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oriented Devices and Systems (SPWID 2019), held between July 28, 2019 and August 02, 2019 in Nice,
France, continued a series of events focused on concepts and communities dealing with specialized
implantable, wearable, near-body or mobile devices, including artificial organs, body-driven
technologies, and assistive services. Mobile communications played by the proliferation of smartphones
and practical aspects of designing such systems and developing specific applications raise particular
challenges for a successful acceptance and deployment.

We welcomed academic, research, and industrial contributions, technical papers presenting research
and practical results, position papers addressing the pros and cons of specific proposals.

We take here the opportunity to warmly thank all the members of the SPWID 2019 technical
program committee, as well as all the reviewers. The creation of such a high quality conference program
would not have been possible without their involvement. We also kindly thank all the authors who
dedicated much of their time and effort to contribute to SPWID 2019. We truly believe that, thanks to all
these efforts, the final conference program consisted of top quality contributions.

We also thank the members of the SPWID 2019 organizing committee for their help in handling the
logistics and for their work that made this professional meeting a success.

We hope that SPWID 2019 was a successful international forum for the exchange of ideas and
results between academia and industry and to promote further progress in the area of smart portable,
wearable, implantable and disability-oriented devices and systems. We also hope that Nice, France
provided a pleasant environment during the conference and everyone saved some time to enjoy the
charm of the city.
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MyAccessible+ Math: Shining Light on Math Concepts for Visually Impaired Students
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Abstract—For some of us, a full understanding of complex math-
ematical concepts is only achieved through a lifetime of practice.
For students with visual impairment, this process is hindered
by the inability to process complex mathematical formulae.
While computer technologies have successfully transformed and
enhanced the learning process, the potential promised by these
technologies has not become the reality for visually impaired
students. For years, the most effective way to communicate ideas
to a blind person has been through either audible conversation
or braille writing, both methods having their shortcomings for
more complex mathematical analysis. This is the purpose of the
MyAccessible+ Math Project; bridging the gap between math
professors and students who simply need instructions from a
different perspective. The motivation of this study is to introduce
a prototype of our web application that will help visually impaired
high school students to evaluate their mathematical skills. We
hope that the use and further development of our prototype shall
open doors to these students in areas of academia and beyond
that have until now seemed eternally sealed.

Keywords–Vision-impaired students; Accessibility; Speech
recognition.

I. INTRODUCTION

According to World Health Organization [1], approxi-
mately 250 million people in the world have moderate to
severe visual impairment that cannot be cured. The National
Institutes of Health (NIH) study [2] has found that 14 million
Americans aged 12 and older, are visually impaired. The
inability to process visual elements is an obstacle for many
vision-impaired students. This disadvantage leads to a big
knowledge gap between students with vision-impairment and
students without disabilities.

Figure 1. MyAccessible+ Math Design Structure.

The aim of this study is to introduce the prototype of
our Web application, MyAccessible+ Math, that helps vision-
impaired high school students evaluate their mathematical
skills. The basic design structure of the project is shown in
Figure 1. Entities associated with the module are explained
below:

• Professor: The role of the professor is to add questions
and set points for questions. An open-source math
visual editor, Wiris MathType [3] is embedded on the
website, which makes easier for the professor to add
questions for different math topics.

• Machine: The machine represents the ”evaluating
module” of the project. This module provides ques-
tions to the student. The module also provides help
on each question if the student seeks for it. All the
communication between the student and this module
is done through Annyang.js [4], an open-source speech
recognition library. Additionally, the module calcu-
lates the overall grade for each student and reports
it to the professor.

• Student: The student is the most important entity of
this project. The student can use basic navigation
commands to iterate through the website. The most
useful commands are ’Go to login page’, ’help me’,
and ’logout’. Annyang.js [4] library is used for speech
recognition. In the future, more commands can be
added to extend the scope of the project.

The rest of the paper is organized as follows: Section II
consists of literature review, which discusses existing tech-
niques that are currently available that facilitate teachers to
understand teaching and/or testing challenges and experiences
involving vision-impaired students. Section III demonstrates
the technologies used in the prototype. Section IV provides
a detailed implementation of the proposed prototype. Section
V concludes the project along with suggestions for future
enhancements.

II. BACKGROUND AND RELATED WORK

For years, the most effective way to communicate ideas to a
blind person has been through either tactile methods or audio
methods. For example, Braille is a tactile writing system in
which characters are physically raised. Audio methods include
speech-to-text and text-to-speech representation using speech
synthesizer tools.

MathSpeak [5] is an audio method for representing mathe-
matical formulae to blind students. The first step is to scan the
mathematical formula and render it in the notation of MathML
or LaTeX. The input to the system can be either LaTeX,
MathML or AMS-TEX and the system can read equations like
text. The system can recognize all alphanumeric characters, all
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Greek letters, and other frequently used symbols in the math
formulae. One major advantage of the system is to be able to
navigate through different sections of the math equation.

MathPlayer [6] is a plug-in for Microsoft Internet Explorer
which was designed for rendering visualization of MathML. It
can easily be integrated with screen readers.

The LAMBDA project [7] is funded by the European Union
to overcome the problem of accessibility to mathematical
formulae. The system consists of a MathML markup language
that can be directly translated to the 8-point braille system,
which is an extension of the 6-point braille system.

Braille code is used to encode mathematical and scientific
notation linearly, by using 6-dot Braille cells. While Braille
is suitable for the text representation, mathematical equations
are multidimensional, and they may contain fraction, algebra,
series, log, and exponentiation [5]. Also, 6-dot braille can
represent only alphanumeric characters and a small set of
special characters by the 64 combinations of possible dot
placements. Thus, by extending the 6-dot Braille system to 8-
dot Braille system, 64 possible combinations can be extended
to 256 combinations.

This is an excellent choice for a certain context, but by
today’s digital standards, the use of Braille is expensive [8].

