separation might
be irrelevant, since layout patterns in PaMGIS would always
serve as a container in the final hierarchy. The UsiPXML
separation may eventually be mixed up in the same model as
it seems (both are rooted as “CUI Model Fragment”). It is
arguable, whether layout patterns are an aspect and thus can
be applied almost anywhere at a certain stage in PaMGIS
pattern language. It might be no help keeping layout
separately in this kind of pattern hierarchy. In this respect,

the fine grained structuring of patterns for PaMGIS has been
criticized, too. There might be too many levels of
decomposition, but Märtin and Roski suggested starting to
search in the highest hierarchy in order to preserve all
options. However, from the statements by Seissler et al.
about UsiXML keeping core models encapsulated an indirect
critic about PaMGIS can be uttered: PaMGIS merges model
information to create AAM and subsequently the SAAM.
Thereby, it was not mentioned if and how backwards links,
as Forbrig et al. have propagated, are established.

Factor support. Seissler et al. have drafted their
thoughts on “View variability parameters”. They follow the
idea to incorporate parameters on a very general level, as
those are not categorized as structure, layout related
information. Instead, they define parameters individually and
ad-hoc for each model fragment. This way, parameters are
clearly bound to the core pattern contents and are dependent
on tool algorithms, like this is the case for UsiPXML and
PaMGIS. Using the four operations supported by the PII,
versatile modifications on the model fragment similar to the
capabilities of UIML 4.0 template handling can be achieved.
In addition, they augment the UIML features with
parameters, since they state “PICs might be interpreted as
attributed templates that can be instantiated” [24]. Therefore,
they may have realized all impacts of the “view aspect”.

As far as “Configuration of UIP instances” is concerned,
this may be realized for design time only. They are aware of
the need to configure UIPs at run-time [25] and thus support
the respective impact. Nevertheless, they did not present a
concept, how parameters could be changed at run-time.

Questions. Since Seissler et al. propose the PSI, the
“Encapsulation of UIP artifacts” seem to be realized. As the
parameters were also not standardized in analogy to
UsiXML, this impact finally might not be met. A superior
UIP requires information about the variables roles in the
actual “Model Fragment” and their handling by the PII. In
addition, it was not presented how UIPs may be composed.

Summary. This approach is very promising, but not easy
to valuate, since no full UIP has been presented as working
example. In addition, they fail to argue deeply for thoughts
on the instantiation mechanism and pattern notation. Facing
UsiPXML, their approach seems not to be backed entirely by
their criticism. Despite this, their pattern categories may
trade off, since they are more oriented towards pattern inter-
relationships. However, it is arguable if categories by Märtin
et al. will work in complex examples as well or will prove to
be too atomic for a high usability in pattern composition.
Seissler et al. strive for many goals such as dialog transitions,
presentation model UIML fragments to be interpreted at run-
time and maybe re-configurable at run-time. Up to now, a
comprehensive proof of concept has not been given.

V. CONCLUSION AND FUTURE WORK

Results. We presented an overview of recent approaches
to generative UIP deployment within model-based
development. Different researchers proposed their own
model frameworks and UIP formalization techniques. Our
analysis revealed that they either could not cover every
factor (especially the UIP configuration at run-time) or have
significant issues to be solved. A reason for that may be

42Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 51 / 91

found in missing criteria to guide the applied concepts and
UIP representations. In our opinion, a sufficient notation for
UIPs has yet to be developed or refined based on available
approaches. Until now, there have been no efforts for
standardization concerning a unified UIP specification. In
contrast, UIML and UsiXML both have emerged as strong
options for GUI specification. Whether they can serve as a
basis to develop a language dedicated to the specification of
generative UIPs, remains an open research question.

Achievements. We refined our earlier work [3][4][5] and
elaborated a detailed requirements model for the analysis of
UIP formalization and instantiation aspects. As we found
strong support or inspiration by the other approaches, the
established factor model can be used for their verification.

Limitations. We did not consider devices, environments
[21] or user skills [25] for UIPs. The categorization of UIPs
[18], their descriptive relationships [20], their mapping to
tasks [16], as well as their instantiation for paradigms
different than WIMP also were not covered.

Future work. We strive to communicate the
requirements for UIPs more deeply and in more detail. Other
researchers involved in UIP related topics may reassess their
aims and capabilities on the basis of the presented factors.
They are sincerely invited to suggest improvements. Our
analysis solely is based on the sources included in references.
A deeper comparison of the approaches could be initiated by
contacting the respective authors to honestly ask for current
tools or UIP notations to be evaluated in a practical study.

REFERENCES

[1] X. Zhao, Y. Zou, J. Hawkins, and B. Madapusi, “A Business-
Process-Driven Approach for Generating E-commerce User
Interfaces,” Proc. 10th International Conference on Model
Driven Engineering Languages and Systems (MoDELS 07),
2007, Springer LNCS 4735, pp. 256-270.

[2] C. Hofmeister, R. Nord, and D. Soni, Applied Software
Architecture. Boston, Addison-Wesley, 2000.

[3] D. Ammon, S. Wendler, T. Kikova, and I. Philippow,
“Specification of Formalized Software Patterns for the
Development of User Interfaces,” Proc. 7th International
Conference on Software Engineering Advances (ICSEA 12),
Nov. 2012, Xpert Publishing Services, pp. 296-303.

[4] S. Wendler, I. Philippow, “Requirements for a Definition of
generative User Interface Patterns,” Proc. 15th International
Conference on Human-Computer Interaction (HCII 13), July
2013, in press.

[5] S. Wendler, D. Ammon, T. Kikova, and I. Philippow,
“Development of Graphical User Interfaces based on User
Interface Patterns,” Proc. 4th International Conferences on
Pervasive Patterns and Applications (PATTERNS 12), July
2012, Xpert Publishing Services, pp. 57-66.

[6] J. Vanderdonckt and F. M. Simarro, “Generative pattern-
based Design of User Interfaces,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS 10), June 2010, ACM, pp. 12-19.

[7] E. Denert and J. Siedersleben, “Wie baut man
Informationssysteme? Überlegungen zur
Standardarchitektur,“ Informatik Spektrum, 23(4), Aug. 2000,
Springer, pp. 247-257.

[8] M. Haft, B. Olleck, “Komponentenbasierte Client-
Architektur,” Informatik Spektrum, 30(3), June 2007,
Springer, pp. 143-158.

[9] J. Siedersleben, Moderne Softwarearchitektur - Umsichtig
planen, robust bauen mit Quasar. 1st ed. 2004, corrected
reprint, Heidelberg, dpunkt, 2006.

[10] M. van Welie, “A pattern library for interaction design,”
http://www.welie.com 20.01.2013.

[11] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
Support for an Evolutionary Design Process using Patterns,”
Proc. Workshop: Multi-channel Adaptive Context-sensitive
Systems (MAC 06), May 2006, pp. 71-80.

[12] R. Rathsack, A. Wolf, and P. Forbrig, “Using HCI-Patterns
with Model-based Generation of Advanced User-Interfaces,”
Proc. MoDELS'06 Workshop on Model Driven Development
of Advanced User Interfaces (MDDAUI 06), Oct. 2006,
CEUR Workshop Proc. Vol-214.

[13] F. Radeke, P. Forbrig, A. Seffah, and D. Sinnig, “PIM Tool:
Support for Pattern-driven and Model-based UI
development,” Proc. 5th International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
06), Oct. 2006, Springer LNCS 4385, pp. 82-96.

[14] F. Radeke and P. Forbrig, “Patterns in Task-based Modeling
of User Interfaces,” Proc. 6th International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
07), Nov. 2007, Springer LNCS 4849, pp. 184-197.

[15] F. Radeke, “Pattern-driven Model-based User-Interface
Development”, Diploma Thesis in Department of Computer
Science, University of Rostock.

[16] A. Wolff and P. Forbrig, “Deriving User Interfaces from Task
Models,” Proc. Workshop: Model Driven Development of
Advanced User Interfaces (MDDAUI 09), Feb. 2009, CEUR
Workshop Proc. Vol-439.

[17] A. Wolff and P. Forbrig, “Pattern Catalogs using the Pattern
Language Meta Language,” Electronic Communication of the
European Association of Software Science and Technology,
vol. 25, 2010.

[18] C. Märtin and A. Roski, “Structurally Supported Design of
HCI Pattern Languages,” Proc. 12th International Conference
on Human-Computer Interaction (HCII 07), July 2007,
Springer LNCS 4550, pp. 1159-1167.

[19] J. Engel and C. Märtin, “PaMGIS: A Framework for Pattern-
Based Modeling and Generation of Interactive Systems,”
Proc. 13th International Conference on Human-Computer
Interaction (HCII 09), July 2009, Springer LNCS 5610, pp.
826-835.

[20] J. Engel, C. Herdin, and C. Märtin, “Exploiting HCI Pattern
Collections for User Interface Generation,” Proc. 4th
International Conferences on Pervasive Patterns and
Applications (PATTERNS 12), July 2012, Xpert Publishing
Services, pp. 36-44.

[21] J. Engel, C. Märtin, and P. Forbrig, “HCI Patterns as a Means
to Transform Interactive User Interfaces to Diverse Contexts
of Use,” Proc. 14th International Conference on Human-
Computer Interaction (HCII 11), July 2011, Springer LNCS
6761, pp. 204-213.

[22] J. Engel, “A Model- and Pattern-based Approach for
Development of User Interfaces of Interactive Systems”,
EICS 2010 Proc. ACM SIGCHI symposium, June 2010,
ACM, pp. 337-340.

[23] J. Engel, C. Märtin, and P. Forbrig, “Tool-support for Pattern-
based Generation of User Interfaces,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS 10), June 2010, ACM, pp. 24-27.

[24] M. Seissler, K. Breiner, and G. Meixner, “Towards Pattern-
Driven Engineering of Run-Time Adaptive User Interfaces for
Smart Production Environments,” Proc. 14th International
Conference on Human-Computer Interaction (HCII 11), July
2011, Springer LNCS 6761, pp. 299-308.

[25] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient Generation of Ambient Intelligent User
Interfaces,” Proc. 15th International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 11), Sept. 2011, Springer LNCS
6884, pp. 136-145.

43Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 52 / 91

Three Patterns for Autonomous Robot Control Architecting

Carlos Hernández, Julita Bermejo-Alonso, Ignacio López and Ricardo Sanz
Autonomous Systems Laboratory

Universidad Politécnica de Madrid, Spain
Emails: carlos.hernandez@upm.es, jbermejo@etsii.upm.es, ignacio.lopez@upm.es, Ricardo.Sanz@upm.es

Abstract—Construction of robotic controllers has been usu-
ally done by the instantiation of specific architectural designs.
The ASys design strategy described in this work addresses
the synthesis of custom robot architectures by means of a
requirements-driven application of universal design patterns.
In this paper we present three of these patterns —the Epistemic
Control Loop, the MetaControl and the Deep Model Reflection
patterns— that constitute the core of a pattern language for
a new class of adaptive and robust control architectures for
autonomous robots. A reference architecture for self-aware
autonomous systems is synthesized from these patterns and
demonstrated in the control of an autonomous mobile robot.
The term “autonomous” gains a deeper significance in this
context of reflective, pattern based controllers.

Keywords— Patterns; autonomous systems; robot controllers;
reconfiguration; model-based systems; meta-control.

I. INTRODUCTION

Control architectures for autonomous mobile robots have a
long and heterogeneous history [1]–[3]. In some of these
cases, robot controllers have been built from scratch as ad-
hoc solutions without any underlying systematic software
architecture. The architectural foundation is implicit and the
effort is focused on specific, concrete, needed functional-
ities and component technologies to provide them. These
elementary functionalities are then deployed, integrated and
operated over a minimal integration platform to generate the
robot control system [4].

An architecture-centric approach is strongly needed in
robotics. Focusing on architecture means focusing on the
structural properties of systems that constitute the more per-
vasive and stable properties of them [5]. Controller architec-
ture —the core set of organizational aspects— most critically
determines the capabilities of robots, resilience in particular.
Robot mission-level resilience is to be attained by maximiz-
ing architectural adaptivity from a functional perspective [6].
In this vein, the Autonomous Systems Programme (ASys)
tries to leverage a model-based [7], architecture-centric,
process for autonomous controller construction.

This paper describes some developments in this direction
in the form of reusable design patterns. The paper is
organized as follows: Section II describes the use of design
patterns as an architectural strategy; section III describes the
three target design patterns; section IV describes the refer-
ence architecture generated using these patterns; sections V
and VI contain a roadmap for future work and conclusions.

A. The ASys Research Programme

The ASys Programme [8] is a long term research effort of
very simple purpose: develop domain-neutral technology for
building custom autonomy in any kind of technical system.
In this context, autonomy has a broader meaning that the
regular use of the term in autonomous mobile robots [9].
ASys pursues the identification of core architectural traits
that enable a system to handle any kind of uncertainty,
whether environmental or internal. It is not just a quest
for achieving robust movement planning technologies in
uncertain environments but robust teleonomy for unreliable
systems in uncertain environments. Adaptation is a key issue
in autonomous robotics [10] to enable the coping with en-
vironmental changes and with internal faults. Architectures
enabling dynamic fault-tolerance is an important aspect of
the work presented in this paper.

Views

Model

Metamodel

ICe
Specification

ICe
Documentation

ICe
Design

ICe
Synthesis

ICe
Asset

Manager
ICe

Deployment

Autonomous
System

Model

Metamodel

Engine Engine

Asset Base

OAsys
Ontology

PatternPattern
Pattern

Component

Component
Component

Domain
OntologyDomain

OntologyDomain
Ontology

Requirements

Documentation

ICe
Operation ASys-Vision-02

Figure 1. The ASys model-centric systems engineering process. ICe stands
for Integrated Control Environment.

The mainstream direction of the ASys Programme comes

44Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 53 / 91

from a simple observation: there exists a class of compe-
tence that may maximize system autonomy: cognition. We
can observe it when technical systems do overcome the
unexpected beyond what was technically planned and built
into them at design time. It is the idiosyncratic competence
of McGyvers or what is shown in the Apollo XIII movie.
Systems can be more adaptive by making them exploit
design knowledge at run-time. The ASys strategy is simple:
build any-level autonomy systems by using cognitive control
loops to make systems that can engineer themselves. A
controller of maximal robustness will be able to redesign
itself while fielded.

We try to generalize and downsize engineer’s capabilities
to the level of atomic, resilient subsystems in all kinds of op-
erational conditions in technical systems [11]. Machines that
deeply know themselves —their structure, their functions,
their missions— will be the mission-level robust machines
we need for the future, according to our vision of self-aware
machines [12].

B. ASys Design Principles

This research into general artificial autonomy is driven
by some fundamental design principles that structure the
research and development of our technologies [13]. Three
of them are of special importance to the work described in
this paper:

• Model-based control: Cognition is the core compe-
tence to develop into robots; a cognitive control loop
is based on the exploitation of explicit models of the
system under control [14].

• Metacontrol: Teleological robustness —the stubborn
prosecution of mission goals— is achieved by means
of control loops handling disturbances. When these can
happen in the controller itself we need metacontrollers
deal with them [15].

• Break the run-time divide: There are design models
that engineers use to build a technical artifact and run-
time models that reflective systems may use during
their operation. Using the same models for both will
break the design/run-time divide and leverage the full
potential of model-driven development [16] at run-time.

These principles are further developed in section III,
where we explain how we have reified them in the three
patterns that are the core content of this paper. The final ob-
jective of this work is the provision of generalized adaptation
mechanisms by means of run-time reflection in advanced,
real-time cognitive architectures.

II. A PATTERN-BASED STRATEGY

The ASys strategy for building autonomous control sys-
tems is the exploitation of reusable assets over architectures
defined by means of design patterns [17] (see Figure 1). This

paper describes the construction and use of three patterns —
assets in the Asset Base— and their use in the synthesis of
an autonomous robot.

A. A Pattern-based Design Approach

A design pattern [18] is a reusable solution to a recurring
problem. Design patterns are usually not complete designs
for whole systems but descriptions of partial designs that
offer a solution template of problem solving strategies that
may be instantiated for concrete problems. In principle,
patterns capture best practices and anti-patterns capture
worst practices: things to do versus things to avoid when
designing or implementing specific applications [19].

The final objective of this work is the creation of a
generative pattern language to support the construction of
intelligent integrated controllers for autonomous systems.

B. A Pattern Schema

Below we briefly describe the different sections of the
pattern schema [20] that has been used in this paper:

• Name: The name of the pattern.
• Aliases: Patterns are usually not new; most of them

have been discovered and used elsewhere, esp. in the
controls domain.

• Example: A use case of the pattern; a possible applica-
tion of the pattern in a real situation.

• Context: Contextual information regarding the potential
application of the pattern.

• Problem: The problem that the pattern tries to solve.
• Solution: The form of the solution that the pattern

provides.
• Structure: An architectural description of the pattern

using roles and relations between roles.
• Dynamics: How system activity happens as sequences

of role activations.
• Related patterns: Other patterns related with this, by

structure, by way of use or because they are applied at
the same time to a system.

• References: Bibliographic references for the pattern.

III. THREE PATTERNS

The focus of this paper are three design patterns that reify
some of the ASys principles for the design of autonomous
systems (see Table I). These patterns have been integrated
in the OM Reference Architecture for the development of
robust controllers for autonomous robots (see Section IV).
Two of the sections are almost identical for the three pat-
terns; they share a common context and are closely related:

Context Development of robust control architectures for
autonomous systems; in the current drive toward increased
complexity and interconnection and with a need of aug-
mented dependability. The design strategy of these systems
has to address not only the problem of the uncertainty of
the environment, but also of the uncertainty arising from

45Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 54 / 91

TABLE I. THREE ASYS DESIGN PATTERNS

Acronym Name Content
ECL Epistemic

Control Loop
To exploit world knowledge in the perfor-
mance of situated action.

MC MetaControl A controller that has another controller as
control domain.

DMR Deep Model
Reflection To use the system engineering model as

self-representation.

the system itself because of faults or unforeseen, emergent
behaviors resulting from the interplay of their components,
or their connection with other systems [21]. More traditional
approaches such as fault-tolerant control based on redun-
dancy are too expensive and not efficient. The universality of
the problem demands a general approach rather than specific
solutions for certain applications that are difficult to transfer
to other domains.
Related patterns These three patterns can be said to
constitute a micro Pattern Language, sharing a common
context of application and being conceived so as to apply
them jointly for the development of control architectures for
autonomous robots.

The next three sections describe the three patterns using
the schema presented in section II-B.

A. The Epistemic Control Loop Pattern

Name Epistemic Control Loop (ECL).
Aliases RCS node, PEIS loop, OODA loop.
Example The navigation control system of an autonomous
mobile robot.
Problem Sometimes controllers are required to implement
a closed-loop strategy using an explicit model of the plant
—the controlled system, e.g. the mobile robot—, with the
possibility to also incorporate feed-forward action or pre-
dictive control, by providing design scalability to seamlessly
incorporate different algorithms in the same control process.
Solution The Epistemic Control Loop pattern defines a
loop that exploits world knowledge —i.e. a model of the
plant— in the performance of situated action (see Figure 2).
This loop is a variant of Feedback loop pattern in classical
control [17], but in which the sensory input is used to
update an explicit representation of the plant, i.e. the Model,
through a Perception process. This model contains both
the instantaneous state of the plant and more permanent
general knowledge about it. It is the explicitness of this
last static knowledge what differentiates the ECL from other
control patterns. In these other cases, the static knowledge
—i.e. the plant model—, which is application-dependent, is
assumed static, being embedded into the controller together
with the control algorithm, so it is not possible to change
or incorporate an element to the control schema without
entirely re-implementing it. With an explicit model bearing
all the information used in the different elements of the

Cyber

Physical

Plant

Perception

Think

Evaluation

Actuators

Control

Goal

Sensors

Model

Figure 2. The Epistemic Control Loop Pattern structure. Thin arrows show
structural connections between roles, with the arrow head indicating the
direction of the data-flow, whereas thicker dashed arrows show the basic
flow of information that leads to action generation.

control, the ECL design allows for changing the algorithm
of any element of the control, or incorporating a new one,
without modifying the rest.
Structure The ECL pattern proposes an structural sep-
aration of controller roles. The Perception process in ECL
consists of the processing of the available input form the
Sensors to update the estimation of the plant state con-
tained in the Model. The Evaluation process evaluates the
estimated state in relation with the current Goal of the
loop —a generalization of the error signal of classical
feedback control. The Control is responsible for generating
proper action by using the evaluation result, the information
about possible actions contained in the Model, and action-
generation knowledge, for example planning methods. The
action is then sent to the Actuators that execute it. The Think
process include additional reasoning activities operating on
the Model, e.g. to improve the state estimation, together with
any operations that involve the manipulation of knowledge,
such as consolidation or prediction. All application specific
knowledge is contained in the Model. It is accessed and
manipulated by the rest of the processes through standard
interfaces. This can be implemented using the Database
Management System pattern, for example.
Dynamics The ECL defines a cyclic operation in which
each cycle follows the perceive-reason-act sequence, al-
though the Model serves as a decoupling element that pre-
vents the blocking of the operation caused by a failure in any
of the steps. The Perception process in ECL corresponds to
the first step and may include other reasoning operations as
described previously. The Evaluation process then generates
value from the current estimated state in the Model. In the

46Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 55 / 91

last phase of the loop the Controller produces the most
appropriate action based on the information available.
Related Patterns The ECL pattern is rooted on well
established control patterns: feedback [17], model-based
predictive control [22] or model-based control [23].
References The RCS (Real-time Control System) node
[24] defines similar functions that are required in a real-time
intelligent control unit. The PEIS (Physically Embedded In-
telligent System) loop [25] also considers the aggregation of
distributed control components with different functionalities.
Boyd’s OODA Loop (Observe, Orient, Decide, and Act)
[26] is a concept originally applied to the combat operations
process, often at the strategic level in both the military oper-
ations. It is now also often applied to understand commercial
operations and learning processes.

B. The MetaControl Pattern

Name MetaControl (MC).
Aliases Meta Architecture (HUMANOBS project).
Problem The MetaControl pattern addresses the problem
of designing a control system that is self-aware, i.e. it
understands its mission, in the sense of detecting when its
behavior diverges from its specification; it understands itself,
meaning that it can reason about how its own state realizes a
certain functional design in order to fulfill its mission; and it
can reconfigure itself when required to maintain its behavior
convergent towards its mission fulfillment.
Solution MC proposes a separation of the control system
into two subsystems (see Figure 3): the Domain Subsystem,
which consists of the traditional control subsystem respon-
sible for sensing and acting on the plant so as to achieve the
domain goal given to the system —e.g. move the mobile
robot to a certain location, grab a certain object with a
robotic hand. . . —; and the Metacontrol Subsystem, which is
a control system whose plant is in turn the Domain Subsys-
tem, and whose goal is the system’s mission requirements.
Structure The two subsystems in which the control
system is to be divided operate in different domains. The
Domain Subsystem operates in the application domain, and
could be patterned after any arbitrary control architecture,
for example the navigation architecture proposed in [27]
for a mobile robot. The pattern imposes the following
requirements on the Domain Subsystem: i) its implemen-
tation has to provide a monitoring infrastructure, providing
data at run-time about the processes and elements realizing
the domain control, ii) some redundancy, not necessarily
physical but more interestingly analytical, in the sense of
having alternative designs to realize some functions [28], and
iii) the implementation platform shall include mechanisms
for reconfiguration to exploit that redundancy.
References The separation of the domain control and the
meta-control is at the core of AERA, the architecture for
autonomous agents developed in the HUMANOBS project

Control
System

Plant

Domain
Subsystem

application goal

Metacontrol
Subsystem

requirements

reconfiguration

actionsensing

monitoring

Figure 3. The structure proposed by the MetaControl Pattern.

