
Evolution of Automated Regression Testing of Software Systems Through the

Graphical User Interface

Pekka Aho

Knowledge Intensive Products and Services

VTT Technical Research Centre of Finland

Oulu, Finland

email: pekka.aho@vtt.fi

Rafael A. P. Oliveira

Dept. of Computer Systems

University of São Paulo

São Carlos, Brazil

email: rpaes@icmc.usp.br

Emil Alégroth

Department of Computer Science and Engineering

Chalmers University of Technology

Gothenburg, Sweden

email: emil.alegroth@chalmers.se

Tanja E. J. Vos

Centro de Mtodos de Produccin de Software (ProS)

Universidad Politecnica de Valencia

Valencia, Spain

email: tvos@pros.upv.es

Abstract—Increasing and more ubiquitous use of mobile and

Web applications with graphical user interfaces (GUIs) places

more stringent requirements on the software’s quality.

Automated testing is used to ensure the quality but testing

through the software’s GUI is challenging and therefore a

research topic that has grown during the last decade. However,

despite of the evolution of automated GUI-based testing

methods and tools, its industrial adoption has been limited. In

this paper, we present a synthesis of the evolution of GUI-

based test automation and propose a classification for methods

and tools for automated regression through the GUI.

Keywords-Graphical user interface; automated GUI testing;

software systems; classification; categorization; state-of-the-art.

I. INTRODUCTION

Increasing and more ubiquitous use of all kinds of mobile
and Web applications with GUIs makes our daily lives
dependent on the software functioning without errors,
increasing the importance of assuring the correct and reliable
behavior of software systems. Modern GUI-driven
applications are often connected and consist of distributed
back-end services and sub-systems. Additionally, the GUI is
often the primary interface to access the software’s
functionality, which also makes it a natural interface for
testing, and in some cases, the only means to perform end-to-
end testing.

The widespread use of iterative and incremental
processes and continuous integration practices in software
development has shortened release cycles and limited the
time available for testing in each release. This trend poses a
challenge since manual GUI-based testing is tedious,
laborious [1], and requires a lot of time. This implies that
GUI-based test automation, especially for regression testing
should be applied to get confidence in the quality of each
release. However, from the point of view of continuous
integration processes, GUI-based testing is often too slow to
be run after each code commit, because the test automation

tool has to wait for the GUI to react before executing the
next action of the test sequence. Larger automated GUI
testing suites are therefore run only a few times a day or
overnight.

According to IEEE Standard Glossary of Software
Engineering Terminology [2], regression testing is “Selective
retesting of a system or component to verify that
modifications have not caused unintended effects and that
the system or component still complies with its specified
requirements.” As such, regression testing aims to verify that
the behavior of the system under test (SUT) remains
consistent after changes to the SUT. Thus, if the changes in
SUT intentionally affect the SUT’s behavior, the regression
test cases usually have to be updated to correspond to the
new behavior. Otherwise, the changes may have been
unintentional and a regression fault was found.

There are various terms used for automated GUI testing
or GUI-based testing, depending on the authors and the
objectives of the testing. In our case, automated testing of
software systems through GUI would be the most accurate,
but the other terms are used as well. The main point is that
we are not testing only the software related to the GUI, but
using the GUI as an interface for testing the whole software,
including also the possible back-end services. The approach
is usually black-box, without access to the source code of the
system and often without detailed knowledge on the
architecture or implementation of the system, and system
testing focusing on the functional requirements, features and
behavior of the system. However, automated GUI-based
testing provides opportunities also for non-functional testing,
such as performance and robustness testing.

Automated testing of software systems through the GUI
is challenging and has therefore become a popular research
topic during the last decade. Despite of the evolution of
automated GUI-based testing methods and tools, no large
scale industrial adoption of state-of-the-art methods and tools
has been seen, and capture and replay (C&R) tools remain
being the most popular GUI testing approach in the software

16Copyright (c) IARIA, 2016. ISBN: 978-1-61208-481-7

ACCSE 2016 : The First International Conference on Advances in Computation, Communications and Services

industry. However, C&R tools are associated with high
maintenance costs implying a need for more cost-effective
GUI-based testing.