III. TECHNOLOGIES USED

For this project, our main goal is to develop a robust and
flexible prototype of an open-source Web application in a
structured manner and constantly refine it.

The current version of the application supports a limited
number of math topics. New math topics, math questions, and
math tests can be added in the later versions. The technologies
used for the prototype are explained below:

A. Annyang.js
Annyang [4] is an open-source JavaScript Speech Recogni-

tion library that makes adding voice commands to any website
super-easy. The student is the most important entity of the
project. Navigation through Web pages is done through voice
commands.

Table I shows the list of commands current version of the
prototype supports. With Annyang, more custom commands
can be added in the future to extend the scope of the project.

TABLE I. VOICE COMMANDS LIST

Voice Commands Action
’new user’ Redirect to the registration page
’let me in’ Redirect to login page
’practice question’ Redirect to the practice questions list
’attempt random’ Randomly selects the question and open it in

a new tab
’skip question’ Skips the question and fetches the next one
’help’ Provides more information on a question

while practicing a question
’next hint’ Speaks the next hint
’Log out’ Logs out of the system
’Hint one’ Provides the first hint while practicing a

question

B. Wiris MathType Editor
Wiris MathType Editor [3] is embedded on Web pages for

the professor to add math questions. Math formulae can be
exported to multiple formats and are compatible with LaTex
and MathML.

C. ResponsiveVoice.js
ResponsiveVoice [9] is an open-source text-to-speech li-

brary written in JavaScript, offering an easy way of adding
voice to any website or application.

D. Linear Equation Parser
The current version of the prototype supports two types of

math problems: Linear Equation Solver and Linear Equation
Simplifier.

Jep Java expression parser [10] is used to evaluate the
mathematical expressions in this prototype. Jep Java parses
and evaluates the mathematical expressions with only a few
lines of code. This package allows users to enter a formula as
a string, and instantly evaluates it. Jep supports user-defined
variables, constants, and functions.

IV. IMPLEMENTATION

MyAccessible+ Math is a Java-based Web application
developed using HTML5 and CSS3 as front-end and JSP and
Servlets as back-end. In what follows, we discuss the devel-
opment process and functional requirements of the prototype.

Initially, all the requirements were gathered and analyzed
based on Evolutionary Prototyping (EP). EP allows a continu-
ous refinement of the system and is based on the understanding
of the requirements by the developers.

A. Functional Requirements
• Home Page (index.jsp): This is a Web page where

professors and/or students can login. The machine
would recognize if the user is a student or professor
based on the username stored in the MySQL database.
The home page provides welcome text about the appli-
cation for vision-impaired students. User can say ”new
user” to navigate to the registration page. Students will
be redirected to dashboard student.jsp. Professors will
be redirected to dashboard professor.jsp.

• Student Dashboard (dashboard student.jsp): Only stu-
dents can access this page. This is a dashboard for
students after logging in. Students can use voice
navigation commands to go to any page.

• Attempt Questions Page (attempt questions.jsp): This
page provides a list of all practice questions. Student
can start practicing random questions by saying ”at-
tempt random”. Student can say ”help” for further
info. Figure 5 shows the attempt questions page for
students.

• Each Question Page (each question.jsp): Student
lands on this page after choosing a question to attempt.
Web page speaks the question on page load. User can
say ”Repeat please” to listen to the question again or
can say ”skip question” to skip the question and move
to the next question. If needed, the user can ask for
the first hint by saying ”hint one”. Student can ask
for more hints by saying ”next hint”. Figure 6 shows
each question page for students where the student can
attempt questions one by one.

• Professor Dashboard (dashboard professor.jsp): Only
professors can access this page. Professor can quickly
add a question, see the students list, and add a math
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topic on this page. Professor can also redirect to
those pages for a detailed view. Figure 2 shows the
dashboard for the professor. In the future release, the
professor would be able to see the overall performance
of each student.

• Math Questions Page (math questions.jsp): Figure 3
shows the math questions page. Only professors can
access this page. The professor can add or delete
questions for selected math topics.

• Math Topics Page (math topics.jsp): Only professors
can access this page. The professor can add or delete
math topics. Once the topic is added, the professor
can add questions for that topic.

• Math Quizzes Page (math quizzes.jsp): Figure 4
shows the math quizzes page. Professor can create a
quiz by selecting questions from the list. Since the
project is still in a development state, students cannot
attempt quizzes yet.

B. Conceptual Design

Following are screenshots of some of the pages that are de-
veloped based on functional requirements. In the future, these
pages will be modified based on information and feedback
from students.

Figure 2. Dashboard professor web page design

Figure 3. Math questions web page design

1) Professor View: In MyAccessible+ Math, several web
pages were designed for the professor to add questions, add
math topics, check the students’ list, and to create quizzes. The
web pages were developed in a way that had good usability,
likeliness, and ease of use.

Figure 4. Math quizzes web page design

Figure 5. Attempt questions web page design

Figure 6. Each question web page design

2) Student View: Students are an important entity in this
project. This application was designed and developed for vi-
sually impaired students to test their mathematical knowledge.
Therefore, all the web pages that student can access have voice
navigation enabled.

V. CONCLUSION AND FUTURE WORK

Education is one space that still has the potential to be
transformed by technology. Though this project is still under
development, it has great potential not only for improving the
education of students with visual impairments but also for
inspiring the next generation of engineers and scientists.

This prototype is developed to improve math education for
vision-impaired high school students. The following improve-
ments could be added in the future release of the work:
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• Evaluation is important while working on an applica-
tion for vision-impaired students. We are planning to
conduct a study at Auburn University with 15 visually
impaired students enrolled in a program to evaluate
their knowledge in math. We aim to assess their
mathematical skills by evaluating their performance
using this application.

