
Selecting the Right Task Model for Model-based User Interface Development

Gerrit Meixner

German Research Center for Artificial Intelligence

Innovative Factory Systems

Kaiserslautern, Germany

Gerrit.Meixner@dfki.de

Marc Seissler

University of Kaiserslautern

Center for Human-Machine-Interaction

Kaiserslautern, Germany

Marc.Seissler@mv.uni-kl.de

Abstract - This paper presents a taxonomy allowing for the

evaluation of task models with a focus on their applicability in

model-based user interface development processes. It further

supports the verification and improvement of existing task

models, and provides developers with a decision-making aid

for the selection of the most suitable task model for their

development process or project. Furthermore the taxonomy is

applied on the Useware Markup Language 1.0. The results of

the application are briefly described in this paper which led to

the identification of substantial improvement potentials.

Keywords - Task model, Taxonomy, Useware Markup

Language, Model-based User Interface Development, MBUID.

I. INTRODUCTION

The improvement of human-machine-interaction is an
important field of research reaching far back into the past
[22]. Yet, for almost two decades, graphical user interfaces
have dominated their interaction in most cases. In the future,
a broader range of paradigms will emerge, allowing for
multi-modal interaction incorporating e.g., visual, acoustic,
and haptic input and output in parallel [41]. But also the
growing number of heterogeneous platforms and devices
utilized complementarily (e.g., PC’s, smartphones, PDA)
demand for the development of congeneric user interfaces
for a plethora of target platforms; their consistency ensures
their intuitive use and their users’ satisfaction [16].

To meet the consistency requirement, factors such as
reusability, flexibility, and platform-independence play an
important role for the development of user interfaces [7].
Further, the perseverative development effort for every
single platform, single platform or even single use context
solution is way too high, so that a model-based approach to
the abstract development of user interfaces appears to be
favorable [31].

The purpose of a model-based approach is to identify
high-level models, which, allow developers to specify and
analyze interactive software applications from a more
semantic oriented level rather than starting immediately to
address the implementation level [18][36]. This allows them
to concentrate on more important aspects without being
immediately confused by many implementation details and
then to have tools which, update the implementation in order
to be consistent with high-level choices. Thus, by using
models which capture semantically meaningful aspects,
developers can more easily manage the increasing

complexity of interactive applications and analyze them both
during their development and when they have to be modified
[28]. After having identified relevant abstractions for
models, the next issue is specifying them through suitable
languages that enable integration within development
environments.

The pivotal model of a user-centric model-based
development process is the task model [19]. Task models—
developed during a user and use context analysis—are
explicit representations of all user tasks [30]. Recently,
several task modeling languages have been developed,
which, differ, for example, in their degree of formalization,
and their range of applications. To make the selection of a
suitable task modeling language simpler, this paper
introduces a task model taxonomy that enables all
participants involved in an integrated MBUID (Model-based
User Interface Development) process, to evaluate and
compare task modeling languages.

The rest of this paper is structured as follows: Section II
explains the proposed taxonomy for task models in detail.
Section III gives a short introduction on the Useware Markup
Language (useML) 1.0 followed by Section IV, which shows
the application of the taxonomy on useML 1.0. The paper
finishes with Section V, which gives a brief summary and an
outlook on future activities.

II. THE TAXONOMY AND ITS CRITERIA

The proposed taxonomy focuses on the integration of
task models into architectures for model-based development
of user interfaces allowing for consistent and intuitive user
interfaces for different modalities and platforms. For the
evaluation of different task models, criteria describing
relevant properties of these task models are needed. The
criteria employed herein are based on initial work of [1] and
[38], and are amended by additional criteria for task models
with their application in MBUID. Following, the taxonomy
and its criteria are described in detail.

A. Criterion 1: Mightiness

According to [26], a task model must help the developer

to concentrate on tasks, activities, and actions. It must focus

on the relevant aspects of task-oriented user interface

specifications, without distracting by complexity. Yet, the

granularity of the task definition is highly relevant. For the

application of a task model in a MBUID process, the task

model must comprise different levels of abstraction [15],

5

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

describing the whole bandwidth of interactions from abstract

top-level tasks to concrete low-level actions. According to

[34], it is commonly accepted that every person has her own

mental representations (mental models) of task hierarchies.