In this paper, we summarize the evolution of automated
testing of software systems through the GUI in Section II
and propose a classification for the methods and tools in
Section III. We present the related work in Section IV, and
Conclusion and Discussion in Section V.

II. EVOLUTION OF AUTOMATED GUI TESTING

C&R, also called as record and replay (R&R), is one of
the earliest and most widely used approaches for automating
regression testing of GUI software. In C&R approaches, a
test automation tool is used to capture the user’s interactions
with the SUT during manual use. The tool can then
automatically replay the recorded sessions or sequences of
interactions against different versions of the software,
automating the test execution for regression testing. The
modern, more advanced C&R tools capture also the behavior
of the GUI software and are able to notice if the behavior of
a later version changes compared to the recorded behavior.
Usually, each test case is a session of manual interaction and
has to be recorded separately.

In general, the C&R approaches are easy and intuitive to
use, the tools are mature and widely used, and it is possible
to get fast results, for example decreasing the manual effort
for regression testing through GUI. There is a wide selection
of both commercial and open source C&R tools for most of
the widely used operating systems (OS) or platforms, such as
SeleniumHQ [3] for Web applications, Appium [4] for
mobile applications, and Squish [5] for a variety of different
platforms, although all of them can be used for more than
just C&R testing.

The obvious disadvantages of C&R is the amount of
manual effort required to record the test cases, and even
more importantly, the amount of manual effort required to
maintain the test suites. Hence, whenever the software
changes, the test cases related to the changed parts of the
GUI have to be manually retested to be recorded again.

The next step in the evolution of automated GUI testing
was using keywords and action words to present the GUI
testing scripts on a higher level of abstraction. The goal was
to make it easier to reuse parts of test cases to create new test
cases and reduce the maintenance effort of test suites after
changes in the GUI by providing a clear separation of
concerns between business logic and the GUI navigation
needed to implement the logic [6]. Although one could argue
that the modern C&R tools are exploiting keywords to allow
easier maintenance of test cases, purely keyword-based
approaches for GUI testing have not been widely adopted by
the industry.

When model-based testing (MBT) was introduced in the
testing community, it was also adopted into automated GUI
testing. In model-based GUI testing (MBGT), the GUI and
its behavior is modeled in a higher level of abstraction, using
a modeling language supported by the selected test
generation tool. In traditional MBGT, the models are created
manually, and the generated abstract test cases have to be
mapped or transformed into a lower level of abstraction to

get concrete executable test cases that can be automatically
executed against the SUT. In addition to the effort required
to create the models for MBGT, also considerable expertise
on formal modeling is required. TEMA Toolset [7] is an
example of using MBT for testing concurrency issues in
smartphone applications through the GUI.

In recent years, model extraction, also called as model
inference, specification mining, reverse engineering or GUI
ripping, has been widely used to automatically extract GUI
models for testing purposes. The earliest approaches used
static analysis on the source code of GUI software, which
had the drawback that it failed to capture the dynamic
behavior of the GUI. In dynamic analysis, the behavior of the
GUI is instead analyzed during runtime interaction with the
SUT. Some tools using dynamic analysis for model
extraction require a user to interact with the GUI, in a similar
way to C&R tools, but more recent tools are able to simulate
the end user, automatically interacting with the components
or widgets of the GUI.

Most dynamic model extraction approaches, such as [8]-
[12], use the following process to capture the GUI model: 1)
Capture the current state of the GUI as a snapshot of the
screen visible for the end user, 2) Update the behavioral
model of the GUI if it is extracted, 3) Analyze the
interactions that are available for the end user, 4) Select one
of the interactions using a random or a more intelligent
selection strategy, 5) Execute the selected action and wait for
the GUI to update, 6) Repeat the process from step 1. There
are small differences on what is considered as a state of the
GUI, but usually it consists of the windows or screens visible
to the user, the components or widgets of each of the screens,
and properties and values of each of the widgets. If a
behavioral GUI model is extracted as well, the differences
between the approaches are more significant. Although there
are a lot of publications around GUITAR [8] that uses event-
based models, most approaches use finite state-machine
(FSM) –based models and graphs to present the behavior of
the GUI.