(Humanoids the Learn Socio-Communicative Skills by Im-
itation, www.humanobs.org). The issue of metacontrol is
also discussed related to reconfiguration of control systems
in [29], and in supervisory control in fault-tolerant systems
[28].

C. The Deep Model Reflection Pattern

Name Deep Model Reflection (DMR).
Problem This pattern addresses the problem of how to
use the engineering model of a control system as a self-
representation, so the system can exploit it at run-time to
adapt its configuration in order to maintain its operation
converging to its goal.
Solution Develop a metamodel capable of explicitly
capturing both i) the static engineering knowledge about
the system’s architecture and functional design, and ii) the
instantaneous state of realization of that design. This Func-
tional Metamodel has to be machine readable to be usable
by a model-based controller. A mapping from the languages
used to design the system to this metamodel is necessary, in
order to generate the run-tim model of the system from the
engineering model of it. Automatic generation is possible if
both conform to a formal metamodel, and a transformation
between both metamodels exists (Figure 4).
References Metamodeling is a core topic in the domain
of software modeling [30]. Functional modeling has been
addressed in many disciplines, for example in the control of
industrial processes [31].

System
Engineering

Run-time
System

Engineering
Model

Run-time
Model

Design Language
(DL)

Functional Metamodel
(FM)

conforms to conforms to

transformation
DL2FM

Figure 4. The roles involved in the Deep Model Reflection Pattern.

47Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 56 / 91

ASys Design
Principles

Design Patterns

ECL

MC

DMR

OM Architecture

OM Metacontroller

Function & Structure
Metamodel

transformation
DL2FM

Engineering
Model

application
control
architecture

Platform

OM MetaInterface

OMJava

Function & Structure
Metamodel

Metacontroller

MetaInterface

OM Architectural FrameworkASys Vision Application Development

Plant

Control System

Metacontrol
Subsystem

Run-time
Model

Domain Subsystem

Figure 5. The methodological path followed in the development of the OM Architecture, with the core assets for ASys resulting from it.

IV. THE OM ARCHITECTURE

The three patterns presented provide partial solutions to
the problem of designing robust control architectures for
autonomous systems. They can be used in the construction of
more complete architectures, as is the case of the Operative
Mind (OM) reference architecture, a complete and general
solution, synthesized by integrating the three patterns and
realizing them in reusable software.

The conceptual and methodological path to OM is de-
picted in Figure 5. From left to right: a principled approach
to robust cognition and self-awareness is captured as a set
of design patterns; they are applied to synthesize the OM
Architecture and build an application independent imple-
mentation as a Java package; it is then used, together with
platform specific available assets, to implement the control
architecture of a mobile robot.

A. OM Architectural Assets

OM offers a set of interrelated engineering assets for the
development of specific control architectures (see Fig. 6):

1) MetaInterface: The application of the MetaControl
pattern to our reference architecture has resulted in an
interface that specifies the contract between the Domain and
Metacontrol Subsystems’ implementations.

2) Metacontroller: The Metacontroller is a refinement
of the MetaControl pattern that specifies the design of the
Metacontrol Subsystem by application of the ECL pattern.
It defines an structure of two nested ECL loops: Compo-
nentsECL realizes a servo-control loop of the configuration
of the Domain Subsystem, to which it is connected for
sensing and acting through the MetaInterface. The Com-
ponentsECL goal is to keep a certain desired configuration,
given by the action of the outer loop, the FunctionalECL,
whose sensory input is the current configuration as estimated
by the ComponentsECL and its goal is the system specifi-
cation. The FunctionalECL evaluates the observed config-
uration by determining how well it realizes the functions
designed to address the application requirements —i.e. the

mission—, which is the goal of the FunctionalECL loop,
and acts by producing a reconfiguration when necessary.
For their operation, both ECL loops rely on a shared model
which captures the engineering knowledge about the domain
subsystem.

3) Function & Structure Metamodel: To design the
knowledge that the OM Metacontroller exploits for control
purposes —i.e. its Model— we have applied the DMR
pattern. This pattern prescribes the explicit use of design-
time models. For that purpose we have used an ontological
approach to modeling [32]: we have compiled all the nec-
essary concepts required for the explicit representation of
the structural and the functional aspects of a system, to later
formalize it in the Function & Structure Metamodel. The
metamodel contains elements to account for the two referred
aspects of an autonomous system:

Structure elements: concepts to represent the configu-
ration of the system in terms of components and their
connections.

Functional elements: concepts that capture the teleology
of the system, in the sense of Lind [31] of representing
the roles the designer intended for the components of
the system to achieve the objectives of the system. These
representations constitute design solutions for the required
functionality.

The metamodel has been specified in UML, and a Plat-
form Specific Model (PSM) has been implemented in Java.

B. Use of OM in an autonomous mobile robot

This section describes the application of the OM Refer-
ence Archiecture to develop the control architecture of a
mobile robot capable of robustly perform standard naviga-
tion tasks.

1) The patrol robot testbed: A patrolling mobile robot
testbed has been used to validate the OM Architecture.
This application was selected because it involved hetero-
geneous components, both hardware and software, and had
a sufficient level of complexity to prove for generality.

48Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 57 / 91

Metacontroller : Metacontrol Subsystem

Running control application : Domain Subsystem : Plant

requirements : Goal

: Plant
ComponentsECL
: Controller

FunctionalECL
: Controller

Model

P C

T

E

P C

T E

Engineering
Model

MetaInterface

: reconfiguration
: monitoring

: acting
desired configuration
: Goal

: sensing
configuration
: estimated state

Function &
Structure

Metamodel :
Functional
Metamodel

conforms to

Figure 6. The interplay of the main elements of the OM Architecture Model
in the operation of a metacontroller. Functional and Components loops are
patterned after the ECL (hence including Perception, Think, Evaluate and
Control activities around a Model). The roles that each element plays are
written in italics after colon marks.

The basic use case consists of the robot (a Piooner 2AT8
platform instrumented with a SICK LMS200 laser sensor,
a Kinect and a compass) navigating through an indoor
office environment to sequentially visit a number of given
waypoints. The environment has no dynamic obstacles and
an initial map is provided. Some runtime deviations from
it are possible, e.g. chairs may have moved, in order to
provide for realistic levels of uncertainty. Two scenarios
were envisaged to test the benefits of the application of the
OM Architecture in terms of robustness and autonomy: i) a
temporary failure of the laser driver, ii) a permanent fault
in the laser sensor. In both cases the system should be able
to detect it and reconfigure its organization to adapt to the
current state of affairs, in order to maintain the mission.

2) Platform development: The platform selected to im-
plement the domain control system is ROS [4] for several
reasons: i) its middleware infrastructure provides with mech-
anisms for monitoring and reconfiguration as prescribed by
the MetaControl pattern, ii) its computation model of
nodes that publish and subscribe to message channels or
topics fits in a component-based architecture model, being
thus modelable with our Function & Structure Metamodel;
and iii) there are open source ROS implementations of
components for navigation of mobile robots available.

For the Domain Subsystem of the control architecture we
have used the ROS navigation stack [27], which we have
tuned for our Pioneer mobile platform, and complemented
with other available ROS packages for the robot Kinect
and Laser sensors, and additional ROS necessary for the
patrolling mission.

The metacontroller is implemented using the OMJava

package. It provides a domain independent and multiplat-
form implementation of the OM Architectural Model (see
Figure 5), including a complete implementation of the
Function & Structure Metamodel, the OM Metacontroller,
and a Java specification of the MetaInterface.

In order to integrate the OMJava implementation of the
Metacontroller with the ROS-based navigation control ar-
chitecture, an application-independent ROS implementation
of the MetaInterface has been developed as a set of ROS
nodes. These nodes, together with another one which wraps
the OMJava Metacontroller as a ROS node, constitute a PSM
of the OM Architecture for the ROS platform.

3) Application development and validation: So far we
have described the implementation of: i) a Java library which
provides an implementation of OM Metacontroller (OM-
Java), ii) a ROS PSM of the OM Architecture (OMrosjava),
which includes ready-to-deploy OM-based metacontrol as-
sets for any robot application implemented with ROS.

Thanks to the architectural model-based approach, to im-
plement the concrete testbed it is only necessary to generate
the application model according to the Function & Structure
Metamodel, in order to provide the Metacontroller with
explicit knowledge about the system: i) its mission —core
functionality required—, ii) its structure —its components
and their properties—, and iii) its functional design —
available design solutions that realize the core functionality
through certain configurations of its structure.

Following we briefly describe how the application inde-
pendent OM processes we have developed exploit the afore-
mentioned knowledge in each of the scenarios envisaged:

Scenario 1: the Metacontroller detects the failure of
the laser driver and repairs the component it by re-launching
the software process. Only the ComponentsECL intervenes,
since the solution is achieved at the structure level.

Scenario 2: this time it is not possible to relaunch the
laser driver because the error is due to a permanent fault
in the laser device. the ComponentECL detects this and the
situation scales to the FunctionalECL loop. The functional
failure caused by the unavailability of the laser driver is
assessed, and an alternative configuration that fulfills the
functionality required to maintain the mission is generated.
This configuration makes use of the Kinect sensor instead
of the laser. The new configuration is commanded to the
ComponentsECL, which reconfigures the navigation systems
accordingly. In summary, the robot redesigns its control
architecture using available components.

V. FUTURE WORK

Our current pattern language contains only a small number
of patterns centered on core ASys issues. It is necessary to
complete it with more common, practical patterns to achieve
a full generative pattern language [33].

The current implementation of the ICe —the Integrated
Control Environment— is just a collection of engineering

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 58 / 91

resources atop the Rational Software Development Platform.
Our current effort is to use the Eclipse RCP to create a
specific IDE for the ASys engineering process. There is an
ongoing work in the automation of some of the transfor-
mation processes. For example, concerning the current im-
plementation of the OM Architecture Model, the automatic
transformation from the engineering design language to our
Function & Structure metamodel is still under development.
The MDD transformations necessary to complete the ICe
toolchain are still in early stages.

The Functions & Structure metamodel now only models
basic structural aspects of control systems. It is necessary
to incorporate behavioral aspects to our current metamodel
so the Metacontrol will be able to handle function-centric,
dynamical issues in the Domain Subsystem. It is necessary
to improve the metamodel by including the full ECL and
OASys [34] concepts to further specify functionality. An
specially important ongoing work is the self-closure of the
MC pattern: the application of the MetaControl pattern to
the Metacontrol Subsystem, so it becomes also part of the
Domain Subsystem it controls.

The ambition of ASys is of universality; and hence there
is a need for domain generalization, i.e. the extension
of theoretical concepts and technological assets to other
domains. Current efforts are centered around autonomous
robots and continuous process control systems [11], but
other technological domains are under consideration —e.g.
utilities, telecoms or maintenance systems. Even more, while
the patterns described in this paper are technological designs
for autonomous artifacts, their content may find strong
biological roots in animal cognition [35]. In this sense, the
ASys research programme may have impact not only in how
engineers build autonomous robots, but also in how cognitive
scientists understand the mind [36].

VI. CONCLUSIONS

This work shows a pattern-based approach to the con-
struction of sophisticated, self-aware control systems in
the domain of autonomous robots. The three patterns —
Epistemic Control Loop (ECL), MetaControl (MC), and
Deep Model Reflection (DMR)— offer valid reusable design
assets for the implementation of custom architectures for
autonomous systems.

The development of the testbed application demonstrated
the benefits of following a pattern-based approach in the
implementation of a resilient control architecture for a robot.

The patterns, as instantiated in the OM Architecture, were
easily applicable thanks to the availability of a domain
neutral implementation (OMjava). From it, the production of
the ROS platform-specific model was straightforward, and
only slightly hampered by the lack of a formal Platform
Definition Model for ROS. Considering strictly only the
development of the testbed application, the addition of our
reference architecture produced only a minor extra-effort

when compared with a standard development of the control
architecture for the mobile robot.

The three patterns offered solutions to very different prob-
lems both at design time and runtime, but as the OM Refer-
ence architecture and the OMjava realization demonstrate in
the testbed, they are easily integrable and can successfully
collaborate in generating better system architectures.

The pattern-based, model-centric approach to the con-
struction of autonomous controllers proposed by ASys
can offer possibilities —both for engineering and run-time
operation— that go well beyond current capabilities of intel-
ligent autonomous robots. In this direction, the application
of our OM Architecture, rooted on the three design patterns
described in the paper, has provided the robot with deep run-
time adaptivity based on a functional understanding, hence
demonstrating enhanced robust autonomy through cognitive
self-awareness.

Remember that the ASys programme seeks robust teleon-
omy for unreliable systems in uncertain environments. The
model-based, self-aware adaptivity approach supported by
these patterns departs from conventional robust control ap-
proaches, offering a more open-ended pathway for system
adaptation.

ACKNOWLEDGEMENTS

The authors would like to thank the European Commis-
sion for grant HUMANOBS (Humanoids the Learn Socio-
Communicative Skills by Imitation).

REFERENCES

[1] N. Nilsson, “A mobile automaton: An application of artificial
intelligence techniques,” AI Center, SRI International, 333
Ravenswood Ave, Menlo Park, CA 94025, Tech. Rep. 40,
Mar 1969, sRI Project 7494 IJCAI 1969.

[2] R. A. Brooks, “A robust layered control system for a mobile
robot,” IEEE Journal of Robotics and Automation, vol. 2,
no. 3, 1986, pp. 14–23.

[3] M. Lindstrom, A. Oreback, and H. I. Christensen, “Berra: a
research architecture for service robots,” in IEEE International
Conference on Robotics and Automation, 2000. Proceedings.
ICRA ’00., San Francisco, CA, USA, April 2000, pp. 3278–
3283 vol.4.

[4] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote,
J. Leibs, R. Wheeler, and A. Y. Ng, “Ros: an open-source
robot operating system,” in ICRA Workshop on Open Source
Software, 2009.

[5] M. Shaw and D. Garlan, Software Architecture. An Emerging
Discipline. Upper Saddle River, NJ: Prentice-Hall, 1996.

[6] W. Houkes and P. Vermaas, Technical Functions. On the Use
and Design of Artefacts. Springer, 2010.

[7] J. Miller and J. Mukerji, “MDA guide v1.0.1,” Object Man-
agement Group, Tech. Rep. omg/03-06-01, 2003.

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 59 / 91

[8] R. Sanz and M. Rodrı́guez, “The ASys Vision. Engineering
Any-X autonomous systems,” Universidad Politécnica de
Madrid - Autonomous Systems Laboratory, Technical Report
ASLAB-R-2007-001, 2007.

[9] W. Meeussen, E. Marder-Eppstein, K. Watts, and B. P.
Gerkey, “Long term autonomy in office environments,” in
ICRA 2011 Workshop on Long-term Autonomy, IEEE.
Shanghai, China: IEEE, 05/2011 2011.

[10] B. Hayes-Roth, K. Pfleger, P. Lalanda, P. Morignot, and
M. Balabanovic, “A domain-specific software architecture for
adaptive intelligent systems,” Software Engineering, IEEE
Transactions on, vol. 21, no. 4, Apr 1995, pp. 288–301.

[11] M. Rodriguez and R. Sanz, “Development of integrated
functional-structural models,” in 10th International Sympo-
sium on Process Systems Engineers, Salvador, Brasil, August
16-20 2009, pp. 573–578.

[12] C. Hernández, I. López, and R. Sanz, “The operative mind: a
functional, computational and modelling approach to machine
consciousness,” International Journal of Machine Conscious-
ness, vol. 1, no. 1, June 2009, pp. 83–98.

[13] R. Sanz, I. López, M. Rodrı́guez, and C. Hernández, “Princi-
ples for consciousness in integrated cognitive control,” Neural
Networks, vol. 20, no. 9, 2007, pp. 938–946.

[14] R. C. Conant and W. R. Ashby, “Every good regulator of a
system must be a model of that system,” International Journal
of Systems Science, vol. 1, no. 2, 1970, pp. 89–97.

[15] C. Landauer and K. L. Bellman, “Meta-analysis and reflection
as system development strategies,” in Metainformatics. Inter-
national Symposium MIS 2003, ser. LNCS. Springer-Verlag,
2004, no. 3002, pp. 178–196.

[16] L. Balmelli, D. Brown, M. Cantor, and M. Mott, “Model-
driven systems development,” IBM Systems journal, vol. 45,
no. 3, 2006, pp. 569–585.

[17] R. Sanz and J. Zalewski, “Pattern-based control systems
engineering,” IEEE Control Systems Magazine, vol. 23, no. 3,
June 2003, pp. 43–60.

[18] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software, ser.
Addison-Wesley Professional Computing Series. New York,
NY: Addison-Wesley Publishing Company, 1995.

[19] J.-M. Perronne, L. Thiry, and B. Thirion, “Architectural
concepts and design patterns for behavior modeling and
integration,” Math. Comput. Simul., vol. 70, no. 5-6, Feb.
2006, pp. 314–329.

[20] R. Sanz, A. Yela, and R. Chinchilla, “A pattern schema for
complex controllers,” Emerging Technologies and Factory
Automation, 2003. Proceedings. ETFA ’03. IEEE Conference,
vol. 2, Sept. 2003, pp. 101–105 vol.2, .

[21] N. G. Leveson, Engineering a Safer World Engineering a
Safer World: Systems Thinking Applied to Safety. The MIT
Press, 2012.

[22] A. Pike, M. Grimble, A. O. M.A. Johnson, and S. Shakoor,
The Control Handbook. CRC Press, 1996, ch. Predictive
Control, pp. 805–814.

[23] P. M. van den Hof, C. Scherer, and P. S. Heuberger, Model-
Based Control: Bridging Rigorous Theory and Advanced
Technology. Springer, 2009.

[24] J. S. Albus and A. J. Barbera, “RCS: A cognitive architec-
ture for intelligent multi-agent systems,” Annual Reviews in
Control, vol. 29, no. 1, 2005, pp. 87–99.

[25] A. Saffiotti, M. Broxvall, M. Gritti, K. LeBlanc, R. Lundh,
J. Rashid, B. Seo, and Y. Cho, “The PEIS-ecology project:
vision and results,” in Proc of the IEEE/RSJ Int Conf on
Intelligent Robots and Systems (IROS), Nice, France, 2008,
pp. 2329–2335.

[26] F. P. Osinga, Science, Strategy and War: The Strategic Theory
of John Boyd. Routledge, 2007.

[27] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and
K. Konolige, “The office marathon: Robust navigation in
an indoor office environment,” in Robotics and Automation
(ICRA), 2010 IEEE International Conference on, may 2010,
pp. 300 –307.

[28] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki,
Diagnosis and Fault-Tolerant Control. Springer-Verlag Berlin,
2006.

[29] J. L. de la Mata and M. Rodrı́guez, “Accident prevention
by control system reconfiguration,” Computers & Chemical
Engineering, vol. 34, no. 5, 2010, pp. 846 – 855.

[30] T. Kühne, “Matters of (meta-)modeling,” Software and Sys-
tem Modeling, vol. 5, no. 4, July 2006, pp. 369–385.

[31] M. Lind, “Modeling goals and functions of complex industrial
plants,” Applied Artificial Intelligence, vol. 8, 1994, pp. 259–
283.

[32] J. Bermejo-Alonso, R. Sanz, M. Rodrı́guez, and
C. Hernández, “An ontological framework for autonomous
systems modelling,” International Journal on Advances in
Intelligent Systems, vol. 3, no. 3, 2010, pp. 211–225.

[33] D. Brugali and K. Sycara, “Frameworks and pattern lan-
guages,” ACM Computing Surveys, March 2000.

[34] J. Bermejo-Alonso, “OASys: An ontology for autonomous
systems,” Ph.D. dissertation, Departamento de Automática,
Universidad Politécnica de Madrid, 2010.

[35] C. Hernández, R. Sanz, J. Gómez-Ramirez, L. S. Smith,
A. Hussain, A. Chella, and I. Aleksander, Eds., From Brains
to Systems. Brain-Inspired Cognitive Systems 2010. Springer,
2011.

[36] R. Sanz, “Machines among us: Minds and the engineering of
control systems,” APA Newsletters - Newsletter on Philoso-
phy and Computers, vol. 10, no. 1, 2010, pp. 12–17.

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 60 / 91

A Method for Directly Deriving a Concise Meta Model from Example Models

Bastian Roth, Matthias Jahn, Stefan Jablonski

Chair for Databases & Information Systems

University of Bayreuth

Bayreuth, Germany

{bastian.roth, matthias.jahn, stefan.jablonski} @ uni-bayreuth.de

Abstract—Creating concise meta models manually is a complex

task. Hence, newly proposed approaches were developed which

follow the idea of inferring meta models from given model

examples. They take graphical models as input and primarily

analyze graphical properties of the utilized shapes to derive an

appropriate meta model. Instead of that, we accept arbitrary

model examples independent of a concrete syntax. The

contained entity instances may have assigned values to

imaginary attributes (i.e., attributes that are not declared yet).

Based on these entity instances and the possessed assignments,

a meta model is derived in a direct way. However, this meta

model is quite bloated with redundant information. To increase

its conciseness, we aim to apply so-called language patterns like

inheritance and enumerations. For it, the applicability of those

patterns is analyzed concerning the available information

gathered from the underlying model examples. Furthermore,

algorithms are introduced which apply the different patterns to

a given meta model.

Keywords-meta model derivation; meta model inference;

conciseness of meta models; pattern recognition; language

patterns; inheritance

I. INTRODUCTION

Manually creating domain-specific languages (DSL),
especially with a concise meta model as abstract syntax, is a
complex task [1]. Besides an abstract syntax, a typical DSL
also consists of a concrete syntax and a set of semantic rules
(constraints) [1]. In this paper, the focus lies on the abstract
syntax defined by a meta model. For defining such a meta
model, new development methods have emerged. Those
methods focus on deriving or inferring a meta model from a
given set of example models [2, 3]. However, they only
marginally consider the conciseness aspect of the resulting
meta model (if at all). According to [4], this is a very important
quality criteria of meta models. Therefore, our primary goal is
to obtain a meta model with a high degree of conciseness. To
achieve this, a typical solution is to apply language patterns
like single inheritance, multiple inheritance and enumerations
to a constellation of meta model entities (for more information
about conciseness see section III).