The hierarchical structure thereby constitutes the human’s

intuitive approach to the solution of complex tasks and

problems. Consequently, complex tasks are divided into less

complex sub-tasks [11] until a level is reached where sub-

tasks can be performed easily. Normally, task models are

divided into two levels of abstraction. With abstract tasks the

user is able to model more complex tasks, e.g., ―Edit a file.‖

On the other hand a concrete task is an elemental or atomic

task, e.g., ―Enter a value.‖ Tasks should not be modeled too

detailed, e.g., like in GOMS [8] at least at development time

[10].

Tasks can also be modeled from different perspectives. A

task model should differentiate at least between interactive

user tasks and pure system tasks [4]. Pure system tasks

encapsulate only tasks which, are executed by the computer

(e.g., database queries). This differentiation is preferable,

because it allows for deducting when to create a user

interface for an interactive system, and when to let the

system perform a task automatically.

A further aspect determining the mightiness of a task

model is its degree of formalization. Oftentimes, task

modeling relies on informal descriptions, e.g., use cases [10]

or instructional text [9]. According to [27], however, these

informal descriptions do rarely sufficiently specify the

semantics of single operators as well as the concatenation of

multiple operators (i.e., to model complex expressions).

These task models therefore lack a formal basis [33], which

impedes their seamless integration into the model-based

development of user interfaces [25]. On the one hand,

developers need a clear syntax for specifying user interfaces,

and on the other hand, they need an expressive semantic.

Furthermore, the specification of a task model should be

checked for correctness, e.g., with a compiler. For these

reasons a task model should rather employ at least semi-

formal semantics [24].

Using, for example, temporal operators (sometimes

called qualitative temporal operators [14]) tasks can be put

into clearly defined temporal orders [12]. The temporal order

of sub-tasks is essential for task modeling [27] and opens up

the road to a completely model-based development of user

interfaces [15].
The attribution of optionality to tasks is another

important feature of a task modeling language [1]. By
itemizing a task as either optional or required, the automatic
generation of appropriate user interfaces can be simplified.
Similarly, the specification of cardinalities for tasks [26]
allows for the automatic generation of loops and iterations.
Several types of conditions can further specify when exactly
tasks can, must, or should be performed. For example,
logical [32] or temporal [14] conditions can be applied.
Temporal conditions are also called quantitative temporal
operators [14].

B. Criterion 2: Integratability

Due to the purpose of this taxonomy, the ease of a task
model’s integration into a consistent (or even already given)
development process, tool-chain or software architecture
[15], is an important basic criterion. Therefore it is necessary
to have a complete model-based view, e.g., to integrate
different other models (dialog model, presentation model,
etc.) in the development process [37]. Among others, the
unambiguity of tasks is essential, because every task must be
identified unequivocally, in order to match tasks with
interaction objects, and to perform automatic model
transformations [40].

C. Criterion 3: Communicability

Although task modeling languages were not explicitly

developed for communicating within certain projects, they

are suitable means for improving the communication within

a development team, and towards the users [29]. Task

models can be employed to formalize [1], evaluate [32],

simulate [27] and interactively validate [3] user

requirements. A task model should therefore be easily,

preferably intuitively understandable, and a task modeling

language must be easy to learn and interpret. Semi-formal

notations have shown to be optimally communicable [24] in

heterogeneous development teams.

D. Criterion 4: Editability

This criterion defines how easy or difficult the creation

and manipulation of a task model appears to the developer

[6]. In general, we can distinguish between plain-text

descriptions like e.g., GOMS [8] and graphical notations like

e.g., CTT [26] or GTA [38]. For the creation of task models,

graphical notations are better utilizable than textual notations

[12]. For example, graphical notations depict hierarchical

structures more intuitively understandable. Here, one can

further distinguish between top-down approaches like CTT,

and left-right orders such as in GTA.
Although this fourth criterion is correlated to the third

one (communicability), they put different emphases. For
every graphical notation, obviously, dedicated task model
editors are essential [27].

E. Criterion 5: Adaptability

This criterion quantifies how easily a task model can be
adapted to new situations and domains of applications. This
applies especially to the development of user interfaces for
different platforms and modalities of interaction. The
adaptability criterion is correlated to the mightiness criterion.
Especially while using task models in the development
process of user interfaces for ubiquitous computing
applications [39], run-time adaptability is an important
criterion [5], which must be considered.