• The prototype in this research has shown that it is pos-
sible to present mathematical expressions to students
with little or no vision and test their knowledge in
mathematics. The upcoming version of this prototype
will include teaching module of the application where
students can learn mathematics.

• The current version of the application includes solving
and simplifying linear equations. However, different
math topics will be added in the future release of the
application.

• Verifying and updating information, resetting pass-
word for students will be added in the future release
of the application.
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Abstract— Personal health monitoring is advantageous in
heavy work environments to reduce the risk of wear and tear
and acute injuries. The study of forces between the plantar
surface of the foot and a supporting structure,
pedobarography, is a promising candidate for monitoring
carried weight during walk. The aim of this study was to
evaluate the cost effective pedobarography measurement
system, IngVaL. Two aspects are evaluated, namely, how well
IngVaL can monitor carried weight during walk and if the
novel implementation increased the durability. Fifteen test
persons made five treadmill walks with a carried weight of 10,
20, 0, 15, and 5 kg. The equipoise analysis method was used.
The Root Mean Square Error (RMSE) for estimation of the
carried weight was 13.8 kg. A study with the earlier version of
the measurement system had a RMSE of 23.3 kg. The earlier
system, as well as commercial systems using this kind of
sensors, have problems with sensor durability. The new sensor
implementation, where the active sensor area boundary was no
longer affected by mechanical stress, resulted in no broken
sensors. This study shows an increased performance of carried
weight estimation compared with earlier work, together with
an improved sensor durability.

Keywords- pedobarography; carried weight; portable; wearable;
insole; in-shoe.

I. INTRODUCTION

Pain in the lower back is one of the most common health
problems today and is expected to become even more
frequent in the future [1]. About a third of all employees in
Sweden, during the year 2015, had pain in their lower back
every week [2]. Heavy work load and the total amount of
lifted weights and lift frequency are moderate to strong risk
factors for lower back pain [3]. The year 2015, 16% of the
employed men and 10% of the employed women in Sweden
lifted more than 15 kg several times a day [2]. The carried
weight will vary during the work time.

Monitoring of the conditions in heavy work
environments is important to reduce the risk of wear and tear
and acute injuries. A wearable system would make it
possible to monitor workers that are not stationary.

Pedobarography, the study of forces acting between the
plantar surface of the foot and a supporting surface, has been
used for weight estimation while standing still [4] and is a
promising candidate for estimation of carried weight while

walking [5]. IngVaL (Identifying Velocity and Load) [6] is a
pedobarography measurement system designed to be a
robust and low cost system for monitoring of health related
walk parameters. IngVaL is an improved design of an earlier
research prototype. The earlier system has been validated for
monitoring of walking speed [7] and carried weight [5].

The aim of this study was to evaluate the cost effective
pedobarography measurement system, IngVaL. Two aspects
are evaluated, namely, (1) how well IngVaL can monitor
carried weight during walk and (2) if the novel sensor
implementation can make the sensors more durable.

In Section II, the methods for this study are explained.
Results are presented in Section III. Section IV is the
discussion and the conclusion is in Section V.

II. METHODS

The design of this study was cross-sectional. This section
is split into the three sub-sections of hardware, experiment
setup and data analysis.

A. Hardware

The IngVaL system consists of sensors (force sensing
resistors), electronics for signal conditioning and a
microcontroller based data acquisition unit. The data was
sent via Bluetooth 4.0 to a Windows tablet.

Four force sensing resistors of model A401 (Tekscan
Inc., Boston, MA, USA) are sandwiched in each shoe insole
between a base foundation made of Ethylene-Vinyl Acetate
(EVA), cork, and leather as upper layers for protecting the
sensors and also providing a comfortable, less perspiration
inducing, interface with the foot. EVA is a firm but flexible
material that is often used in sports equipment and insoles.

The heel, the lateral and medial sides of the metatarsal
pad and the big toe pad were chosen as locations for the
sensors, see Figure 1. The sensor locations are chosen like
this due to the bone structure of the foot. Each sensor has a
boundary for the active sensor area and this boundary is
sensitive for mechanical stress that can short-circuit and
damage the sensor. An earlier prototype of the insoles had
problems with sensor durability due to mechanical stress on
the boundary of the active sensor area. Besides the higher
risk of sensor damage, there were also some peaks in the
data from the prototype system due to the short-circuiting of
the sensors.
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Figure 1. Showing the location of the four insole force sensing resistors
located at the big toe, the inner and outer metatarsal pad and the heel.

In version two of the system, called IngVaL, EVA
material was removed directly under the sensor’s boundaries
to prevent the mechanical stress and resulted in a disc
structure under each sensor’s active sensor area. The block
diagram, from force sensing resistors to the data analysis, for
the IngVaL system, is shown in Figure 2.

Force Sensor
FlexiForce model A401 by Tekscan

Signal Conditioning
FlexiForce Adapter 1120 by Phidgets

Data Acquisition
IOIO-OTG by Ytai Ben-Tsvi (uses a PIC24FJ256 microcontroller)

Wireless Transmission
Nano Bluetooth 4.0 USB dongle by LogiLink

Receiving Data
Surface Pro 2 by Microsoft (Windows tablet)

Data Analysis
Excel by Microsoft

Figure 2. Block diagram for the IngVaL measurement system.

A dynamic calibration was used since the application is
to measure during walking conditions [8] and the calibration
functions were chosen as fourth order polynomials [9]. A
Tedea-Huntleigh 1006 single point load cell (Vishay
Precision Group, Malvern, USA) was used for the calibration
of the force sensing resistors and the cell was in turn
calibrated by using calibrated weights. The calibrating force
was applied perpendicular to the active sensor area.