Since the resulting meta model should represent the
abstract syntax of a DSL another important goal of our
approach is to derive a meta model which highly corresponds
to concepts describing the domain. Hence, we have to gain the
domain entities’ instances from the model examples. Such
instances directly can be modeled when using the Open Meta
Modeling Environment (OMME) introduced by Volz et al. in
[5]. Consequently, the paper at hand originates in the context

of OMME. In the following sub section, we shortly explain
the relevant characteristics of this platform.

A. The Open Meta Modeling Environment

OMME is an Eclipse-based meta modeling tool [6] that
allows developers to define their own modeling language. It
goes far beyond the capabilities of competing tools with
respect to its support for advanced language patterns (e.g.
Powertypes [7]). Its implementation is based on the
Orthogonal Classification [8] and uses Clabjects [9] for
representing concepts of a model (the term “concept” in the
context of OMME always means a Clabject). Hence, OMME
provides a Linguistic Meta Model (LMM) and interprets
(meta) models at runtime in order to emulate a concrete textual
syntax.

Below, we predominantly limit ourselves to concepts
which can act as both, types and instances. As a type (also
called a meta concept), a concept declares attributes whereas
as an instance (also called an instance concept), a concept
contains assignments each of which may be associated with
an attribute. If such an association exists the target attribute
must be declared by the type (meta concept) of the
assignment’s owner. Attributes and assignments can be
divided into literal and referential ones depending on their
respective type. OMME supports the following literal types:
boolean, integer, double and string. In our understanding,
enumerations are regarded as literal types, too. That is
tolerable because enumerations can also be represented by
integers with a highly restricted range of values. Each defined
concept, however, may be used as a referential type. While
modeling using the LMM, the applicable language patterns
can be selected according to a user’s needs (e.g., enabling or
disabling multiple inheritance). Below, each suchlike
configuration is called a modeling context.

B. Fundamental assumption on equally named elements

The most important assumption we take is that equally
named elements (types of concepts on the one hand,
assignments and attributes on the other hand) always relate to
the same semantic object at domain side. One could imagine
a meta model containing two different concepts each with
exactly one string attribute labeled as owner. When trying to

make this meta model more concise, both concepts are
deemed to be candidates for generating a common super
concept because of the two equally named attributes.

This assumption is mandatory. Otherwise, neither a meta
model can be derived from one or more example models nor
the conciseness of a given meta model can be enhanced. Both

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 61 / 91

approaches presented in section V infer graphical DSLs and
follow a comparable principal. They state that two shapes
correspond to each other if their graphical properties are
identical.

II. EXAMPLE MODEL

As an example model we constructed the process shown
in Fig. 1 using two different concrete syntaxes. The top part
shows the graphical representation with nodes and directed
edges. It is just depicted for a better comprehensibility since a
graphical process model is easier to understand than a textual
one. In the right, the same model is written down using the
concrete textual syntax given by the LMM.

Below, we focus on the textual representation because it
directly uses constructs of the LMM. Since the LMM syntax
is quite similar to the one of popular object-oriented
programming languages it is easy to read for software
developers and modelers. The mapping rules between both
representations lie beyond the scope of this paper, so the
following mapping is taken for granted: The circle node on the
left is considered as Start concept with identifier S. It

contains an assignment next which refers to concept P1 and

represents a successor relationship. P1 to P4 are specified as

Process concepts. Each of them has a title and also a next

assignment. A1 and A2 represent instances of concept And.
Both again contain a next assignment. However, assignment
next of A1 holds two references to P3 and P4. The last circle

on the bottom represents the process models Exit. It contains
no further assignments. The arrows between the different
nodes can be seen as successor relationships which are always
mapped to according next assignments.

III. CONCISE META MODEL USING LANGUAGE PATTERNS

One important goal in meta modeling is keeping meta
models concise [4]. Therefore, models need to be as small as
possible, i.e., they should completely describe their according
domain with as few constructs as possible. Achieving this is a
general problem when building meta models. For instance, the
authors of the newly published version 2.5 of UML have
focused on simplifying the corresponding meta model [10].

Making a meta model concise can be accomplished by
applying so called language patterns to suitable constellations
of meta elements [11]. In literature, it is not exactly specified
how a suitable constellation looks like. There are only
suggestions in form of best practices or guidelines when to
apply a certain pattern (comparable to the applicability of
design patterns [12]). Because these guidelines are
suggestions they are mostly formulated quite imprecise with a
subjective touch. Most guidelines base on domain-specific
background knowledge (e.g., the “is a”-statement mentioned
in the following sub section A for using single inheritance). In
general, such information is not available. Hence, we have to
rely on the information provided by the model examples as
well as the structure of the derived meta model (i.e., attributes
and their referential or literal types).

In the following, three typical language patterns that are
supported by OMME and partially many different other
modeling frameworks (e.g., EMF, MetaGME, eMOFLON)
are presented. For enumerations, we do not elaborate further
because their usage is straightforward. They basically allow
for restricting the value range of an attribute to a few
predefined literals.

A. Single inheritance

Single inheritance is a well-known and widespread
language pattern stemming from the field of object-oriented
programming languages. There, it allows for introducing
generalization/specialization hierarchies on classes. The key
feature necessary for our approach is that a specialized class
inherits all fields of its super class.

The most common rule for introducing a specialization
relationship is: if an “is a”-relationship can be identified
between two classes [13] (or entities like stated in [14]) the
source of this relationship specializes the target. To identify
this kind of relationship, background knowledge about the
domain is required which cannot be directly expressed
through the model example(s). Therefore, we follow the
proposal of [15] and interpret a set of shared attributes as
indicator for an inheritance relation. In some cases, for a given
model example the introduction of a specialization
relationship is indispensable. This occurs if an attribute is
intended to reference two or more different classes. Then,
those referable classes need a common super class which has
to be the type of the aforesaid attribute. An example for that is
demonstrated in section IV.B step 3. This additional
information can only be retrieved from the model examples
and not directly from the meta model. That is the case because
merely in instances different concepts may be assigned to
attributes (according to their respective types). A referential
attribute, however, always expects exactly one type.

Another important topic when using inheritance is a rather
flat generalization hierarchy. Otherwise, the meta model gets
quite complex and thus its comprehensibility suffers.

B. Multiple inheritance

Multiple inheritance is often criticized as risky because of
potentially occurring problems as stated by Singh in [16] (e.g.,
name collision and repeated inheritance). Hence, we only
utilize multiple inheritance to meet addressability constraints

Start S {
next = P1

}

Process P1 {
title = "Conference Search"
next = P2

}

Process P2 {
title = "Travel request"
next = A1

}

And A1 {
next = P3, P4

}

Process P3 {
title = "Conference registration"
next = A2

}

Process P4 {
title = "Book hotel"
next = A2

}

And A2 {
next = E

}

Exit E {
}

Travel
request

Conference
registration

Book hotel

Conference
search

represented using LMM syntax

Figure 1. Example model visualized using two different concrete syntaxes

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 62 / 91

found within the original model example(s). Addressability
means the two possible referencing aspects, namely “a
concept is referenced by another one” and “a concept refers to
another concept”. An adequate example can be found in
section IV.C.2) where an algorithm is proposed for applying
the multiple inheritance language pattern to a given meta
model. This restriction protects also from over-generalizing
the resulting meta model.

IV. META MODEL DERIVATION

When deriving a meta model from a model example, the
directly recognizable constraints need to be softened in some
way. Otherwise, solely the provided model example can be re-
modeled without any differences. This softening behavior
needs to be highly configurable since the statement whether a
meta model is concise or not is always subjective. Therefore,
our prototypical implementation provides many according
parameters which allow for fully customizing the derivation
behavior. However, the given default settings represent the
notion of a concise meta model based on our experiences and
best practices.

In the following, we introduce our direct method for
deriving a concise meta model out of one (or more if
available) model example(s). Direct method means that we
directly work with constructs given by the LMM. In the first
instance we refer to concepts, assignments and attributes. The
whole method can be divided into two main parts, according
to the necessity whether applying language patterns is
required or not:

 Bottom-up part: for each found unique type a separate
meta concept is created with all required attributes.
After that, language patterns are applied that are
mandatory for obtaining a valid meta model as defined
by the LMM’s semantics.

 Conciseness part: analysis of the generated meta model
to find constellations of concepts to which further
language patterns can be applied. These constellations
are identified according to the statements about the
particular patterns in section III.

A. Reusable sub algorithms

Below, three sub algorithms are presented that are reused
at different places. So, their functionality is described once
and referenced wherever needed.

1) Merging a set of types using generalization

The sub algorithm “merging types using generalization”
has the task that for a given set of types, one common super
type has to be determined (without moving contained
attributes from the input types to a new common super type).
Its functionality correlates to the one provided by the model
evolution operations “extract super class” and “fold super
class” described in [17]. Nevertheless, both operations always
base on at least one common feature (in our terms: one
common attribute) which is not the case for our algorithm.

The algorithm works as follows: Receiving a set of input
types ITs, for each type IT the routine collects its super types

and add them to the set STs. Those super types STs are

analyzed whether each one of their specializations SPs (sub

types) is contained by the set of input types ITs. If so the

particular super type ST is a merging candidate C. After

processing the input types, all found candidates Cs are merged

to one common super type CST (disjunction). In case no super

type candidates Cs are found, a new common abstract super

type CST is generated. Finally, over ITs is iterated again.

Thereby all specialization relationships from the type to any
candidate C are removed. In place of that, a new specialization

relationship is inserted from the type IT to the new common

super type CST. As a cleanup, each super type ST that is no

longer specialized is removed from the meta model.
Furthermore, all references to the former super types STs (if

exists) are replaced by according references to the new
common one (CST). In addition to this informal description of

the algorithm’s functionality, Figure 2 gives an overview by
means of a corresponding flow diagram.

After performing this algorithm, the resulting common
super type may contain attribute duplicates. They may appear
when merging several super type candidates to one common
super type. Due to reusability reasons, it is not in the scope of
this algorithm to resolve this inconsistency. That has to be
done afterwards.

2) Elimination of attribute duplicates

Another frequently reused sub routine is “eliminating
attribute duplicates”. This algorithm takes a concept with
inconsistent content as input. Inconsistency is enunciated by
several equally named attributes which need to be merged to
one single attribute.

For each super type:

typesStart
collect all

super types
super
types collect all

sub types
each sub type

is in types?

remember
super type as
candidate

yes

Stop

merging
candidates

merging
candidates

found?

merge candidates
to one common

super type

create common
super type for

input types
no

common
super type

update all
references

yes

Figure 2. Flow diagram for “merging types using generalization” algorithm

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 63 / 91

Handling different cardinalities is quite easy. They are
always widened to flexibility and consequently less
limitations (e.g., 1 and 1..* turn to 1..*, 0..1 and 1..* to 0..*).

However, before addressing the type merging part,
attributes have to be split up according to their kind, namely
referential or literal. It is important to notice again that
enumerations are regarded as literal attributes, too. The fork is
necessary because referential attributes may lead to an
indispensable introduction of a generalization hierarchy.

For instance, imagine a source concept with two equally
named attributes whose types are referring to two different
target concepts. In order to maintain the possibility of
referencing instances of both target concepts within an
instance of the source concept, the target concepts need a
common super type. Thereby, for a set of equally named
attributes the attribute types are extracted. If these types refer
to different meta concepts for all those concepts a common
abstract super concept is created and specialized by them
(using sub algorithm 1)). Afterwards, only one of the original
attributes is kept and its type (the referenced meta concept) is
changed to the new common super concept. For another
concrete example, see Figure 4 and Figure 5.

Eliminating or at least handling several equally named
literal attributes happens in a different way. For it, we
conceive three alternative strategies which may be configured
as mentioned at the beginning of this section. The first one just
informs the user about these ambiguities. The second strategy
renames all duplicate attributes by means of a predefined rule
(e.g., appending ascending numbers to the attributes’ names).
That also leads to small modifications within the model
example(s) because the respective assignments must be
updated as well. Using the third and last alternative conforms
to our overall intention to a greater extent. We stated above
that equally named constructs are considered to correspond to
the same artifacts at domain side. Therefore, the third strategy
merges the duplicate literal attributes based on type widening.
This concept is comparable to the one of popular
programming languages like Java and C#. Hereby, we allow
type widening for all literal data types (enumerations
included). When applying it to two different types then always
the one with a greater value range is chosen. The ascendant
order of the literal types according to their value range is as
follows: boolean, enumeration, integer, double, string.

It may also occur that there are equally named referential
and literal attributes at the same time. In this case it is obvious
that only the first two strategies are expedient (i.e., inform the
user or rename the concerning attributes and assignments).
Due to the different inherent intents of literal and referential
attributes, merging is not a valid option.

3) Elimination of multiple inheritance

Executing the task “eliminating multiple inheritance” is
required if some concepts specialize more than one super type
but multiple inheritance is not available in the current
modeling context. At first, the according algorithm looks for
concepts Ts which specialize at least two other concepts (set

of all super types STs). Next, it iterates over all found

concepts STs. For each concept ST, it selects all concerning

sub concepts SPs that extend one or more super types

specialized by T. Moreover, algorithm 1) is called by

delivering all specializations SPs (T incl.) as input data.

Merging types this way may lead to attribute duplicates.
They have to be eliminated by algorithm 2). Since its
execution could again produce more than one super type per
concept cyclic invocation of both algorithms may be
necessary. This cycle will definitely terminate. At the latest
this occurs when one global super type is found which is used
as generalization for all other concepts.

For eliminating multiple inheritance, extending the
inheritance hierarchy about a further level is another
conceivable solution. However, the solution is not universally
valid (like the chosen solution stated above) because it cannot
be applied to each constellation of concepts. For instance, that
is the case if there are many different attributes which are
mutually used within various concepts.

B. Bottom-up algorithm

The initial bottom-up algorithm (Figure 3) is considered
as obligatory for deriving an initial meta model. For this
algorithm, the (instance) concepts of one or more example
models are taken as input data. The algorithm itself can be
divided into four main steps.

 Within the first step, for each uniquely identified type in
the model example(s) a separate meta concept is created.
Applied to the example from section II the unique meta
concepts Start, Process, And and Exit are derived.

The second step infers attributes according to the
assignments specified in the particular instantiating concepts.
Hereby, for each assignment a corresponding attribute is
created. This attribute takes over the name, the type and the
cardinality of the assignment. In doing so, the cardinality’s
lower bound is set to 1 if each instance of the same type
contains such an assignment, otherwise to 0. The upper one is
set to 1 if every time only one value is assigned, else * is
chosen. For literal assignments, the type can be directly read
off because this recognition task is carried out by the LMM’s
parser. Handling referential assignments is more complex. If
solely one concept is referenced then its type is directly
borrowed from it. Otherwise, for each referenced concept its

Create unique
meta concepts

Start
instance
concepts

Create
attributes for all

assignments

meta
concepts

attributes

multiple
inheritance
available?

Stop

yes

no

1 2

eliminate
attribute

duplicates

3
eliminate
multiple

inheritance

4

Figure 3. Coarse-grained flow diagram for the bottom-up algorithm

55Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 64 / 91

type is detected individually. In case different outcomes occur,
for every type a separate attribute is generated.

After finishing step 2, the meta model for the
aforementioned example looks like the one depicted in Figure
4. Therein, the two next attributes of Process as well as the

two of And must be merged in some way. This is done by

invoking sub algorithm IV.A.2).
Thereby, two abstract super concepts are generated,

namely ProcessOrExit and ProcessOrAnd. The so

modified meta model is shown in Figure 5. The style of the
arrows symbolizing the referential next attributes is the same

as the style of the arrows which represent their sources in
Figure 4.

Step 4 is merely required if multiple inheritance is disabled
for the current modeling context. Then Process may only

specialize one super concept. To achieve this, sub routine
IV.A.3) is invoked. When applying it to the meta model from
Figure 5, ProcessOrAnd and ProcessOrExit are merged

to ProcessOrAndOrExit as depicted in Figure 6. Beyond

that, the specialization relationships of Process, And and

Exit must now point to ProcessOrAndOrExit. The same

is true for the referential next attributes which refer to
ProcessOrAnd respectively ProcessOrExit.

C. Technical applicability of language patterns

Below, for each supported language pattern a separate
conciseness algorithm is presented that applies this pattern to
a given meta model. Every conciseness algorithm requires so
called “corresponding attributes” as input data. Thereby, two
different correspondences need to be distinguished. As stated
in the introduction, equally named attributes are intended to
have the same meaning according to the particular domain. In
other words, different attributes which correspond to each
other always carry an identical name. The second
correspondence bases upon the first one because sets of such
corresponding attributes may be again subsumed to a superior
set. In contrast, this correspondence does not base on the
attributes’ names but on their owners. Hence, two sets of
corresponding attributes correspond only if each attribute of
one set has a counterpart in the other set which both exhibit
the same owner.

Before applying any language pattern, these
corresponding attributes have to be determined and the
according data structure must be built up. For it, all equally
named attributes are put into appropriate sets. Depending on
the underlying configuration, the attributes’ types and
cardinalities are regarded or ignored. Afterwards, the superior
sets are created by extracting subsets from the former ones
whose attributes meet the aforementioned owner criterion.
This calculation task can be simplified by sorting the attributes
within the former sets by their owners.

1) Single inheritance

The conciseness algorithm that applies single inheritance
(Figure 7) can be split up into two variants. The first variant
(yes-path) takes one of the input attributes’ owner as common
super type, whereas using the second variant (no-path) a new
common super type is built up.

Choosing the particular variant bases on information
gathered in step 1. Herein, the incoming attributes’ owners are
scanned for a concept which can be taken as common super
type. Such a concept must declare all common attributes
which can then be inherited by any sub concept (step 3).

In step 4, all corresponding attributes from the sub
concepts are moved to the common super concept. This results
in an inconsistent meta model because several equally named
attributes occur within the super type. Then, step 5 invokes
sub routine A.2) which resolves this inconsistency. However,
execution of step 5 may bring multiple inheritance to the meta
model (see section IV.B and especially Figure 5 for an
according example). This potential problem is addressed by
step 6 that encapsulates sub routine A.3).

+title : string

ProcessStart ExitAnd
+next

1

+next1

+next

1

+next 1..*

+next

1

Figure 4. Meta model for the above example after executing step 2

+title : string

ProcessStart ExitAnd
+next

1

+next

1

+next

1..* ProcessOrExitProcessOrAnd

Figure 6. Meta model for the above example after executing step 3

+title : string

ProcessStart Exit And
+next

1

ProcessOrAndOrExit

+next

1

+next

1..*

Figure 7. Meta model for the above example after executing step 4

corresponding
attributes

Start
look for owner

as common
super type

common super
type found?

merge owners
using

generalization

no

common
super type

yes

move attributes
to common
super type

eliminate
duplicate
attributes

insert
generalization
relationships

1

2

3

45

Stop
eliminate
multiple

inheritance

6

Figure 5. Flow diagram for the conciseness algorithm that applies single inheritance

56Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 65 / 91

Following the second variant (no-path) will be done if in
step 1 no common super type is found and hence, one has to
be determined. Then, step 2 calls the aforementioned sub
routine IV.A.1). Applying it (the subsequent steps included)
to the final meta model generated by the bottom-up algorithm
(section IV.B), all three next attributes are delivered as input

to the algorithm described above. Since none of the attributes’
owners can be used as common super type those owners have
to be merged accordingly. This has led to a new super type
called StartOrProcessOrAnd. Afterwards, the next

attributes are moved to this new super concept and merged
(their common type is set to ProcessOrAndOrExit). Now,

Process as well as And specialize two concepts, namely

StartOrProcessOrAnd and ProcessOrAndOrExit. Due

to the requirement of using single inheritance, both super
concepts are merged to a single concept named
ProcessOrAndOrExitOrStart and all references to the

former ones are updated.
Apparently, Exit may also have a successor now, which

was not intended by the model example. As explicated in
section IV.A.3) (third sub algorithm), that is a negative side
effect when restricting to single inheritance. This problem
typically is solved by integrating a constraints system. When
using a suchlike system, however, the brought constraint
language needs to be studied first. All in all, that decreases the
comprehensibility of the generated meta model and thus has a
negative impact on its conciseness.

2) Multiple inheritance

Due to the aforementioned restriction to addressability
constraints, the algorithm for applying multiple inheritance
only has to consider referential attributes. Consulting the
example from section II, concepts of type Start may never

be “referenced by” any other concept. In doing so, an instance
of Exit may not be able to have a successor by “referring to”

any target concept (via next). However, reducing the number

of equally named attributes is still our base intent. Keeping
those two objectives in mind and applying them to the meta
model depicted in Figure 5, the resulting meta model will look
like the one visualized by Figure 8. Here, the two different
concerns mentioned above (“references by” and “refer to”) are
implemented by means of a separate generalized concept. The
first one is represented by ProcessOrAndOrExit, while the

“refer to” aspect is established via StartOrProcessOrAnd.

Consequently, an appropriate algorithm needs to regard
both aspects. However, utilizing the knowledge about the
algorithm for applying single inheritance, the solution for
multiple inheritance is similar. We directly take the algorithm
for single inheritance and remove some superfluous steps.

These superfluous steps are marked in Figure 7 by a dashed
border. So, the resulting algorithm merely contains steps 2, 4
and 5. Besides, it only accepts referential attributes as input.

3) Enumerations

The conciseness algorithm for inferring enumerations is
simpler than the two for applying single or multiple
inheritance. Nevertheless, it requires more information as
input, namely all assignments belonging to an attribute or a set
of corresponding attributes. The selection whether to choose a
single attribute or a set of corresponding attributes must be
taken by the user in a previous configuration step. However,
this has no impact on the main flow of the algorithm. Using a
set of attributes just means to process more according
assignments than with only one single attribute. From these
assignments, the values are used to determine the resulting
enumeration’s literals. Hence, only literal attributes of type
string are supported as input.

Whether an enumeration is generated or not depends on
the diversity of values held by the different assignments. If
there are merely a few values which are repeatedly assigned
to that attribute(s) a new enumeration is derived. The varied
values are taken as unique literals for this enumeration.
Accordingly, the assignments have to be updated with the new
literal values as well. So, when applying the enumeration
language pattern the underlying model examples suffer small
modifications. That is why this algorithm has to be executed
before running the two others (for single or multiple
inheritance).

V. RELATED WORK

As mentioned in the introduction, deriving a meta model
from a set of model examples is not a totally new approach.
Depending on their purpose, the available related work can be
classified into two categories: meta model reconstruction and
meta model creation.

Meta model reconstruction stems from the field of
grammar reconstruction and grammatical inference [18].
Thereby, many textual sentences (ideally positive and
negative samples) are analyzed to infer a grammar [19].

