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Abstract— Per-flow AQM schemes are designed to provide fair 

resource management between flows and limit the negative 

effects of non-adaptive UDP-based flows. To overcome the flow 

bandwidth limitation, P2P and file sharing applications usually 

open multiple simultaneous TCP based flows. Although each 

TCP-based flow is adaptive and responds to network 

congestion, the aggregated demand of such application 

consumes network resources and dominates the queue space. 

In this article we suggest a new per user AQM policy designed 

to remedy this problem. Since user traffic in access networks is 

usually carried in user tunnels such as PPP or GTP, an access 

network device cannot identify the underlying applications and 

TCP/UDP flows.  The new per-user AQM policy presented 

here operates in the dark and only uses tunnel aggregated 

statistics. Simulation results show that it significantly reduces 

the bias effects of heavy, demanding applications.  

Keywords-Active Queue Management; Resource 

Management; Access Networks.  

I.  INTRODUCTION  

Peer-to-Peer (P2P), file sharing and streaming 
applications attract millions of users every day [8]. This has 
led to a deterioration in the quality of service perceived by 
Internet users as well as frequent network collapse [10]. 
Active Queue Management (AQM) is a well known network 
device-based form of congestion control where the network 
device notifies end-systems of incipient congestion. This 
notification consists either of dropping a packet from the 
queue or "marking" a packet [15]. All AQM are designed to 
detect an impending queue buildup and to notify the sources 
before the queue overflows. AQM designs fall into three 
categories: per packet AQM policies (e.g., RED [7], BLUE 
[6], REM [3]), per class of service AQM policies (e.g., 
Cisco’s WRED [5], [9]) and per flow AQM policies (e.g., 
FRED [11], [2]). A well known drawback of per packet 
AQM and per class of service AQM policies is lock-out and 
bias effects from the few flows that dominate the queue 
space [11]. The latter per flow AQM category is designed to 
avoid this problem. However, a common method used by 
P2P applications to overcome per flow bandwidth limitations 
is to open multiple simultaneous flows between the peer and 
the content sources. Hence, a new category of AQM is now 
needed to provide fair resource management between users –
a per user AQM policy.  

 The user traffic in access networks is usually carried in 
user tunnels such as the Point-to-Point Protocol (PPP) [16], 
the GPRS Tunneling Protocol (GTP) [17] or Radio Link 

Control (RLC) encryption [17]. In tunneled traffic, the access 
network device cannot identify the underlying applications 
or the underlying TCP/UDP connections and cannot analyze 
any application header, TCP/UDP header or IP header. A 
network device located inside the access network operates in 
complete darkness: it can only identify the tunnel (from the 
packet header) and can only use tunnel aggregated statistics.   

In this study, we propose and evaluate a new per user 
AQM policy designed for blind network optimization. The 
new scheme, dubbed the User Random Early Drop (URED), 
enforces fair resource allocation among users (tunnels). It 
complements the admission control mechanisms of the core 
network such as the Policy and Charging Rules Function 
(PCRF) server.  The proposed algorithm is a modification of 
the Flow Random Early Drop (FRED) algorithm [11] 
together with the drop function suggested in [1], adjusted for 
the requirements of blind access networks and per tunnel 
consideration. 

The algorithm's performance is compared to Drop Tail, 
RED and FRED. The simulation shows that the new 
algorithm handles P2P traffic better than the other algorithms 
and the negative effect of heavy demanding applications is 
significantly curtailed. Hence, the bandwidth over a 
bottlenecked link is fairly divided between the P2P and the 
regular users.  URED reduces the  average throughput of the 
P2P user from more than 6.8 times that of a  regular user 
with the DT algorithm to less than 1.5, which is considerably 
better than the RED (4.51) and FRED (3.76) algorithms.  

This paper is organized as follows. In the next section, 
related works are outlined. We describe our new URED 
algorithm in section III. In section IV, we present the 
simulation setup and results. Finally, further research 
directions are discussed in section V. 

II. RELATED WORK 

One of the major drawbacks of per packet AQM policies 
and per class of service AQM policies is the lock-out and 
bias effects generated by non-adaptive flows that dominate 
the queue space [11].  

To reduce the cost of maintaining flow state information, 
Stoica et al. [14] proposed a scheduling algorithm called 
Core Stateless Fair Queueing (CSFQ). A similar method, 
called Rainbow Fair Queueing, was proposed in [4].  In these 
methods, routers are divided into two categories: edge 
routers and core routers. An edge router maintains per flow 
state information and estimates each flow’s arrival rate. 
These estimates are inserted into the packet headers and 
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passed on to the core routers. A core router simply maintains 
a stateless FIFO queue and during periods of congestion, 
drops a packet randomly based on the rate estimates. These 
schemes reduce the core router’s design complexity. The 
edge router’s design nevertheless remains complicated. 
Furthermore, because of the rate information in the header, 
core routers have to extract packet information differently 
from traditional routers.  This solution is not satisfactory for 
access networks since this device categorization is not 
feasible.  

