
Active Queue Management in Blind Access Networks

Ronit Nossenson and Hagit Maryuma

Faculty of Computer Science

Jerusalem College of Technology

Jerusalem, Israel

nossenso@jct.ac.il, hagit.maryuma@gmail.com

Abstract— Per-flow AQM schemes are designed to provide fair

resource management between flows and limit the negative

effects of non-adaptive UDP-based flows. To overcome the flow

bandwidth limitation, P2P and file sharing applications usually

open multiple simultaneous TCP based flows. Although each

TCP-based flow is adaptive and responds to network

congestion, the aggregated demand of such application

consumes network resources and dominates the queue space.

In this article we suggest a new per user AQM policy designed

to remedy this problem. Since user traffic in access networks is

usually carried in user tunnels such as PPP or GTP, an access

network device cannot identify the underlying applications and

TCP/UDP flows. The new per-user AQM policy presented

here operates in the dark and only uses tunnel aggregated

statistics. Simulation results show that it significantly reduces

the bias effects of heavy, demanding applications.

Keywords-Active Queue Management; Resource

Management; Access Networks.

I. INTRODUCTION

Peer-to-Peer (P2P), file sharing and streaming
applications attract millions of users every day [8]. This has
led to a deterioration in the quality of service perceived by
Internet users as well as frequent network collapse [10].
Active Queue Management (AQM) is a well known network
device-based form of congestion control where the network
device notifies end-systems of incipient congestion. This
notification consists either of dropping a packet from the
queue or "marking" a packet [15]. All AQM are designed to
detect an impending queue buildup and to notify the sources
before the queue overflows. AQM designs fall into three
categories: per packet AQM policies (e.g., RED [7], BLUE
[6], REM [3]), per class of service AQM policies (e.g.,
Cisco’s WRED [5], [9]) and per flow AQM policies (e.g.,
FRED [11], [2]). A well known drawback of per packet
AQM and per class of service AQM policies is lock-out and
bias effects from the few flows that dominate the queue
space [11]. The latter per flow AQM category is designed to
avoid this problem. However, a common method used by
P2P applications to overcome per flow bandwidth limitations
is to open multiple simultaneous flows between the peer and
the content sources. Hence, a new category of AQM is now
needed to provide fair resource management between users –
a per user AQM policy.

 The user traffic in access networks is usually carried in
user tunnels such as the Point-to-Point Protocol (PPP) [16],
the GPRS Tunneling Protocol (GTP) [17] or Radio Link

Control (RLC) encryption [17]. In tunneled traffic, the access
network device cannot identify the underlying applications
or the underlying TCP/UDP connections and cannot analyze
any application header, TCP/UDP header or IP header. A
network device located inside the access network operates in
complete darkness: it can only identify the tunnel (from the
packet header) and can only use tunnel aggregated statistics.

In this study, we propose and evaluate a new per user
AQM policy designed for blind network optimization. The
new scheme, dubbed the User Random Early Drop (URED),
enforces fair resource allocation among users (tunnels). It
complements the admission control mechanisms of the core
network such as the Policy and Charging Rules Function
(PCRF) server. The proposed algorithm is a modification of
the Flow Random Early Drop (FRED) algorithm [11]
together with the drop function suggested in [1], adjusted for
the requirements of blind access networks and per tunnel
consideration.

The algorithm's performance is compared to Drop Tail,
RED and FRED. The simulation shows that the new
algorithm handles P2P traffic better than the other algorithms
and the negative effect of heavy demanding applications is
significantly curtailed. Hence, the bandwidth over a
bottlenecked link is fairly divided between the P2P and the
regular users. URED reduces the average throughput of the
P2P user from more than 6.8 times that of a regular user
with the DT algorithm to less than 1.5, which is considerably
better than the RED (4.51) and FRED (3.76) algorithms.

This paper is organized as follows. In the next section,
related works are outlined. We describe our new URED
algorithm in section III. In section IV, we present the
simulation setup and results. Finally, further research
directions are discussed in section V.

II. RELATED WORK

One of the major drawbacks of per packet AQM policies
and per class of service AQM policies is the lock-out and
bias effects generated by non-adaptive flows that dominate
the queue space [11].

