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Abstract—This paper presents the evaluation results of a gaze-
depth prediction method for natural gaze interaction of 
wearable augmented reality. To calculate the gaze depth, we 
extracted the position of the center of the eyeball and the gaze 
vector of participants’ eyes from a binocular eye tracker while 
the distance between participants’ eyes and an object changed. 
We then applied support vector machines (SVM) to predict 
gaze depth. Based on our evaluation, prediction of gaze depth 
to actual focal distance was accurate to within +/- 20 cm.  
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I.  INTRODUCTION 
Recently, augmented reality (AR) has received great 

attention from researchers and consumers due to the release 
of commercial devices from global companies. Smartphones 
are now commonly used in conjunction with AR SDKs 
(Software Development Kit), such as Vuforia and Kudan, 
thus developers easily make AR apps for them [1][2]. 
Furthermore, AR head-mounted displays (HMDs), such as 
Hololens have had a big impact on the possibility of AR for 
consumer business [3].  

There have been many studies on improving interaction 
for AR glasses [4][5]. Researchers have integrated various 
interaction methods such as hand gesture interaction and 
gaze tracking for remote collaboration. However, it is still 
difficult to use hand gesture and control gaze direction. 
Moreover, Toyama et al. studied multi-focus estimation 
based on support vector regression for optical see-through 
HMDs [6]. However, depth estimation has still largely 
deviated from a user’s focal length and thus has caused 
unstable user interaction. 

In this paper, we present the evaluation results of gaze-
depth estimation using support vector machines (SVM) 
based on a binocular tracker. We collected eye vectors and 
eye centers of both eyes. The collected data was analyzed 
and used for predicting eye-gaze depth using support vector 
regression (SVR) an SVM. The learned model was then used 
to analyze the accuracy of the prediction results. 

This paper is organized as follows. In Section II, we first 
describe the prediction procedure and approach. We then 
introduce the evaluation result of the prediction approach in 
Section III. Finally we conclude with future work in Section 
IV. 

II. PREDICTION OF EYE-GAZE DEPTH  
Several studies have reported on estimations of gaze 

depth, and they have shown two categories [6]. One involves 
the use of 3D eye measurements geometrically based on 
vector intersection, and the other uses the SVR model. The 
vector intersection approach calculates eye depth by 
intersecting the eye vectors of the two eyes. However, the 
depth information from this method is inaccurate due to the 
unstable convergence of the human eye. The SVR approach 
uses a support vector machine that estimates the gaze depth 
by maximizing the margins of the support vectors. However, 
this regression still has a large estimation error due to the 
inherent problems of human eye convergence.  

To predict gaze depth in a stable manner, the gaze-depth 
predicting method uses a binocular tracking device. The 
binocular eye tracker provides the eye position and eye line 
information of both eyes. Our research uses the position of 
the center of the eyeball and gaze information in order to 
predict eye gaze depth. We thus integrated smart eyeglasses 
and an eye tracker, as shown on the right side of Figure 1.  

 

 
Figure 1.  Gaze-depth prediction procedure for wearable 3D interaction 

Using this equipment, we collected raw data from the eye 
tracker to predict eye depth as shown on the left of Figure 1. 
First, we extracted eye tracker information from the eyes of 
three test participants and selected features to obtain the gaze 
depth. Eye movement information includes the pupil position 
of each eye. Multiple pieces of eye information from the 
eyes were also collected. From this information, we analyzed 
and extracted the influential features for eye-depth 
prediction. Finally, the proposed method estimated the 
continuous line depth based on the SVR model and predicted 
the discrete line depth based on the SVM. The support vector 
model estimated the eye depth based on the maximum 
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margin of the given sample data. With this model, we trained 
and tested specimens with eye and depth information. 

III. EVALUATION 
To evaluate the accuracy of gaze depth in the distance, 

we installed a test bed consisting of a Pupil Labs binocular 
eye tracker [7]. This eye tracker has two eye cameras and 
one world camera. It tracks the eye movement and estimates 
gaze information of each eye and records world image 
frames at 120 Hz. We collected pupil and gaze data at focal 
distances of 1, 2, 3, 4, and 5 meters. There was a small panel 
located at each of the focal distances, and each user was 
asked to look at each panel. Three participants were involved 
in this experiment. 
     We first analyzed influential features for predicting eye-
gaze depth. For this purpose, we calculated the importance 
information gain of each feature with respect to gaze depth. 
As seen in Figure 2, among the 17 features analyzed, the 
position of the center of the eyeball is the feature most highly 
related to eye-gaze depth. The direction of each eye’s gaze is 
also related to eye-gaze depth. 
 

 
Figure 2.  Information gained from features on gaze depth 

We then analyzed the performance of continuous gaze-depth 
prediction obtained from the SVR model. Figure 3 illustrates 
the relationship between the actual and the predicted gaze 
depth. The model’s prediction of gaze depth to actual focal 
distance was accurate to within +/- 20 cm (absolute mean 
error) except for the 2-meter distance.  

 
Figure 3.  Gaze-depth estimation using the SVR model 

Lastly, we evaluated the performance of prediction of 
discrete gaze depth obtained from the SVM. The overall 
prediction accuracy was 99% in classifying focal depth. As 
seen in Table 1, the gaze depths were well classified based 
on the focal distance. There was only an error in predicting 
the gaze depth at 4 meters. This indicates that the depth can 
be predicted by machine learning and discrete prediction 
might be practically useful for user interaction. However, the 
results should be tested with a greater number of participants, 
since only a small number of participants were involved. 

TABLE I.  CONFUSION MATRIX OF DEPTH CLASSIFICATION FROM  
SVM 

	 Gaze depth 1 2 3 4 5 
1 5971 0 0 0 0 
2 0 5874 0 0 0 
3 0 0 6415 0 0 
4 0 0 0 6109 1 
5 0 0 0 0 6449 

IV. CONCLUSION 
In this paper, we presented the results of the evaluation of 

gaze depth using a supporting vector machine for natural 
interaction of wearable AR systems. We set up smart 
eyeglasses with a binocular eye tracker and then collected 
pupil and gaze data from the eye tracker. We then evaluated 
the performance of the gaze-depth prediction based on 
SVMs. 

This work is the first step towards supporting natural 
gaze interaction based on eye-gaze information for wearable 
computers. There are still technical problems that need to be 
improved. We first would like to find features that are more 
influential in estimating gaze-depth information. We would 
also like to find more stable and accurate estimation methods 
for predicting gaze-depth information.  
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