F. Criterion 6: Extensibility

The extensibility of a task modeling language is
correlated to its mightiness and adaptability. This criterion
reveals the ease or complicacy of extending the semantics
and the graphical notation of the task modeling language.

6

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

This criterion is highly significant, because it is commonly
agreed that there is no universal task modeling language
which, can be applied to all domains and use cases [6]. In
general, semi-formal notations are more easily extendable
than fully formal ones. Formal notations are usually based on
well-founded mathematical theories which, rarely allow for
fast extensions.

G. Criterion 7: Computability

Computability quantifies the degree of automatable
processing of task models. This criterion evaluates, among
others, the data management, including the use of well-
established and open standards like XML as data storage
format. Proprietary formats should be avoided, because they
significantly hinder the automatic processing of task models.

H. Summary

Some of the criteria are partly correlated, e.g., the
Editability criterion is aiming in the same direction as the
Communicability criterion, but their focus in terms of
usability is quite different (see Figure 1). The Adaptability
criterion is correlating with the Mightiness and the
Extensibility criteria. Furthermore the Extensibility criterion
is correlated to the Mightiness criterion.

Figure 1: Correlating criteria

Table 1 shows all criteria and their possible values. All
these possible values are more or less subjective. According
to [6], the definition of more precise values is not possible,
because there are no suitable metrics for value quantification.

TABLE I. CRITERIA AND VALUES

Criterion Values

1. Mightiness

a. Granularity
b. Hierarchy

c. User- and system task

d. Degree of formalization
e. Temporal operators

f. Optionality

g. Cardinality
h. Conditions

High, Medium, Low

High, Medium, Low
Yes, No

Yes, No

High, Medium, Low
Yes, No

Yes, No

Yes, No
High, Medium, Low

2. Integratability High, Medium, Low

3. Communicability High, Medium, Low

4. Editability High, Medium, Low

5. Adaptability High, Medium, Low

6. Extensibility High, Low

7. Computability High, Low

III. USEWARE MARKUP LANGUAGE 1.0

The Useware Markup Language (useML) 1.0 had been
developed by Reuther [32] to support the user- and task-
oriented Useware Engineering Process [41] with a modeling
language that could integrate, harmonize and represent the
results of an initial analysis phase in one common, so-called
use model in the domain of production automation.
Accordingly, the use model abstracts platform-independent
tasks, actions, activities, and operations into use objects that
make up a hierarchically ordered structure. Each element of
this structure can be annotated by attributes such as eligible
user groups, access rights, importance. Use objects can be
further structured into other use objects or elementary use
objects. Elementary use objects represent the most basic,
atomic activities of a user, such as entering a value or
selecting an option. Currently, five types of elementary use
objects exist [21]:

 Inform: the user gathers information from the
user interface

 Trigger: starting, calling, or executing a certain
function of the underlying technical device (e.g.,
a computer or field device)

 Select: choosing one or more items from a range
of given ones

 Enter: entering an absolute value, overwriting
previous values

 Change: making relative changes to an existing
value or item

Figure 2 visualizes the structure of useML 1.0.

Figure 2: Schematic of useML 1.0

IV. APPLICATION OF THE TAXONOMY ON USEML 1.0

In the following subsections the application of the

taxonomy on useML 1.0 is briefly described.

A. Mightiness of useML 1.0

useML 1.0’s differentiation between use objects and five

types of elementary use objects is sufficiently granular. With

the classification of these elementary use objects types,

7

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

corresponding, abstract interaction objects can be determined

[32]—which, the rougher differentiation of task types in the

de facto standard CTT does not allow [2] [16] [35].

The use model or the useML 1.0 language, respectively, can

be categorized as semi-formal. Though useML 1.0 is not

based on formal mathematical fundamentals as e.g., Petri

Nets [13], its structure is clearly defined by its XML schema.

It allows, among others, for syntax and consistency checks

which, ensure that only valid and correct use models can be

created.