To reduce the cost of maintaining flow state information,
Stoica et al. [14] proposed a scheduling algorithm called
Core Stateless Fair Queueing (CSFQ). A similar method,
called Rainbow Fair Queueing, was proposed in [4]. In these
methods, routers are divided into two categories: edge
routers and core routers. An edge router maintains per flow
state information and estimates each flow’s arrival rate.
These estimates are inserted into the packet headers and

27Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

passed on to the core routers. A core router simply maintains
a stateless FIFO queue and during periods of congestion,
drops a packet randomly based on the rate estimates. These
schemes reduce the core router’s design complexity. The
edge router’s design nevertheless remains complicated.
Furthermore, because of the rate information in the header,
core routers have to extract packet information differently
from traditional routers. This solution is not satisfactory for
access networks since this device categorization is not
feasible.

The CHOKe (CHOose and Keep for responsive flows,
CHOose and Kill for unresponsive flows) [13] algorithm
aims to approximate max-min fairness for the flows that pass
through a congested router. The basic idea behind the
CHOKe is that the contents of the FIFO buffer form a
“sufficient statistic” about the incoming traffic and can be
used in a simple fashion to penalize misbehaving flows.
When a packet arrives at a congested router, CHOKe draws a
packet at random from the FIFO buffer and compares it with
the arriving packet. If they both belong to the same flow,
they are both dropped, or the randomly chosen packet is left
intact and the arriving packet is admitted into the buffer with
a probability that depends on the level of congestion.
Similar, a new promising method called FavourQueue aims
to improve delay transfer of short lived TCP flows over a
best-effort network [2]. When a packet arrives, a check is
done on the whole queue to find another packet from the
same flow. If no other packet is found, it becomes a favored
packet and a drop protection is provided when the queue is
full via a push-out scheme that drops a standard packet from
the queue in order to insert a favored packet into it. These
solutions are not applicable to our problem since they are
basically theoretical – commercial traffic managers can drop
packets only upon packet arrival and cannot drop packets
from the queue.

The FRED [11] is a modified version of RED [7]. FRED
uses per-active-flow accounting to impose a loss rate on each
flow that depends on the flow’s shared buffer use. It provides
better protection for adaptive (fragile and robust) flows. In
addition, FRED is able to isolate and manage non-adaptive
greedy traffic. A FRED gateway maintains state only for
flows for which it has packets buffered, not for all flows that
traverse the gateway.

These algorithms are not completely suitable for this
specific problem, although FRED comes the closest. A
modification of the FRED algorithm to operate in a per user
tunnel mode instead of per flow mode initially appeared
promising. However, we identified several problems in the
FRED algorithm that need to be addressed in blind access
networks:

 In FRED, there is a requirement for a minimum
guarantee of two-four packets space per active flow.
It is not clear how to support this requirement in a
blind access network with an unknown number of
active flows. Furthermore, providing a minimum
guaranteed two-four packet space per active user
(that is, "translating" this requirement into a "per
user" format) is unrealistic in a switch located high

in the network hierarchy, since such a device has to
handle thousands of simultaneously active user
tunnels.

 The condition for identifying the non-adaptive flows
should be change to a proper condition for
identifying non-adaptive users. A user with multiple
TCP connections can be considered non-adaptive
although each of its TCP flow is adaptive.

 The actions on traffic of non-adaptive users should be
less drastic if the device is not congested.

 The drop probability should increase more
“smoothly” as suggested in [1]. Dropping with
probability 1 results in low utilization and should be
implemented only when the device is highly
congested.

Below, we suggest a new algorithm inspired by FRED
with modifications to handle these problems.

III. THE URED ALGORITHM FOR PER USER AQM

In this section, we present our URED algorithm for per
user AQM. The URED algorithm holds a state for every
active user that has packets in the queue. The state includes
the following local variables (i) the user tunnel ID, as it
appears in every packet header ti; (ii) the number of packets
from this tunnel in the queue qi; and (iii) the average number
of packets from this tunnel avgi. In addition the algorithm
uses the following global variables: (i) the number of active
users, Nactive; (ii) the number of packets in the queue, q; and
(iii) the average number of packets in the queue, avg.

Similar to many other AQM algorithms, queue buildup
detection is based on the relationship between the average
queue and two global static parameters Gminth and Gmaxth.
However, the URED algorithm is unique in that it considers
two layers in its drop probability calculation: a universal
layer and an individual layer. In each layer, a drop
probability is calculated according to the Hazard function
suggested in [1], denoted by Pu (universal) and Pi
(individual). Obviously, as the average queue increases and
a specific user tunnel is increasingly responsible for this
queue buildup, the drop probability of packets from this
tunnel increases. To evaluate the responsibility of a specific
user tunnel in the queue buildup, the URED algorithm uses
two dynamic parameters Lminth and Lmaxth. These dynamic
parameters are calculated on the fly and estimate the virtual
individual queue size with respect to the number of active
users. That is, they mark the recommended limits of space
that an individual tunnel can consume at a specific moment,
given the number of active tunnels at this moment.
Specifically, Lminth and Lmaxth are calculated as follows:
Lminth = min{BufferSize/Nactive, BufferSize/3} and
Lmaxth = min{2∙BufferSize/Nactive, BufferSize/2}. A user is
considered non-adaptive if the global average queue size is
large and its share (represented by its individual average
queue size) is large compared to the current per user
available space. The description of the URED algorithm is
given below.

28Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

For each arriving packet P of tunnel ti:

 Calc the average universal queue avg;

 Calc the average individual queue avgi;

 If (avg < Gminth) no-drop;

 Else If (Gminth < avg < Gmaxth){

 If (avgi < Lminth) no-drop;

 Else If (Lminth < avgi < Lmaxth)

 Drop with probability Pu∙Pi;

 Else If (avgi > Lmaxth)

 Drop with probability Pu;

 }

 Else If (avg > Gmaxth){

 If (avgi < Lminth)

 Drop with probability Pu∙Pi;

 Else If (Lminth < avgi < Lmaxth)

 Drop with probability Pu;

 Else If (avgi > Lmaxth)

 Drop;

 }

Regarding the four problematic issues discussed in

section II:

 The URED algorithm does not guarantee space for
active users.

 The condition for identifying a non-adaptive user is
proper for any user with multiple flows either TCP
or UDP-based.

 The actions on a non-adaptive user are adjusted to
the level of the queue buildup and consider both the
global state of the universal queue and the local
state of the individual queue.

 The URED algorithm uses the smooth hazard drop
functions of [1].

IV. PERFORMANCE EVALUATION

The performance of our new per user AQM algorithm
was evaluated by simulation in the ns2 network simulator
[12]. The simulation network topology is presented in Fig.
1. It consists of one source of Constant Bit Rate (CBR) with
a rate of 5 mbps, nine sources of FTP over TCP (regular
users) and one source of P2P with five simultaneous TCP
connections (P2P user). Two sets of experiments are
presented below, with bottlenecked link of 20 mbps and 10
mbps. The simulation parameters are listed in Table I.

Regarding the user throughput, Fig. 2 plots the statistics
for the average throughput per time unit for the Drop Tail
(DT), RED, FRED and URED algorithms under the 20 mbps
bottlenecked link. The figure shows that applying the DT
algorithm results in the highest un-balanced traffic between
the users. The average throughput of the P2P user (User11)
was more than 6.8 times higher than the average throughput
of a regular user (User2-User10). Our new URED algorithm
leads to much better results. Its average throughput for the
P2P user was less than 1.5 times the average throughput of a
regular user. Fig. 3 plots the statistics for the average packet
delay. The figure shows that the DT algorithm results in the
highest delays, and all other algorithms have similar results.

Table II depicts the average throughput gap between the
P2P user and a regular user for every algorithm under

bottlenecked links of 20 mbps and 10 mbps. As expected,
with a 10 mpbs bottlenecked link, the traffic become more
un-balanced than with a 20 mpbs bottlenecked link. An
interesting observation is that RED outperforms FRED under
a heavy bottlenecked link.

Regarding the user packet loss, Table III plots the
statistics for the average packet loss per time unit for the
Drop Tail (DT), RED, FRED and URED algorithms under a
20 mbps bottlenecked link for regular and P2P users. RED
drops the fewest packets compared to the other algorithms.
FRED drops more packets than the other algorithms.

Figure 1: Simulation setup

TABLE I. THE SIMULATION PARAMETERS

Parameter Value

Bottlenecked link BW 10, 20 mbps

Number of Regular Users 9

Number of CBR Users 1

Number of P2P Users 1

CBR Rate 5 mbps

FTP Burst time 2000 ms

FTP Idle Time 200 ms

FTP File Shape 1.7

Packet size 1600 B

TABLE II. THE AVERAGE THROUGHPUT GAP

Algorithm
P2P user throughput/Regular user throughput

20 mbps bottlenecked link 10 mbps bottlenecked link

DT 6.81 7.81

RED 4.51 4.48

FRED 3.76 4.56

URED 1.46 1.66

29Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

Figure 2: Average user throughput (20 mbps bottlenecked link)

Figure 3: Average packet delay (20 mbps bottlenecked link)

TABLE III. AVERAGE PACKET LOSS

Algorithm Regular User P2P User

DT 72064 158847

RED 62270 275521

FRED 150064 489503

URED 106303 288112

V. CONCLUSION AND FUTURE WORK

This paper described on-going research on a new URED
algorithm for AQM that is designed to handle congestion in
a blind access network device. The proposed method uses
available tunnel statistics and does not use information from
TCP and IP headers. This method ensures fair resource
allocation among network users on a congested link and can
help operators limit the resource consumption of P2P
applications.