In current research, the Metamodel Recovery System
(MARS) is one prominent representative for meta model
reconstruction [20]. It receives a set of model samples and
transforms them to a representation that can be used by a
grammar inference engine. The output of this engine (a
grammar) is then converted back to an equivalent meta model.
As the title suggests, MARS focuses on the recovery of meta
models (e.g., if a meta model got lost). To obtain a meta model
which corresponds as much as possible to the original one, a
large number of positive model samples is required.
Otherwise the resulting meta model is strongly restricted in its
capabilities. Since we mostly receive only one or at least a
small set of model examples this approach is not practicable
for us.

Up to our knowledge, there are only two research groups
that generate a meta model by deriving it from very few model
examples. BitKit as one representative has a rather different
intention [21]. Its authors aim at supporting the pre-
requirements analysis of software products by allowing to

+title : string

ProcessStart ExitAnd

+next

1..*

ProcessOrAndOrExitStartOrProcessOrAnd

Figure 8. Meta model after applying the multiple inheritance

language pattern

57Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 66 / 91

model in a freeform way just like with general purpose office
tools. The resulting meta model is merely a means to an end.
Primarily, BitKit semantically combines equally looking
elements by deriving a common associated entity. After a
meta model is inferred and, for instance, the color of such an
element is changed the color of every other (equally looking)
element is adapted accordingly. Due to the office tool
intention of BitKit, the generated meta model is not intended
to be processed in any further way. Consequently, its quality
is not considered as well.

Another approach is proposed in [22]. Like BitKit, it is
also restricted to graphical DSLs. Nevertheless, we adopt their
general idea for applying patterns when inferring a meta
model. That meta model (which represents the abstract syntax
as stated by the author) highly corresponds to the concrete
syntax as well. This correspondency is obvious when
investigating another publication of Cho and Gray. In [23]
they introduce some design patterns well suited for meta
models. However, the presented patterns are very specific for
graphical DSLs and hence not universally valid. That can be
verified when comparing these patterns to the meta models for
visual languages defined in [24]. In contrast to our approach,
they mix the two identified main parts (section IV) when
inferring a meta model. Hence, applying design patterns is
strongly enmeshed in the bottom-up part. Thus, using our
conciseness algorithms instead of their proposed “design
pattern”-based approach is not possible without great effort.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a method for directly deriving
a concise meta model from a small set of example models. To
increase the conciseness of the resulting meta model, language
patterns are applied to an appropriate constellation of meta
concepts. Due to page limitations, we focused on widespread
language patterns like inheritance and enumerations. As
mentioned in section I.A, there are further language patterns
(e.g. Powertypes) supported by OMME. Thus, we currently
develop or extend the above conciseness algorithms for those
patterns. Afterwards, we explore design patterns that can be
applied similar to the way described above (but not only for
visual languages like in existing solutions).

Our approach of automatically applying language patterns
to meta concepts can also be reused for refactoring activities
in modern IDEs like Eclipse or Visual Studio. Hereby, classes
are considered as concepts whereas their fields are regarded
as attributes. Taking the same assumptions as described in
section I.B and providing appropriate configuration options,
the presented conciseness algorithms can be taken for
applying particular language patterns to a collection of
classes. In future research, we also will deal with this topic in
more detail.

REFERENCES

[1] T. Clark, P. Sammut, and J. Willans, “Applied metamodelling: a
foundation for language driven development,” CETEVA, 2008.

[2] H. Ossher, R. Bellamy, I. Simmonds, D. Amid, A. Anaby-Tavor, M.
Callery, M. Desmond, J. de Vries, A. Fisher, and S. Krasikov,
“Flexible modeling tools for pre-requirements analysis: conceptual

architecture and research challenges,” in Proceedings of OOPSLA
2010, vol. 45, 2010, pp. 848–864.

[3] H. Cho, “A demonstration-based approach for designing domain-
specific modeling languages,” in Proceedings of SPLASH 2011,
2011, pp. 51–54.

[4] M. F. Bertoa and A. Vallecillo, “Quality attributes for software
metamodels,” Proceedings of QAOOSE, 2010.

[5] B. Volz and S. Jablonski, “Towards an open meta modeling
environment,” Proceedings of the 10th Workshop on Domain-
Specific Modeling, 2010, pp. 17-1–17-6.

[6] B. Volz, Werkzeugunterstützung für methodenneutrale
Metamodellierung. PhD thesis: University of Bayreuth, 2011.

[7] J. Odell, Advanced object-oriented analysis and design using UML.
Cambridge University Press, 1998.

[8] C. Atkinson and T. Kühne, “Concepts for comparing modeling tool
architectures,” Model Driven Engineering Languages and Systems,
2005, pp. 398-413.

[9] C. Atkinson and T. Kühne, “Meta-level independent modelling,”
International Workshop Model Engineering in Conjunction with
ECOOP 2000, 2000, pp. 12-16.

[10] S. Covert, “OMG’s Unified Modeling Language (UML) Celebrates
15th Anniversary,” 2012. [Online]. Available:
http://www.omg.org/news/releases/pr2012/08-01-12-a.htm.

[11] C. Atkinson and T. Kühne, “The role of metamodeling in MDA,”
Proceedings of the International Workshop in Software Model
Engineering 2002, 2002, pp. 67-70.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:
elements of reusable object-oriented software. Addison-Wesley,
1995.

[13] Microsoft Corporation, “When to Use Inheritance,” 2008. [Online].
Available: http://msdn.microsoft.com/en-
us/library/27db6csx(v=vs.90).aspx.

[14] M. Gogolla and U. Hohenstein, “Towards a semantic view of an
extended entity-relationship model,” ACM Transactions on Database
Systems, 1991, pp. 369-416.

[15] R. Elmasri and S. B. Navathe, Fundamentals of database systems, 3.
A. Amsterdam: Addison-Wesley Longman, 2000.

[16] G. Singh, “Single versus multiple inheritance in object oriented
programming,” ACM SIGPLAN OOPS Messenger, 1994, pp. 30-39.

[17] M. Herrmannsdoerfer, S. Vermolen, and G. Wachsmuth, “An
extensive catalog of operators for the coupled evolution of
metamodels and models,” Software Language Engineering, pp. 163–
182, 2011.

[18] M. Mernik, D. Hrncic, B. R. Bryant, A. P. Sprague, J. Gray, Q. Liu,
and F. Javed, “Grammar inference algorithms and applications in
software engineering,” in Proceedings of the 9th International
Colloquium on Grammatical Inference, 2009, pp. 1–7.

[19] F. King-Sun and T. L. Booth, “Grammatical Inference: Introduction
and Survey - Part I,” IEEE transactions on pattern analysis and
machine intelligence, vol. 8, 1986, pp. 95-111.

[20] F. Javed, M. Mernik, J. Gray, and B. R. Bryant, “MARS: A
metamodel recovery system using grammar inference,” Information
and Software Technology, vol. 50, 2008, pp. 948–968.

[21] M. Desmond, H. Ossher, I. Simmonds, D. Amid, A. Anaby-Tavor, M.
Callery, and S. Krasikov, “Towards smart office tools,” FlexiTools
Workshop, 2010.

[22] H. Cho, J. Gray, and E. Syriani, “Creating visual Domain-Specific
Modeling Languages from end-user demonstration,” Modeling in
Software Engineering, 2012, p. 22-28.

[23] H. Cho and J. Gray, “Design patterns for metamodels,” Proceedings
of SPLASH 2011, 2011, pp. 25-32.

[24] P. Bottoni and A. Grau, “A Suite of Metamodels as a Basis for a
Classification of Visual Languages,” in Symposium on Visual
Languages and Human Centric Computing, 2004, pp. 83–90.

58Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 67 / 91

Remodeling to Powertype Pattern

Matthias Jahn, Bastian Roth, Stefan Jablonski

Chair for Databases & Information Systems

University of Bayreuth

Bayreuth, Germany

{matthias.jahn, bastian.roth, stefan.jablonski} @ uni-bayreuth.de

Abstract— Nowadays, models often stand as first class objects

in the field of software development. That’s why clarity and

understandability are important markers of high quality

models. Therefore, several patterns exists that can help to

improve model quality. However, developing a domain specific

language is affected by understanding the domain of interest

which often evolves during the development of the software

system. This evolution again causes the language to change

either. As a consequence of that, meta-modeling patterns are

oftentimes inserted in an existing meta-model which results in

various adaptions to migrate the system into a valid state.

Since the current research has not discovered any techniques

to cope with a remodeling to such a pattern these adaptions

have to be done manually. Focusing on this challenge, we

present in this article an evolution operator that creates a

powertype within an existing model and furthermore adapts

the other related models simultaneously.

Keywords-powertype, extended powertype, remodeling to

patterns, meta-model evolution, meta-model, deep instantiation

I. MOTIVATION

Today, developers often tend to define a separate
modeling language for special parts of the domain of interest.
That is especially the case if standard modeling languages do
not cope with special application settings. This trend is
referred to as domain specific modeling (DSM) and the
resulting language is hence called domain specific language
(DSL).

A modeling language in general consists of three parts: a
definition of an abstract syntax, a definition of a concrete
syntax, and a rule set (constraints) [1]. Thereby, meta-models
are oftentimes used to express both the abstract and the
concrete syntax. Hence, the quality of the resulting language
is highly-coupled to the quality of the meta-models
describing it. Consequently, these meta-model have to be
concise and human-readable.

Therefore, current research has discovered several
patterns (in the following called language patterns to
distinguish them from design patterns) that enrich meta-
models in different aspects, e.g., helping persons of different
perspectives in the software development process (e.g., the
software developer or the method engineer) to understand
the meta-model easier [2] or improving their conciseness [3].

One of these language patterns with the above mentioned
benefits is the powertype pattern [4], [5]. However,
introducing a powertype pattern into an existing meta-model
often results in several manual adaptions in other meta-levels

for migrating models to the new meta-model. Hence, such a
remodeling to powertype patterns can be a time-consuming
and error-prone task [6]. Focusing on this problem, we
present below an operator that introduces a powertype
pattern into an existing meta-model. Simultaneously, the
operator adapts corresponding models into a valid state.

Therefore, in the following section we are going to show
the state of the art. Subsequently, we explain the powertype
(pattern). After that, we will present an extension for this
pattern: the extended powertype. In section V we present the
Create-Powertype-For operator which introduces an
(extended) powertype pattern into a meta-model. In the
subsequent section we provide an example model on which
we apply the operator. Finally, we give a conclusion and an
outlook to our future work.

II. RELATED WORK

The presented work belongs to the research field of meta-
model evolution. The Create-Powertype-For operator
changes the (meta-) meta-model and migrates other (meta-)
models to become valid to the new meta-model.

In the current research such an approach is called coupled
evolution [7]. Since most of the work in this field considers
merely two meta-levels the coupled evolution definition is
limited to a model and a meta-model. As we do support more
than two meta-levels in our modeling environment we
extend this definition to arbitrary levels.

 Meta-model evolution, in general, faces two main
challenges. First, adaptations and changes performed on a
meta-model need to be captured [8]. Second, evolving a
meta-model might render models as instances of a meta-
model invalid, e.g., when attributes are removed or a type
within a meta-model is defined to be abstract within an
evolution step. Hence, these invalid models have to be
migrated which is called co-evolution [9].

According to the work of Herrmannsdorfer et al. [8],
approaches for capturing meta model evolution can be
categorized into three kinds: state based, change based and
operation based approaches. State based approaches store
two versions of a model and derive differences between
those two versions after changes were actually performed
(which is an implementation of the Model Management
operator DIFF [10]). Contrariwise, change based approaches
record differences at the moment they occur. Operation
based approaches are a subclass of the change based
approaches since changes on meta models are defined by
means of transformation operators before they are actually

59Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 68 / 91

performed. In today’s systems often state based recording is
chosen although it is not as powerful as the operation based
approach [8]. Our presented approach belongs to the
operation based approaches.

Practical application scenarios of the varied approaches
can be found in the work of Gruschko et. al. [11] (state
based), Aboulsamh et. al. [12] (change based) and
Herrmannsdorfer et. al. [8], [13] (operation based).

Similar to the above presented work, Wachsmuth [14]
and Herrmannsdorfer et. al. [13] provide an operation set that
is used to evolve the meta-model explicitly, i.e., by means of
well-defined transformations the user evolves the meta-
model stepwise. In consequence, co-evolution can be
performed without the need to handle ambiguity which is a
challenge for state-based approaches [15].

Up to our knowledge, the current research in meta-model
evolution mostly considers common meta-modeling concepts
like classes, attributes and relations. Only some approaches
(e.g., [13], [14], [16]) also analyze inheritance hierarchies for
evolution and explain solution for handling co-evolution.
However, there is no approach that considers other language
pattern like the powertype pattern, deep instantiation or
materialization [17].

Besides handling the evolution itself, handling co-
evolution is another important topic in this field of research.
To face this challenge, various approaches can be observed:
matching of two meta models (see model management [18]),
operation based co-evolution and manually specification of
migration [15]. An Example for an operation based co-
evolution can be found at the work of Wachsmuth [14],
within the COPE System [19] and also within this paper.

III. THE POWERTYPE PATTERN

The powertype pattern is a language pattern used to
describe that a concept A extends another concept Part (this
is called the partitioned type) and at the same time this
concept A is an instance of concept Pow (which is then
called powertype).

A. Example

Below, there is an example of the powertype pattern that
shows a simple meta-model (named M2) with two concepts:
Tree and TreeKind. The concept Tree stands of course for a
tree and TreeKind is a representation for a kind of a tree.
Furthermore, a model (M1) is shown with only one concept
Maple which stands for a correspondent real world object.

If one wants to model trees there are at least two different
views of seeing a maple. On the one hand, this maple is a
specialization of the class tree. On the other hand, maple
partitions the set of trees because it is a kind of a tree. Hence,
maple can be seen as a specialization of tree. To combine
these two views, one can introduce the powertype pattern
(Figure 1). Then, Tree is partitioned with TreeKind (the
powertype) and Maple is an instance of TreeKind and
together with that a specialization of Tree.

As a consequence, Maple has two different facets. The
first one is the type facet that extends Tree and the second
one is the instance facet, an instance of TreeKind.

Maple

TreeTreeKind

partitions

M2

M1

Figure 1. Example of a powertype pattern

Such a mixture of a class and an object is called clabject
[20] or concept [21]. The specialization relationship is often
not visualized within meta-model diagrams.

IV. THE EXTENDED POWERTYPE PATTERN

One rule of practice in modeling is that all attributes
being common in all subclasses are added to the superclass
[22]. Other attributes that do not belong to each of the
subclasses are not declared in the superclass, in general.
Instead, often new subclasses are created that stand between
the super- and the subclasses in the inheritance hierarchy. As
a consequence, a deep inheritance hierarchy could result
which is often seen as bad design [23]. Furthermore, this
approach leads to multiple inheritance which sometimes
causes problems [24], [25] like the diamond of death.

To avoid this complex inheritance hierarchy, one can use
the extended powertype pattern [26], [27]. This pattern
enhances the powertype pattern with so called feature
attributes.

These boolean attributes are declared at the powertype
with a link to an attribute of the partitioned type (the enabled
attribute). Afterwards, one can decide for each instance of
the powertype if an attribute of the partitioned type is
inherited or not. If a feature attribute at an instance of the
powertype is set to true the corresponding enabled attribute
of the partitioned type is inherited. Needless to say that if a
feature attribute has the value false no attribute is inherited.

Hence, all attributes of the sub-concepts can be collected
in the partitioned type and for each sub-concept one can
decide the set of attributes that are inherited.

A. Example

In Figure 2 a simple graph-based process modeling
language with an extended powertype pattern is shown.

 To visualize the complete meta-model stack we use a
tree editor with syntax similar to object-oriented
programming languages. The root of the tree is the whole
meta-model stack. The children of that are the different
meta-levels. The next higher meta-level which is instantiated
by the current level is shown after the colon. Each level
again contains at least one or more packages structuring the
level. In a package lie concepts (clabjects) and these
concepts can have attributes and/or assignments. Again, after
the colon all instantiated concepts are listed. Other relations
like extends or partitions are also shown together with the
corresponding other concept.

60Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 69 / 91

Figure 2. Morning Process Example

Furthermore, the deep instantiation counter (also called
deep instantiation potency) is displayed, if the value is
greater than 1 (see section VI.A). Attributes have a
cardinality (0..1, 0..*, 1..*) and an attribute type.
Assignments consist of a corresponding attribute and a value
for it.

 In the meta-meta-model (M2), Nodes are connected with
each other using outgoing control flows. This is done with
the corresponding outgoingCF attribute at Node. Besides, an
extended powertype (NodeKind) is modeled due to the fact
that NodeKind has a partitions relation to Node. NodeKind
again has a boolean feature attribute supportsOutCF enabling
or disabling the outgoingCF attribute of Node.

At level M1, Process and Stop are instances of the

powertype. Since a stop interface does not have any outgoing
control flows the supportOutCF attribute is set to false
whereas the Process attribute is set to true.

Level M0 contains a little model that describes a (spare)
morning process. After waking up, the concerning person
brushes his/her teeth and then stops the morning process.
Since the feature attribute of Stop was set to false setting the
value of outgoingCF in StopMorning would cause a
validation error.

V. THE CREATE-POWERTYPE-FOR OPERATOR

In the following, we present an Evolution operator that
introduces a powertype into an existing (meta-) model and
simultaneously adapts the meta-model hierarchy to be valid
again.

A. Operator Process

In Figure 3 the process of the Create-Powertype-For
operator is shown. Therein all steps that need an input from
the user are highlighted with black boxes. “The Move
concept to upper level” and “the Add instantiation to
powertype” steps are also highlighted as they are other
complex evolution operators that will be presented below.

Initially, the operator is invoked with a source concept
(e.g., chosen by the user). In the following, this concept is
called Part as it will be the partitioned typed after the
operator has finished. In the next step the operator collects
all concepts that specialize Part. This set of concepts (in the
following called SCs) is important because all members
could potentially be an instance of the newly created
powertype.

After that, the user decides which member of SCs will
become an instance of the powertype and hence creates a
subset of SCs (SubSCs). Then, for each member of SubSCs
the specialization relation to concept Part is deleted.
Afterwards, each concept of SubSCs is checked whether it is
instantiated or not. If one concept is instantiated, concept

Start
Collect

specializations
of concept

Choose future
instances of the

powertype

source
concept

set of
concepts

Has one of
these concepts

instances?

Move concept
to upper level

yes

Stop

no
set of

concepts

Create
powertype

Delete
specialization

Extended
Powertype?

no

Collect
attributes of

concept
yes

set of
attributes

Create Feature
attributes

Add
instantiation to

powerype

Figure 3. Create-Powertype-For operator process

61Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 70 / 91

Part and all related concepts (see section V.B) have to be
moved to the upper level. Otherwise, it would not be
possible to instantiate the instances of the powertype again.
Of course, in case a modeling environment does not support
several levels this step cannot be done and hence the
instantiation has to be deleted.

Then, a new concept (the powertype) is created by the
operator. The user specifies the properties of the concept like
the name, whether the concept is abstract or final, its
visibility, its instantiated concepts (optional), its extended
concepts (optional) and its concretely used concepts (for
instance specialization see [21]), also optional). The user also
must specify whether the concept is an extended powertype
or not. The concept Part will then be added to the set of
partitioned concepts whereby the partitions relation of the
powertype is created.

If the created powertype is an extended one the operator
collects the attributes of the initially given concept Part.
Then, the user chooses the attributes that will get a
corresponding feature attribute which will be created in the
powertype. Finally, each of the previously chosen concepts
(SubSCs) will become an instance of the new powertype
using the corresponding operator (see section V.C).

B. THE MOVE-CONCEPT-TO-UPPER-LEVEL Operator

The Move-Concept-To-Upper-Level operator moves, as
the name indicates, a concept from a given level upon the
next upper level. The process of the operator is shown in
Figure 4.

1) Operator Process
The operator gets as input a concept that will be moved

one meta-level up.
In the first step the operator tries to get the upper level

and checks whether the level exists or not. If not a new level
is created and the name of it has to be set. Then the operator
changes the level of the given concept to the upper level.

Afterwards, the operator increments the deep
instantiation counter of the given concept if the concept is
instantiated.

Start concept

Does the
upper level

exist?

Create meta
level

no

yes

Is the Concept
instantiated?

Increment Deep
Instantiation

Potency
yes

Collect related
concepts

no

Set of
concepts

Move concept
to upper level

Stop

Change Level of
concept

Get upper level

Figure 4. Move-Concept-To-Upper-Level operator process

Changing the value of the deep instantiation counter [28]
causes that instances of the concept can instantiate the
concept again although they are more than one (exactly two)
meta-level lower. If deep instantiation is not supported other
techniques like nested meta levels [29] may be used at this
point.

For correct migration of the meta-model the operator has
to invoke itself recursively on all related concepts. Thus,
these concepts are collected in the next step. Related
concepts are those concepts that stand in a relationship with
the given concept (includes relationships like extends (for
specialization), partitions (for powertype relation) or
concreteUseOf (for instance specialization) [21]. Thereby,
the operator has to detect cycles to avoid an endless loop.

C. The Add-Instantiation-To-Powertype operator

This operator adds an instanceOf relation from a given
concept to a given powertype. In Figure 5 the process of the
operator is presented.

1) Operator Process
Initially, the operator is invoked with a concept (the

future instance) and a powertype. If the powertype is not an
extended one merely the instanceOf relation between the
concept and the powertype is created. Thereby, a constraint
has to be considered. In case the instance of the powertype is
already an instance of another concept this would end in
multiple instantiation which breaks, e.g., strict meta
modeling [30]. Thus, for such environments the operator has
to delete one instantiation.

If the powertype is an extended powertype the operator
has to provide a possibility to move the attributes from the
given concept to the partitioned type. Therefore, the user has
to choose all attributes of the concept that should be moved.

For each reference attributes (the attribute type is a
concept) the operator has to check whether the attribute type
is a specialization of the partitioned type.

Start
concept +
powertype

Extended
powertype?

Add
instantiation

no

Stop
Collect

attributes of
concept

yes

set of
attributes

Choose
attributes to

move

set of
attributes

Move attributes
to partitioned

type

Set values of
feature

attributes

Create feature
attributes

Collect
instances of
powertype

set of
concepts

Reference
attributes?

Attribute type
extends

partitioned
type?

yes

Change
attribute type

Move concept
to upper level

set of
concepts

no
yes

no

Figure 5. Add-Instantiation-To-Powertype operator process

62Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 71 / 91

If so, the attribute type has to be changed to the

partitioned type. Otherwise, the referenced concept has to be
put one level up because relationships cannot cross levels.
Hence the Move-Concept-To-Upper-Level operator is called.

Now the operator can move all selected attributes to the
partitioned type.

 Afterwards, the operator creates corresponding feature
attributes in the powertype for the moved attributes. Then,
the operator collects all instances of the powertype and the
user chooses those ones which should inherit the moved
attributes.

Finally, the operator sets according to the user selection
before the feature attribute values of all powertype instances.
Of course, the value of the feature attributes for the given
concept is set to true (since this concept declared the
attributes before).