The use model by [32] focuses on the users’ tasks, while

those tasks which, are fulfilled solely by the (computer)

system, can’t be specified. Yet, for subsequently linking the

use model to the application logic of a user interface, this

task type is also required [2]. Querying a database might be

such a pure system task which, however, might require that

the query results are being presented to the user in an

appropriate way. Pure system tasks can obviously be a part

of a more complex, interactive action.

The hierarchical structure of the use model satisfies the

Hierarchy sub-criterion of this taxonomy. Beside hierarchical

structures, useML 1.0 also supports other structures, e.g., net

structures. For the current useML 1.0 specification, however,

no temporal operators were specified, which, constitutes a

substantial limitation for the later integration of useML 1.0

into a fully model-based development process. In [32]

Reuther himself admits that useML 1.0 does not possess

temporal interdependencies between tasks. Task

interdependencies must therefore be specified with other

notations such as, e.g., activity diagrams. Such a semantic

break, however, impedes developers in modeling the

dynamics of a system, because they need to learn and use

different notations and tools, whose results must then be

consolidated manually. This further broadens the gap

between Software- and Useware Engineering [41].
Although use models allow for specifying logical pre-

and post-conditions, they don’t support quantitative temporal
conditions. Also, they lack means for specifying invariant
conditions that must be fulfilled at any time during the
accomplishment of the respective task. Finally, the current
useML 1.0 version cannot indicate that certain use objects or
elementary use objects are optional or required ones,
respectively. Although there is a similar attribute which, can
be set to a project-specific, relative value (between 1 and 10,
for example), this is not an adequate mean for formally
representing the optionality of a task. Accordingly, there are
no language elements in useML 1.0 that specify the
cardinality (repetitiveness) of a task’s execution. The value
of the Mightiness Criterion is based on the values of its sub
criteria. Taking into account all the sub criteria, the value of
the Mightiness criterion must be evaluated low.

B. Integratability of useML 1.0

Since no other models or modeling languages instead of

use models or useML 1.0, respectively, have been applied

and evaluated within projects pursuing the Useware

Engineering Process, it is difficult to assess the applicability

of use models into an integrated, MBUID architecture.

Luyten mainly criticized the lack of dialog and presentation

models complementing useML 1.0 [16]. Further, no

unambiguous identifiers exist in useML 1.0 which, however,

are required for linking (elementary) use objects to abstract

or concrete interaction objects of a user interface—currently,

use objects and elementary use objects can only be identified

by their names that, of course, don’t need to be unique.

UseML 1.0 must therefore be extended to arrange for unique

identifiers for (elementary) use objects, before it can be

integrated into a complex architecture comprising multiple

models representing relevant perspectives on the interaction

between humans and machines. Until then, the integratability

of useML 1.0 into such a model-based architecture must be

rated low.

C. Communicability of useML 1.0

Since Useware Engineering demands for an

interdisciplinary, cooperative approach [21], use models and

useML 1.0 should be easily learnable and understandable.

Being an XML dialect, in principal, useML 1.0 models can

be viewed and edited with simple text or XML editors. Yet,

these representations are difficult to read, understand, and

validate. Readers with little knowledge in XML will have

problems handling use models this way. Much better

readability is achieved with the web-browser-like

presentation of use models in the useML-Viewer by Reuther

[32] (see Figure 3).

Figure 3: Excerpts of a use model as presented by the useML-Viewer

This HTML-based viewer allows for easily reading,

understanding, and evaluating use models even without any

knowledge in XML. It also prints use models using the web

browsers’ printer functions. However, the quality of the

print is rather bad, among other reasons, because use models

cannot be scaled to preferred paper sizes. Finally, the

useML-Viewer can only display and print static use models,

but does not provide means for interactive simulations or for

the validation and evaluation of use models. Therefore, the

communicability of useML 1.0 can only be rated medium.

D. Editability of useML 1.0

Though a simple editor may be sufficient for editing

useML 1.0 models, XML editors are much more

comfortable tools, especially those XML editors that run

validity checks. Naturally, however, common versatile

8

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

XML editors from third party developers are not explicitly

adapted to the specific needs of useML 1.0. Therefore, they

cannot provide adequate means to simply and intuitively

edit use models. The editability criterion of useML 1.0 must

be rated low.