In most approaches, the GUI state, a snapshot of the
visible GUI, is captured using some kind of application
programming interface (API) provided by the OS, such as
Windows Automation API [13], or a GUI library, such as
Jemmy framework [14] for Java-based GUIs. The benefit of
these APIs is that they provide the GUI information in a
detailed and hierarchical way. The downside is that such
APIs have not been standardized and in practice, model
extraction tools have to implement support for several APIs
and libraries to cover a wide variety of GUIs. Another option
is Visual GUI Testing (VGT), using image recognition on
partial images of the GUI and screen captures to extract the
state of the GUI [15]. The benefit is the independence of the
platform specific APIs and libraries, but the downside is that
the visual approaches are not as accurate and detailed. In
optimal cases, the model extraction tools are able to reach all
parts of the GUI and extract an accurate behavioral model of
the GUI. However, automatically extracting GUI models is
still an active research topic.

The obvious restriction with the extracted models is that
they are based on the observed behavior of the

17Copyright (c) IARIA, 2016. ISBN: 978-1-61208-481-7

ACCSE 2016 : The First International Conference on Advances in Computation, Communications and Services

Figure 1. Classification for automated regression testing through GUI.

implementation, instead of expected or required behavior
defined in requirement specifications. Therefore the
extracted models are ill suited for conformance testing
without manually elaborating the models before test case
generation. However, the extracted models can be used for
reference or regression testing. In optimal cases, using
extracted models for generating test cases may achieve a
high level of automation in regression testing through the
GUI [8], but the quality and effectiveness of these
approaches maybe lacking for software that is still under
development. The challenge is that when the GUI changes,
the automatically extracted reference model has to be
extracted again, and then the test cases have to be generated
based on the new reference model. As a result, the old test
cases are failing and giving false positives for the changed
parts of the GUI, and the new parts of the GUI are
completely missing from the old test cases. Although the
process of model extraction, test case generation and test
execution can be fully automated, updating the reference
model results a GUI version that has to be tested manually or
using other means to ensure the correctness of the new
reference model. Otherwise the newly generated test cases
could use faulty behavior as their test oracle.

The latest step in the evolution of automated regression
testing through GUI has been automated regression analysis
based on comparison of automatically extracted GUI models
[9]. This approach overcomes the problem of having to re-
generate the test cases by not having test cases at all.

Whenever the GUI changes, a new model is automatically
extracted and compared to the previous version. All the
changes are reported for the test engineer, and the manual
work is limited to deciding if the change was intentional or a
regression fault.

In addition, a lot of smaller scale evolution is studied in
academia, improving the automated regression testing
through the GUI. For example, automating the debugging of
failures found during automated GUI testing [16] is
definitely improving the level of automation of the whole
software development process.

III. CLASSIFICATION FOR AUTOMATED TESTING OF

SOFTWARE SYSTEMS THROUGH GUI

In this section, we propose a 2-axis classification of
methods and tools for automated testing of software systems
through the GUI, illustrated in Figure 1. Our intention is to
provide a baseline for comparison between tools and
methods for automated GUI-based testing, as a suitable
public categorization is currently missing. Many of these
methods and tools for GUI-based testing are still academic or
proof-of-concept tools, but we hope that in the future, when
the tools have matured and there is more tools to select from,
this classification helps the industry in selecting the tools and
methods suitable for their needs.

The vertical axis of our classification follows the three
generation classification proposed by Alégroth et al. [15] but

18Copyright (c) IARIA, 2016. ISBN: 978-1-61208-481-7

ACCSE 2016 : The First International Conference on Advances in Computation, Communications and Services

is named as tolerance for changes in the GUI. We have also
included a fourth generation, not discussed by Alégroth et
al., that combines the visual and API-based approaches,
getting the benefits of both approaches, as discussed in
Section II. As the combination would not bring any novel
approaches to the field, we could call it 3.5

th
 generation.

The earliest C&R approaches captured user actions in
exact mouse coordinates [15]. These coordinate-based tools
are categorized into lowest level of tolerance for changes in
the GUI, because even small changes in the GUI, such as
changing screen resolution or window’s location on the
screen, usually breaks the test case. None of the modern tools
are relying solely on mouse coordinates anymore.