VI. EXAMPLE

In this section we give an example for the application of
the Create-Powertype-For operator. The example shows a
simple feature model of a car product line inspired by [3].
This simple feature model gives the opportunity to model
Features and link them with the help of Associations
together.

 Figure 6 shows the complete meta-model stack.
Therein M1 is the meta-model for M0. On M1 there are two
concepts: Feature and Association. Each Association element
connects one Feature element as source and zero or more
Feature elements as target. On the other side, Features can
refer to zero or one Association. Thus, this relationship is
bidirectional.

Figure 6. Car product line model

Furthermore, the concept Association is specialized in
form of the concepts Or, Xor, Mandatory and Optional. Xor

 and Or can be used to express that at least one of several
target features have to be selected. Instances of Optional can
set a target whereas instances of Mandatory have to select a
target.

Based on M1, there is a model M0 that declares four
features (Car, Body, Transmission and Engine) and one
association (CarMandatory). These features are linked
together with the association so that following constraint is
expressed: A car must have a body, an engine and a
transmission.

A. Application of the operator

Now, we apply the Create-Powertype-For operator to the
above introduced model. The result is shown in Figure 7.

First, we select the concept Association and invoke the
operator on it. The operator uses the given concept and
collects all its specializations since these concepts are
candidates for instances of the future powertype. The
outcome of this step is a set of four concepts: Or, Xor,
Mandatory and Optional.

Afterwards, we have to review this set and tell the
operator which concepts will become instances of the future
powertype. In our example, we choose all of them. Then, the
operator checks all selected concepts if they were
instantiated before. This is true for Mandatory. Thus, the
operator has to move the future powertype to the upper level
and invokes the corresponding operator.

Hence, the concept Association is delivered to the Move-
Concept-To-Upper-Level operator.

Figure 7. The resulting car product line model after application of

the operator

63Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 72 / 91

Figure 8. Result of the operator with extended powertype

After that, the operator checks if an upper level exists
which is false. That’s why it creates a new level that we
name M2. Then the operator changes the level of
Association to M2. After that, the specialization relation of
Or, Xor, Mandatory and Optional is deleted. As Association
is not instantiated, no deep instantiation counter has to be
changed.

In the next step all related concepts are collected by the
operator, which is only Feature (relationship to and from
Association). Thus, the operator Move-Concept-To-Upper-
Level is again called for Feature.

Because M2 already exists no meta-level has to be
created. Subsequently, the meta-level of Feature is changed
to M2 and the deep instantiation counter is incremented as it
is instantiated in form of Car, Body, Transmission and
Engine. Hence, the deep instantiation counter of Feature is
now 2 (shown after the keyword deferred by in Figure 7).
Since Feature has no related concepts because Association is
already visited, the Move-Concept-To-Upper-Level operator
terminates.

Afterwards, the Create-Concept-For-Powertype operator
starts again with creating a new concept that we name
AssociationKind and setting the partitions relation to
Association.

If we decide to create a “simple” powertype Or, Xor,
Mandatory and Optional just become instances of
AssociationKind.

Otherwise, the operator collects for each concept (Or,
Xor, Mandatory and Optional) all declared attributes. Since
none of the concepts have attributes no user selection is
needed and no reference attribute is part of the selection.

The operator continues with the creation of the feature
attributes for targets and source (supportSource,
supportTargets). Since Or, Xor, Mandatory and Optional
were specializations of Association the feature attribute
values for all concepts are set to true.

The result of creating an extended powertype is shown in
Figure 8.

VII. CONCLUSION

Nowadays, meta-modeling is an often used approach for
developing a domain specific language. Since these
languages evolve during modeling of the domain of interest
it is important to support this evolution to avoid manual
migration of models.

Current research has discovered several patterns helping
to improve the quality of (meta-) models [3]. Unfortunately,
a remodeling of a meta-model to such a pattern is not
supported today.

Facing this challenge, we presented in this article an
operator that allows introducing a powertype pattern into an
existing meta-model hierarchy considering migration of
invalid models.

Currently, we have developed an Eclipse-based editor
that supports several basic evolution operators like creating
levels, packages, concepts and attributes. Furthermore some
complex operators like the presented Create-Powertype-For,
the Move-Concept-To-Upper-Level and the Add-
Instantiation-To-Powertype operator are implemented as
well.

In future work we will present complex evolution
operators that support other language patterns like deep
instantiation [28], materialization [17] or instance
specialization [21]. Furthermore, we envision providing a
preview of evolution operators similar to refactoring
previews in modern IDEs. With the help of these previews,
users can compare possible evolution steps.

REFERENCES

[1] H. Cho, “A demonstration-based approach for designing domain-
specific modeling languages,” Proceedings of the ACM international
conference companion on Object oriented programming systems
languages and applications companion, pp. 51–54, 2011.

[2] B. Henderson-Sellers and C. Gonzalez-Perez, “The rationale of
powertype-based metamodelling to underpin software development
methodologies,” Proceedings of the 2nd Asia-Pacific conference on
Conceptual modelling, vol. 43, pp. 7–16, 2005.

[3] B. Neumayr, M. Schrefl, and B. Thalheim, “Modeling techniques for
multi-level abstraction,” The evolution of conceptual modeling, pp.
68–92, 2011.

[4] C. Gonzalez-Perez and B. Henderson-Sellers, “A powertype-based
metamodelling framework,” Software and Systems Modeling, vol. 5,
pp. 72–90, 2006.

64Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 73 / 91

[5] J. Odell, “Power types,” Journal of Object-Oriented Programming,
vol. 7(2), pp. 8–12, 1994.

[6] A. Demuth, “Cross-layer modeler: a tool for flexible multilevel
modeling with consistency checking,” Proceedings of the 19th ACM
SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pp. 452–455, 2011.

[7] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “COPE-automating
coupled evolution of metamodels and models,” European Conference
on Object-Oriented Programming, pp. 52–76, 2009.

[8] M. Herrmannsdoerfer and M. Koegel, “Towards a generic operation
recorder for model evolution,” Proceedings of the 1st International
Workshop on Model Comparison in Practice, pp. 76–81, 2010.

[9] D. Di Ruscio, “What is needed for managing co-evolution in MDE?,”
Proceedings of the 2nd International Workshop on Model
Comparison in Practice, pp. 30–38, 2011.

[10] [P. A. Bernstein and S. Melnik, “Model Management 2.0:
Manipulating Richer Mappings,” Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, pp. 1 –
12, 2007.

[11] B. Gruschko, D. S. Kolovos, and R. F. Paige, “Towards
Synchronizing Models with Evolving Metamodels,” Int. Workshop on
Model-Driven Software Evolution held with the ECSMR, 2007.

[12] M. A. Aboulsamh and J. Davies, “A Metamodel-Based Approach to
Information Systems Evolution and Data Migration,” Proceedings of
the 2010 Fifth International Conference on Software Engineering
Advances, pp. 155–161, 2010.

[13] M. Herrmannsdoerfer, S. Vermolen, and G. Wachsmuth, “An
extensive catalog of operators for the coupled evolution of
metamodels and models,” Software Language Engineering, pp. 163–
182, 2011.

[14] G. Wachsmuth, “Metamodel adaptation and model co-adaptation,”
European Conference on Object-Oriented Programming, pp. 600–
624, 2007.

[15] L. M. Rose, R. F. Paige, D. S. Kolovos, and F. A. Polack, “An
analysis of approaches to model migration,” In Proceedings of
Models and Evolution (MoDSE-MCCM) Workshop, pp. 6–15, 2009.

[16] M. Herrmannsdoerfer, D. Ratiu, and G. Wachsmuth, “Language
evolution in practice: The history of GMF,” Software Language
Engineering, pp. 3–22, 2010.

[17] M. Dahchour, A. Pirotte, and E. Zimányi, “Materialization and its
metaclass implementation,” Knowledge and Data Engineering, IEEE
Transactions on, vol. 14, no. 5, pp. 1078–1094, 2002.

[18] P. A. Bernstein, “Applying Model Management to Classical Meta
Data Problems,” Proceedings of the 1st Biennial Conference on
Innovative Data Systems Research (CIDR), 2003.

[19] M. Herrmannsdoerfer, S. Benz, and E. Juergens, “COPE: a language
for the coupled evolution of metamodels and models,” Proceedings of
the 1st International Workshop on Model Co-Evolution and
Consistency Management., 2008.

[20] C. Atkinson and T. Kühne, “Meta-level independent modelling,”
International Workshop on Model Engineering at the 14th European
Conference on Object-Oriented Programming, vol. 12, p. 16, 2000.

[21] B. Volz, “Werkzeugunterstützung für methodenneutrale
Metamodellierung,” Dissertation, Fakultät für Mathematik, Physik
und Informatik, Universität Bayreuth, Bayreuth, 2011.

[22] R. Elmasri and S. Navathe, Fundamentals of Database Systems.
Prentice Hall International; Auflage: 6th edition. Global Edition.,
2010, p. 1155.

[23] Microsoft, “When to Use Inheritance,” 2012. [Online]. Available:
http://msdn.microsoft.com/en-us/library/27db6csx(v=vs.90).aspx.
[Accessed: 26-Sep-2012].

[24] G. B. Singh, “Single versus multiple inheritance in object oriented
programming,” ACM SIGPLAN OOPS Messenger, vol. 6, no. 1, pp.
30–39, Jan. 1995.

[25] B. Zengler, J. Hahn, C. Rupp, M. Jeckle, and S. Queins, UML 2
glasklar: Praxiswissen für die UML-Modellierung und -
Zertifizierung. München - Wien: Hanser Fachbuchverlag, 2007, p.
559.

[26] S. Jablonski, B. Volz, and S. Dornstauder, “On the Implementation of
Tools for Domain Specific Process Modelling,” International
Conference on the Evaluation of Novel Approaches to Software
Engineering, vol. 4, pp. 109–120, 2009.

[27] B. Volz and S. Dornstauder, “Implementing Domain Specific Process
Modelling,” Communications in Computer and Information Science,
vol. 69, pp. 120–132, 2010.

[28] T. Kühne and F. Steimann, “Tiefe charakterisierung,” Modellierung
2004 : Proceedings zur Tagung, pp. 109–120, 2004.

[29] C. Atkinson and T. Kühne, “The essence of multilevel
metamodeling,” «UML» 2001—The Unified Modeling Language.
Modeling Languages, Concepts, and Tools, pp. 19–33, 2001.

[30] C. Atkinson, “Supporting and applying the UML conceptual
framework,” Lecture Notes in Computer Science, UML’98, pp. 21–
36, 1999.

65Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 74 / 91

Developing Patterns Step-by-Step
A Pattern Generation Guidance for HCI Researchers

Alina Krischkowsky, Daniela Wurhofer, Nicole Perterer, Manfred Tscheligi
Christian Doppler Laboratory for “Contextual Interfaces”

HCI & Usability Unit, ICT&S Center, University of Salzburg
Salzburg, Austria

{firstname.lastname}@sbg.ac.at

Abstract—Despite the broad application and usefulness of
patterns in many application areas, there is still a lack of
information on how patterns are generated. In this paper, we
introduce a step-by-step guidance for generating patterns in
the domain of human-computer interaction (HCI). With our
guidance, we support researchers in structuring and
presenting gathered empirical knowledge for special contexts
(automotive, home, mobile). By means of the pattern
generation guidance, we support researchers without previous
expertise in pattern generation to make their insights available
for other HCI researchers. Furthermore, our approach
enhances the pattern generation process towards more
traceable and comparable patterns.

Keywords-Pattern Development; Guidance; CUX Patterns

I. INTRODUCTION AND MOTIVATION
Patterns have turned out to be a valuable tool for

structuring and capturing knowledge in many application
areas. For example, patterns are used in architecture,
software engineering, interface design, pedagogics or
ubiquitous computing (e.g., [1], [2], [3], [4], [5], [6]). In
these contexts, patterns have been applied to document
proven solutions for reoccurring problems in a specific
domain. In the field of human-computer interaction (HCI),
patterns have been used for documenting results from
empirical studies (see e.g., [7][8]). As patterns allow to
structure and collect study results in a systematic manner, the
gained knowledge can be easily and quickly provided to
other researchers and stakeholders.

Despite the broad application and apparent usefulness of
patterns in general, there is still a lack of information on how
patterns are generated. In fact, pattern generation seems to be
more a matter of experience than of a structured process. In
the pattern community, there is little literature available that
tells more about the genesis of patterns. It still remains
unclear how patterns actually come into existence and how
patterns should be generated [7]. This makes it especially
difficult for novices, who have no previous experience in
developing patterns. In the area of HCI particularly, it turned
out that patterns are a valuable tool to systematically
structure and collect knowledge from empirical studies.
There is a need for supporting researchers in developing
patterns. Research in this area - i.e., how to come from

empirical findings to patterns - is rare. There are some first
attempts dealing with the generation of patterns; however,
we did not find systematic descriptions of the generation
process. Thus, the process of pattern generation can be
considered as implicit knowledge – knowledge that is based
on one’s expertise or experience and often hard to articulate.
This is not only difficult for researchers who are unfamiliar
with pattern generation but also poses the problem of
traceability and comparability. To the best of our knowledge,
a systematic guidance for developing patterns based on
empirical study results does not exist to date.

This prevalent deficiency encouraged us to develop a
step-by-step online guidance for pattern generation in the
area of HCI. In particular, we intended to support User
Experience (UX) researchers in converting their gathered
knowledge from empirical studies into patterns. The
structural foundation for the intended patterns is the so-called
Contextual User Experience (CUX) patterns format [9].
CUX patterns provide solutions on how to improve a user’s
experience when interacting with an interface in a specific
application area. They are characterized by explicitly
combining contextual aspects and UX.

The objective of this paper is to introduce a step-by-step
UX pattern generation guidance. After motivating the need
for systematic pattern generation guidance in Section I, we
give an overview on patterns in HCI as well as on existing
pattern development approaches in Section II. Based on a
critical examination of existing pattern development
approaches, we then present in Section III, our attempt to
guide researchers in the pattern generation process. In
Section IV, we provide insights on how we employed the
suggested pattern guidance in a first pre-test in order to
gather suggestions for further improvements and iterations.
Based on related work done in this area, our proposed step-
by-step guidance as well as the insights gathered within our
first employment, we then, in Section V reflect and discuss
our actions taken and provide an outlook for future work.

II. RELATED WORK

A. The Role of Patterns in HCI
In HCI, patterns have gained a lot of attention over the

last years. Especially in interface or interaction design, there

66Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 75 / 91

are numerous pattern collections (e.g., [10], [11], [4]). The
concept of patterns in this area is known under different
names; e.g., ‘interaction (design) patterns’, ‘user interface
(UI) patterns’, ‘usability patterns’, ‘web design patterns’,
‘workflow patterns’ or, more general, ‘HCI patterns’.
Basically, these patterns provide solutions to commonly
occurring usability problems in interaction and interface
design. As the comprehensive use of patterns shows, patterns
have been proven as a valuable tool for designing usable
systems.

Apart from dealing with common user interface or
interaction problems, patterns have been also used to
document knowledge based on empirical studies. Martin et
al. [7] developed patterns for cooperative interaction in order
to organize, present, and represent material from
ethnographic studies. In their work, patterns primarily served
as a vehicle for presenting the major findings of previous
studies and as communicative devices. In contrast to
interface or interaction design patterns, this approach does
not deal with solution-orientated patterns but rather with
descriptive patterns in the tradition of Erickson [12]. UX
research represents another specific domain of HCI, where
patterns have been deployed to collect and structure
knowledge based on empirical findings [8]. In the following
section, we will introduce the idea of UX patterns in more
detail as this represents the basis for the patterns generated
with our pattern generation tool.

B. UX and Patterns
One major aim of HCI research is to create a positive

experience while interacting with an interface [13], [14].
Research in this area is often referred to as “UX research”.
According to Alben [15], UX comprises all aspects of how
people use an interactive product. This means, all the aspects
of how people use an interactive product: the way it feels in
their hands, how well they understand how it works, how
they feel about it while they are using it, how well it serves
their purposes, and how well it fits into the entire context in
which they are using it [15]. Patterns have already been
applied in the area of UX in order to structure and preserve
knowledge. Blackwell & Fincher [16] suggest to adopt the
idea of patterns and UX in the form of Patterns of User
Experience (PUX). Such patterns should help HCI
professionals to understand what kind of experiences people
have with information structures.

Obrist et al. [8] applied UX patterns to document
knowledge on UX in the domain of audio-visual networked
applications (e.g., Facebook or YouTube). By means of UX
patterns, they intended to capture the essence of a successful
solution to a recurring UX related problem or demand of
audio-visual networked applications. They developed a set of
30 UX patterns, summarizing the most important insights
based on qualitative and quantitative studies. Thus,
empirically grounded guidance on how to design for a better
UX in audio-visual networked applications is provided. An
extension of the UX patterns, are the so-called Contextual
User Experience (CUX) patterns [9]. This approach relates

contextual issues to UX and provides a pre-defined pattern
structure to do so. Accordingly, patterns are “used to
describe knowledge on how to influence the user’s
experience in a positive way by taking context parameters
during the interaction with a system into account.”

C. Approaches on Pattern Generation
As already stated before, there is not much literature on

how to generate patterns. The process of looking for patterns
is often considered as pattern mining [10]. However, pattern
collections or languages are often introduced without
explicitly stating how the patterns emerged. One of the few
outlining their experiences and difficulties in developing
patterns were Martin et al. [7], who deployed patterns for
describing insights from ethnographic studies. They started
pattern creation by looking, for instance, of repeated
phenomena in ethnographic studies (re-examination of
previous studies). Thereby, they included a reference to their
context of production and seeking in their pattern
descriptions. For them, the main purpose of patterns was to
present major findings of previous studies and as
communicative devices. For their creation of patterns, they
began with looking for specific examples in a particular
domain and then tried to expand the observed phenomena to
other domains (similar but different examples).

In his work, Vlissides [17] describes seven habits for
successful pattern writers. According to the author, reflection
is the most important activity in pattern writing; this should
be done by thinking about the developed applications and the
problems and (if existing) successful solutions. This will
provide the raw material of patterns. Additionally, similar
applications or domains with similar problems can also give
support for problems and solutions and, therefore, for the
development of a pattern.

According to the author [17], the next step will be to

choose a suitable and consistent structure for the patterns to
be developed. Another important point in the development
process of pattern is concreteness (compared to abstractness),
meaning that concreteness improves the comprehensibility
for people. It is also crucial to always keep the intents of
patterns in mind, as well as the relationships between the
patterns, so that the details of the patterns do not prevail.
Moreover, effective presentation of patterns, including
typesetting and writing style, is substantial for the quality of
patterns. It is also important to mention that continuous
iteration is essential, as patterns are never completed and
always can be improved. Re-writing patterns, is therefore, a
“normal” and necessary process. Finally, the collection and
incorporation of feedback is another important step in the
development of patterns. This includes the fact that patterns
should be understandable to people, who had never been
concerned with the problem before.

In order to develop patterns, Christopher Alexander
defined the following questions to be answered within the
process of mining [1].

67Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 76 / 91

1) “What, exactly, is this something? We must define
some physical feature of the place, which seems worth
abstracting.

2) What, exactly, is this something helping to make the
place alive? Next, we must define the problem, or the
field of forces, which this pattern brings into balance.

3) And when, or where, exactly, will this pattern work?
Finally, we must define the range of contexts where
this system of forces exists and where this pattern of
physical relationship will indeed actually bring it into
balance.”

Alexander already pointed out the difficulty of generating
patterns: “One very important question in writing patterns is,
of how someone can recognize a pattern when coming across
one? A simple but precise answer to this question is, that
someone cannot always know.”

According to Appleton [18], the best way to learn how to
recognize and document useful patterns is by learning from
others how they have done it well. It might be a good idea to
read several books and articles that describe patterns and
then try to see the necessary pattern elements and desirable
qualities of a pattern. It has to be highlighted, that it is
important to be introspective about everything to read.
However, this is again about implicit knowledge and does
not make the process of generating patterns explicit. There
exist different criteria, which should be met by patterns in
order to be considered as “good” patterns [18]. Further, there
are defined processes a pattern should undergo [19]: (1)
pattern mining, (2) pattern writing, (3) shepherding, (4)
writers workshop, (5) author review, (6) pattern repository,
(7) anonymous peer review, and (8) pattern book
publication. However, there are no specific descriptions of
each process in detail, and it is still not explicitly described
how a first version of a pattern is developed.

D. Pattern Generation as Implicit Knowledge
According to May and Taylor [20], knowledge cannot

always be handled directly. Knowledge emerges from a
combination of expertise, perception, personal skill, and
history, as well as constructive memory [21]. Indeed, some
gathered information might be rather implicit and needs to be
transferred into explicit knowledge. Thus, alternatives to
capture and manage information in a way that supports
making knowledge explicit and transferable are necessary. In
order to capture and manage information to make knowledge
more explicit, they suggest the use of patterns. Based on this,
we see that the process of pattern generation can be
considered as tacit or implicit knowledge – knowledge that is
largely based on one’s experience and hold by experts in
patterns and pattern development [20].

It is quite common, that experts are unable to explain

their methods or rationalize their actions. So far, the process
of pattern generation is hardly explained in detail or
described explicitly. In order to allow also non-experts to
generate patterns, we aim to convert the implicit knowledge
on pattern generation into an explicit one by applying our
step-by-step pattern generation guidance. In this paper, we

present a step-by-step pattern generation guidance whereby
more details on our guidance are outlined below.

III. A STEP-BY-STEP PATTERN GENERATION GUIDANCE
Within our research activities, the need for pattern

guidance occurred within two national projects. These two
projects focus on interface research. One project especially
takes into account UX in the automotive context, whereas
the other project deals with advanced interfaces in the home
and mobile context. In both projects we aim to preserve
knowledge gained on UX and contextual aspects based on
empirical studies. Therefore, we used the CUX patterns
approach [9], which has already proved its value for
collecting and structuring knowledge on UX [8]. In
comparison to other pattern structures, the CUX patterns
approach seemed as most appropriate as it explicitly
considers the relation of UX and contextual aspects. As this
is an objective of our research, we chose the CUX pattern
structure as a tool for preserving our knowledge.

Confronted with the fact that researchers involved in
these projects were domain experts but mainly novices with
regard to pattern generation, we systematically scanned
literature in order to find advice for non-pattern experts on
how to develop patterns. As already pointed out in our
related work part, the main problem we identified was that
the process of pattern generation represents implicit/tacit
knowledge (i.e. expert knowledge). In order to make this
knowledge also usable for non-experts, it has to be made
explicit. According to our knowledge, this has not been done
so far in a systematic manner. Thus, our step-by-step
guidance on pattern generation represents a first step towards
making the process of pattern generation explicit, allowing
non-experts also to generate patterns and making the pattern
generation process itself more traceable.