E. Adaptability of useML 1.0

useML 1.0 had been developed with the goal of

supporting the systematic development of user interfaces for

machines in the field of production automation. It focuses

on the data acquisition and processing during the early

phases of the Useware Engineering Process. Tasks, actions,

and activities of a user are modeled in an abstract and

platform-independent way. Thereby, the use model can be

created already before the target platform has been

specified. useML 1.0 provides for the incorporation of the

final users and customers during the whole process, by

allowing for the automatic generation of structure

prototypes. The project-specific attributes (e.g., user groups,

locations, device types) can be adjusted as needed, which,

means that useML 1.0 can be employed for a huge variety

of modalities, platforms, user groups, and projects. Among

others, useML 1.0 has already been applied successfully,

e.g., in the domain of clinical information system

development [17]. In conclusion the adaptability criterion

can be rated high.

F. Extensibility of useML 1.0

The fact that useML 1.0 is not strictly based upon well-

grounded mathematical theories, actually simplifies its

enhancement and semantic extension. This can simply be

done by modifying the XML schema of useML 1.0. In most

cases, however, not even this is necessary, because useML

1.0 comprises a separate XML schema containing project-

specific attributes (e.g., user groups, locations, device types)

which, can easily be adjusted without changing the useML

1.0’s core schema. Since this allows for storing an unlimited

number of use-case or domain-specific useML 1.0 schemes,

the extensibility of useML 1.0 can be rated high.

G. Computability of useML 1.0

Since useML 1.0 is a XML dialect, use models can be

further processed automatically. Employing dedicated

transformations (e.g., XSLT style sheet transformations)

prototypes can be generated directly from use models [21].

H. Summary of the evaluation of useML 1.0

The subsequently depicted table summarizes the

evaluation of useML 1.0. Those criteria that were rated

―No‖ or ―Low‖, highlight severe deficits of the language.

Figure 4 visualizes the results of the evaluation in a radar

chart that reveals these deficits: They identify starting points

for the upcoming, and for future improvements of the

useML 1.0.

TABLE II. CRITERIA AND VALUES OF USEML 1.0

Criterion Values

1. Mightiness

a. Granularity

b. Hierarchy

c. User- and system task
d. Degree of formalization

e. Temporal operators

f. Optionality
g. Cardinality

h. Conditions

Low

High

Yes

No

Medium

No

No

No

Medium

2. Integratability Low

3. Communicability Medium

4. Editability Low

5. Adaptability High

6. Extensibility High

7. Computability High

Figure 4: Results of the evaluation of useML 1.0

V. CONCLUSION AND OUTLOOK

In this paper, a taxonomy for task models has been
proposed, to simplify the selection of the most suitable task
model for projects employing model-based development
processes for user interfaces. Furthermore to show the
feasibility of the task model taxonomy, it has been applied
on useML 1.0. Also the application of the taxonomy on
useML 1.0 showed the need for enhancing useML 1.0
semantically.

Currently we’re enhancing useML 1.0 in different
aspects, according to the initial results of the application of
the taxonomy. Additionally, we would like to improve the
refinement of the criteria and apply this taxonomy to a
selection of further task models, such as CTT [26] or
AMBOSS [20] to proof the usefulness of this taxonomy.

REFERENCES

[1] S. Balbo, N. Ozkan, and C. Paris, ―Choosing the right task modelling
notation: A Taxonomy‖ in the Handbook of Task Analysis for

9

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

Human-Computer Interaction, D. Diaper and N. Stanton, Eds.,
Lawrence Erlbaum Associates, pp. 445–466, 2003.

[2] M. Baron and P. Girard, ―SUIDT: A task model based GUI-Builder‖,
Proc. of the 1st International Workshop on Task Models and Diagrams
for User Interface Design, 2002.

[3] M. Biere, B. Bomsdorf, and G. Szwillus, „Specification and
Simulation of Task Models with VTMB‖, Proc. of the 17th Annual
CHI Conference on Human Factors in Computing Systems, ACM
Press, New York, pp. 1–2, 1999.

[4] B. Bomsdorf and G. Szwillus, ―From task to dialogue: Task based
user interface design‖, SIGCHI Bulletin, vol. 30, nr. 4, pp. 40–42,
1998.