The data sampling (at 200 Hz) and wireless data
transmission were made using an IOIO-OTG (SparkFun
Electronics Inc., Niwot, CO, USA) which is based on a
PIC24FJ256 microcontroller. The name IOIO-OTG comes
from naming the first device IOIO, since it has many inputs
and outputs, while OTG refers to the Universal Serial
Bus (USB) standard On-The-Go (OTG). The IOIO-OTG was
connected to the two insoles using elastic cables, secured
with Velcro straps, around the ankle and around the lower
thigh. A modified version of the java program ioiometer-
pc [10] received and saved the data on a Windows tablet.

B. Experiment Setup

Fifteen test persons were recruited from the university
staff. The test persons had an average weight of 83.9 kg.
Inclusion criteria were that they had European Union (EU)
shoe size 43-44, were healthy and able to walk naturally
when carrying the extra weight. All test persons used the
same shoes with the insoles inside, including force sensing
resistors. All the test persons performed five walks at a speed
of 1.0 m/s on a treadmill (Comfort Track Prime 97690,
LifeGear Ltd., Taiwan) after an initial test walk to see that all
sensors were activated and that the test person felt
comfortable walking on a treadmill.

During each walk, the test persons carried a backpack
loaded with a pseudo-randomly chosen extra weight of 10,
20, 0, 15, and 5 kg, see Figure 3. The first author is shown
walking on the treadmill with the shoes, including the insoles
with the sensors, and with the backpack loaded with extra
weight. Extra padding was used inside the backpack along
the spine to reduce the risk of injuries.

Figure 3. Each test person made five walks with different amount of
carried weights (each black weight symbol represents 5 kg).

Data was recorded from the sensors in the
pedobarography system during one minute per walk.
Acceleration and deceleration phases were not part of the
recorded data. The reference weight was measured using a
GS 42 BMI electronic floor scale (Beurer GmbH, Ulm,
Germany).

C. Data Analysis

The estimation of carried weight was made using the
equipoise method [5]. Equipoise happens once during each
stance phase (between heel strike and toe-off) and is defined
as 0.5 when half of the weight is distributed on the heel
sensor and the other half on the forward sensors. Examined
data was chosen in the equipoise range of 0.5±0.1. Data
samples are chosen if no weight was on the other foot at the
same time to make sure all weight was on one foot.
Microsoft Excel was used to calculate an average of the
forces for the equipoise samples.

Figure 4 shows an overview of the three steps of the data
analysis: (1) calculate the equipoise ratio, (2) select data in
the 0.5±0.1 equipoise range when only one foot is in contact
with the ground, and (3) calculate the average force and then
calibrate for each individual.
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Calculate the equipoise ratio between
the forward sensors and the heel sensor

Select the equipoise range (where the ratio is 0.5±0.1)
when the other foot's sensors show zero

Calculate the average force of the selected
data and then calibrate for each individual

Figure 4. Overview of the three steps of the data analysis.

Two different methods were used for doing the
individual calibration. Method 1 used the walk without extra
added weight while method 2 also added the maximum
carried weight (20 kg). The estimated carried weight was
then subtracted with the known weight as measured with a
reference floor scale to calculate the error. Finally, the root
mean square errors were calculated.

III. RESULTS

The root mean square error was 17.2 kg when method 1
was used and 13.8 kg when method 2 was used, see Figure 5.
Dots show errors using the walk without extra carried weight
for the individual calibration. Circles show errors when also
using the maximum carried weight (20 kg) for individual
calibration. There are 15 fewer dots for method 2 since
double the amount of data is used for the individual
calibration.

Figure 5. Reference weight (measured with a floor scale) versus weight
estimation errors.

None of the sensors broke during more than 350 minutes
of walking, as well as taking off and putting on the shoes
15 times.

IV. DISCUSSION

Personal health monitoring using wearable measurement
systems is a promising way to be able to monitor health
outside of the hospital setting [11][12].

The pedobarography system, IngVaL, is designed to be a
robust and low cost measuring system for monitoring of
health related walk parameters. The aim of this study was to
evaluate the cost effective pedobarography measurement
system IngVaL. Two aspects are evaluated, namely, (1) how
well IngVaL can monitor carried weight during walk and
(2) if the novel sensor implementation can make the sensors
durable. The improvements from the first version of the
system are mainly in the sensor implementation and sensor
calibration. The improvement in the analysing method is
how the analysis also uses the maximum carried weight for
calibration.

This study used 15 test subjects and five different carried
weights for a more thorough experimental examination than
in an earlier study where ten test subjects and three different
carried weights were used [5]. The same equipoise method
was used in this study and resulted in a RMSE of 17.2 kg. A
further method improvement resulted in a RMSE of 13.8 kg.
This was a good improvement from 23.3 kg in the earlier
study (recalculated because Mean Average Error (MAE) was
used in that publication). This shows that the new system
version (IngVaL) performed better than the previous
prototype system. There is, however, room for improvement,
and one possibly way to reduce the RMSE is to improve the
data analysis. One challenge is to keep the thickness of the
insole from becoming larger than a normal insole. The
current insole is similar to a normal insole and has a
thickness around 5-6 mm.

To the best understanding of the authors, there are no
other wearable systems for monitoring carried weight while
walking. There is, however, related work where the
estimation was made after coming to a standstill after
walking and that study presented a RMSE of 10.5 kg using
nine test subjects [4]. The need of standing still during
measurement makes it unsuitable for monitoring during a
workday to see the load of the work over time.

Forces are distributed proportionally over all regions of
the foot regardless of foot arch type [13]. This enables the
use of fewer sensors instead of a more expensive sensor
matrix. It is important to design a durable system for
monitoring of heavy work environments. IngVaL used a new
way of implementing the sensors into the insoles and this
made them more durable. This resulted in no broken sensors
during more than 350 minutes of use. Four sensors broke
during 80 minutes, when using the earlier version of the
system. Sensor replacement would also mean that a new
calibration of the sensor is needed and this is a concern if the
system is to be commercialized in the future. The durability
issue made the earlier prototype system unsuitable.