The second generation [15], or the second level of
tolerance, consists of API-based approaches, based on
components or widgets of the GUI. The advantage of using
some kind of API provided by the OS or GUI library is that
the recorded or modeled interactions are mapped to
components or widgets of the GUI, instead of mouse
coordinates, giving the second generation approaches better
robustness against GUI changes [15]. In model extraction,
the API-based approaches are more accurate than third
generation visual approaches. Abbot [17] is an example of
API-based C&R tool for Java GUI applications.

The third generation [15], or the third level of tolerance,
approaches are based on VGT, using image recognition on
partial images of the GUI and screen captures to interact and
assert the correctness of the GUI. In some cases, VGT might
be more tolerant to layout changes, but it is more dependent
on the graphical representation of the GUI than API-based
approaches. If the graphical icon of a button is redesigned,
the related test cases have to be updated. An example of
visual C&R tool is Sikuli [18].

The horizontal axis presents the level of automation in
regression testing through the GUI. C&R approaches present
the lowest level of automation, as manual effort is required
both in recording of the test cases and in maintaining the test
cases by re-recording test cases related to the changed parts
of the GUI. The keywords or action words–based approaches
would belong also to this first group.

The second level of automation is MBT using manually
created models. This categorization addresses specifically
regression testing, as manually created models may
introduce a lot more benefits into other types of testing, such
as testing if the GUI software conforms to the requirements
specifications. The manually created models can provide a
lot more information on the expected behavior, enabling
better possibilities for generating test cases with meaningful
test oracles. However, in regression testing, the effort
required for manually creating the models is significant, and
updating the models after changes in the GUI also requires
some manual effort. Although TEMA tool [7] is not
designed specifically for regression testing, it would fall into
this category, and it is based on Android APIs to interact
with the GUI.

The third level of automation is generating test cases
based on automatically extracted models. In optimal cases,
the level of automation with these approaches can be high.
As described in Section II, the question is if the quality and

efficiency of this testing is sufficient when the GUI changes,
if the correctness of the model or the GUI is not assured with
other means. API-based GUI model extraction and using the
extracted models for test case generation has been a major
topic in GUI model extraction and testing research during the
last 15 years and there are a lot of academic tools available,
such as GUITAR [19], GUI Driver [11], Testar [10], and
Webmate [20], although Webmate has been commercialized.
There is also more recent research and VGT GUITAR tool
that is using visual approach in model extraction and test
case generation [15].

The highest level of automation currently available is
automated regression analysis using model comparison
between automatically extracted models of the GUI
software. With this approach, the manual effort remains in
deciding if the reported GUI changes were intentional or
regression faults. The only tool currently available in this
category is open source Murphy tool [21].

IV. RELATED WORK

Since the evolution of automated GUI-based testing,
presented in Section II, is a sort of state-of-the-art study, in
this section we present related state-of-the-art studies in
addition to related work on classifying automated GUI
testing.

Kull [22] summarized the state-of-the-art on automated
extraction of GUI models for the purpose of generating tests
from the extracted models. The author raised the problem of
not having meaningful test oracles as the main challenge in
using extracted models for test automation.

Banerjee et al. [23] used systematic mapping to study
136 articles related to GUI testing to classify the nature of
the articles, the aspects of GUI testing being investigated, the
nature of evaluation being used, and to draw some
conclusions based on the results. The authors conclude that
more comparison is required between academic and
industrial tools and techniques, and that commercial tools for
MBGT are missing.

Aho et al. [24] presented an extensive state-of-the-art
study on automated extraction of GUI models for testing. In
addition to giving an extensive background on GUI testing
and model extraction, the study summarized the work of
most of the leading researchers and research groups related
to using extracted GUI models for automated testing.

Alegroth et al. [15] have proposed to classify the existing
GUI based testing approaches into three chronological
generations. The first generation consists of C&R
approaches capturing exact mouse coordinates. The obvious
disadvantage, in addition to the general disadvantages of the
C&R approaches, is the dependence on the screen resolution.
If the same GUI software is executed on a different platform
with a different screen resolution, the recorded test cases do
not necessarily work.