Future work includes additional simulations to improve
the evaluation of the algorithm's potential and identify its
limitations. In addition, we are working on a self
configuration method for the algorithm parameters.

ACKNOWLEDGMENT

The authors thank the anonymous referees for helpful
comments on an earlier version of this paper.

REFERENCES

[1] B. Abbasov and S. Korukoğlu, "An Active Queue
Management Algorithm for Reducing Packet Loss Rate",
Mathematical and Computational Applications, Vol. 14, No.
1, pp. 65-72, 2009.

[2] P. Anelli, E. Lochin, and R. Diana, "FavourQueue: a Stateless
Active Queue Management to Speed Up Short TCP Flows
(and others too!)", ArXiv e-prints, 1103.2303, March, 2011.

[3] S. Athuraliya, S. H. Low, V. H. Li, and Y. Qinghe, ”REM:
active queue management”, IEEE Network, Vol. 15(3)., pp.
48-53, May 2001.

[4] Z. Cao, Z. Wang, and E. Zegura, "Rainbow fair queueing:
Fair bandwidth sharing without per-flow state", In
Proceedings of INFOCOM’00, pp. 922–931, Tel-Aviv, Israel,
March 2000.

[5] Cisco's web site
http://www.cisco.com/en/US/docs/ios/12_2t/12_2t8/feature/g
uide/ftwrdecn.html, retrieved: May, 2012.

[6] W. C. Feng, K. G. Shin, D. D. Kandlur, and D. Saha, “The
BLUE Active Queue Management Algorithms“ IEEE ACM
Transactions on Networking, Vol. 10(4)., pp. 513-528,
August 2002.

[7] S. Floyd and V. Jacobson,”Random Early Detection
Gateways for congestion Avoidance” ,IEEE/ACM
Transaction on Networking, Vol. 3., pp. 397-413, August
1993.

[8] X. Hei, C. Liang, J. Liang, Y. Liu, and K.W. Ross “A
Measurement Study of a Large-Scale P2P IPTV System”,
IEEE Transactions on Multimedia, Dec. 2007

[9] B. J. Hwang, I.S. Hwang, and P.M.Chang, "QoS-Aware
Active Queue Management for Multimedia Services over the
Internet", EURASIP Journal onWireless Communications and
Networking, Article ID 589863, 2011.

[10] E. Leonardi, M. Mellia, A. Horvath, L. Muscariello, S.
Niccolini, and D. Rossi, “Building a cooperative P2P-TV
application over a Wise Network: the approach of the
European FP-7 STREP NAPA-WINE”,IEEE Communication
Magazine,Vol. 64, No. 4, pp. 20-22, April 2008.

[11] D. Lin and R. Morris, “Dynamics of random early detection”,
Proceedings of the ACM SIGCOMM '97 conference on
Applications, technologies, architectures, and protocols for
computer communication, pp. 127-137, September 14-18,
1997, Cannes, France.

[12] NS: The Network Simulator (NS 2), http://isi.edu/nsnam/ns/
retrieved: May, 2012.

[13] R. Pan, B. Prabhakar, and K. Psounis., "Choke, a stateless
active queue management scheme for approximating fair
bandwidth allocation", In Proceedings of IEEE
INFOCOM’00, pp. 942-951, Tel Aviv, Israel, March 2000.

[14] I. Stoica, S. Shenker, and H. Zhang, "Core-stateless fair
queueing: achieving approximately fair bandwidth allocations
in high speed networks", ACM SIGCOMM Computer
Communication Review, Vol. 28 (4), pp.118-130, Oct. 1998.

[15] G. Thiruchelvi and J. Raja, "A Survey On Active Queue
Management Mechanisms", IJCSNS International Journal of
Computer Science and Network Security, VOL.8 No.12, pp.
130-146, Dec. 2008.

[16] RFC 1661, http://tools.ietf.org/html/rfc1661, retrieved: May,
2012.

[17] 3GPP the mobile broadband standard web site,
http://www.3gpp.org/ftp/Specs/, retrieved: May, 2012.

30Copyright (c) IARIA, 2012. ISBN: 978-1-61208-205-9

ACCESS 2012 : The Third International Conference on Access Networks