A potential limitation in this study could have been the
use of a treadmill, which might result in a less natural
walking style compared to on a flat floor. On the other hand,
the equipoise is measured when one foot has equal pressure
on the forefoot sensors and the heel sensor while the other
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foot is in the air. This part of the stance phase (when the foot
is in contact with the ground) is expected to be minimally, if
at all, affected by walking style because the foot is not in
direct motion during this particular moment. The treadmill is
instead an advantage since it allows a constant walking speed
of 1.0 m/s. In order to avoid the influence of different types
of shoes, all of the 15 test subjects in the study used the same
shoes during the measurements. They also used the same
insole in the shoes.

The IngVaL system has earlier shown to be able to
measure walking speed. Together, monitoring of the carried
weight and the walking speed, enable estimation of energy
expenditure [14][15].

V. CONCLUSION

In this study, the cost effective pedobarography
measurement system called IngVaL has been evaluated
considering two aspects, namely, (1) how well IngVaL can
monitor carried weight during walk, and (2) if the novel
sensor implementation can make the sensors durable. This
study shows that the root mean square error has been
decreased from 23.3 kg to 13.8 kg and validates that the new
measurement system version (IngVaL) performs better than
the previous system regarding monitoring of carried weight
during walk. The new implementation of the sensors has
made them more durable and resulted in no broken force
sensing resistors during the experiment.
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Abstract— The recent shift in machine learning towards the
edge offers a new opportunity to realize intelligent applications
on resource constrained Internet of Things (IoT) hardware.
This paper presents a pre-trained Recurrent Neural Network
(RNN) model optimized for an IoT device running on 8-bit
microcontrollers. The device is used for data acquisition in a
research on the impact of prolonged sedentary work on health.
Our prediction model facilitates smart data transfer operations
to reduce the energy consumption of the device. Application
specific optimizations were applied to deploy and execute the
pre-trained model on a device which has only 8 KB RAM size.
Experiments show that the resulting edge intelligence can
reduce the communication cost significantly, achieving subs-
tantial savings in the energy used by the IoT device.

Keywords- Edge intelligence; IoT; Smart Sensors; RNN.

I. INTRODUCTION

Several IoT applications have emerged in healthcare with
advances in wearable electronics [6], [11]. Miniaturized
devices having sensing, computing and communication
capabilities transformed the healthcare sector, enabling the
realization of new services. Wearable devices can collect
data for monitoring patients remotely to get insights on
symptoms or trends, and provide better treatment.

Typical healthcare IoT services use wearable devices in
combination with smartphones. Physical and physiological
data collected by the wearable sensors is sent to the
smartphones where it is aggregated and transferred to
backend applications for further processing. The backend
often consists of a number of Cloud services for data storage,
analytics and machine learning needed to provide actionable
information to physicians and patients [10].

The motivation for this work comes from an ongoing
research aimed at mitigating Musculo-Skeletal Disorders
(MSD) problems in sedentary work environment. In an effort
to establish a large dataset for this research, participating
subjects were identified for collecting posture data. The data
collection is performed continuously for several hours a day,
over a long period. In order to build a comprehensive dataset,
out of work activities requiring sedentary postures (such as
driving) will also be included in the data collection [4].

Energy efficiency is a major challenge in the adoption of
wearable IoT for such studies because most devices used in
these applications are energy constrained, often running on
low capacity power sources. In our case, multiple, coin-cell
battery operated wireless devices equipped with inertial
sensors are worn by the subjects. Communication between

the devices and the smartphone takes place via a Bluetooth
Low Energy (BLE) interface. However, the batteries of the
devices last few hours only because of the volume of data
they transfer. For example, a wearable motion sensor with 9
channels reading 50 samples per second generates over
100MB of data per day.

In this paper, we shall present an approach to improve
energy efficiency of wearable sensors through Edge Machine
Learning techniques. Our goal is to reduce the volume of
communication between the sensor devices and the
smartphones to the minimum needed. The machine learning
implementation shall recognize eventful data and transfer it
to the smartphone only when it is necessary. Implementing
machine learning algorithms on resource constrained devices
is often not practical because the algorithms require adequate
computing power and large storage memory, both of which
are not available on most wearable devices. However, with
the emergence of edge computing, it has been possible to
handle most of the computational and storage burden of
machine learning far away from the source of the data.

We investigated different machine learning algorithms to
identify the ones that suit our task. Our findings show that
RNNs can be implemented on a resource-constrained edge
device and give the desired accuracy in real-time. As a
proof-of-concept, we evaluated the execution performance
and accuracy of a pre-trained RNN model on an Atmega640
microcontroller. The Atmega640 is an 8-bit microcontroller
with 16MHZ clock, 64KB boot (code) memory and 8KB
data memory (static RAM). This microcontroller has lower
specifications (processor speed and memory) than typical
devices used for such applications. It can therefore be said
that the results of our experiment can be applied to devices
already adopted by the wearables industry.

A Python based Machine Learning library was used to
build and pre-train our RNN model. Experiments were run
to determine the optimal set of model parameters that fit in
the device without sacrificing accuracy significantly.

Posture data collected for the research is used to train the
model. We then developed a program in C to implement the
pre-trained RNN and deployed it on the sensor device for
evaluation. The model’s real-time performance on the edge
device is found to be satisfactory for posture monitoring in
sedentary work environment.

The rest of this paper is organized as follows. Section II
gives a brief background on MSD research and the state-of-
art in the area. Section III discusses Edge Machine Learning,
its challenges and contemporary research in the field and the
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approach proposed for the task at hand. Section IV describes
the experimental setup for this study. Section V discusses
the results of the experiments followed by analysis of the
results. Section VI discusses related work in Edge Machine
Learning research. We conclude this paper by highlighting
important results and citing directions of future work.