In the following section, we outline our developed
pattern generation guidance in detail, reflecting on each step
individually. Our major goal was to develop a systematic
process that supports researchers to create patterns out of
empirical study results. In order to ensure that the researchers
have the possibility to iteratively as well as remotely,
succeed with the pattern generation guidance, we set up an
online survey (see for tool specific details [25]). Further, the
use of this online survey tool supports storing data in a
database, resulting in a pattern at the end.

After conducting intense desktop research, we developed
an initial suggestion of a structured pattern generation
guidance to support HCI researchers to create their own
CUX pattern out of empirical study results. Our guidance is
divided into five steps, all described in detail below.

A. Step I: Introduction on Patterns
Within this first step, the concept of CUX patterns [9] is

introduced to the targeted HCI researchers (novices as well
as experts). We split this first step into the following four
sub-topics.

68Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 77 / 91

Outline of Major Goal (1): The major goal of our guidance
tool was to support a structured pattern generation process in
order to preserve and pass on knowledge from empirical
study findings in the form of a pattern. This goal was first
outlined in the guidance. Literally, it was defined as
“Collecting and sharing UX and context related knowledge
(based on empirical results either gathered within your own
study or from literature) in a structured way by using a
pattern form!” After outlining our major goal, we have
included a visualization of an exemplary pattern in the
guidance based on [8] with an UX focus on involvement and
motivation (see in detail [26]). This should help the
researchers to get a better impression about what CUX
patterns are and how they are structured.

Characteristics of Patterns (2): After explaining our major
goal and presenting an exemplary CUX pattern, the guidance
provides an overview on the most important characteristics
of patterns. Based on Vlissides [17], we defined the
following eight aspects to be essential when creating a
pattern especially for HCI researchers that are not
experienced in developing patterns:

Patterns within the Specific Project (3): Next, our guidance
describes the purpose of CUX patterns and intended
stakeholders within the targeted project. Furthermore, the
definition of CUX patterns is provided to the researchers
(see Section II.B).

Additional Information on Patterns (4): To provide further
and more detailed information about patterns, we added
some links that deal with software patterns, pattern
languages (see [23]) as well as general information on

patterns such as selected collections and publications (see
[24]).

B. Step II: Reflect and Select Your Key Finding(s)
After giving the researchers a brief overview and input

regarding patterns, the next step of the guidance focuses on
the reflection and selection of relevant UX related results
from empirical studies conducted by the researchers. This is
one of the key steps within our process, since the process of
reflection is the most important activity in pattern creation
according to Vlissides [17]. We provide three text boxes
within the survey, asking the researchers to select and
summarize three findings. We have decided to provide three
text boxes for the key findings in order to ensure that at least
one of the key findings is appropriate for a pattern. These
findings should be gathered within their studies and should
represent insights on UX. Each key finding should be
entered in one box.

In order to support the researchers in recognizing
appropriate results to create a pattern with, we remind them
within that part of the guidance that the main goal of
generating the patterns is, to collect and share UX related
results that have been gathered within their study in a
structured way. After the researchers have entered three UX
related key findings, we ask them in a next step to reflect on
their chosen findings. Therefore, we ask the researchers to
analyze their key findings according to the following aspects.
These aspects ensure that they will be able to create a pattern
and meet the predefined structure of our suggested CUX
pattern based on their key findings:

After this checklist, the previously entered key findings
are visualized again to ensure that the researchers can
directly check their entered results and reflect on them
according to the pointed out aspects outlined above. If the
researchers were not able to identify any UX related key
findings that satisfy those needs, we ask them to have a
closer look at their results again in order to identify a
potential UX related result there. By including this reflection
cycle in the guidance, we want to ensure that the researchers
proceed with an appropriate result to be able to create a
pattern.

What you need to know about patterns!

① They capture expertise and knowledge to make it

accessible to experts as well as non-experts.
② Their names collectively form a vocabulary that

helps developers to communicate better.
③ They help people understand a system more

quickly when it is documented with the patterns it
uses.

④ Patterns represent a structured way to represent and
communicate knowledge.

⑤ Using the same vocabulary avoids
misunderstandings and ambiguities.

⑥ Patterns are abstract enough to make
generalizations but as well detailed enough to
provide practical solutions or suggestions.

⑦ Patterns are easy to understand (in a unified and
human-readable format).

⑧ Patterns are short enough so that the
knowledge can be accessed quickly.

Analyze according to the following checklist!

① My key finding addresses a/some specific UX

factor(s).
② I can give a detailed and further description of my

result(s).
③ I can describe the context from which my chosen

key finding is extracted/gathered from
④ I can create design suggestions from these results.
⑤ I can underpin or visualize my design

suggestions with examples.

69Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 78 / 91

C. Step III: Develop Your Pattern

TABLE I. STRUCTURAL OVERVIEW OF OUR PATTERN

Instructions on Each Pattern Section

Section
Name

Instruction on Each Section

1 Name
The name of the pattern should shortly describe the
suggestions for design by the pattern (2-3 words
would be best).

2 UX
Factor

List the UX factor(s) addressed within your chosen
key finding (potential UX factors listed in this
section can be e.g. workload, trust, fun/enjoyment,
stress...). Please underpin your chosen UX factor(s)
with a definition.

3 Key
Finding

As short as possible - the best would be to describe
your key finding (either from an empirical study or
findings that are reported in literature) in one
sentence.

4 Forces Should be a detailed description and further
explanation of the result.

5 Context Describe the detailed context in which your chosen
key finding is extracted/gathered from.

6 Suggestions
for Design

1) Can range from rather general suggestions to
very concrete suggestions for a specific
application area.

2) The design suggestions should be based on
existing knowledge (e.g., state of the art
solutions, empirical studies, guidelines, ...).

3) More than one suggestion are no problem but
even better than only one.

4) There can also be a very general suggestions
and more specific “sub-suggestions”.	

7 Example

Concrete examples underpinned by pictures,
standard values etc. Examples should not provide
suggestions (this is done in the suggestion part) but
rather underpin and visualize the suggestion
presented above.

8 Keywords Describe main topics addressed by the pattern in
order to enable structured search.

9 Sources Origin of the pattern (e.g. literature, other pattern,
studies or results)

After the reflection cycle in Step 2, the researchers

should be ready to actually create their own CUX pattern.
Therefore, the pattern guidance again reminds them that their
generated patterns should 1) capture expertise and
knowledge, 2) be abstract enough to make generalizations, 3)
but as well detailed enough to provide practical suggestions
and 4) be easy to understand in a short and concrete manner.
In order to support the researchers to meet these goals, we
show them a predefined pattern structure visualized as a
table. This provides an overview on the sections to be filled
in. Further, this should encourage the researchers to keep our
suggested structure. Our patterns are structured according to
the nine sections (see section name) shown in TABLE I. The
researchers are then asked to fill in the sections sequentially
according to the given instructions below each section. In
TABLE I. the instructions according to each section are
outlined in more detail. After proceeding through each of
these sections, the researchers have developed a first version
of their CUX pattern based on their empirical results.

D. Step IV: Final Check
In order to ensure that the researchers have successfully

conducted the process of pattern writing and met our
predefined format of CUX patterns, we ask the researchers in
a fourth step to have a final look at their pattern according to
the following points:

To support the researchers in checking their generated
pattern, we visualize the generated pattern below this
checklist to make it easier for the researchers to assess if the
generated pattern fulfills all the criteria listed above.

E. Step V: Feedback
In a last step, the guidance asks the domain specific

researchers to provide feedback on the pattern generation
process. Thus, we get insights on how to improve the
guidance as a basis for further iteration. Therefore, we
developed a short questionnaire (9 items) focusing on
helpfulness, effort, difficulties, and concrete problems when
using the pattern generation guidance.

IV. EMPLOYMENT OF THE PATTERN GENERATION
GUIDANCE

In order to evaluate the guidance in terms of helpfulness,
effort, task difficulty, and other issues occurring when
applying our guidance, we have conducted a first pre-test
with one HCI researcher who has had no previous experience
in generating patterns. This initial evaluation cycle allowed
us to get insights on the applicability and weaknesses of the
guidance in practice. Based on these insights, we iterated our
guidance especially for researchers with no previous
experience in generating patterns. The pre-test was
conducted in December 2012 and the researcher needed two
hours to create his/her pattern out of gathered empirical
results; we had expected that the generation process would
generally take much longer.

TABLE II. represents the major issues evaluated during
the pre-test, which have been clustered in four different
problem categories. Apart from these more significant issues,
the HCI researcher has also reported about minor issues,
such as spelling mistakes and design issues of the survey.
These minor issues are excluded from the reported problem
categories below, since these issues are not relevant to the

Have a final check!

① Do a spell check by reading the pattern from the

beginning to the end.
② Check if all sections are filled in appropriately.
③ Check if you have written everything in an easy

and understandable way.
④ If you want to insert e.g. pictures, links in the

“examples” or “sources” section, check if you have
attached them.

⑤ Check if you are as concrete and short as
possible.

70Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 79 / 91

aim of the guidance and are easy to correct and do not need
to be outlined in much more detail.

TABLE II. REPRESENTATION OF IDENTIFIED PROBLEMS

Overview of Identified Problems
Problem
Category Identified Problems Reference to

Guidance

Sequence

(1) Sequence of sub-steps could be
structured more clearly and intuitive (1) Step 2

(2) The chosen key-finding from
Step 2 should appear in Step 3 again

(2) Step 3

(3) Sequence of the sections (in the
pattern structure) is not intuitive
enough, since this is not the way
how people create a pattern in their
mind

(3) Step 3

Wording

(4) For Step 2 and 3 the wording
“pattern” within the guidance is
misleading since this would imply
that the HCI Researcher already has
to have the outcome in his/her mind

(4) Step 2
and 3

Repetitions/
unneeded
information

(5) Detailed definition of Patterns is
unnecessary, since the guidance
should guide you how to create a
pattern, therefore it´s not necessary
to know a definition of what patterns
are in our case

(5) Step 1/C

(6) Graphical visualization of
general pattern structure is shown
again, which is unneeded
information at that point

(6) Step 3

Text
complexity

(7) The provided information in Step
3 (especially the reminder) is
formulated too long and complex

(7) Step 3

(8) The provided input in the
introduction section is too long and
not to the point

(8) Step 1

Overall, three problems were evaluated that relate to the
sequence of different steps and sub-steps within the
guidance. The pre-study participant reported that the
sequence for the different sub-steps within Step 2 and 3,
need to be iterated, in terms of making the sequences more
intuitive and clear for the researchers. This means that for
example, the reported problem number (3) ‘the sequence of
sections in the pattern structure’ should be switched since the
current sequence is not supporting the researchers, how they
intuitively would generate a pattern in their mind. Therefore,
we would suggest to change the sequence, in an iterated
version of the guidance, as followed: 1) Pre-step, where the
chosen key finding (from step 2) by the researchers is
visualized again, 2) Forces, 3) Context, 4) Suggestions for
Design, 5) Example, 6) Key Finding, 7) UX Factor, 8)
Keywords, 9) Sources, 10) Examples. In order to check, if
the sequence change of the sections makes it easier and more
intuitive for the researchers to generate their pattern, we aim
to test this changed order of sequences in another pre-test.

Besides this suggestion how to improve the guidance in
terms of sequence changes in the pattern structure when
generating the pattern, other areas for improvement could

have been identified. Within Step 1 (introduction on
patterns) especially, some parts of the guidance contain of
unneeded/unnecessary information that is formulated rather
complex at some parts. Our pre-study participant reported
that some sections/parts (e.g. detailed definition of what
CUX patterns are) do not have to be part of the guidance,
since the guidance itself should direct the researchers in a
way, that the generated pattern complies with our view on
what CUX patterns for a structural representation of
empirical study results are. Therefore, we aim to reduce such
unneeded information in terms of deleting these sections and,
therefore, reduce the information flow and complexity of the
guidance. As another step to reduce the information
overflow, we aim to formulate the different
instructions/information shorter and especially formulating
these parts more active in terms of “Researcher, do this… do
that…” in order to provide short and concrete instructions for
the researchers. This might reduce the potential of
misunderstanding some parts.

Summarizing our first use of the guidance, we can state
that when generating a pattern out of empirical study results,
it is important to address an intuitive sequence of the
different sections and steps, as well as to be concrete, short
and to the point with the instructions provided in the
guidance for the researchers.

V. CONCLUSION AND FUTURE WORK
In this paper, we introduced a step-by-step pattern

generation guidance to support non-pattern experts in the
generation of patterns and to support a traceable pattern
generation process. Thus, knowledge gained within
empirical studies is captured in the form of CUX patterns.
We claim that our pattern generation process supports
explicit knowledge regarding pattern development, and thus
makes it easier to share and access knowledge with other
HCI researchers. By applying our approach, we preserve and
structure UX and context related knowledge gained within
research projects and thus make knowledge accessible for
researchers. Further, the researchers have to reflect on the
quality of their empirical results which effects also the
quality of the generated pattern. However, the presented
approach also has some shortcomings. For example, the
initially suggested sequence of the pattern generation was not
intuitive, as turned out in the employment of the guidance.
This issue will be addressed in an iterated version of the
guidance. Another weakness of the presented approach is
that patterns sometimes might not be the right format to
represent empirical results. However, we believe that in most
cases, patterns are able to summarize insights on contextual
user experience.

We are aware that there is still space for improvement of
our approach. For example, we would suggest that
researchers could take different sources for their pattern. For
instance, a researcher could take one key finding from
his/her study, and the rest from reported literature. Using
various resources (e.g., a published paper from the field,
other domain-specific patterns, norms or guidelines) helps
researchers to reflect about their relevant key finding, to
combine it with relevant aspects and thereby, increases the

71Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 80 / 91

quality of the generated pattern. According to Appleton [18],
patterns should tell us a story, which captures the
experiences they are trying to convey. In this context, we
found that the right sequence of our pattern guidance is
important. Especially Step 5, which asked to describe the
context, should be represented earlier within the generation
process. Further, we will support the researcher by listing six
contextual categories to be selected: user context, system
context, social context, temporal context, physical context,
and the category “others”. By presenting concrete contextual
categories, we assist the researchers to assign the key finding
to the specific context. With such detailed information about
the context, we get a deeper understanding of the relevant
context.

In general, we consider the development of the pattern
generation guidance as an iterative process, which demands
continuous evaluation. In a first step, we plan to iterate the
pattern sequence according to the drawbacks reported in the
first employment of the guidance. In particular, we will
change the different sections and check if this order is more
intuitive for the researchers. Another issue for future work is
the extension of the guidance towards a validation of the
created patterns [22]. This will be easy to realize as the
patterns are already digitalized and can be provided to others
for validation. Further, we will conduct an expert workshop
on the suggested process in order to identify further
improvement potentials. After iterating the guidance, we will
employ the pattern generation guidance in the field by
providing the guidance to HCI researchers, with differing
experience in generating patterns, in order to collect patterns
for the automotive, home, and mobile context.

ACKNOWLEDGMENT
The financial support by the Federal Ministry of

Economy, Family and Youth and the National Foundation
for Research, Technology and Development is gratefully
acknowledged (Christian Doppler Laboratory for Contextual
Interfaces). This research was also supported by the Austrian
project AIR Advanced Interface Research funded by the
Austrian Research Promotion Agency (FFG), the ZIT Center
for Innovation and Technology and the province of Salzburg
under contract number 825345.

REFERENCES
[1] C. Alexander, “The Timeless Way of Building,” New York:

Oxford University Press, 1979.
[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, “Design

patterns: elements of reusable object-oriented software,”
Addison-Wesley Professional, 1995.

[3] C. Crumlish, and E. Malone, “Designing Social Interfaces,”
O’Reilly, 2009.

[4] J. Tidwell, “Designing Interfaces : Patterns for Effective
Interaction Design,” O’Reilly Media, Inc., 2005.

[5] P. Kotzé, K. Renaud, and J. V. Biljon, “Don’t do this –
pitfalls in using anti-patterns in teaching human-computer
interaction principles,” Comput. Educ., Volume 50, Issue 3,
2008, pp. 979–1008.

[6] R. Reiners, I. Astrova, and A. Zimmermann, “Introducing
new Pattern Language Concepts and an Extended Pattern
Structure for Ubiquitous Computing Application Design

Support,” Third International Conferences on Pervasive
Patterns and Applications, 2011, pp. 61-66.

[7] D. Martin, T. Rodden, M. Rouncefield, I.Sommerville, and S.
Viller, “Finding Patterns in the Fieldwork,” Proceedings of
the Seventh European Conference on Computer-Supported
Cooperative Work, Bonn, Germany, 2001, pp. 39-58.

[8] M. Obrist, D. Wurhofer, E.Beck, A. Karahasanovic, and M.
Tscheligi, “User Experience (UX) Patterns for Audio-Visual
Networked Applications: Inspirations for Design,”
Proceedings of the NordiCHI, Reykjavik, Iceland, 2010, pp.
343-352.

[9] M. Obrist, D. Wurhofer, E.Beck, and M. Tscheligi, “CUX
Patterns Approach: Towards Contextual User Experience
Patterns,” Proceedings of the Second International
Conferences on Pervasive Patterns and Applications, Lisbon,
Portugal, 2010, pp. 60-65.

[10] A. Dearden and J. Finlay, “Pattern Languages in HCI: A
Critical Review,” HCI, Volume 21, 2006, pp. 49-102.

[11] J. Borchers, “A pattern approach to interaction design,”
Chichester et al.: John Wiley & Sons, 2001.

[12] T. Erickson, “Lingua Francas for design: sacred places and
pattern languages,“ Proceedings of the 3rd conference on
Designing interactive systems: processes, practices, methods,
and techniques, Brooklyn, New York, 2000, pp. 357-368.

[13] M. Hassenzahl and N. Tractinsky “User experience - a
research agenda,” Behaviour & Information Technology,
Volume 25, Issue 2, 2006, pp. 91-97.

[14] M. A. Blythe, K. Overbeeke, A. F. Monk and P.C. Wright,
“Funology: From Usability to Enjoyment,” Kluwer Academic
Publishers, 2004.

[15] L. Alben, „Quality of experience: defining the criteria for
effective interaction design,“ Interactions, Volume 3, Issue 3,
1996, pp. 11-15.

[16] A. F. Blackwell and S. Fincher, “Pux: patterns of user
experience,” Interactions, Volume 17, Issue 2, 2010, pp. 27–
31.

[17] J. Vlissides “Pattern Hatching: Design Patterns Applied,”
IBM Thomas J. Watson Research Center, Addison-Wesley
Professional, 1998.

[18] B. Appleton, “Patterns and Software: Essential Concepts and
Terminology,” Object Magazine Online, Volume 3, Issue 2,
1997, pp. 20-25.

[19] S. Köhne, “Didaktischer Ansatz für das Blended Learning:
Konzeption und Anwendung von Educational Patterns,”
Dissertation, Universität Hohenheim, 2005.

[20] D. May and P. Taylor, “Knowledge Management with
Patterns. Developing techniques to improve the process of
converting information to knowledge,” Communications of
the ACM - A game experience in every application, Volume
46, Issue 7, 2003, pp. 94-99.

[21] I. Nonaka, H. and Takeuchi “The Knowledge-Creating
Company. How Japanese Companies Create the Dynamics of
Innovation,“ Oxford University Press, 1995, pp. 3-19.

[22] D. Wurhofer, M. Obrist, E. Beck, and M. Tscheligi, “A
Quality Criteria Framework for Pattern Validation,”
International Journal On Advances in Software, Volume 3,
Issue 1-2, 2010, pp. 252-264.

[23] The Hillside Group. Accessed March 2013. Retrieved from:
http://hillside.net/index.php/patterns

[24] HCI Patterns. Accessed March 2013. Retrieved from:
http://www.hcipatterns.org/

[25] LimeSurvey tool. Accessed March 2013. Retrieved from:
http://www.limesurvey.org/

[26] Current Version of CUX Pattern Survey. Accessed March
2013. http://survey.uni-
salzburg.at/index.php?sid=96811&newtest=Y&lang=en

72Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 81 / 91

An Analysis Model for Generative User Interface Patterns

Stefan Wendler, Detlef Streitferdt

Software Systems / Process Informatics Department

Ilmenau University of Technology

Ilmenau, Germany

{stefan.wendler, detlef.streitferdt}@tu-ilmenau.de

Abstract — Graphical user interfaces (GUIs) are a crucial sub-

system of current business information systems. They provide

access for users to application kernel services in

correspondence to business processes. As the processes and

services change dynamically in our days, there is a strong need

to adapt GUIs quickly to the changes. To enable both efficiency

and usability during the adaptation, ongoing research has

suggested to resort to model-based development processes,

which employ patterns and their instantiation for specific GUI

contexts. Those patterns are based on human computer

interaction patterns and need to be formalized for their

automated processing by generator tools. However, current

research is still at the edge to express the concepts for such

generative user interface patterns. The state of the art is not

able to cover crucial factors of those patterns and misses a

standardized format. Continuing our previous work on

requirements for user interface patterns and their aspects, the

aim of this paper is the development of an analysis model,

which is able to express those needs in more detail using a

semi-formal notation. With this step, a detailed description of

generative user interface patterns is achieved, which can be the

basis for the verification of current approaches of model- and

pattern-based GUI development or even a deeper analysis.

Keywords — user interface patterns; model-based user

interface development; HCI patterns; graphical user interface.

I. INTRODUCTION

A. Motivation

Domain. Business information systems of our days are
being maintained to upkeep or raise their effectiveness in
supporting users carrying out operative tasks, which are
demanded by the business processes of the respective
company. Being a layer of a given business information
system, the graphical user interface (GUI) is part of a value
creation chain, as it enables the user to access functional,
data and application flow related components of sub-systems
located lower in hierarchy. Accordingly, the GUI allows the
user to select and initiate functional behavior that processes
data relevant to active tasks. As result, value is being created,
which is meaningful to the sequence of the business process
within the value creation chain. Due to systems are
constantly matched closer to the set of tasks of the business
processes and thus users are facing an increase in task scope
and complexity, the need for well designed and adaptive
GUIs has emerged.

GUI requirements. In this context, a user interface
primarily is required to fulfill both the criteria of
functionality and usability. On the one hand, a GUI has to
reflect the current process definition and thus offer access to

the respective activities in order to provide effective support
for the user. On the other hand, for this support to be
efficient, the non-functional requirement of usability, which
embraces the suitability for the task and learning, as well as a
high degree of self descriptiveness [1], plays an important
role for testing and the acceptance for productive runs.

GUI adaptability. As business processes tend to change
over time, the functional requirements based on them, such
as use cases or task models, may change considerably, too.
With those changes taking place, new requirements, having a
significant impact on the GUI artifacts, are being introduced.
Consequently, this part of the system has to conform to a
high demand on adaptability besides the first release-specific
requirements. Especially standard software systems, which
offer a configurable core of functions to support business
models, like applied in E-Commerce, see a distinctive
demand for adaptive user interfaces [1]. Accordingly, a user
interface of a business information system has to be based on
a software architecture or development process, which
facilitates the transition to new visual designs, dialogs,
interaction designs and flows without causing significant
costs in manpower and time.