[5] K. Breiner, O. Maschino, D. Görlich, G. Meixner, and D. Zühlke,
―Run-Time Adaptation of a Universal User Interface for Ambient
Intelligent Production Environments‖, Proc. of the 13th International
Conference on Human-Computer Interaction (HCII) 2009, LNCS
5613, pp. 663–672, 2009.

[6] P. Brun and M. Beaudouin-Lafon, ―A taxonomy and evaluation of
formalism for the specification of interactive systems‖, Proc. of the
Conference on People and Computers, 1995.

[7] G. Calvary, J. Coutaz, J., and D. Thevenin, ―A Unifying Reference
Framework for the Development of Plastic User Interfaces‖, Proc. of
the Eng. Human-Computer-Interaction Conference, pp. 173-191,
2001.

[8] S. K. Card, T. P. Moran, and A. Newell, ―The psychology of human-
computer interaction‖, Lawrence Erlbaum Associates, 1983.

[9] J. Carroll, ―The Nurnberg Funnel: Designing Mini-malist Instruction
for Practical Computer Skill‖, MIT Press, 1990.

[10] L. Constantine and L. Lockwood, ―Software for Use:
A Practical Guide to the Models and Methods of Usage-Centered
Design‖. Addison-Wesley, 1999.

[11] A. Dittmar, ―More precise descriptions of temporal relations within
task models‖, Proc. of the 7th International Workshop on Interactive
Systems: Design, Specification and Verification, pp. 151–168, 2000.

[12] A. Dix, J. Finlay, G. D. Abowd, and R. Beale, ‖Human-Computer
Interaction, 3rd ed., Prentice Hall, 2003.

[13] C. Girault and R. Valk, ―Petri Nets for Systems Engineering‖,
Springer, 2003.

[14] X. Lacaze and P. Palanque, ―Comprehensive Handling of Temporal
Issues in Task Models: What is needed and How to Support it?‖,
Proc. of the 22th Annual CHI Conference on Human Factors in
Computing Systems, 2004.

[15] Q. Limbourg, C. Pribeanu, and J. Vanderdonckt, ―Towards
Uniformed Task Models in a Model-Based Approach‖, Proc. of the
8th International Workshop on Interactive Systems: Design,
Specification and Verification, pp. 164–182, 2001.

[16] K. Luyten, ―Dynamic User Interface Generation for Mobile and
Embedded Systems with Model-Based User Interface Development‖,
PhD thesis, Transnationale Universiteit Limburg, 2004.

[17] G. Meixner, N. Thiels, and U. Klein, ―SmartTransplantation –
Allogeneic Stem Cell Transplantation as a Model for a Medical
Expert System‖, Proc. of Usability & HCI for Medicine and Health
Care, Graz, Austria, pp. 306–317, 2007.

[18] G. Meixner, D. Görlich, K. Breiner, H. Hußmann, A. Pleuß, S. Sauer,
and J. Van den Bergh, ―4th International Workshop on Model Driven
Development of Advanced User Interfaces‖, CEUR Workshop
Proceedings, Vol-439, 2009.

[19] G. Meixner, ―Model-based Useware Engineering‖, W3C Workshop
on Future Standards for Model-Based User Interfaces, Rome, Italy,
2010.

[20] M. Giese, T. Mistrzyk, A. Pfau, G. Szwillus, and M. Detten,
„AMBOSS: A Task Modeling Approach for Safety-Critical
Systems‖, Proc. of the 2nd Conference on Human-Centered Software
Engineering and 7th international Workshop on Task Models and
Diagrams, Pisa, Italy, pp. 98–109, 2008.

[21] K. S. Mukasa and A. Reuther, ―The Useware Markup Language
(useML) - Development of User-Centered Interface Using XML‖,
Proc. Of the 9th IFAC Symposium on Analysis, Design and
Evaluation of Human-Machine-Systems, Atlanta, USA, 2004.

[22] B. Myers, ―A brief history of human-computer interaction
technology‖, interactions, vol. 5, nr. 2, pp. 44–54, 1998.

[23] H. Oberquelle, ―Useware Design and Evolution: Bridging Social
Thinking and Software Construction‖, in Social Thinking – Software
Practice, Y. Dittrich, C. Floyd, and R. Klischewski Eds., MIT-Press,
Cambridge, London, pp. 391–408, 2002.