II. MSD RESEARCH AND APPLICATION OF IOT

A. A Brief Background to the Research Problem

Sedentary work environment was recognized as one of
the major causes of MSD. Studies on the issue found that
prolonged seating and poor body postures can reduce blood
flow in the cervical region and cause inflammation of
muscles and tissues [1]. Poor postures and work positions
result in back, neck and shoulder pain. MSD problems may
also lead to chronic ailment and even complete immobility.
Studies explain the need to maintain the right body posture in
work and different daily-life situations, owing to the fact that
bad posture and prolonged sitting in one position cause back,
neck and shoulder pains that can get worse and develop to
chronic diseases with age [3]. Studies have shown the link
between sedentary life and the risk of obesity, diabetes,
cardiovascular disease, and all-cause mortality.

Increasing healthcare costs, absence from work and the
associated negative psychosocial complications are some of
the problems caused by MSD with severe impact at societal
level. According to the UK National Health Services, the
country lost 31 million days in 2014 alone, due to sickness
related to back, neck and muscle pain [4]. Recognizing the
severity of MSD problems, the National Institute for
Occupational Safety and Health in the United States
(NIOSH) identified the problem as an important research
agenda [8]. NIOSH identified several research directions,
among which mechanisms for reducing the impact of MSD
is a priority area.

B. IoT in MSD Research

The dataset created in earlier MSD researches were either
incomplete or inaccurate due to the method of data collection
they employed. In many cases, the data gathering process
was based on physical observation or self-reported
information [2]. Later researches made use of video
recording and tagging [7]. With advances in sensor and
communication technologies, it was possible to set up body
sensor networks (BSN) that connect multiple devices worn
on the subject’s body to detect and label movements and
postures [5]. Different types of sensors are used today to
collect physical and physiological data to capture
information on movements, postures, spinal loads, sit-stand
frequency, metabolic processes, etc. [1].

The emergence of IoT transformed the field of healthcare
by facilitating real-time data collection, monitoring and
analysis with greater convenience and ease of use. Cables
that were once used to connect wearables to a central data
acquisition unit are now replaced with a wireless interface,
such as BLE integrated into the devices.

A schematic depicting the setup of an IoT environment
for acquisition and storage of data is shown in Figure 1.

The devices needed for this specific study are placed on
the center of the upper back area and on the upper part of the
left leg. This placement is sufficient to identify sedentary
postures and detect whether the subject is sitting or standing.
The devices have inertial sensors, (accelerometer, magneto-
meter and gyro) and a BLE unit for communication with the
smartphone.

The data gathered is stored in a Microsoft Azure Cloud
storage as a time series consisting of 9 features (along x, y, z
axes for each inertial sensor unit) per sensor node or device.
Every row of data is timestamped and contains posture
labeling as well.

III. MACHINE LEARNING AT THE EDGE

Edge devices used for sensors are often resource
constrained and therefore not capable of running classical
machine learning applications on their data. For such
devices, both training the model and inference are often
carried out far from the origin of the data, in the Cloud. The
main innovation in Edge Machine Learning (Edge ML) is
that inference can take place on the edge device itself, at the
source of the data. Edge ML has several benefits, such as
reduction of communication latency, improving energy
efficiency, security, personalization and customization of
services [9]. Achieving energy requires reducing the energy
cost of communication between the sensor edge and the
smartphone, which in turn requires reducing the flow of
redundant data from the edge device (sensor).

There are important steps that should be investigated to
gain from the mentioned benefits of Edge ML. First,
identifying the right machine learning algorithm for the
dataset at hand requires expertise and skills. Selecting the
right algorithms often comes with the dilemma to choose
between performance and accuracy.

Second, the capability of the target device to support the
algorithm is not a trivial problem. In order to address this
issue, several models have to be tested on the target device
until a satisfactory one is found. One is often forced to
sacrifice the accuracy if the target hardware does not have
sufficient processing power or memory.

Figure 1. Placement of inertial measurement sensors

Finally, the availability of development tools for machine
learning is also a major challenge. Embedded software for
many low-end edge devices are written in C. Development
environments of some microcontrollers are proprietary with

Wireless Sensor node

Cloud Services
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limited flexibility, making importing available libraries very
difficult.

Machine learning often requires complex software
packages and libraries that can only be executed on powerful
processors. Until recently, deep learning was outside the
realm of low-end processors on which many IoT devices are
based. Because edge devices are resource constrained, they
require customized implementations for most machine
learning algorithms. The following techniques can be
applied in special cases to realize edge ML:

 Offloading the computational work to more
powerful devices, for example by performing the
training and validation phases on the Cloud;

 Reducing the precision of model parameters and
approximating computations with more efficient
arithmetic operations wherever possible [20];

 Using lookup tables for activation functions instead
of run-time computations.

A. Deep Learning for Temporal Data

One limitation of classical sensor data analysis is the
need for manual feature engineering work. Most supervised-
learning algorithms are not computationally efficient for
deployment on resource constrained devices. Algorithms,
such as K-Nearest-Neighbour (KNN) have large storage
requirements that can only be met by desktop computers or
servers. Furthermore, these algorithms are not suited to
detect patterns or contexts hidden in the temporal data
collected by the sensors.

RNNs are effective for data with temporal or contextual
sequence, such as natural language processing and time
series prediction [16]. Their ability to read variable-length
sequences of input samples and merge the prediction for
each sample into a single prediction for the entire window
makes RNN suitable for the posture monitoring application
under consideration. A generalized schematic of the RNN
architecture is shown in Figure 2. Current hidden states are
generated using the input and the previous hidden state. This
cyclic behavior in the hidden layer gives the network the
ability to learn temporal sequences.