The second generation consists of approaches based on
components or widgets of the GUI and cover MBT
approaches in addition to C&R. The advantage of using
some kind of API provided by the OS or GUI library is that
the recorded or modeled interactions are mapped to
components or widgets of the GUI, instead of mouse

19Copyright (c) IARIA, 2016. ISBN: 978-1-61208-481-7

ACCSE 2016 : The First International Conference on Advances in Computation, Communications and Services

coordinates, giving the second generation approaches better
robustness against GUI changes [15].

The third generation approaches are based on VGT, using
image recognition on partial images of the GUI and screen
captures to interact and assert the correctness of the GUI
[15]. There are also C&R tools, such as Sikuli [18], that fall
into this category. In some cases, VGT might be more
tolerant to layout changes, but it is more dependent on the
graphical representation of the GUI. If the graphical icon of a
button is redesigned, the related test cases have to be
updated.

This mainly chronological classification [15] is not
sufficient, as it does not address the level of automation at
all, and all three generations have also C&R approaches. The
most common inducement for adopting test automation is
reducing the manual effort and time required for testing.
Therefore the level of automation or amount of manual effort
has to be considered when evaluation test automation
methods and tools. Hence, in Section III we have proposed
an improved classification of methods and tools for
automated GUI testing having a second axis for the level of
automation.

V. CONCLUSIONS, DISCUSSION AND FUTURE WORK

In this paper we summarized the evolution of GUI-based
test automation and proposed a classification of methods and
tools for automated regression testing through the GUI.

The classification proposed in this paper does not take
into account all aspects of test automation related to testing
through the GUI. Instead, it focuses on regression testing.
Our intention is to provide a baseline for comparison
between different tools and methods, and we hope that in the
future the classification helps the industry in selecting the
tools and methods most suitable for their needs. The variety
of available test automation tools is growing, and it will
become more challenging to select the tools that are best
suited for the needs of a specific project.

Based on the state-of-the-art study, in the future we plan
to address the lack of performance of GUI model extraction
by executing the GUI being modeled in several virtual
machines in parallel. Hence, we hope to get the automated
regression analysis to be fast enough for the expectations of
continuous integration processes. The same functionality
could be used more generally to make automated UI test
execution faster. We plan to work on combining component
or API-based approach with visual image recognition aspects
to make UI model extraction more accurate and tolerant for
changes in the UI. Another future research subject would be
using static analysis on the source code of the UI application
to extract possible input combinations for increasing the
coverage of model extraction.

REFERENCES

[1] M. Grechanik, Q. Xie, and C. Fu, “Creating GUI Testing Tools Using
Accessibility Technologies,” in International Conference on Software
Testing Verification and Validation Workshops (ICSTW’09), 1-4
April 2009, Denver, CO, USA, pp. 243-250, IEEE.

[2] IEEE Standard Glossary of Software Engineering Terminology, 1990,
IEEE, New York, USA.

[3] SeleniumHQ, a tool for automating Web testing,
http://www.seleniumhq.org/ [retrieved: Apr, 2016]

[4] Appium, a tool for automating mobile app testing, http://appium.io/
[retrieved: Apr, 2016]

[5] Squish GUI Tester, http://www.froglogic.com/squish/gui-testing/
[retrieved: Apr, 2016]

[6] A. Kervinen, M. Maunumaa, T. Pääkkönen, and M. Katara, ”Model-
Based Testing Through a GUI,” in Proceedings of the 5th
international conference on Formal Approaches to Software Testing
(FATES'05), July 11, 2005, Edinburgh, UK, pp. 16-31.

[7] TEMA Toolset, an MBT tool for mobile GUI testing,
http://tema.cs.tut.fi/ [retrieved: Apr, 2016]

[8] B. Nguyen, B. Robbins, I. Banerjee, and A. Memon, “GUITAR: an
innovative tool for automated testing of GUI-driven software,” in
Automated Software Engineering, March 2014, Volume 21, Issue 1,
pp 65-105, Springer.

[9] P. Aho, M. Suarez, T. Kanstrén, and A. Memon, “Murphy Tools:
Utilizing Extracted GUI Models for Industrial Software Testing,” in
Proceedings of 2014 IEEE International Conference on Software
Testing, Verification, and Validation Workshops, 1-4 April 2014,
Cleveland, OH, USA, pp. 343-348.