[24] N. Ozkan, C. Paris, and S. Balbo, ―Understanding a Task Model: An
Experiment‖, Proc. of HCI on People and Computers, pp. 123–137,
1998.

[25] P. Palanque, R. Bastide, and V. Sengès, ―Validating interactive
system design through the verification of formal task and system
models‖, Proc. of the IFIP Working Conference on Engineering for
Human-Computer Interaction, pp. 189–212, 1995.

[26] F. Paternò, ―Model-based design and evaluation of interactive
applications‖, Springer, 1999.

[27] F. Paternò, ―ConcurTaskTrees: An Engineered Notation for Task
Models‖ in the Handbook of Task Analysis for Human-Computer
Interaction, D. Diaper and N. Stanton, Eds., Lawrence Erlbaum
Associates, pp. 483–501, 2003.

[28] F. Paternò, ―Model-based Tools for Pervasive Usability”, Interacting
with Computers, Elsevier, vol. 17, nr. 3, pp. 291–315, 2005.

[29] C. Paris, S. Balbo, and N. Ozkan, ―Novel use of task models: Two
case studies‖, in Cognitive task analysis, J. M. Schraagen, S. F.
Chipmann and V. L. Shalin, Eds., Lawrence Erlbaum Associates, pp.
261–274, 2000.

[30] C. Paris, S. Lu, and K. Vander Linden, ‖Environments for the
Construction and Use of Task Models‖ in the Handbook of Task
Analysis for Human-Computer Interaction, D. Diaper and N. Stanton,
Eds., Lawrence Erlbaum Associates, pp. 467–482, 2003.

[31] A. Puerta, ―A Model-Based Interface Development Environment‖,
IEEE Software, vol. 14, nr. 4, pp. 40–47, 1997.

[32] A. Reuther, ―useML – systematische Entwicklung von
Maschinenbediensystemen mit XML―, Fortschritt-Berichte pak, nr. 8,
Kaiserslautern, TU Kaiserslautern, PhD thesis, 2003.

[33] D. Scapin and C. Pierret-Golbreich, ―Towards a method for task
description: MAD‖, Proc. of the Conference on Work with
DisplayUnits, pp. 27–34, 1989.

[34] S. Sebillotte, ―Hierarchical planning as a method for task analysis:
The example of office task analysis‖, Behavior and Information
Technology, vol. 7, nr. 3, pp. 275–293, 1988.

[35] J. Tarby, ―One Goal, Many Tasks, Many Devices: From Abstract
User Task Specification to User Interfaces‖ in the Handbook of Task
Analysis for Human-Computer Interaction, D. Diaper and N. Stanton,
Eds., Lawrence Erlbaum Associates, pp. 531–550, 2003.

[36] J. Van den Bergh, G. Meixner, K. Breiner, A. Pleuß, S. Sauer, and H.
Hußmann, ―5th International Workshop on Model Driven
Development of Advanced User Interfaces‖, CEUR Workshop
Proceedings, Vol-617, 2010.

[37] J. Van den Bergh, G. Meixner, and S. Sauer, „MDDAUI 2010
workshop report―, Proc. of the 5th International Workshop on Model
Driven Development of Advanced User Interfaces, 2010.

[38] M. Van Welie, G. van der Veer, and A. Eliens, ―An ontology for task
world models‖, Proc. of the 5th International Workshop on Interactive
Systems: Design, Specification and Verification, pp. 57–70, 1998.

[39] M. Weiser, ―The computer for the 21st century‖, Scientific American,
vol. 265, nr. 3, pp. 94–104, 1991.

[40] A. Wolff, P. Forbrig, A. Dittmar, and D. Reichart, „Linking GUI
Elements to Tasks – Supporting an Evolutionary Design Process‖,
Proc. of the 4th International Workshop on Task Models and
Diagrams for User Interface Design, pp. 27–34, 2005.

10

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

[41] D. Zuehlke and N. Thiels, „Useware engineering: a methodology for
the development of user-friendly interfaces‖, Library Hi Tech, vol.

26, nr. 1, pp. 126–140, 2008.

11

ACHI 2011 : The Fourth International Conference on Advances in Computer-Human Interactions

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-117-5