Figure 2. Representation of a recurrent neural network

The mathematical model of the network is represented
with the following equations:

hk = f(WXHxk + WHHhk-1 + bH) (1)

yk = g(WHYhk + by) (2)

where
k represents time sequence;
x, y, and h are the input output and hidden state vectors
respectively;
WXH, WHH and WHY are the input-to-hidden, hidden-to-
hidden and hidden-to-output weight matrices
respectively;
bH and by are the bias vectors for the hidden and output
states respectively (not shown in the figure);
f and g are non-linear activation functions.

RNN models can often be inaccurate and unstable for
long input sequences and time series, due to the exploding
and vanishing gradient problems [17]. The Long Short-Term
Memory (LSTM) variant of RNN was proposed as a solution
to overcome the problem. LSTM has achieved impressive
results with sequential and time series data in applications,
such as text generation, sequence prediction and anomaly
detection [16][21].

B. Realization of RNN on Constrained Edge Devices

Deploying a deep learning model on resource constrained
edge device, such as an 8-bit microcontroller requires
significant optimizations. We shall explore where these
optimizations can be applied for our specific use case. Since
the number of input features and outputs is already decided
by the application, one has to identify other areas to look
into. Several models have to be built and tested to arrive at
an acceptable one.

One optimization measure is to determine the number of
neurons in the hidden layer because the computational
complexity and memory requirements for neural network
grow exponentially with it. Models of different sizes should
be evaluated experimentally for acceptable accuracy and
matching the edge device’s resource capabilities. It is also
possible to achieve a lower count on model parameters by
pruning edges with negligibly small weights [12] [19].

Further optimization is achieved through input data
reduction. The sampling rates of the sensors are often too
high for the microcontroller to make inference from the
acquired data within a sampling interval. Applying compu-
tationally inexpensive low pass filters helps to reduce the
volume of data, to improve the quality of the data and get
sufficient time interval for making inference.

Another optimization opportunity is simplifying the
computation of activation functions. If the microcontroller
does not have built-in floating point capabilities, evaluation
of functions, such as sigmoid and tanh is expensive.
Sacrificing the accuracy of these functions to a reasonable
level reduces the time needed for inference significantly.

IV. EXPERIMENTS

We planned two specific tasks in this experiment. The
first is to realize an optimized implementation of the
algorithm and the model parameters that can fit into the
available memory of the target microcontroller. Several
models are built to evaluate the tradeoff between accuracy

ykxk
WXH

WHY

wHH

f g

Memory

h
k

h
k-1
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and model size. The second task is to evaluate the
performance tradeoff between inference accuracy and the
achievable saving in energy on the edge device.

A. Data Collection

A smartphone app is also developed for this experiment,
to take care of the data received from sensors, as shown in
Figure 1. The main functions of the app are labelling, time
stamping, aggregating and uploading data to Cloud storage.

A sampling frequency of 50HZ is used as the base rate.
We decided not to increase the sampling rate beyond this as
the sensor node’s microcontroller would not be able to make
predictions in real time if the rate is increased. The sensors
measurements are different, owing to the local movement of
the body area they are placed on.

The data used in this experiment was collected over a
period of 30 minutes with the subject assuming different
predetermined postures alternately. This data is used to train
a machine learning model which should detect the temporal
instances of posture transitions. When training and testing is
completed, the model can be deployed on the target.

One of the investigators supervised the subjects to wear
the sensors at the correct position and guided them to change
postures every 2 to 3 minutes. During a transition, i.e., when
the subject changes her posture, a label for the new posture is
entered via the app’s user interface so that all data received
from this time on will automatically have the new label until
the next posture change occurs.

The postures assumed are labelled as follows:
 Sit -upright
 Sit -lean left
 Sit -lean right
 Sit -lean forward
 Sit -lean backward
 Stand

B. Training the Model

We implemented our machine learning model using the
Tensorflow deep learning framework in Python. The model
has 9 feature inputs, one hidden layer (LSTM) and one scalar
output, for each sensor node. Since we are interested in
posture transition only, a binary classifier is sufficient to
detect local posture changes. There are 90000 records in the
dataset, split into train (90%) and test (10%). A 70:30 train-
to-test ratio was also used later for comparison. The python
code was executed for different number of neurons in the
hidden layer. The model size depends on the number of input
features and the number of neurons in the hidden layer. The
experiment shows that the number of parameters can be
obtained from the equation:

P = (4n+1)(n+1) + 4nk (3)

where
P = number of model parameters (weights)
k = number of input features
n = number of neurons in the hidden layer

The storage requirement for the model is 4P bytes with
each parameter represented as a 4-byte floating point value.

Another parameter of interest in the experiment is the
duration of the time lag window used by the LSTM layer for
prediction. Larger window width is not practical for resource
constrained devices as the model prediction time becomes
unacceptably long. Smaller width on the other side
compromises the accuracy of the prediction. The analytical
computation of optimum window size is complex because it
depends on several factors that cannot be easily quantified.
We therefore determined this value empirically.

C. Deploying the Model on Target Device

The microcontroller version of the RNN code was
written in C. The compiled version of the code takes 34KB
of flash memory. The model parameters were combined with
the source code and compiled. However, they were stored in
the SRAM.

Modifications were made in the data acquisition part to
include a low pass moving average filter and use a sampling
rate of 50HZ. The filter serves the purpose of reducing the
volume of data processed by the model in addition to
stabilizing the data (against noise). The time taken to
execute the model’s inference task for different number of
neurons in the hidden layer is evaluated to determine
whether inference can be achieved in real time. Similar
experiments are also run for different window sizes.

The optimum number of neurons n depends on the
amount of SRAM available and the number of input features.
Having fewer neurons is not desired as it would compromise
the accuracy of the model. The results are summarized in the
next section.

V. RESULTS AND DISCUSSION

A. Evaluation of Model Training

Different hidden layer sizes were tested in the
experiment. However, owing to the limitations in the target
device, it is not practical to deploy large models. For
example, the number of parameters for a model containing
50 neurons in the hidden layer is about 11,851. This requires
about 44KB of memory on the target. The Atmel640
microcontroller has only 8KB static RAM that can be used
for all temporary data. After accounting for the memory
required to store a few seconds of sensor data, working
memory and stack for intermediate computations, the
available memory for the model parameters is just under
3.5KB. Applying equation (3), we can train a maximum of
11 neurons in the hidden layer.