Current limitations. Nowadays, the above mentioned
requirements still cannot be accomplished fully by
automation and generative development processes. On the
one hand, available GUI-Generators can only cover certain
stereotype parts of the user interface and may not lead to the
desired quality in usability [1][3]. On the other hand, model-
based development processes, which are able to generate
more sophisticated user interfaces, also cannot support all
variations on interaction and visual designs the changing
business processes may demand for [4]. Finally, concepts
that combine increased reuse and automation in user
interface development and adaptation are being sought of.

User Interface Patterns. Together with other
researchers [1][3][10][11][12][22], we believe that certain
aspects of the GUI can be modeled independently in order to
be composed and instantiated to their varying application
contexts. As evolution and individualism in GUI
implementations generally induce high efforts, an approach
has to be followed, which enables a higher degree of reuse
and hence allows for more common basic parts to be shared
along components. For reuse, the basic layout of a dialog, its
positioning of child elements and navigation flow as well as
reoccurring user interface controls (UI-Controls) and their
data type processing are to be mentioned as candidates for
automated generation. In this context, the occurring
variability needs to be expressed by new artifacts in the
development process chain. The need for a systematic
description of reusable GUI artifacts arose and initially has

73Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 82 / 91

found its expression in human computer interaction (HCI)
[5][6][7] or, more recently, in user interface patterns (UIPs)
[8][9]. In this regard, UIPs describe the common aspects of a
GUI system in an abstract way and the developers concretize
them with the required parameter information suited for the
context of their instantiation.

UIP conception. The existing work about UIPs applied
in model-based development processes [10][11][12] has laid
down conceptual basics and milestones towards
experimental proofing. However, no dedicated pattern
definition for user interface development [14] has emerged
yet and so, the motivation of the PEICS 2010 workshop still
stands [15].

Factor model. To progress towards a more detailed and
complete UIP conception, we deeply elaborated
requirements with impacts to architecture, formalization and
configuration of UIPs in [4]. A process, which enables the
instantiation of UIPs and their compositions to form a GUI
of high usability and adaptability, altogether, needs such a
clear basis of requirements. However, the factors we have
modeled, reside on a descriptive level that is not favorable to
be directly translated to notations or formats for generative
UIPs.

B. Objectives

The impacts of our factor model in [4] have led us to the
strategy, to specify an analysis model for the UIP aspects and
their various impacts. This model serves as a medium to
close the gap between descriptive requirements of the factor
model and formal notations. With the analysis model, we are
detailing the requirements even more and progress towards a
semi-formal notation for their description. The model is
intended to capture all essential aspects, properties and
required parameters for context-specific application of UIPs.
With this contribution, a first version of the analysis model is
presented.

In this regard, we focus on the UIP representation and not
its mapping or deployment process, since other researchers
have advanced in that area, but still lack a proper UIP
representation. This representation is elaborated here along
with related work, criteria, examples and finally an analysis
model. The following questions shall be answered by our
model:

• What information is needed to describe a UIP as a
generative pattern applicable as a GUI architecture
design unit?

• What elements a formal language has to feature in
order to permit the full specification of such UIPs?

C. Structure of the Paper

The following section provides an overview of the
pattern type to be covered in this work. Additionally, we
summarize the outcomes of our previous work on the
examination of model-based development processes and
requirements related to UIPs. In Section III, the problem
statement is formulated. This is followed by our approach in
Section IV. The elaboration of the analysis model is
presented in Section V. The results of our work are reflected
in Section VI, before we conclude and suggest future work in
Section VII.

II. RELATED WORK

A. Human Computer Interaction Patterns and User

Interface Pattern Definition

To open the discussion of reusable GUI entities, aspects
of patterns related to GUI development are now introduced.
We approach the term “user interface pattern” (UIP), which
will drive the further elaboration of related work. For this
purpose, we ask what the origins for definitions of UIPs in
the context of UI generation are.

HCI pattern ambitions. The early stages of patterns for
user interfaces were determined by the goal to describe
reoccurring problems and feasible solutions for GUI design
offering high usability. Borchers [7] stated that human
computer interaction (HCI) experts had a hard time
communicating their feats in ensuring a good design of a
systems GUI to software engineers. Thus the idea was born
to express good usability via patterns as this was already a
good practice for software architecture design. In this regard,
Van Welie et al. [16] argued that patterns are more useful
than guidelines for GUI design. In addition, they suggested
the term pattern for user interface design along with criteria
how to assess the impact on usability of each pattern.

Research into HCI patterns went on and culminated into
pattern languages such as the one created by Tidwell [17].
Prior to this development, Mahemof and Johnston [5]
outlined a hierarchy of patterns, what already implicated that
there are complex relationships inside HCI pattern
languages.

No unified pattern notation. Some years later,
Hennipman et al. [18] claimed that available HCI pattern
approaches could be improved as there are still obstacles for
their efficient usage. Their analysis of relevant sources
reveals major issues such as the missing guidelines how to
formulate new HCI patterns, integrate them in tools and how
to apply them. The request for a standard pattern
specification template already was formulated by [16] and
[7]. In this regard, Borchers mentions early sources adopting
the pattern notion by Christopher Alexander. Thus, Fincher
finally introduced PLML [19] in [20]. However, the issue of
a missing standardized pattern format still persists [15],
which eventually is detailed by Engel et al. [21]. Therein,
they analyze the shortcomings of current HCI pattern
catalogs and the intended standard notation of PLML.

UIP definition. Vanderdonckt and Simarro [22] separate
two main representations of patterns based on the intended
usage. Descriptive patterns serve a problem description and
solution specification purpose. In contrast, generative
patterns feature a machine readable format as they are to be
processed by tools and in particular GUI generators.

B. Formal Languages for GUI Specification

Now, we ask if there are languages available that permit
the formal specification of GUIs or even UIPs.

In our previous work [1][8], we already went into the
possibilities to express UIPs with the means of mature GUI
specification languages UIML [23] and UsiXML [25]. As
these languages are focused on platform-independent full-
fledged GUI specification and intended to be machine
processed, some of their elements may be candidates to be

74Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 83 / 91

included in a sophisticated UIP definition model. Both
languages feature common elements to define the visual
layout, interactive behavior, and content of a certain GUI
part. For pattern-specific application UIML and UsiXML
differ in their capabilities: UIML incorporates elements for
template definition and a peer section, which decouples
structures or UI-Controls within the layout from their
technical counterparts. In contrast, UsiXML is based on a
more complex approach, which defines a metamodel
consisting of a model hierarchy and methodology [26]. The
abstract and concrete user interface model may be of
relevance for our objective.

C. Influence Factor Model for User Interface Patterns

Continuing on previous work, we progressed towards an
elaborate influence factor model for UIPs, which is depicted
in Figure 1. Motivated by missing standards and competing
UIP notations inside modeling frameworks, this model was
intended to establish an independent requirements view on
the formalization and instantiation of generative UIPs: We
took our examples and architecture experiments [1], as well
as criteria, aspects and variability concerns [8], and refined
them. The requirements stand close to the profile of current
approaches in research. For details, [4] can be consulted.

The UIP definition to be sought after has to introduce a
pattern conception, which is backed by a limited set of types,
roles, relationships and collaborations among GUI related
specifications and components. Because of the complex
nature of both GUI architectures and specifications, a
restriction and specialization of the entities to be involved in
the development environments for pattern-based GUIs have
to be set. Along with this restraint, the GUI specific kind of
pattern still needs to be abstract in order to enable vast
customization and instantiation to differing contexts. The
major share of the patterns vigor has to be sourced from the
similarity in structural (view aspect) and behavioral
(interaction and control aspect) definition of new GUI
entities.
req Influence factors

UIP
definition

View
aspect

Interaction
aspect

Hierarchical control flow
for UIP compositionsControl

aspect

Data-binding

Configuration of UIP
context at design-time

Reusability
of UIPs

Variability
of UIP
instances

Structural
composition
ability

Acceptance of
data types Adaptability of view

structure

Behavioral
composition
ability

Visual element structure
definition

Visual element
structure states

definition

Intercommunication
events definition

Style definition

Layout definition

Encapsulation of UIP
artifacts

Dialog action-binding

Configuration of UIP
context at run-time

Configuration of
UIP instances

Presentation
action-binding

View
definition

View variability
parameters Enumeration of

elements

Ordering of elements

Naming of elements

Layout placement of
elements

Style customization of
elements

Adaption of presentation control
in correspondence to actual visual
structure

Legend

Influence
factor

Impact

dependent
factor

inflicts
impact

nested
factor

operationalized
factor

Figure 1. Influence factor model for generative UIPs described in [4]

In other words, the pattern definition introduces certain
quality aspects in GUI design, which can be altered
quantitatively, when they are respectively complemented
with necessary structure, layout and style details (view
variability parameters) as well as combined with each other
(behavioral and structural composition abilities). This
commonality ensures that no longer specialized solutions or
manually refined structures, which cannot be covered by
mere UIP instantiation, are applied in the same GUI system
architecture.

D. Model-Based Development Processes involving User

Interface Patterns

The enhancement of model-based development by
generative UIPs already found strong reception. In reference
[4], we presented an overview and assessment of the
approaches of Zhao et al. [1], PIM [27], UsiPXML [10],
PaMGIS [11] and Seissler et al. [12]. For a summary, Table I
TABLE Icompares the above described approaches.

TABLE I. COMPARISON OF APPROACHES FOR MODEL-BASED

DEVELOPMENT EMPLOYING UIPS

Approach
Zhao et al. UsiPXML PaMGIS Seissler et al.

Pattern

types

Task

patterns

based on

[28], set of

window

and dialog

navigation

types

Task,

dialog,

layout and

presentation

Task and

presentation

patterns, fine

grained

hierarchy

based on

Task, dialog

and

presentation

patterns

UIP

formal-

ization

notation

Unknown Enhanced

UsiXML

Unknown,

XML based,

<automation>

tag and DTD

Embedded

UIML

supplemented

by parameter

and XSLT

enhancements

UIP

config-

uration

At design At design At design At design and

run-time

Process

output

Target

code

UsiXML,

M6C

Target code Augmented

UIML to be

interpreted

Not all of the factors’ impacts were supported or inspired

by the approaches. A summary of realized (arrow in a box)
or inspired (single arrow) impacts is given by Figure 2.

Figure 2. Impacts covered by examined approaches

75Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 84 / 91

Since our valuation revealed that there were many open
issues associated with the different approaches, we only
considered the full and no partly or probable realization of an
impact. Notably is that the view aspect was realized by the
most recent approaches. In contrast, the interaction aspect
was only considered for Data-binding. Moreover, the control
aspect was not realized by any approach, but inspired by
PIM. Lastly, the Configuration of UIP instances was
restricted to design-time only, but already inspired by
Seissler et al. in reference [13].

III. PROBLEM STATEMENT

A. UIP Definition

Descriptive UIPs. From our observations concerning
descriptive UIPs, we learned that they are well-understood as
specification elements and supported by the HCI community.
Nevertheless, the research into descriptive HCI patterns has
not yet converged towards a standardization for the structure
and organization of UIPs [15][21].

Generative UIPs. Generative UIPs may be classified as
software patterns and as those they need a formal notation,
and thus, are seldom encountered.

From our point of view, the past work on HCI patterns is
concentrated on the descriptive form. As there is no unified
approach in specification and usage of descriptive HCI
patterns, they can hardly be used to source and abstract
common elements of a generative representation. First and
foremost, descriptive UIP sources may be a useful resource
to assemble dialogs that may act as representative examples
for a certain system or domain. On that basis, requirements
or criteria for UIP formalization can be inductively obtained.
Partly, we revert to this approach and sketch some example
UIP instances in Section IV.B.

As a consequence, there is a large gap concerning the
detailed definition of generative UIPs. Thus, a format for
UIPs has to be found that is at least able to express most
impacts of view and interaction aspect. Filling the gap with
their own UIP concepts and notations, the model-based
approaches of Section II.D are converging concerning the
view aspect, but failed to convey all UIP impacts.

B. Formal GUI Languages and model-based Development

Enhancements. As there is still no dedicated language
for UIP formalization, developers have to revert to existing
GUI specification languages like UIML or UsiXML, which
will be referred as XML languages in the following. As a
result, two factions among the model-based approaches
arose, one using UsiXML and the other applying UIML.
Both languages need enhancements to express UIP related
variability. Accordingly, the approaches incorporated their
own parameter and configuration concepts. In sum, they all
failed to publish enhancements that empower the
specification languages regarding the interaction and control
aspects. Currently, the notations are restricted to the view
aspect mostly.

Generation of XML specifications. The XML
languages have been developed to offer a platform-
independent specification of GUI systems. In this context,
they have been based on a metamodel that is somewhat
similar to common universal object-oriented programming

languages, which cannot handle aspects or traits and thus are
incapable of expressing patterns in their abstract form. The
XML languages clearly fail in the fulfillment of the
reusability, variability and composition ability criteria [8].

However, applying the XML languages for their original
purpose, apart from pattern definition, may play out their
strengths. Accordingly, developers could use them for
concrete GUI definition and final rendering to the desired
platform. To integrate UIPs in this procedure, a generation of
XML language code could be a possible solution to
overcome the inabilities as proposed in [1]. This idea was
already followed either by generation of UsiXML [10] or the
interpretation of UIML [12]. The XML code would hold the
already instantiated UIPs or the required information for
rendering. The benefit would be the possibility to use
existing tools for the XML languages. In addition, a more
important merit would exist in obtaining a concrete user
interface level (CUI) specification [26], and thus, the ability
to be independent from platform specifics.

In any case, a new language or extensions for the XML
languages are to be sought after. Whether UIPs are being
defined concretely in XML or the latter is generated, the
XML languages will be a fundamental part of this solution.
Consequently, the new language must facilitate the
expression of UIP instances in rich XML language
specifications. For that purpose, a unified UIP-model has to
be established, which truly holds all information for the
definition of generative UIPs and parameters for their
transformation to UIP instances or instance compositions
forming a concrete GUI model.

IV. OUR APPROACH

A. Strategy

As mentioned in the objectives, the impacts in reference
[4] resulted in the strategy to develop an analysis model,
which is aimed at further detailing the UIP aspects. We
develop a structural model that is biased towards an
implementation of a dedicated UIP language.

Motivation of an analysis model. Some requirements
such as interaction and control aspects are cross-cutting
concerns and are really hard to achieve for pattern
formalization. Thus, more planning and rationale is required
before we can consider the development of a dedicated
language. We follow the way of traditional modeling of
requirements and ease their transformation to design with an
analysis model. The model is intended to express the domain
terms and concepts with a structure.

With a structural and more detailed model, the tracing of
the influence factor impacts to potential solutions is better
possible than with the pure influence factor model presented
by Figure 1. In the factor model, there exist no separated
entities that are modeled with their attributes and
relationships to reflect a possible solution approach.

Assessment of recent approaches. Although we pointed
out the factor support and issues we could so far discover as
result of our assessment of other available approaches in
reference [4], we also concluded that more details on
examples and the applied notation have to be revealed in
order to refine the assessment. By developing an analysis
model, we seek to overcome the lack of detail and rationale

76Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 85 / 91

on the design of notations suitable for UIPs. The notation to
be used for modeling is the UML 2.0 class model.

Why do we propose a semi-formal model? For a
technical architecture design or a generative process for
formal UIPs to be verified, a wide range of requirements
emerging from the initial criteria have to be taken into
account, which cannot comprehensively modeled on a
formal basis. In contrast to other researchers directly pushing
towards a formalization of UIPs, we think this intermediate
step is necessary and helpful. In our opinion, a semi-formal
model is more useful to the developer than a formal model in
first place, hence the mental conception about full scale
generative UIPs has to be inspired first. The understanding of
these complex patterns, their aspects and element
relationships is the primary goal that should not be hindered
by formal media, which cannot be imagined easily. A semi-
formal model enables a better understanding than a grammar,
since it may visualize concepts, their structure and relations
depending on the chosen notation.

In sum, the model has to satisfy the information needs of
the developers first, before they can think of how to employ
the available formalization options or even GUI XML
languages to express the requirements residing inside the
model. Primarily, the model has to capture requirements in
way that is easily understandable for human-beings.

Why do we apply the UML 2.0 class model? The UML
class model lies in between the descriptive nature of the
factor impacts and a formal notation. In this regard, a class
model is already inclined towards a formal implementation.
This is the case for class models serving as a design model
for object oriented programming languages. In analogy, our
analysis model may lead to a design for new language
elements for the definition of generative UIPs. The language
to be sought after also should rely on a structural paradigm,
since the GUI implementations form a structure as well.

Moreover, a class model already proved useful for the
expression of design patterns. The paradigm employed
allows us to model abstract data types, their common
attributes as well as their cardinalities and relationships. As
the model entities all reside on an abstract level and do not
describe already instantiated objects, the class model proves
to be suitable for our task. More precisely, the UIP concepts
can be modeled from a point of view where the abstraction
and instantiation are separated. The class model forces the
developer to express his solutions by abstractions that
concentrate the commonalities of later instantiated objects.
As we seek to express UIPs that feature reusable GUI
solution aspects, a class model may provide a proper
notation.

With the class model, we will be probing the modeling of
required information for UIPs. Currently, developing a
particular language or focussing on a certain architecture
experiment seems to be too specific. In contrast, we
investigate how the information of UIPs and their
configuration can be established in general. To sort out
possible options, trace factor impacts on more detailed
granularity and map them to the final solution, the analysis
class model may prove as a valuable asset. Finally, we may
draft a coupling between a UIP, its configuration and GUI
architecture or at least mandatory prerequisites.

B. User Interface Pattern Examples

By reason that we do not want to claim being able to
establish a UIP analysis model applicable for each domain,
we stick to business information systems as mentioned in the
introduction. More precisely, as stated in Section III.A, we
rely on common dialogs for E-Commerce applications as a
basis. In fact, we subsequently derive the analysis model by
focusing both on the factor model in Figure 1 and the
following example dialogs.

Simple search. For an easy example, we start with a
dialog that has the “Search Box” [28] pattern instantiated.
The simple search illustrated in Figure 3 is mainly composed
by a single panel (ContentPanel), which defines a
GridBagLayout as seen in the upper part of Figure 3. The
UI-Controls are fixed and aligned in respective fashion. For
variability, only the concrete object data types need to be
bound to the combobox and textfield. In fact, this kind of
UIP is mainly invariant.

Advanced search. The next example shall be more
complicated and thus, demand for every aspect described
within the factor model. We decided for an “Advanced
Search” [28] pattern, which alters its visuals and interaction
options depending on user input.

Our example, depicted in Figure 4, mainly consists of
two panels for layout definition as shown on the upper half.
The panel RootPanel defines a GridBagLayout consisting of
three cells (grey borders). Located in the center of this
container, the SearchCriteriaPanel defines a layout of
several rows each containing on cell (solid black borders).
Additionally, the latter may grow or shrink in height to
accommodate or discard search criteria lines to fit inside the
container. Lastly, the SearchCriterionPanel (dashed borders)
defines a layout appropriate for individual search criterions.

The usage of this dialog is as follows: Firstly, the user
selects an object to be searched from the “Type of Object”
combobox. Secondly, he chooses an attribute from the
combobox inside the SearchCriteriaPanel. Accordingly, the
UIP dynamically has to instantiate new sub-UIPs, which
resemble the single search criteria rows. For each datatype, a
pre-defined UIP, which is similar in shape to the
SearchCriterionPanel, is assumed to be available. In the
example, the datatypes String, price, and week are
considered. With the buttons on the right hand side, the user
may add or drop new search criteria rows and so the view
aspect will change.

The variability is limited to the object types and their
attributes to be searched with this UIP. Controller related
aspects have to be adapted based on the UIP definition.

Figure 3. Simple search UIP example layout and dialog

77Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 86 / 91

Figure 4. Advanced search UIP example layout and dialog

V. THE ANALYSIS MODEL

In this section, we develop the proposed analysis model.
At first, we review each UIP aspect and its associated
impacts in order to elaborate the decisions in design of the
new model. Afterwards we present the structure of the model
and finally apply the model to both examples introduced in
Section IV.B. The terms in italics refer to respective analysis
model elements.

A. Analysis Model Bias

On principle, there are two options on how to bias the
model. Firstly, the model could be biased towards the
software architecture and thus employ proven design patterns
in its structures. This option would be rather suitable for
generators and the further automated processing of the
model, but it would be tedious to translate it back to the UIP
requirements for the developers. In addition, the formal
XML GUI languages (Section II.B) were not designed to
accommodate architectural knowledge.

Secondly, the analysis model may be biased towards
requirements and thus acting as a traditional analysis model,
which captures and visualizes requirements. This option
would be rather easy for the developers to understand, but
would be costly to be translated to formal languages and
generators. However, the translation to the XML languages
is only a theoretical aspect, since generative UIPs cannot be
expressed by their facilities as discussed in Section III.B.
Eventually, we decided for the latter option.

B. General Rationale

Separation of definition and instances. A fundamental
decision was the separation of elements or features that may
be available in a UIP definition and the several element
instances that may appear in a particular UIP instance for a
certain context. In other words, we divided the UIP analysis
model into two parts. One part holds the definition and
reoccurring features (class names in black). The other part
allows the description of instance information (class names
in white).

 UIP configuration. Following this approach, the main
class UserInterfacePattern takes part in relationships that
mostly focus on definition purposes, but also is connected to
UIPConfiguration, which enables the description of
particular UIP instances of the respective kind. The
information used for pattern definition purposes will be
covered in the following sub-sections. The configuration of
UIP instances further branches into Defaults and
Parameters. Both classes resemble containers that hold the
UIControl instances, which are declared as
UIControlConfigurations, for a particular UIP instance.

The Defaults are intended to omit stereotype
configurations of default UIControl instances, which
commonly appear in most contexts and shall not be defined
redundantly. Concerning the example dialogs, the basic or
invariant UIControls needed for user understanding and
interaction like the labels, textfield and combobox of the
simple search should be defined as Defaults, as there is
hardly variability. This way, already established
configurations may partly be reused among individual UIP
instances. That means a UIP may contain pre-configured
elements and parameters to avoid repetition. Later on, this
facility will become useful for the dynamic adaptation of a
UIP instance at run-time.

Both UIPConfiguration and UIControlConfiguration are
primarily used for the “Configuration at design-time” impact
and thus contain the declarations a developer may define in
interaction with an “instantiation wizard” [10]. The
configuration of UserInterfacePatterns and UIControls has
to be separated, since both offer different sets of attributes,
and more important, impact the GUI on different levels of
abstraction or scope.

C. View Aspect Design

View definition. To begin with “View definition”, this
factor defines the UIControls or UserInterfacePatterns to be
generally contained in a UIP specification unit as visual
components. Both resemble a ViewStructureElement, which
has a unique ID as identifier inside the pattern used by
UIPConfiguration and UIControlConfiguration to reference
the respective element. UIControl is a classifier for the
various visual components or widgets a GUI framework may
possess as types.