The CHOKe (CHOose and Keep for responsive flows, 
CHOose and Kill for unresponsive flows) [13] algorithm 
aims to approximate max-min fairness for the flows that pass 
through a congested router. The basic idea behind the 
CHOKe is that the contents of the FIFO buffer form a 
“sufficient statistic” about the incoming traffic and can be 
used in a simple fashion to penalize misbehaving flows. 
When a packet arrives at a congested router, CHOKe draws a 
packet at random from the FIFO buffer and compares it with 
the arriving packet. If they both belong to the same flow, 
they are both dropped, or the randomly chosen packet is left 
intact and the arriving packet is admitted into the buffer with 
a probability that depends on the level of congestion. 
Similar, a new promising method called FavourQueue aims 
to improve delay transfer of short lived TCP flows over a 
best-effort network [2]. When a packet arrives, a check is 
done on the whole queue to find another packet from the 
same flow. If no other packet is found, it becomes a favored 
packet and a drop protection is provided when the queue is 
full via a push-out scheme that drops a standard packet from 
the queue in order to insert a favored packet into it. These 
solutions are not applicable to our problem since they are 
basically theoretical – commercial traffic managers can drop 
packets only upon packet arrival and cannot drop packets 
from the queue.  

The FRED [11] is a modified version of RED [7]. FRED 
uses per-active-flow accounting to impose a loss rate on each 
flow that depends on the flow’s shared buffer use. It provides 
better protection for adaptive (fragile and robust) flows. In 
addition, FRED is able to isolate and manage non-adaptive 
greedy traffic. A FRED gateway maintains state only for 
flows for which it has packets buffered, not for all flows that 
traverse the gateway. 

These algorithms are not completely suitable for this 
specific problem, although FRED comes the closest. A 
modification of the FRED algorithm to operate in a per user 
tunnel mode instead of per flow mode initially appeared 
promising.  However, we identified several problems in the 
FRED algorithm that need to be addressed in blind access 
networks: 
 

 In FRED, there is a requirement for a minimum 
guarantee of two-four packets space per active flow. 
It is not clear how to support this requirement in a 
blind access network with an unknown number of 
active flows. Furthermore, providing a minimum 
guaranteed two-four packet space per active user 
(that is, "translating" this requirement into a "per 
user" format) is unrealistic in a switch located high 

in the network hierarchy, since such a device has to 
handle thousands of simultaneously active user 
tunnels.  

 The condition for identifying the non-adaptive flows 
should be change to a proper condition for 
identifying non-adaptive users.  A user with multiple 
TCP connections can be considered non-adaptive 
although each of its TCP flow is adaptive. 

 The actions on traffic of non-adaptive users should be 
less drastic if the device is not congested.  

 The drop probability should increase more 
“smoothly” as suggested in [1].  Dropping with 
probability 1 results in low utilization and should be 
implemented only when the device is highly 
congested.   

Below, we suggest a new algorithm inspired by FRED 
with modifications to handle these problems.    
  

III. THE URED ALGORITHM FOR PER USER AQM 

In this section, we present our URED algorithm for per 
user AQM.  The URED algorithm holds a state for every 
active user that has packets in the queue. The state includes 
the following local variables (i) the user tunnel ID, as it 
appears in every packet header ti; (ii) the number of packets 
from this tunnel in the queue qi; and (iii) the average number 
of packets from this tunnel avgi. In addition the algorithm 
uses the following global variables: (i) the number of active 
users, Nactive; (ii) the number of packets in the queue, q; and 
(iii) the average number of packets in the queue, avg.  

Similar to many other AQM algorithms, queue buildup 
detection is based on the relationship between the average 
queue and two global static parameters Gminth and Gmaxth.   
However, the URED algorithm is unique in that it considers 
two layers in its drop probability calculation: a universal 
layer and an individual layer.  In each layer, a drop 
probability is calculated according to the Hazard function 
suggested in [1], denoted by Pu (universal) and Pi 
(individual). Obviously, as the average queue increases and   
a specific user tunnel is increasingly responsible for this 
queue buildup, the drop probability of packets from this 
tunnel increases. To evaluate the responsibility of a specific 
user tunnel in the queue buildup, the URED algorithm uses 
two dynamic parameters Lminth and Lmaxth.  These dynamic 
parameters are calculated on the fly and estimate the virtual 
individual queue size with respect to the number of active 
users. That is, they mark the recommended limits of space 
that an individual tunnel can consume at a specific moment, 
given the number of active tunnels at this moment. 
Specifically, Lminth and Lmaxth are calculated as follows: 
Lminth = min{BufferSize/Nactive, BufferSize/3}  and 
Lmaxth = min{2∙BufferSize/Nactive, BufferSize/2}. A user is 
considered non-adaptive if the global average queue size is 
large and its share (represented by its individual average 
queue size) is large compared to the current per user 
available space. The description of the URED algorithm is 
given below. 
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For each arriving packet P of tunnel ti: 