Limiting the model size has also the additional benefit of
eliminating the risk of overfitting. Our evaluation also shows
that larger models are not suitable for the data. We got
satisfactory performance with models having as few as 8
neurons. Figures 3 and 4 demonstrate this by comparing the
Mean Square Error (MSE) losses for 50 and 8 neurons
respectively in the hidden layer. These results show that the
smaller model (8 neurons) has in fact a better accuracy
because it is a close match to the number of input features.
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B. Evaluation of Model Execution on the Target

The performance of the inference model was evaluated
on the microcontroller for different sizes of time lag window.
It is clear that the inference accuracy improves if a larger
time window is used. However, this incurs a large
computation cost. For a rate of 50 samples per second, the
20 milliseconds interval is very short to perform data
acquisition and inference (prediction). As can be seen in
Figure 6, it takes about 35 milliseconds to execute the
inference step alone for a window size of 3 seconds.

It is necessary to find an acceptable tradeoff between
inference accuracy and real-time response. We applied a low
pass filter to stabilize the data by averaging 4 samples at a
time, instead of feeding the entire sensor data stream to the
ML model. The overhead of this filter is low compared to
the inference operations. To our surprise, we got impressive
accuracy even when a smaller window size is used. As can
be seen in Figure 5, the difference in accuracy between a
window size of 2 seconds and 3 seconds is not significant
(both have over 95% accuracy). However, the 2 seconds
window takes much lower time for inference.

It is possible to deploy a larger model in the flash
memory since the SRAM would not be enough. Although
the flash memory has a slower access time than that of
SRAM, its performance is still acceptable.

C. Analysis of Energy Efficiency

Larger window sizes do not improve the model accuracy
significantly. In fact, the improvement, if any, is outweighed
by the overhead of the inference step. Because the inference
overhead grows exponentially with the size of the window,
the solution is not feasible for higher sampling rates. This
can be seen in Figure 6.

The energy saving is calculated as the difference between
the reduction in data transfer costs and the extra computation
incurred by the inference step to achieve this reduction.

It follows that this saving is significant if the frequency
of posture changes is low as is the case with sedentary work.
The excess computation depends on the sensor data rate and
the window size. In our experiment, a sampling rate of 50HZ
and averaging every 4 samples is used. This gives the model
an interval of 80 milliseconds per inference.

Number of batches

Figure 3. MSE loss (%) for number of neurons=50

As can be seen in Figure 6, if a 2 seconds window is
applied, it takes about 9 milliseconds to execute the model
(inference code). This achieves the desired result with about
11% increase in computation.

The BLE interface draws an average current of 8.53mA
over its connection interval of 2.675 milliseconds with an
empty payload [15]. According to the datasheet, the device
draws a current of 17.5mA for a full payload data transfer.
Android phones support a maximum of 4 packets with a-
payload of 20 bytes for a minimum connection interval of
7.5 milliseconds [13].

To get an estimate of the energy saving, we can consider
a case where posture changes occur every 10 seconds on
average. If edge intelligence were not applied, 4.5KB of
data would have to be transferred in the 10 seconds interval
(from 9 channels at 50 samples per second and 1 byte per
sample). With the above BLE throughput information, a data
transfer period of 420 milliseconds over the 10 second
duration at an average current of 17.5mA.

With the proposed approach, however, it would be
enough to transfer only 225 bytes, the data for one time
window only. This achieves a 95% reduction in data transfer
costs. The energy consumed for the additional computational
overhead is quite modest with the microcontroller drawing
less than 2mA, about 10% increase.

VI. RELATED WORK

The emergence of low cost, yet powerful devices has
brought machine learning to the edge. Encouraged by this
development, researchers in the field have managed to
achieve interesting outcomes in edge intelligence in the last
few years. In most of the studies we found, the investigators
tested their learning algorithms on powerful devices that are
not suitable for wearable sensors.

Yazici et. al. investigated porting three different machine
learning algorithms to Raspberry Pi running an embedded
version of the Android OS [9]. They evaluated the
performance of the algorithms for speed, accuracy and power
consumption. However, their solution is realized only on
powerful edge devices, not on resource-constrained 8-bit
microcontrollers.

Gupta et. al. developed a KNN implementation that can
run on 8-bit devices such as Arduino [18].

Number of batches

Figure 4. MSE loss (%) for number of neurons=8

Window size =2 sec
Window size =2 sec
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Figure 5. Model accuracy versus time window size

KNN is not, however, suitable for cases like ours where large
datasets are required for training because the device does not
have sufficient storage for the data.

Malhotra et. al. presented stacked LSTM networks for
anomaly detection in time series. They evaluated their
algorithms on different sensor data sets [16]. However, their
algorithm is not ported to edge devices.

VII. CONCLUSIONS AND FUTURE WORK

This study has shown that an LSTM-based Edge
Machine Learning can bring about substantial improvement
in energy efficiency of resource constrained IoT devices.
Advanced machine learning platforms have significantly
simplified the practical application of deep learning models
by facilitating rapid prototyping and testing.

Due to physical and physiological differences in human
beings, the models should be trained on an individual’s own
data. In our next study, we shall investigate personalized
models rather than one-size-fits-all generic ones.

Though not empirically validated yet, we see that further
optimizations can be made on the model. Pruning edge
weights, applied by Han et al. [19], and exploiting inherent
data types of sensor values can result in reduction in the
computational overhead of the model. Utilizing binary neural
networks [20] could also give interesting results. With this, it
can be possible to deploy inference models on devices with
even lower capabilities than the one used in this experiment.
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