A UIP is always composed of a ViewStructureElement
set and thus may build a varying hierarchical structure of
those graphical elements. However, ViewStructure only
holds each ViewStructureElement to be available to build
instances once. The resulting element structure of a
particular UIP instance is not described by ViewStructure.
Instead, this is the responsibility of the configuration classes.
The ViewStructure only defines what elements are generally
available for the particular UIP. Based on that decision, the
ViewStructureElements later may be exchanged without
altering the already defined configurations.

For each UIControl of the resulting ViewStructure, style
and general layout have to be defined. The style impact is not
detailed here, since we have not came to a result in this
regard and focused on the other impacts. For the sake of
uniform views and maintaining corporate design, style
information may be governed globally and locally by each

78Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 87 / 91

individual UIPConfiguration. In addition, there may be
constraints for each element, which determine its allowed
minimum and maximum occurrences.

Layout rationale. With respect to “Layout definition”
impact, we ask if there is a need for dedicated layout-patterns
or if the distinction between primitives (UIControl) and
composites (UserInterfacePattern) is adequate.

Referring to UsiPXML [11], layout patterns can be
defined separated from presentation patterns. How they are
integrated at various stages in the hierarchy, and more
important, how they can be handled dynamically at run-time,
remains an open issue, as there were no detailed examples
for pattern composition and specification code given.

In addition, it is arguable whether a layout is assigned
separately to a paralleled UIP composition or if each UIP
models layout partly but explicitly. Partly means that UIPs
need to define attributes for the number of rows and columns
of a grid, their relative width and height, as well as the
alignment. A visual impression of the abstract layout
definition expressed by UIPs is depicted in the upper parts of
Figure 3 and Figure 4. We decided to model this information
by UIPs, as for advanced search, the layout needs to be re-
configured dynamically with respect to SearchCriteriaPanel.
This panel may grow and shrink in row numbers.

Layout definition. Inspired by our examples, we treat
the layout container as a UIP, and thus, a layout pattern is
already merged inside. So, the above mentioned layout
definition parameters have to be associated to each ID of a
UIP-type class, since it is acting as a superior container.
Consequently, the advanced search dialog consists of three
UIPs designated as containers in Figure 4. Translated to GUI
frameworks, this implicates that each UIP will be treated as a
panel or even window frame with a certain LayoutManager
attached. We reason our approach with the fact that every
dialog at some stage needs layout containers and these are
eventually to be mapped to peers in the GUI framework. The
detailed parameters for layout, such as padding, orientation
and size policies, may be governed globally.

View variability parameters. To configure parameters
for an element of the ViewStructure, regardless of what type,
the respective ID of that element is used as a reference.

The UIControlConfigurations assigned to UIPs influence
the instantiated unit in a global way. So, for the view aspect
the general layout of the instances ViewStructure is declared
by LayoutManager, which decides on the actual grid, for
example. This way, the layout and orientation of UIP
instances may be altered, but have to be declared explicitly
for each UIPConfiguration.

 As the elements defined by a UIP are abstract, the
reference to the ID acts in analogy to the class concept for
object-orientation. In fact, the element occurrence is
determined by the number of respective configurations. For
the individual element instances, one or many
UIControlConfigurations can be declared to specify their
characteristics. More precisely, as view aspect parameters we
arranged for Name, Caption, and Order inside a layout grid
cell and Style of each element. Some of these parameters are
even optional. With LayoutPosition the position of the
element with respect to the declared LayoutManager can be
defined.

D. Interaction Aspect Design

In the factor model, the interaction aspect was not
separated between stereotype definitions and parameters, as
this was done for view aspect. Finally, the main classes,
which model the interaction aspect, resemble parameter
types. Since the factors apart from the view aspect ones
mostly resemble cross-cutting concerns, the resulting
interaction and control impacts refer to the static and
variable declaration of view impact elements as a basis. In
detail, the interaction related UIControlConfiguration
parameters comprise of DataType, PresentationEvent and
EventContext as an additional child of the latter.

Coupling points. For a UIP definition to be integrated in
a GUI architecture, there is the need to arrange for coupling
points. These points allow the integration of automated
generated code and manually defined UIP information.
Potentially, these can be comprised of the following:

• Standard events (control - “intercommunication
events definition”, “dialog action-binding”)

• Input and output data (interaction - “data binding”)

The latter point may resemble GUI architecture models

discovered in common MVC architectures. The mentioned
coupling points are either evaluated (events) or processed by
the dialog kernel or logic part of the dialog. It is not
necessary for that component to know where data changes
and events have originated from. So, these suggested
coupling points may be a good starting point. Accordingly,
events (PresentationEvents and OutputActions) and the
“GUI Data Model” have been included in the analysis
model.

Data-binding. The binding of a UIControl to certain data
is accomplished by a UIControlConfiguration parameter. So,
the DataType binds the elements to certain data structures.
As DomainDataTypes may significantly differ from the
types used by the GUI framework, the class GUIProjection
is rather associated as the configured DataType. For the
DataType, it can be configured if the data is to be displayed
only (input) or if the user may conduct changes (output),
which are finally applied to the GUI Model part. The
DataType parameter also may be associated to EventContext,
which configures the data to be submitted by a
PresentationEvent of the respective element.

Besides the distinction between input and output, Models
have to be provided as coupling points for both cases to
obtain data for display. The application kernel has to provide
a respective query to obtain Entity data and the GUI
architecture has implement a certain Model to enable the
presentation of the query with appropriate data types for
UIControls, e.g., data conversion to strings or string lists. In
this regard, aspects like the timing, refresh rate, lazy loading
are no concern of the UIP definition and have to be
implemented by the data sources or queries. The Model has
to rely on the data source and is not responsible of those
technical aspects. In contrast, the Model needs to provide the
navigation inside data structures and the structuring of data
for presentation purposes that may be altered from
application and data layer designs in order to offer a suitable
projection for human processing.

79Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 88 / 91

Currently, we are unsure how UIPs specific Model
requirements are to be formalized. However, this information
is essential for the coupling. In addition, it will provide
useful for the checking of the validity of configuration and
view variability of the UIP instance. Concerning the
advanced search, there must be a Model available to provide
object types and their attributes as well as another Model to
accommodate the chosen search criteria as the dialog result.

Events rationale. For PresentationEvents, we
enumerated some typical events implemented in GUI
frameworks. To progress towards a unified solution for
generative UIPs, we think that a standardization of events,
PresentationEvent as well as OutputAction, and similar types
is necessary. The integrative and strict type definitions of the
GUI specification language UsiXML on CUI level [26] may
be a valuable resource for that approach. Otherwise, both
specification and tool processing would demand for niche
solutions that are hardly manageable with respect to versions
and dependencies. We wonder how UsiPXML [10] or the
UIML UIP definition by Seissler et al. [12] are defined as a
language to be integrated in tool environments, which are to
handle the generic concept of their variables and assignments
effectively. We have to wait for them to publish detailed
language definitions and code examples.

Presentation action-binding. To bind an element to a
certain PresentationEvent type, the desired event has to be
included in the appropriate UIControlConfiguration. This
event may be declared for various purposes concerning
visual structure states as described below.

Visual element structure states definition. The first
interaction aspect impact needs to be further detailed.
Depending on the actual structure of the UIP, states that
occur within the scope of the contained UIControls and
states, which alter the view of embedded UIPs have to be
covered. To trigger changes in state for both cases, only
UIControls can be specified as sender of respective events.

UIControl states. For changes in state, we consider the
activation or deactivation as well as hiding and unhiding of
single UIControls or sets of them. Those abstract events are
to be translated to technical representations and their detailed
implementation. For instance, a checkbox in a sub-form may
deactivate the delivery address (if it is equivalent to billing
address) or in another case, a collapsible panel may be
collapsed. In our model, the ViewStateAction is defined as an
abstract feature for a UIP. By the UIP specification, the
possible actions are defined and associated to affected
UIControlConfigurations and thus UIControl instances.
Finally, for these actions triggering PresentationEvents can
be associated.

Embedded UIP states. Since the possible states for
composite UIPs cannot be enumerated or state machines
finitely defined inside pattern specifications, we employ
information, which describes the results of the state change,
and thus, enables a generator to build appropriate state
machines or comparative implementations.

The ViewStructureAction is designed to handle the
change of visual states for UIPs. For the trigger, a respective
UIControlConfiguration is needed, which is aimed at a
certain ID to allocate the UIControl and the type of
PresentationEvent. We considered the addition, replacement,

or removal of UIP instances. This behavior is closely related
to the <restructure> tag of UIML [24] and may be refined
based on its semantics. However, for UIML these facilities
can only be applied with already instantiated UIPs.

DynamicStructures are used for the addition, removal or
replacement of UserInterfacePattern instances. They are
selected on the basis of defined Keys, which enumerate
certain DataTypes or EventContext data to assign pre-
configured UIPConfigurations to the triggered
ViewStructureAction. A UIPConfiguration may be used by
more than on Key, which models a certain context situation.
Concerning the advanced Search example, the Model
holding the object and attributes lists must return values that
match the specified keys. Each time a combobox is changed,
the presentation event handling routine must query the
Model for the selected objects attribute and its kind or type
of representation. The query result will be embedded in the
EventContext, which is matched to a Key value. So, the UIP
and its DynamicStructures are based on a canonical
representation of DomainDataTypes.

Moreover, the ViewStructureActions rely on pre-
configured elements, which may only allow for variability
concerning the DataType. They either rely on a self-
reference (removal, replace) or additionally are associated to
available elements of the ViewStructure (add, replace) via
DynamicStructures.

However, this mechanism only makes sense for
UserInterfacePatterns, which are specified by Defaults and
always represented by default IDs present inside the
ViewStructure of a UIP definition. In this way, the
DynamicStructures will only affect default or invariant
UserInterfacePatterns inside the given ViewStructure, hence
it is not desirable to replace entire sets of UIP instances
defined on behalf of the developer for a specific context.
Thus, manually defined UIPs portions have to be separated
from DynamicStructures.

Based on the considerations for DynamicStructures, we
decided to associate DataType with GUIProjection rather
than with DomainDataType. A reference to
DomainDataTypes would have meant to define a Key and
appropriate UIPConfigurations for each DomainDataType.
Each change of types would have cascaded to each UIP
relying on DynamicStructures. We believe that
GUIProjections may be more stable than DomainDataTypes
and even be shared among DomainDataTypes.

E. Control Aspect Design

Dialog action-binding. So far, we have not progressed to
feasible results for most control aspects. Only the binding of
UIControls to application actions has been included. Via the
global OutputAction parameter declaration of a UIP, one can
define what events of that kind are raised by the
UIControlConfigurations. These can be bound to a certain
UIControl only by a link with the PresentationEvent.

F. Structure View on the Analysis Model

The resulting analysis model is illustrated by Figure 5.
The classes shaded in medium grey are related to the “view
definition” factor. Configuration related classes are shaded in
dark grey and feature a white caption. Most interaction
aspect impacts are supported by the classes shaded in white.

80Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 89 / 91

class UIP analysis model

GUI Data Model

UserInterfacePattern

ViewStructureElement

- ID: String

PresentationEvent
OutputAction

UIControl

ViewStructureAction

Style
DataType

- isReadOnly: boolean

ConfirmationEvent

CancelEvent

BackEvent

ApplyEvent

InProgressEvent

DataChangedEvent

ActivatedEvent

DeactivatedEvent

AddView

RemoveView

ReplaceView

MoveOverEvent

MoveOutEvent

DragDropEvent

DragOverEvent

LayoutManager

EventContext

Key

DynamicStructures

ViewStateAction

ActivateAction

DeactivateAction

ElementConstraints

- maxOccurence: int

- minOccurence: int

Order

UIPConfiguration

Caption

LayoutPosition

GridBagLayout::

Column

GridBagLayout::

Row

GridBagLayout

FlowLayout

CommonParameters

Name

- generated: boolean

UIControlConfiguration

Model

Entity DomainDataType

GUIProjection

HideAction

UnhideAction

AlterView

ViewStructure

Defaults

Parameters

1

1..*

0..1

1

1

element

reference

1

1 0..*

0..1

+Trigger

1

1..*1

0..1

1

1

1

#UIPInstanceLayout1

1

1..*

1

0..1

1

+ViewStructureActions 1

Dynamic view

adaptation

0..*

0..1

10..1

UIControl

instance

data-binding

1
11

1

event

parameter-binding

0..1

1..*

1

+InstanceName

1

1

1..*

1

+Trigger 1

0..1

0..*

presentation

action-binding

1

+Trigger 1

0..1

+OutputActions 0..*

1

1..*

UIControl

instances

1

+TargetElements 1..*

1

1

1

1..*

UIControl default

instances

1

1

event instance

name binding

0..1

1..*

mapping to the

corresponding

pre-configured

UIP

+pre-configured

UIP
1

+DynamicViews

1..*

selection

criteria
1

1

choice of view

structures

1

+ViewStateActions

0..*

1

1

1

+UIP

Instances
1..*

1

1

1

1

0..1

1

0..1

1..*

1

0..1

1

Figure 5. User interface pattern analysis model

VI. RESULTS AND DISCUSSION

Achievements. With the elaboration of our analysis
model, we detailed most factor impacts of our previous work
on requirements for generative UIP representations [14][4].
Accordingly, we proposed fine-grained structures, which are
in closer proximity to real applicable pattern notations than
pure requirements can be.

Judgment. The current state of the analysis model is
quite imperfect. However, with this initial iteration we
achieved a better understanding of the information needed to
express UIPs and their instances. A more vivid impression
on requirements, which we have modeled explicitly and are
implicitly supported by current approaches employing UIPs
for model-based development [4], has been gathered.
Furthermore, the model already may be used to verify the
capabilities of notations for generative UIPs.

The potential notation, generator tool-chain and
especially the generated architecture, which may be derived
in the future from the analysis model, most likely will be
somewhat complex, but since they are solely intended for
automated processing without manual interference, this is a
trade-off for a step further to implement generative UIPs.

Again, we would like to invite other researchers to
contribute either critical judgments or improvements for the
presented analysis model or its requirements basis.

Unsolved control impacts. Currently, our model only
supports ViewStructures, which consist of UIPs always being
in close cooperation. Nested UIPs are not yet intended to be
reused outside the specification or their super-ordinate UIP.
Being aware of this barrier, we may need to define facilities
such as pattern interfaces, as this was proposed by both
UsiPXML [10] and Seissler et al. [12]. In this regard, the
OutputAction may be refined to accommodate the events
required for UIP inter-communication. Eventually, the
UIPConfiguration may be supplemented by certain input
types. In the end, the first three control aspect impacts
remain unsolved for now.

Open issues. We are aware that our model needs further
elaboration and especially verification. Further issues to be
solved persist in the classification and delimitation of UIP
specification units. The relationships among UIPs discussed
by Engel, Herdin and Märtin [21] may be considered, too.

VII. CONCLUSION AND FUTURE WORK

By resuming our previous work on requirements towards
a definition for generative UIPs, we drafted an analysis

81Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

 90 / 91

model for UIPs. Together with our factor model, it may be
taken into consideration for the verification of other
approaches mentioned and not mentioned here. With the
progression towards an improved version of our analysis
model, a more general applicable model-based UIP
development process may be established in the future.

Future work. For future work, we see a refining and
correcting iteration for the analysis model with regard to
simplicity and completeness according to all impacts. In
detail, we have to assess the mandatory and optional
parameters on the basis of our listed examples. Furthermore,
we will concentrate on the unsolved control aspect issues.

REFERENCES

[1] X. Zhao, Y. Zou, J. Hawkins, and B. Madapusi, “A Business-
Process-Driven Approach for Generating E-commerce User
Interfaces,” Proc. 10th International Conference on Model
Driven Engineering Languages and Systems (MoDELS 07),
2007, Springer LNCS 4735, pp. 256-270.

[2] S. Wendler, D. Ammon, T. Kikova, and I. Philippow,
“Development of Graphical User Interfaces based on User
Interface Patterns,” Proc. 4th International Conferences on
Pervasive Patterns and Applications (PATTERNS 12), July
2012, Xpert Publishing Services, pp. 57-66.

[3] G. Meixner, “Past, Present, and Future of Model-Based User
Interface Development,” in i-com, 10(3), November 2011, pp.
2-11.

[4] S. Wendler, D. Ammon, I. Philippow, and D. Streitferdt “A
Factor Model capturing requirements for generative User
Interface Patterns,” Proc. 5th International Conferences on
Pervasive Patterns and Applications (PATTERNS 13), May
27 - June 1 2013, Xpert Publishing Services, in press.

[5] M. J. Mahemoff, L. J. Johnston, “Pattern Languages for
Usability: An Investigation of Alternative Approaches,” Proc.
3rd Asian Pacific Computer and Human Interaction (APCHI
98), 1998, IEEE Computer Society, pp. 25-31.

[6] A. Dearden and J. Finlay, “Pattern Languages in HCI; A
critical Review,” Human-Computer Interaction, 21(1), pp. 49-
102.

[7] J. Borchers, “A Pattern Approach to Interaction Design,”
Proc. Conference on Designing Interactive Systems (DIS 00),
August 17-19 2000, ACM Press, pp. 369-378.

[8] D. Ammon, S. Wendler, T. Kikova, and I. Philippow,
“Specification of Formalized Software Patterns for the
Development of User Interfaces,” Proc. 7th International
Conference on Software Engineering Advances (ICSEA 12),
Nov. 2012, Xpert Publishing Services, pp. 296-303.

[9] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, “Tool
Support for an Evolutionary Design Process using Patterns,”
Proc. Workshop: Multi-channel Adaptive Context-sensitive
Systems (MAC 06), May 2006, pp. 71-80.

[10] F. Radeke and P. Forbrig, “Patterns in Task-based Modeling
of User Interfaces,” Proc. 6th International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
07), Nov. 2007, Springer LNCS 4849, pp. 184-197.

[11] J. Engel and C. Märtin, “PaMGIS: A Framework for Pattern-
Based Modeling and Generation of Interactive Systems,”
Proc. 13th International Conference on Human-Computer
Interaction (HCII 09), July 2009, Springer LNCS 5610, pp.
826-835.

[12] M. Seissler, K. Breiner, and G. Meixner, “Towards Pattern-
Driven Engineering of Run-Time Adaptive User Interfaces
for Smart Production Environments,” Proc. 14th International
Conference on Human-Computer Interaction (HCII 11), July
2011, Springer LNCS 6761, pp. 299-308.

[13] K. Breiner, G. Meixner, D. Rombach, M. Seissler, and D.
Zühlke, “Efficient Generation of Ambient Intelligent User

Interfaces,” Proc. 15th International Conference on
Knowledge-Based and Intelligent Information and
Engineering Systems (KES 11), Sept. 2011, Springer LNCS
6884, pp. 136-145.

[14] S. Wendler, I. Philippow, “Requirements for a Definition of
generative User Interface Patterns,” Proc. 15th International
Conference on Human-Computer Interaction (HCII 13), July
2013, in press.

[15] K. Breiner, M. Seissler, G. Meixner, P. Forbrig, A. Seffah,
and K. Klöckner, “PEICS: Towards HCI Patterns into
Engineering of Interactive Systems,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS 10), June 2010, ACM, pp. 1-3.

[16] M. van Welie, G. C. van der Veer, A. Eliëns, “Patterns as
Tools for User Interface Design,” C. Farenc, and J.
Vanderdonckt (Eds.), “Tools for Working ith Guidelines,”
2000, Springer, London, pp. 313-324.

[17] J. Tidwell, “Designing Interfaces. Patterns for Effective
Interaction Design,” 2005, O’Reilly.

[18] E. Hennipman, E. Oppelaar, and G. Veer, “Pattern Languages
as Tool for Discount Usability Engineering,” Proc. 15th
International Workshop Interactive Systems. Design,
Specification, and Verification (DSV-IS 08), 16-18 July 2008,
Springer LNCS 5136, pp. 108-120.

[19] S. Fincher, “PLML: Pattern Language Markup Language,”
http://www.cs.kent.ac.uk/people/staff/saf/patterns/plml.html
24.03.2013

[20] S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen, J.
Thomas, and P. J. Molina, “Perspectives on HCI Patterns:
Concepts and Tools (Introducing PLML),” Extended
Abstracts of the 2003 Conference on Human Factors in
Computing Systems (CHI 2003), ACM, 2003, pp. 1044-1045.

[21] J. Engel, C. Herdin, and C. Märtin, “Exploiting HCI Pattern
Collections for User Interface Generation,” Proc. 4th
International Conferences on Pervasive Patterns and
Applications (PATTERNS 12), July 2012, Xpert Publishing
Services, pp. 36-44.

[22] J. Vanderdonckt and F. M. Simarro, “Generative pattern-
based Design of User Interfaces,” Proc. 1st International
Workshop on Pattern-Driven Engineering of Interactive
Computing Systems (PEICS 10), June 2010, ACM, pp. 12-19.

[23] M. Abrams, C. Phanouriou, A. L. Batongbacal, S. M.
Williams, and J. E. Shuster, “UIML: An Appliance-
Independent XML User Interface Language,” Computer
Networks, 31(11-16), Proceedings of WWW8, 17 May 1999,
pp. 1695-1708.

[24] UIML 4.0 specification, http://www.oasis-open.org/
committees/tc_home.php?wg_abbrev=uiml 12.04.2013.

[25] J. Vanderdonckt, Q. Limbourg, B. Michotte, L. Bouillon, D.
Trevisan, and M. Florins, “UsiXML: a User Interface
Description Language for Specifying multimodal User
Interfaces,” Proc. W3C Workshop on Multimodal Interaction
(WMI 04), 19-20 July 2004.

[26] J. Vanderdonckt, “A MDA-Compliant Environment for
Developing User Interfaces of Information Systems,” O.
Pastor, J. F. e Cunha (Eds.): Proc. 17th International
Conference on Advanced Information Systems Engineering
(CAiSE 2005), 2005, Springer LNCS 3520, pp. 16-31.

[27] F. Radeke, P. Forbrig, A. Seffah, and D. Sinnig, “PIM Tool:
Support for Pattern-driven and Model-based UI
development,” Proc. 5th International Workshop on Task
Models and Diagrams for Users Interface Design (TAMODIA
06), Oct. 2006, Springer LNCS 4385, pp. 82-96.

[28] M. van Welie, “A pattern library for interaction design,”
http://www.welie.com 27.04.2013.

[29] C. Märtin and A. Roski, “Structurally Supported Design of
HCI Pattern Languages,” Proc. 12th International Conference
on Human-Computer Interaction (HCII 07), July 2007,
Springer LNCS 4550, pp. 1159-1167.

82Copyright (c) IARIA, 2013. ISBN: 978-1-61208-276-9

PATTERNS 2013 : The FIfth International Conferences on Pervasive Patterns and Applications

Powered by TCPDF (www.tcpdf.org)

 91 / 91

http://www.tcpdf.org