 Calc the average universal queue avg;  

 Calc the average individual queue avgi;  

 If (avg < Gminth) no-drop; 

 Else If (Gminth < avg < Gmaxth){ 

  If (avgi < Lminth) no-drop; 

  Else If (Lminth < avgi < Lmaxth) 

   Drop with probability Pu∙Pi; 

  Else If (avgi > Lmaxth)   

   Drop with probability Pu; 

 } 

 Else If (avg > Gmaxth){ 

  If (avgi < Lminth)  

   Drop with probability Pu∙Pi; 

  Else If (Lminth < avgi < Lmaxth) 

   Drop with probability Pu; 

  Else If (avgi > Lmaxth)   

   Drop; 

 } 

 

Regarding the four problematic issues discussed in 

section II:  

 The URED algorithm does not guarantee space for 
active users.  

 The condition for identifying a non-adaptive user is 
proper for any user with multiple flows either TCP 
or UDP-based.  

 The actions on a non-adaptive user are adjusted to 
the level of the queue buildup and consider both the 
global state of the universal queue and the local 
state of the individual queue.  

 The URED algorithm uses the smooth hazard drop 
functions of [1]. 
 

IV. PERFORMANCE EVALUATION 

The performance of our new per user AQM algorithm 
was evaluated by simulation in the ns2 network simulator 
[12].  The simulation network topology is presented in Fig. 
1. It consists of one source of Constant Bit Rate (CBR) with 
a rate of 5 mbps, nine sources of FTP over TCP (regular 
users) and one source of P2P with five simultaneous TCP 
connections (P2P user).  Two sets of experiments are 
presented below, with bottlenecked link of 20 mbps and 10 
mbps.  The simulation parameters are listed in Table I. 

Regarding the user throughput, Fig. 2 plots the statistics 
for the average throughput per time unit for the Drop Tail 
(DT), RED, FRED and URED algorithms under the 20 mbps 
bottlenecked link. The figure shows that applying the DT 
algorithm results in the highest un-balanced traffic between 
the users. The average throughput of the P2P user (User11) 
was more than 6.8 times higher than the average throughput 
of a regular user (User2-User10). Our new URED algorithm 
leads to much better results. Its average throughput for the 
P2P user was less than 1.5 times the average throughput of a 
regular user. Fig. 3 plots the statistics for the average packet 
delay. The figure shows that the DT algorithm results in the 
highest delays, and all other algorithms have similar results.  

Table II depicts the average throughput gap between the 
P2P user and a regular user for every algorithm under 

bottlenecked links of 20 mbps and 10 mbps.  As expected, 
with a 10 mpbs bottlenecked link, the traffic become more 
un-balanced than with a 20 mpbs bottlenecked link. An 
interesting observation is that RED outperforms FRED under 
a heavy bottlenecked link.   

Regarding the user packet loss, Table III plots the 
statistics for the average packet loss per time unit for the 
Drop Tail (DT), RED, FRED and URED algorithms under a 
20 mbps bottlenecked link for regular and P2P users. RED 
drops the fewest packets compared to the other algorithms.  
FRED drops more packets than the other algorithms.  

 

 

Figure 1: Simulation setup 
 

TABLE I.  THE SIMULATION PARAMETERS 

Parameter Value 

Bottlenecked link BW 10, 20 mbps 

Number of Regular Users 9 

Number of CBR Users 1 

Number of P2P Users 1 

CBR Rate 5 mbps 

FTP Burst time 2000 ms 

FTP Idle Time 200 ms 

FTP File Shape 1.7 

Packet size 1600 B 

TABLE II.  THE AVERAGE THROUGHPUT GAP 

Algorithm 
P2P user throughput/Regular user throughput 

20 mbps bottlenecked link 10 mbps bottlenecked link 

DT 6.81 7.81 

RED 4.51 4.48 

FRED 3.76 4.56 

URED 1.46 1.66 
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Figure 2: Average user throughput (20 mbps bottlenecked link)  

 

  
 

Figure 3: Average packet delay (20 mbps bottlenecked link)  

TABLE III.  AVERAGE PACKET LOSS 

Algorithm Regular User P2P User 

DT 72064 158847 

RED 62270 275521 

FRED 150064 489503 

URED 106303 288112 

 

V. CONCLUSION AND FUTURE WORK 

This paper described on-going research on a new URED 
algorithm for AQM that is designed to handle congestion in 
a blind access   network device.  The   proposed method uses 
available tunnel statistics and does not use information from 
TCP and IP headers. This method ensures fair resource 
allocation among network users on a congested link and can 
help operators limit the resource consumption of P2P 
applications.   

Future work includes additional simulations to improve 
the evaluation of the algorithm's potential and identify its 
limitations. In addition, we are working on a self 
configuration method for the algorithm parameters.  
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