[10] T. Vos, P. Kruse, N. Condori-Fernández, S. Bauersfeld, and J.
Wegener, “TESTAR: Tool Support for Test Automation at the User
Interface Level,” in International Journal of Information System
Modeling and Design, IJISMD 2015, vol.6 (3), July-September 2015,
pp. 46-83.

[11] P. Aho, N. Menz, T. Räty, and I. Schieferdecker, "Automated Java
GUI Modeling for Model-Based Testing Purposes,” in Proc. 8th Int.
Conf. on Information Technology: New Generations (ITNG), 11-13
Apr 2011, Las Vegas, USA, pp. 268-273.

[12] Y. Miao and X. Yang, "An FSM based GUI test automation model,"
in Proc. 2010 11th Int. Conf. on Control, Automation, Robotics &
Vision (ICARCV), Singapore, 7-10 Dec 2010, pp. 120-126.

[13] Windows Automation API, an interface for Windows GUI
automation, https://msdn.microsoft.com/en-
us/library/windows/desktop/ff486375(v=vs.85).aspx [retrieved: Apr,
2016]

[14] Jemmy framework, GUI library for Java GUI automation,
https://jemmy.java.net/ [retrieved: Apr, 2016]

[15] E. Alégroth, Z. Gao, R. Oliveira, and A. Memon, “Conceptualization
and Evaluation of Component-based Testing Unified with Visual GUI
Testing: an Empirical Study,” in 2015 IEEE 8th International
Conference on Software Testing, Verification and Validation (ICST),
13-17 April 2015, Graz, Austria, pp. 1-10, IEEE.

[16] E. Elsaka and A. Memon, “A Fully Automated Approach for
Debugging GUI Applications,” in 1st International Workshop on
User Interface Test Automation (INTUITEST 2015), 19 October
2015, Sophia Antipolis, France, pp. 51-60.

[17] Abbot Java GUI Test Framework, http://abbot.sourceforge.net/
[retrieved: Apr, 2016]

[18] Sikuli Script, a visual GUI automation tool, http://www.sikuli.org/
[retrieved: Apr, 2016]

[19] GUITAR, a GUI Testing Framework,
https://sourceforge.net/projects/guitar/ [retrieved: Apr, 2016]

[20] Webmate, fully automated web testing tool, https://webmate.io/
[retrieved: Apr, 2016]

[21] Murphy, an open source GUI model extraction, change analysis and
testing tool, https://github.com/F-Secure/murphy [retrieved: Apr,
2016]

[22] A. Kull, “Automatic GUI Model Generation: State of the Art,” 2012
IEEE 23rd International Symposium on Software Reliability
Engineering Workshops, 27 Nov - 30 Nov 2012, Dallas, TX, USA,
pp. 207-212.

[23] I. Banerjee, B. Nguyen, V. Garousi, and A. Memon, “Graphical user
interface (GUI) testing: Systematic mapping and repository,” in

20Copyright (c) IARIA, 2016. ISBN: 978-1-61208-481-7

ACCSE 2016 : The First International Conference on Advances in Computation, Communications and Services

http://www.seleniumhq.org/
http://appium.io/
http://www.froglogic.com/squish/gui-testing/
http://tema.cs.tut.fi/
https://msdn.microsoft.com/en-us/library/windows/desktop/ff486375(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff486375(v=vs.85).aspx
https://jemmy.java.net/
http://abbot.sourceforge.net/
http://www.sikuli.org/
https://sourceforge.net/projects/guitar/
https://webmate.io/
https://github.com/F-Secure/murphy

Information and Software Technology, Volume 55, Issue 10, October
2013, pp. 1679-1694.

[24] P. Aho, T. Kanstrén, T, Räty, and J. Röning, “Automated Extraction
of GUI Models for Testing,” in Advances in Computers, Vol. 95,
2014, pp. 49-112, Burlington: Academic Press.

21Copyright (c) IARIA, 2016. ISBN: 978-1-61208-481-7

ACCSE 2016 : The First International Conference on Advances in Computation, Communications and Services

